AD=A087 075  TENNESSEE UNIV KNOXVILLE DEPT OF PSYCHOLOGY F/6 12/1
FSTIMATION OF THE OPERATING CHARACTERISTICS HHEN THE TEST INFOR==ETC(U}
JUN 80 F SAMEJIMA 001“-77-C-0360
UNCLASSIFIED RR=80-2

|N a
o~




|

¢ L}

PO S
aAenl. o

T

LAY

<&

™~  ESTIMATION OF THE OPERATING CHARACTERISTICS
@  WHEN THE TEST INFORMATION OF THE OLD TEST
- IS NOT CONSTANT I: RATIONALE
=T
Q
<

FUMIKO SAMEJIMA

— b i = v O O OB 9 =@

-4

DEPARTMENT OF PSYCHOLOGY
UNIVERSITY OF TENNESSEE

-

: KNOXVILLE, TENN, 37916
-

- JUNE, 1980

. 2

- Prepared under the contract number N00014-77-C\§§60,
NR 150-402 with the
Personnel and Training Research Programs

| - %‘ Psychological Sciences Division
' S

Office of Naval Research

Approved for public release; distribution unlimited.
Reproduction in whole or in part is permitted for
amy purpose of the United States Government.

Ao, .

LIS 80 723022




RESEARCH REPORT 80-2

G ]

) ESTIMATION OF THE OPERATING CHARACTERISTICS
WHEN THE TEST INFORMATIOM OF THE OLD TEST
IS NOT CONSTANT I: RATIONALE

VAT 3¢ e, TRA7 ~ S, = R e CEPRL

PP

FUMIKO SAMEJIMA

DEPARTMENT OF PSYCHOLOGY ,1'23 .
UNIVERSITY OF TENNESSEE

KNOXVILLE, TENN. 37916

JUNE, 1980

Prepared under the contract number NOOO14-77-C-360,
NR 150-402 with the
Personnel and Training Research Programs
Psychological Sciences Division
Office of Naval Research

:.J Approved for public release; distribution unlimited.
- Reproduction in whole or in part is permitted for
1 ‘ any purpose of the United States Government.




Unclassificd

SECURITY CLASSIFICATION OF TwHIS PAGE (When Date Enteredi

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

0 v

12. GOVY ACCESSION NO.

3. RECIPIENT'S CATALOG NUMBEPR

Research XEP‘gjao'z - '@.m‘—lo‘?{

o ks P
rree .

Estimation of the Operating Characteristics when|;

. F!. TYPE OF REPORT & PERIOD COVERED

? Technical Report

the Test Information of the 0l1d Test is not’
Constant I. Rationale , !

6. PERFORMING ORG. REPORY NUMBER

~“OR’s, ——

Fumiko SameJima

e

UMBER/»)

W,_._w..-]. e IED N4Op14-77-C-F36p

e

L“‘"%Giﬁ*‘_—"
3. PER ING ORGANIZATION NAME AND ADDRESS

Department of Psychology”
University of Tennessee
Knoxville, Tennessee 37916

10. PROGRAM ELEMENT PROJECT, TASK
AREA & WORK UNIT NUMBERS

1. CONTROLLING OFFICE NAME AND ADDRESS

Office of Naval Research (Code 458)
Arlineton, VA 22217

L 2 .
Personnel and Training Research Programs 1if {16 Jun.-BE

1 -numeer-or-raets
99

14 MONITORING AGENCY NAME & ADDRESS(/! different trom Controlling Oflice)

(ék@(ﬁ%@%

15. SECURITY CLASS. (of this report)

Unclassified

15a. DECLASSIFICATION: DOWNGRADING
SCHEDULE

6 OI5TRIGUTION NT ot f%

Approved
in whole or in part is permitted for any purpose
government.

or pUDllC release; distribution unlimited. Reproduct. on

of the United States

7. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, i ditferent fro

m Report)

8 SUPPLEMENTARY NOTES

G;Yi¢5_ ;
~—1— 7

4] RR -y

19 KEY wow1on reverse eide I nocoslary and ldonnly by blo:h number)

Operaring Characteristxc Escimatlon
Tailored Testing
Latent Trait Theory

20 ABSTRACT (Continue on reverses aide If necessery and identily by block number)

(Please see reverse side)

Co .'3%%; w73

A an e o5 o100

EDI1TION OF ' NOV 88 IS OPSOLE"
3> NQJiu2-tF-0i4 j .ﬁ nCIGSSified
unn’ !t SSIFICA'HON OF THiS PAGE (When Dete Bntered)




» il e R T SRR

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Dste Entered)

bt B o A s

\

\

‘3Many combinations of a method and an approach for

LA

estimating the operating characteristics of the graded item iﬁ
responses, without assuming any mathematical forms, have been
produced. In these methods, we need a set of items whose ;
characteristics are known, or 0ld Test, which has a large, i
constant amount of test information throughout the interval of
latent trait of our interest. 1In the present paper, the rationale
is presented to generalize these methods so that they are made
applicable when the test information of the 0ld Test is not
constant. Both the transformation-free character of, the maximum &
likelihood estimator and the method of moments for fitting a
polynomial as the least squares solution play important roles

in this rationale.

ST T s i S

R

cT

EE NS R

S/N 0102- LF- 014- 6601 o
| Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Dare Enterey)

a e s P

S vasma, g N




e &

ESTIMATION OF THE OPERATING CHARACTERISTICS WHEN THE TEST
INFORMATION OF THE OLD TEST IS NOT CONSTANT I: RATIONALE

ABSTRACT

Many combinations of a method and an approach for

estimating the operating characteristics of the graded item

responses, without assuming any mathematical forms, have been

produced. 1In these methods, we need a set of items whose

characteristics
constant amount
latent trait of
is presented to
applicable when

constant. Both

are known, or 0ld Test, which has a large,

of test information throughout the interval of

our interest. In the present paper, the rationale
generalize these methods so that they are made

the test information of the 0ld Test is not

the transformation-free character of the maximum
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1 Introduction

There have been produced many combinations of a method and an
approach for estimating the operating characteristics of graded
item responses (Samejima, 1972), which have two distinguishing

characteristics such that:

(1) No prior mathematical forms are assumed for the resulting
operating characteristics,
and:
(2) A relatively small number of subjects, say, several hundred, are

needed for the basic data for the estimation.

(cf. Samejima, 1977¢, 19774, 1978a, 1978b, 1978¢c, 1978d, 1978e, 1978f.)

We can categorize these methods and approaches as follows.

[A] Approaches:

(1) Histogram Ratio Approach
(11) Curve Fitting Approach
(111) Conditional P.D.F. Approach
(a) Simple Sum Procedure
{(b) Weighted Sum Procedure
(¢) Proportioned Sum Procedure

(iv) Bivariate P.D.F. Approach

[B] Methods:
(i) Two-Parameter Beta Method

(11) Pearson System Method

Tt Ao




(iii) Normal Approach Method

P It has been found out that all of these combinations of an approach and '5
a method provide us with good estimations of operating characteristics, :;
although each combination has its own merits as well as its relative
shortcomings when compared with the other combinations.

These combinations of a method and an approach have also such

additional characteristics that: if

(3) Ve need a set of items whose operating characteristics are
i known, in order to estimate the operating characteristics of ‘l

"unknown" items;

e e .-
Y

and

—

(4) Such a set of "known" items, which is called 0ld Test, must
provide us with a substantially large and constant amount of test

information for the interval of latent trait of our interest.

o L2 LI

A typical situation which possesses these characteristics in itself

is the tailored testing situation, where we have an item pool from

e e b e e

which an optimal subset of test items is selected and presented to a
specific examinee. When we wish to add new items to the item pool,
all we need is to use a fixed amount of test information as the b
| criterion for terminating the presentation of new items to every

r individual subject (cf. 1977a, 1977b). Thus Old Test in this situation

is not a single set of test items, but a combination of as many

i subtests as the number of examinees who provided us with the basic
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data for the estimation of the operating characteristics. We notice

that, though these features, (3) and (4), are suitable in the
tailored testing situation, they will restrict the applicability of
the estimation methods in the paper-and-pencil testing situation,

where we are forced to use a fixed set of test items.

In .some situations, efforts have been put upon the elimination
of feature (3) using equivalent items and Constant Information Model,
a new family of models, and so forth, so that we shall be able to use
the methods without depending upon the 0ld Test (cf. Samejima, 1979a,
1979b, 1979c). We note, however, that, even if we may have to depend
upon the 0ld Test in estimating the operating characteristics of "new

items,"

the applicability of the methods will be enhanced enormously
under any circumstances, if we can eliminate the requirement of
the constant test information, which is stated in (4), i.e., if we can
use a set of "known" items whose test information function is not
constant for the interval of ability of our interest, as 0ld Test.
Fortunately, this expansion of the methods is relatively easy and
straight-forward, at least, in theory.

In the present paper, the rationale behind this generalization
of the methods will be presented and discussed. 1In so doing, the
transformation-free character of the maximum likelihood estimator

(Samejima, 1969) takes an essential role. The method of moments

for fitting a polynomial, which proved to be also the least squares

solution (Samejima and Livingston, 1979), plays another important role.
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The procedures presented in this paper will be applied in the

simulation study in the near future, and will be published as separate

papers, in order to investigate how the theory works in practice.




II Transformation of Latent Trait

Let 9 be the latent trait, or ability, which assumes any

real number, such that

(2.1) -0 < § < o

Let g (=1,2,...,n) be an item, and xg (=0,1,...,mg) be a graded item

response (Samejima, 1969, 1972), which is reduced to the binary item
response when m =1 . The operating characteristic of the graded item
response is denoted by Px (8) , which is the conditional probability
with which the examinee obtains the item score, or provides us with
the graded item response, xg , given ability 6 . Two typical
examples of this operating characteristic are those in the normal ogive
model and in the logistic model, defined on the graded response level
(Samejima, 1972). The item response information function, Ix o) ,

g

is defined as the negative of the second partial derivative of the

natural logarithm of the operating characteristic, such that

2

(2.2) I (8) = - = log P (0,
g CL g

and the item information function is the regression of the item

response information function on ability 6 , which can be written as

m
2.3) I ()= 1B 1 (8)p (o) .
.g xg=0 xg xg

This item information function can be considered as an index of local




accuracy of estimation of 6 provided by the item g , if the item
response information function assumes a positive value for every
item response X, (Samejima, 1973b), as is the case of the normal
ogive and the logistic models on the graded response level (cf.
Samejima, 1969, 1972, 1973a).

Let V be the response pattern of the graded item responses,

such that
A = v
(2.4) v (xl, Xys vnes xn) .

The operating characteristic of the response pattern V , which is
the conditional probability with which the examinee obtains the
response pattern V , given 6 , and 1s denoted by Pv(e) , can be

written, in virtue of the assumption of local independence (Lord and
Novick, 1968), by the formula

(2.5) P,(0) = 1 P (8) ,

xgeV &

and the response pattern information function, IV(G) , is the negative

of the second partial derivative of the natural logarithm of the

operating characteristic of the response pattern, such that

2
(2.6) 1,(0) = - ;ae—z log P, (6)

I
X € \Y ng(e)
g




The test information function, I(8) , is defined as the regression

of the response pattern information function on ability 6 , such 1

that ”
2.7) I1(8) =L (8) P_(8) .
Ty

It has been shown both on the dichotomous and the graded response
levels that this test information function can be written as the

sum total of the item information functions, such that

n )
(2.8) I(6) = I I,(e) b
g=1

(Birnbaum, 1968; Samejima, 1969). We can prove from (2.3) that the
‘ item information function is non-negative in nature, regardless of ‘3
the values of the item response information functions. By virtue 3
of (2.8), therefore, the test information function, I(8) , is also

! non-negative in nature, and is used as an index of local accuracy

of estimation of ability 6 provided by the test. Note, however, that

this index is meaningless unless the item response information function
t assumes a non-negative value for every item response x_, since,
otherwise, the existence of the unique maximum likelihood estimate

is not assured for every possible response pattern, as is the case

in the three-parameter normal ogive and logistic models (cf. Samejima, i

1969, 1972, 1973b).

i Let 1 be a function of 6 , such that




(2.9) T = 1(0) |,

which is strictly increasing in 6 . The operating characteristic,
P; (1) , of the item response Xg defined for the transformed latent
g
trait T equals the original operating characteristic, P (e) ,
g

which is obvious from its definition as the conditional probability.

Thus we can write
(2.10) P; (t) = P; [t(8)] = Px ) .
g 4 g

From (2.2) and (2.10), we can write for the item response information

function, I; (t) , such that

4
* 32
= - *
(2.11) Ix (1) E;Q'log Px (1)
g g
de.2 3 426
=I_ (8 [—=] ---1log?P, (8. —— .

From this result, we have for the item information function IE(T) ’

m
g
(2.12) I*(t) = § 1* (1) P* (1)
g x =0 g g
g
- ds.2
= 1I_(8) (954,
8( ) [dT]
since
ny N
(2.13) T —ang (e) =0 .
x =0 4




It can be seen that, with the response pattern V , we obtain

similar results, such that
* = pk =
(2.14) PV(T) Rvit(e)] Pv(e)

for the operating characteristic, P6(r) , and

2
(2.15) 13(1) = 1,(8) [%?—]2 - 3—39 log P, (6). -3—1—‘21

for the information function, 15(1) . We can write for the test
information function I*(t1) either from (2.15) or from (2.12) such

that

(2.16) I*(1) = 1(8) [%12

and, since Tt 1s a strictly increasing function of © , we have

/2 1/2 a¢

21 (12 = et 8

The maximum likelihood estimate, ) , of ability 6 , which

is based upon the response pattern V , can be obtained by using the

operating characteristics Pv(e) as the likelihood function. In a

-

similar manner, the corresponding maximum likelihood estimate, 1 ,
can be obtained by using Pg(t) as the likelihood function. By virtue
of the transformation-free character of the maximum likelihood estimator,

however, this second maximum likelihood estimate can also be obtained by

the direct transformation of 5 , such that




(2.18) T = 1(8)

(cf. Samejima, 1969). '
Note that (2.18) has a great deal of practical importance,
especially when the transformation, t( ) , is given by a_
relatively simple formula. Since in most cases there exists no
sufficient statistic for the response pattern V , the maximum
likelihood estimate, T , must be obtained through a numerical

process, using the basic function A; (1) , which is defined by
g

= 9
(2.19) A; (1) = T log P;g(r)

(cf. Samejima, 1969, 1972). Substituting (2.10) into (2.19),

LT LG

we can write

_de ¢ L

(2.20) A; (1) = 37 50 log Px (¢) f
g g |

i

-84 @ ‘

where Ax (6) 1is the basic function of the item response xg
g

defined with respect to € . Since the derivative, %% ,» is usually :

of a complicated form, it is not easy to program the process so that

we shall be able to obtain the maximum likelihood estimate T as

the solution to the equation,

(2.21) X A; (1) =0 .
xgeV g

-~

It is much easier, therefore, to obtain the maximum likelihood 6

- = e d I ’
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from the basic function, Ax (6) , and then obtain 1 through 1
g .
the formula (2.18). -

T
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111 Llatent Trait Providing a Constant Test Information for a
Specific Test

Here we assume that the test information function, 1(8) ,
of a specific test of our interest is not constant for the interval
(e, 8] . We attempt to transform the latent trait 6 to T , in

such a way that the resultant test information function, I*(71) ,

be constant for the interval, [r, T}, where

T =1(8 )

(3.1) - - 5
T = 1(8) ., 4

i

Let C2 denote this desired, constant amount of test information. L

From (2.17) we can write

(3.2) et orent/? .
i

Now we obtain from (3.2) for the transformation of 6 to 1 '

i

(3.3) v o=l f{x(e)]”z a6 +d ﬁ
|

where d 1s an arbitrary constant.

Thus it has been shown that, as far as the square root of test
information function is integrable, we can always transform the latent
trait 6 to another scale, 1T , by means of (3.3), in such a way

that the resultant test information, I*(t) , be constant. A problem

arises, however, when [1(9)11/2 is not integrable, or its integral




provides us with a highly complicated form, as is usually the case.

Perhaps the best practical solution for this problem is the use of
the method of moments.

It has been shown by Samejima and Livingston (Samejima and
Livingston, 1979) that the polynomial provided by the method of
moments to approximate any given function is also its least squares
solution, which is an appropriate characteristic for the present
purpose. It has also been demonstrated that, in fitting such a
polynomial, it is important to find an optimal interval of the
independent variable for the computation of the moments in order to
obtain a well-fitted function. If we succeed in obtaining such a

polynomial, we can write

m
(3.4) e 5 o o,
k=0

where k is the degree of the polynomial. Substituting (3.4) into

(3.3), we obtain

(3.5) r2ct g o (k+1)"1 ot 4 4
k=0
o+l
*
= I oy Bk s
k=0
where
= d k=20
(3.6) *
* e (o o k= 1,2,...,m1 .
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The transformation of 6 to T can be made, therefore, through a
polynomial of degree (mt+l), which is quite simple.

For the purpose of illustration, we hypothesize two tests,
whose test information functions are not constant. Each of these
two tests consists of twenty-five graded test items with mg =2 .
Since they are both subsets of the thirty-five test items of 01d
Test used in the previous studies, we shall call them Subtests 1 and
2, respectively. All these test items follow the normal ogive model,
whose operating characteristics are given by

/2 ag(e-bx )

(3.7) P, (0) = [2n17 L exp[-u2/2] du

P

s
PRI

where ag (>0) is the item discrimination parameter and b, is
g

the item response difficulty parameter, which satisfies

(3.8) - = b0 < b1 ees < bmg < bmg+l = o

These item parameters are shown in Tables 3-1 and 3-2.

The item information function, Ig(e) , for each item of

Subtests 1 and 2 was obtained through (3.7), (2.2) and (2.3), and
the two test information functions, I(6) , were obtained through
3 (2.8). Figures 3-1 and 3-2 present the square roots of the test

information functions thus obtained by solid curves, for Subtests

1 and 2, respectively.

Taking 8 = -3.0 and 8 = 3.0 , the moments about the
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; TABLE 3-2
‘ Two Item Difficulty Parameters of Each Item of )
Subtests 1 and 2 r
Itemg bl b2 Subtest 1 | Subtest 2
1 -4,75 =3.75 x ]
2 -4,50 -3.50 x |
3 -4.25 -3.25 x :
4 -4.00 -3.00 x
5 -3.75 -2.75 x
6 -3.50 -2.50 x x .
7 -3.00 =-2.00 x X )
8 -3.00 =-2.00 X x ¥
9 -2.75 -1.75 X x 4
10 -2.50 =-1.50 x x
11 -2.25 -=1.25 x b4 ;
12 -2.00 -1.00 X x ‘9
O 13 -1.75 -0.75 X b
= 14 -1.50 ~0.50 x g
' 15 -1.25 -0.25 x "
: ' 16 -1.00 0.00 x .
b 17 | -0.75 0.25 x 4
- 18 -0.50 0.50 x
] 1 19 | -0.25 0.75 X :
L 20 0.00 1.00 x 4
mo 21 0.25 1.25 x 4
o 22 0.50 1.50 x iy
' 23 0.75 1.75 X x 3
24 1.00 2.00 x x
25 1.25  2.25 x x
26 1.50 2.50 x X g
27 1.75 2.75 x x 3
28 2.00 3.00 x x i
29 2.25  3.25 x x .
30 2.50 3.50 x x
31 2.75 3.75 x
32 3.00 4.00 X
33 3.25  4.25 x
34 3.50 4.50 x
] 35 3.75 4.75 x
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, which are given by

origin, u;'

6 T 1/2
(3.9) u:' = 6" [1(8)) de , r=0,1,2,3,...,m ,
6
were computed for each of the two subtests, where m = 7 . Note
that the O0-th moment is the area under the curve of [I(e)]]'/2

for the interval of 6 , [-3.0, 3.0] , which is adjusted to unity.

Since the midpoint of the interval, [-3.0, 3.0] , is the origin,
these moments are also the moments about the midpoint, which we

need in applying the method of moments. These moments turned out
to be: 1.00000, 0.00768, 2.73116, -0.00547, 13.83270, -0.10637, ;i
84.67312 and -0.92245 for Subtest 1, and: 1.00000, 0.04742, 3.54786, !;
0.10420, 19.44401, 0.38678, 123.79663 and 1.83934 for Subtest 2.

The polynomials of degrees 3, 4, 5, 6 and 7 were obtained using the

i method of moments, and these five sets of coefficients are presented
in Table 3-3 for Subtest 1, and in Table 3-4 for Subtest 2 (cf.
Samejima and Livingston, 1979). These five polynomials are shown

by dotted curves in Figures 3-1 and 3-2 for Subtests 1 and 2,

respectively,

We can see in these ten graphs of Figures 3-1 and 3-2 that,
although the polynomials fit fairly well to the square roots of the
test information functions, there still is much to be desired,

especially for extreme values of 6 . For this reason, the

same process was repeated for both Subtests 1 and 2, using a

g different interval for the method of moments, i.e., 8=-4.0 and
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:
TABLE 3-3 E
Coefficients of the Polynomials of Degrees 3 through 7 {
Approximating [1(6)]1/2 , Which Were Obtained by the !#
Method of Moments Using [-3.0, 3.0] and [-4.0, 4.0]
As the Interval of 6 , Respectively.
Subtest 1 g
4
Interval
[-3.0, 3.0} [-4.0, 4.0])
0 g 4.90665 4.96268 |
1 R 0.07842 0.00602 :
2 -0.16475 -0.18690 ‘
3 é -0.01243 0.00021 i
0 D 4.67066 4.73399 53
1 G 0.07842 0.00602 :
2 R 0.09745 -0.04398 3
3 . -0.01243 0.00021 ;
4 4 -0.03399 -0.01042 R
- 0, 4.67066 4.73399 .
2 1 ps 0.17323 0.05956 (‘
# ' 2 R 0.09745 -0.04398 .
= 3 -0.06159 -0.01541
; 4 ; -0.03399 -0.01042
] 5 0.00492 0.00088
i 0 4.78242 4.72922
N 1 D 0.17323 0.05956
: 2 G -0.16329 -0.03771
. 3 R ~0.06159 -0.01541
} 4 0.05290 -0.01160
5 6 0.00492 0.00088
6 -0.00708 0.00005
0 4.78242 4.72922
1 b 0.26677 0.10599
2 pe -0.16329 -0.03771
3 R -0.15513 -0.04152
4 0.05290 -0.01160
5 ; 0.02778 0.00447
j 6 -0.00708 0.00005
7 -0.00157 -0.00014
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TABLE 3-4

Coefficients of the Polynomials of Degrees 3 through 7

Approximating [1(9)11/2, Which Were Obtained by the
Method of Moments Using [-3.0, 3.0] and [-4.0, 4.0]
As the Interval of € , Respectively,

Subtest 2
Interval
[-3.0, 3.0 [-4.0, 4.0]
0 g 2.63641 3.02995
1 R 0.22214 0.10837
2 0.25995 0.10841
3 3 -0.03114 -0.00924
0 D 2.02466 2.27454
l1 G 0.22214 0.10837
2 R 0.93968 0.58054
3 . -0.03114 ~-0.00924
4 -0.08811 ~0.03443
0 D 2.02466 2.27454
1 c 0.41951 0.24669
2 R 0.93968 0.58054
3 -0.13348 -0.04958
4 g -0.08811 ~0.03443
5 0.01023 0.00227
0 2.02136 2.14813
1 D 0.41951 0.24669
2 G 0.94740 0.74646
3 R -0.13348 -0.04958
4 -0.09071 -0.06554
S 6 0.01023 0.00227
6 0.00021 0.00143
0 2.02136 2.14813
1 D 0.60587 0.37926
2 G 0.94740 0.74646
3 R -0.31984 -0.12415
4 -0.09071 -0.06554
5 ; 0.05579 0.01252
6 0.00021 0.00143
7 -0.00313 -0.00040
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8 =4,0 . The new set of eight moments about the origin, which
were computed through (3.9), proved to be: 1.00000, 0.01082,
4.26091, 0,10885, 35.49275, 1.61607, 367.31471 and 24.05220 for
Subtest 1, and: 1.00000, 0.02913, 6.01702, 0.03999, 56.94637,
-0.09788, 633.40916 and -3.04930 for Subtest 2. The coefficients
of the resultant five polynomials are also presented in Table 3-3
for Subtest 1, and in Table 3-4 for Subtest 2. Figures 3-3 and

3-4 present the new polynomials of degree 3, 4, 5, 6 and 7 by

dotted curves, together with the square root of the test information

function, which is shown by a solid curve, for Subtests 1 and 2,
respectively. We can see a substantial improvement in the fit of
polynomials for both subtests, and, especially for Subtest 1, the

polynomial whose degree is as low as 4 ulready provides us with an

excellent fit.

.

k

e e
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IV Basic Data for Estimating the Operating Characteristics

We must administer both 0l1ld Test, whose test information

function needs not to be constant, and the set of new items, whose

operating characteristics are to be estimated, to, say, several
hundred examinees, whom we sampled from an appropriate population,
as is the case in the previous studies, in which we used an 01d

Test whose test information function is constant. Let N denote
the number of examinees. It is required that the "known'" test items
of the 01d Test follow a model, or models, which provides us with a
unique maximum likelihood estimate for every possible response
pattern (cf. Samejima, 1969, 1972).

Next, we must obtain the maximum likelihood estimate, é ,
of ability 6 for every individual examinee from his response
pattern V on the 0l1d Test of n items. When there exists a
simple sufficient statistic for the response pattern, as in the
logistic model on the dichotomous response level, this process is
relatively simple and straight forward. That is to say, in the
logistic model whose ité; characteristic function, Pg(e) , Or

the operating characteristic for xg=1 on the dichotomous response

level, is given by
-1
(4.1) P (8) = [1+ {-1.7 (6-b )} ,
g [ exp a, g ]

where ag and bg are the discrimination and difficulty parameters,

respectively, the maximum likelihood estimate is the solution of 6




to the equation

n
(4.2) t(V) = ¢t a P (8) ,

g=1 g 8
where t(V) is a simple sufficient statistic for the response pattern
V which is given by

(4.3) t(V) = I a x
X eV g &
g
(cf. Birnbaum, 1968). When there exists no sufficient statistic for
the response pattern, as is the case in most situations, the maximum

likelihood estimate must be obtained through a more complicated

n
numerical process, using [ ¢ mg + n] basic functions (Samejima, 1969,

g=1
1972), Ax (0) , which is defined by
g
(4.4) A (8) = <> P_ (8)
- X 38 " x
24 24

for each graded item response xg . Thus the maximum likelihood
estimate is the solution to the equation,
(4.5) I A _(8)=0 |,

x eV xg

g
which can be obtained by the aid of an electronic computer using
Newton-Raphson Method.
The third step is to compute the test information function,

I(v), of the 0ld Test through (2.2), (2.3) and (2.8), and, once it has

1/2

been done, its square root, [1(9)] , must be computed.




1/2

about the ;

Then we calculate the moments of [I(8)]
midpoint of the interval, [9, B] , and apply the method of moments i
to obtain the polynomial which approximates [1(9)]1/2 . 1In so ri
doing, it is important to adjust the endpoints of the interval, 6
and B , and the degree of the polynomial m , as was illustrated in j
the preceding chapter, in order to obtain a good approximation.

Thus the (mt+l) coefficients, o (k=0,1,2,...,m) , in (3.4) have !
been obtained for the 0ld Test. 1

After this has been done, set the desired amount of constant i

test information, c? , for the second test information function, i

I*(1), which is to be used after the transformation of 6 to 1 .
Since the normal approximation to the conditional distribution of
T, given 1 , plays an essential role in the estimat-on methods,
this constant amount of test information must be substai.tially large.
Next, we must obtain the coefficients aﬁ (k=0,1,2,...m,m*+1)
in the transformation of 6 to 1t , which is given by (3.5). First,
determine the value of 1 corresponding to the origin of 6 , and
use this as d in (3.5). If we wish to keep the position of the
origin unchanged, then set d = 0 . Using these two values of C
(>0) and 4@ thus obtained, and the coefficients ak's of the

polynomial approximating [I(e)]ll2

, obtain the coefficients, ai s
of the polynomial given by (3.5) from (3.6). ;
The final step is to obtain the maximum likelihood estimate

1 , of the transformed latent trait =t , on the 01d Test, for each




ol the N examinees. We may do this through the equation

mt+1
{4.6) TE L ok ék ’ "
k :

k=0

“terc v is the maximum likelihood estimate of 6 on the 0ld Test

77 +ach individual examinee, which was obtained earlier. This set
i ci the maximum likelihood estimates ; for the total group of N
' xuminees is the basic data for each estimation process of the
weorating characteristics of the graded item responses, which is to 1
» pruesented Iin a later chapter. 3
For the purpose of illustration, Figures 4-1 and 4-2 present

“re relative frequency distributions of § and 1 for the five

sundred hypothetical subjects, respectively, which were obtained
sough Subtest 1. This subtest consists of twenty-five graded
i i “eut items which follow the normal ogive model, with the !
serimination and difficulty parameters shown in Tables 3-1 and
4 4 "-2, respectively, as was introduced in the preceding chapter.

~

. “to values of 6 were obtained by using the basic function defined

(4.4) for each item score x , and as the solution to the
' b’

~ ~

squation (4.5). The transformation of © to T was made through

7 , in which the coefficients, a*'s , were based

c4.6) with m
) k

on the coefficients o 's obtained by the method of moments with

)
It

4.0 and B8 = 4.0 s and C = 4.5 . These coefficients,

~*'. | are shown in Table 3-3. As we can see in these two figures,

the trequency distribution of 1t turned out to be more rectangular
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than that of & , although they are similar in shape. To make the
difference between the two frequency distributions more visible,
five polynomials of degrees 3, 4, 5, 6 and 7 were obtained by the
method of moments to approximate each of the density functions of

§ and 1 , and were drawvn by solid lines in the five graphs of
each of FPigures 4-1 and 4-2, along with the corresponding frequency
distribution. We note that, except for the polynomial of degree 3
in each figure, the four approximated density functions are very
similar to one another, and they are closer to a rectangle for 7T
than those for & . Since the method of moments was applied for
a set of observations, instead of some empirical function, the O-th
through seventh moments about the origin were computed directly
from the observations, and they turned out to be 1.00000, -0.00472,
2.19052, -0.04378, 9.17620, -0.52428, 48,47210 and -4.96487 for

8 , and 1.00000, 0.00479, 2.12231, -0.02483, 8.51515, -0.35195,
42.31180 and -2.77758 for T . The interval of & used for the
method of moments is [-2.9843, 2.9904] and that of T is [-3.0479,
2.8681]. The coefficients of these ten polynomials are presented
in Table 4-1.

Figures 4-3 and 4-4 present corresponding frequency
distributions and the polynomials of degrees 3, 4, 5, 6 and 7
obtained through Subtest 2, respectively. This subtest also consists
of twenty-five graded test items following the normal ogive model,

but ten of the items are different from those which are used in

v




TABLE 4-1

Coefficients of the Two Sets of Polynomials of Degrees 3 '$
Through 7, Which Were Obtained by the Method of Moments ’
to Approximate the Density Functions of 6 and < .
Respectively. The Maximum Likelihood Estimation Is
Based on Subtest 1.

e

Coefficient Coefficient
for for
%) T
0 g 0.22252 0.21204
1 g 0.00090 -0.00092
2 -0.01854 -0.01463
35 -0.00023 0.00016
0 D 0.19916 0.18470
1 G 0.00074 -0.00198
2 R 0.00765 0.01688
3 . -0.00019 0.00044
4 4 -0.00342 -0.00424
4 0o, 0.19918 0.18487
5 1 . -0.00609 -0.01220
2 g 0.00761 0.01661
3 0.00339 0.00594
. 4 -0.00342 -0.00419
: 5 -0.00036 -0.00057
0 0.18920 0.18183
1D -0.00623 -0.01244
2 G 0.03108 0.02397
: 3 R 0.00348 0.00611
4 . -0.01131 -0.00674
5 6 -0.00037 -0.00059
6 0.00065 0.00022
0 0.18922 0.18198
1 -0.01305 -0.02135
2 0.03102 0.02351
3 R 0.01036 0.01535
4 -0.01128 -0.00654
5 -0.00207 -0.00294
6 0.00065 0.00020
7 0.00012 0.00017
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Subtest 1, as is shown in Tables 3-1 and 3-2. Just as in the case
of Subtest 1, the transformation of 6 to T was made through (4.6)
with m = 7 , and the interval used for obtaining the coefficients
ak's in the method of moments is [-4.0, 4.0]. The coefficients
ai's thus obtained are shown in Table 3-4. The amount of the
constant test information for 7t 1is different, however, and we
used C = 3.5 instead of C = 4.5
It is noted that the two frequency distributions of 8 ,
which were obtained through Subtests 1 and 2, respectively, are
substantially different from each other, and so is the case with
those of T . Although the latter is reasonable because of the
difference in the two transformations of é to ; , the two
frequency distributions of & should not be so different since
they are both the estimates of the same 6 for the same group of
five hundred examinees. If we focus our attention on the polynomials
approximating the density function of ) , however, we notice that
the two sets of polynomials of degree 4 or greater are almost identical.
In each of Figures 4-3 and 4-4, the approximated polynomials
are very similar, except for the one with degree 3, as was the case
with those obtained through Subtest 1, These approximated density
functions are steeper for 1 than for & , and the difference is

greater than in the case of Subtest 1. The 0-th through seventh

moments about the origin for 6 are 1.00000, 0.00694, 2.31594, 0.07941,

9.95147, 0.41052, 52.81177 and 2.12395, and those for 1 are 1.00000,

b e o W




0.06363, 1.48640, 0.41654, 5.19558, 2.54982, 24.35844 and 16.73911.
The interval of © used in the method of moments is [-2.9290,
2.9625], and that of T is [-2.9315, 2.9160]. The coefficients of

these polymomials are presented in Table 4-2.
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Coefficients of the Two Sets of Polynomlals of Degrees 3
Through 7, Which Were Obtained by the Method of Moments
to Approximate the Density Functions of 8 and T
Respectively. The Maximum Likelihood Estimation Is
Based on Subtest 2,

TABLE 4-2

s, i il

Coefficient Coefficient
for for
0 T
o D 0.22600 0.27318
1 g -0.00098 -0.00149
2 -0.01935 -0.03584
3 0.00057 0.00102
0 D 0.19975 0.29301
1 ¢ 0.00445 -0.00185
2 R 0.01073 -0.05903
3. -0.00089 0.00112
4 4 -0.00404 0.00317
- 0.19932 0.29291
10 -0.00026 -0.01481
2 ¢ 0.01141 ~0.05887
3 0.00164 0.00819
6 g ~0.00415 0.00314
5 ~0.00026 -0.00074
0 0.19785 0.29859
1D 0.00039 -0.01503
2 ¢ 0.01496 -0.07282
3 R 0.00120 0.00834
P ~0.00538 0.00803
5 6 -0.00021 -0.00076
6 0.00010 ~0.00042
0 0.19707 0.29845
1 -0.00813 -0.03297
2 2 0.01737 -0.07238
3 7 0.01000 0.02724
4 -0.00639 0.00784
5 - -0.00244 ~0.00563
6 0.00020 ~0.00040
7 0.00016 0.00035
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V Conditional Moments of the Maximum Likelihood Estimate 1 and

the Three Methods of Approximating the Conditional Density o(rli)

Let A be an estimator of 1 , and n be the error of
estimation. We assume that the conditional distribution of n ,
given Tt , is normal, with O and o as the two parameters, and

A 1is given by the simple sum of T and n , such that

(5.1) A=T14+n1.

We obtain for the first four conditional moments of 1 about the

origin, given A ,

(5.2) E(t|2) = A+ o2 'dd_A log g(d) ,
d 4 d2
(5.3) E(12|2) = 22 + 2x02 Frloge) + o (337 log 8(M)
+ {jgr-log g(M)1}2) + o2
3 6rd’
(5.4) E(t?|)) = o®lg5y log (V)]
and
a2 a2
(5.5) E(t*|2) = o%[3 + 602{337-log g(A)} + 30“{377'108 g(A) 12

y
+ c"{é%w log g(M) 11

where g(A) 1is the marginal density function of X .
By virtue of the fact that I*(1) = c? and that the asymptotic
conditional distribution of the maximum likelihood estimate ; , given

7 , is the normal distribution with T and [I*('r)]-]'/2 as the
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parameters (Samejima, 1975), we can write for the first four conditional

~

moments of 71 about the origin, given T , 'i
- - -2 d -
(5.6) E(T'T) =14+ C j;f‘log g(1) ,
A - ~ - 2 -
(5.7) E(t?|7) = 124 21C 2 -é%-log g(t) + C 4[—§%7 log g(1)

d AN 12 -2
+ {E—log g(¥“1+c¢c°,

- - 3 R
(5.8) E(<3]7) = C 6[5%3 log g(D1 ,
- - - 2 ~ - 2 -
(5.9) E(r“[r) = C 4[3 + 6C z{é%z log g(t)} + 3C Q{é%y log g(1)}? "3

-4 a4 -
+C “{d—d.;q log g(1)}] ,

where g(7) is the marginal density function of 7T .
The formulas (5.6) through (5.9) imply that, since the set of
N maximum likelihood estimates, T , is available as our basic data,
these conditional moments can solely be estimated from g(%) , provided
that we can approximate this marginal density function by fitting an
appropriate four-time differentiable function to the set of N T's
This has been done in the previous studies using 6 instead of 1 ,
by adopting a polynomial of degree 3 or 4, which was obtained by )
the method of moments. |
After these conditional moments have been obtained, which are
functions of 1 , we can fit some appropriate function for the

conditional densitv function of 1 , given 1 . In the Normal

Approach Method, only the first two conditional moments are used,




and the normal density function is fitted for the conditional distribution

with E(t|T) and [E(7?]7) - {E(T|%)}2]1/2 as the parameters., For
simplicity, let ui be the first conditional moment of T about

the origin, and u2 be the second conditional moment of T about
the mean, given T , respectively. Thus the approximated conditional

density function, @(rl%) , in the Normal Approach Method is given by

-1/2

(5.10) $(x|T) = (2mu) exp[-(1-u})?/(2u,) ]

In the Pearson-System Method, all of the above four conditional

moments are used. For simplicity, let Mgy and Y, denote the third
and fourth conditional moments of 1t about the mean, given 1 s
adding to the symbols, ui and Hy . Pearson's criterion « (Elderton

and Johnson, 1969; Johnson and Kotz, 1970) is defined by

(5.11) € = 8;(8,+3)2[4(28,~38,-6) (48,-38) 17",
where 81 and 62 are given by

(5.12) By = uauy

and

(5.13) B, = u4u;2

Depending upon the value of x , one of the Pearson type distributions
is assigned as the approximation to the conditional distribution of 1 ,

given 1 . For different values of T , therefore, possibly different
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types of Pearson distributions are assigned, and we have varieties
of different types of density functions for &(t|T) . 1If, for
instance, «k < 0 , then the distribution assigned is the Beta

distribution, whose density function is given by the formula

(5.14) $(x|D) = [B(p%,q%)]-l ('r-a%)"%'l(b;-x)q%‘l(b%-a;)‘@%’“q%'” ,

in which the four parameters, P2 9 a% , and b{ , are estimated

from the four conditional moments, such that

(5.15) Praaz = (/D13 () gl () + 1612
(5.16) b -a: = w2e o) + 16122,

(5.17) 5; =y - pa(bema)/r

and

(5.18) 6; =y + q;(ﬁ%—é%)/r ,

where r 1is defined as
- -1
(5.19) r = 6(82—81—1)(6+381—282) .

If kx = 0, which results from Bl = 0 and 82 < 3, the distribution Vo
is a special case of Beta distribution in which the density function

is symmetric, and two parameters, P; and q; , are equal, such that

(5.20) p- = 6; =r/2

T
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If ¢« = 0, which is resultant from Bl = 0 and 82 = 3 , then the
normal distribution is assigned, whose density function is given
by (5.10). If « > 1 , then the distribution is of Pearson's Type
VI, and, if 0 < ¢ < 1 , then the distribution is of Pearson's
Type IV, and so forth.

The advantage of Pearson-System Method over the other two methods
is that it makes full use of the four estimated conditional moments

of 1 , given T , without restricting the conditional distributions

to a single type. It has its disadvantage, however, since in some
cases the estimation of the higher conditional moments is fairly
inaccurate for some range of T , and also the estimation of the
parameters of some Pearson type distributions is difficule.

In the Two-Parameter Beta Method, the Beta distribution is

~

adopted for the conditional distribution of 1 , given 71 , whose
density function is given by (5.14). Two parameters, a: and b{ .
are preassigned for each 7T in some appropriate method, and the

other two parameters, p% and q are estimated by

s 200 -1

(5.21) Py = MI(L-MDM) - My
and
(5.22) a- = M (1M1 - (1M

. 3 1 1V M 1
where
(5.23) M, = (p'-an)(be-as) }

: 1 K747 T 1




~2
(5.24) M2 = Uz(b%-a_’[‘)

This method has an advantage over the Normal Approach Method in the
sense that, unlike the normal density function, the Beta density
function provides us with varieties of different curves depending
upon the values of the parameters. Its disadvantage is, however,

that we have an additional work of finding an appropriate finite

interval, [a-~, b-] .
T T
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VI Histogram Ratio and Curve Fitting Approaches

The two approaches discussed here, as well as Conditional

P.D.F. Approach, make full use of the approximated density function,
g(1) , which is obtained on the entire set of N 1's . The

conditional moments of 1 , given <t , are obtained by (5.6)
through (5.9), using this approximated density function for g(;)

We calibrate a certain number of 1 for each of the N 1's,
through the Monte Carlo method, in accordance with the approximated
conditional density function of 1 , given { . This approximated
density function, $(1|§) , can be a normal density function, a Beta
density function, or one of the Pearson System density functions,
depending upon which of the three methods, i.e., Normal Approach
Method, Two-Parameter Beta Method and Pearson-System Method, we
choose. Let ? denote these calibrated +1's , and v be the

number of ¥ s calilbrated for each of examinee i . Thus we

%i
obtain (vxN) 7T's in total. We classify these 1{'s into (mh+l)
item score groups, where h 1is a new test item whose operating
characteristics are to be estimated, depending upon the item score Xy
(=0,l,...,mh) the specific examinee obtained for item h . Then

each ? is transformed to 3 , through '
-1
(6.1) &= 1 7 [1(8)] .

When T( ) 1is given by the polynomial given by (3.5), for example, this

process can easily be performed by Newton-Raphson Method.
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Y
In the Histogram Ratio Approach, these (vxN) 0's arc
categorized into intervals of small, equal widths. The ratio of
the frequency of B's, which belong to examinees whose item score to

item h is Xy to the total frequency, in each subinterval of  ,

provides us with the estimated operating characteristic, ﬁx ()
h

Let Hx (8cs) denote the frequency of ¥'s , which belong to the
h

item score group Xy o for the subinterval s , whose midpoint is

BS . Then we can write

v -1
Hj(ees)] . x, = O,l,...,mh

(6.2) P (o) = H_(6cs) h

In order to obtain a smooth curve for this estimated operating
characteristic, it is advisable to use a fairly large number for v ,
and a small width for the subinterval s of ©

In the Curve Fitting Approach, a polynomial of a certain degree
is fitted by the method of moments, to the subset of 8's  for each
item score group Xy - Then the ratio of the resultant polynomial
to the sum of (mh+l) such polynomials is taken, and this ratio
provides us with the estimated operating characteristic of the

item response Xy Let Ny (8) be such a polynomial for the item
h

score group X We obtain for the estimated operating characteristic,

h

P_ (8) , such that
*h

v . _ h -1 .
(6.3) PX (8) = Ny (e)[ ¢ nj(e)] . X, = O,l,...,mh )

h h j=0




VI1 Conditional P.D.F. Approach

In this approach, we specify the exact function of the
approximated conditional density, &(1|;) , using the parameters
estimated from the approximated density function g(1) , (cf. Chapter 5).
Again, this approximation to the conditional density function, @(Tlf) ,
can be a normal density function, a Beta density function, or one of
the Pearson System density functions, depending upon which one of the
Normal Approach Method, the Two-Parameter Beta Method, and the Pearson-
System Method we choose. 1

In the Simple Sum Procedure, these specified, approximated
conditional density functions are categorized into the (mh+1) item
score groups for a new item h , whose operating characteristics are
to be estimated, depending upon the item score X, (=0,1,2,...,my)
that each examinee has obtained. By virtue of (2.10), the
transformation of 1 to ¢ is made through (6.1), and the estimated
operating characteristic, éx (6) , is given by

h
N

. P s . |
(7.1) P = £ acliolz ee]iolh, col,...
Xh iex.h i i=1 1 xh 1’nh ’

where 1 denotes an individual examinee and ;i is the maximum
likelihood estimate of <t for the individual {1 .

In the Weighted Sum Procedure, the estimated operating
characteristic, P (¢8) , of the item response X, can be written as
- R N - -]

(7.2) Po= 1 w(T) TPl wpe]iplT
Py i=

*n tex 1

X = 0,1,...,mh ’
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where w(%i) is an appropriate weight assigned to the maximum
likelihood estimate 1 for the individual examinee i . Simple Sum
Procedure can be considered, therefore, as a special case of the
Weighted Sum Procedure, in which w(;i) =1 for all the individual
examinees. Another example of such a weight, w(;i) , is the area under
the approximated density function, é(;) , for the interval of T

which starts from the midway between T4 and the lower adjacent

~

T and ends with the midway between ;i and the upper adjacent
%i . The transformation of 1 to 6 in (7.2) can be made through
(6.1), as in the Simple Sum Procedure.

We have a somewhat different rationale behind the Proportioned

Sum Procedure. Let p(iexh) be the probability with which examinee
i belongs to the item score group X . We can write for the
estimated operating characteristic, P (6) , of the item response
Xy to a new item h
N N

bl ~ ~ -~ ~ -~ "1
(7.3) P.o(e) = 1 pliex)) ¢(tlr.) [ £ ¢( D] ,
Xy, o1 *h | i 2 Tlrl

X, = O,l,...,mh
where ﬁ(iEXh) is the estimate of the probability p(iexh) , which

satisfies

(7.4) £h 5(1exh) =

p(iexh) =1 .
%,=0 *h

L

One example of this proportional weight, ﬁ(iexh) , is the proportion

of examinees who belong to the item score group X within a specified

e e
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-~

interval of T for which Ty is the midpoint. The transformation of

1 to 6 in (7.3) is, again, made through (6.1). r4

ik
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VIII Bivariate P.D.F. Approach

In contrast to the other three approaches, Bivariate P.D.F.
Approach makes use of the estimated bivariate density function, rather
than the estimated conditional density function, $(t]1) . Let

£(1,17) denote the bivariate density function of 7 and t . We

can write
(8.1) £(t,1) = ¢(t]T) gl1) .

We classify the set of N ;i's into (mh+l) item score
categories, depending upon the item score Xy (=0‘1""‘mh) the
examinee i obtained for a new test item h , for which the operating
characteristics are to be estimated.

The method of moments is applied for each of these (mh+l)

~

subsets of 1 , and the density function, By (;) , 1s estimated
for each subgroup. The conditional moments o? T, given T ,

are also obtained for separate subgroups, using the formulas (5.6)
through (5.9). Based on these estimated conditional moments, the

parameters of a specific density function, which is adopted for ¢(T]f) ,

are obtained for each subgroup Xy The choice of a(rlf) depends

upon which of the three methods, i.e., Normal Approach Method,
Two-Parameter Beta Method and Pearson-System Method, is taken. The

bivariate density function of T and 1T is obtained from (8.1)

for each of the (mh+1) subgroups. Let éxh(;,T) denote the

estimated bivariate density function of 1 and 1 for the subgroup




The estimated operating characteristic, PX () , is given by

*h ot h
[¢3) m
~ ~ n n h N “ "
(8.2) P (&) = | ¢ (T,0dT [ I (1,T)dv] 7t -
x‘h xh( L] ) [j=0 E»J(T’ ) T] 9 xh 0'1)-.

The transformation of 1t to 6 in (85.2) is again made tnrough (6.1).
There is a somewhat different approach which also belongs to
the Bivariate P.D.F. Approach (Samejima, 1977c), which is called
Normal Approximation Method. 1In this method, the estimation of the
density function, g(%) , 1s not necessary, We approximate ¢& (%,T) .
bivariate density function of T and T for each item score group
X by a bivariate normal density function (e.g., Anderson, 1958),
whose parameters are estimated from our observations. The regression

~

of T on T is estimated by the least squares method, which provides

us with

(8.3) E(r|T) = [1-c"2(Var. (D)} 115 + ¢ var. (017t (D)

where E(1) and Var.(%) denote the expectation and the variance of
T for the subgroup X The conditional variance of <t , given

T , is obtained by

(8.4) \}ar.(rl%) = ¢ 2[1-¢" % Var. (1171

The estimated operating characteristic, Px (6) , can be obtained
h

either through the Monte Carlo Calibration of Y and the procedure

similar to the Histogram Ratio Approach or the Curve Fitting Approach,

or by the ratio of the integral of the bivariate density function for
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the subgroup x, to the sum of the (mh+l) integrals of the estimated

bivariate density functions, as shown in (8.2).

————r
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IX Discussion and Conclusions

The rationale behind the methods and approaches for estimating
the operating characteristics of the graded item responses when the ’
test information function of the Old Test is not constant, and the
outline of their procedures, are presented. It has been shown that the 1
generalization of our old methods and approaches to the above situation
is relatively simple and straightforward, at least, in theory. Since
the elimination of the restriction of the constant amount of test

information will provide us with a great deal of benefit in the

aRsnceiiinik

applicability of the methods and approaches, especially in the paper- !

ol

and-pencil situation, this generalization of the methods and approaches

may make a great deal of contribution to researchers in psychometrics

and applied psychological measurement.

We need carefully designed simulation studies, however, before
using these methods and approaches for empirical data, and to observe
how these procedures work. It is anticipated that, for the range of

6 where the test information function, 1I(0) , of the 0ld Test assumes
low values, the estimation of the operating characteristics is less
accurate, compared with the one which is based upon the 0ld Test
having a constant amount of test information. It may be especially
so for both lower and higher extreme values of 8 when the test
information function is of bell ghape, as it is for Subtest 1, which
was introduced in earlier chapters. Comparison of the results using

different types of test information functions, as those of Subtests 1 !

and 2 in the present paper, will be meaningful.
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