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1. INTRODUCTION.
Let us consider systems

x = £(x,y,t.e) , .

(1)

ey = glx,y,t,e) ,

of m + n ordinary differential equations on a finite interval,
say 0 < t < 1, subject to q initial conditions

A(x(0).,y(0),e) =0, (2)
and r terminal conditions '
B(x(l),y(l),e) = 0 , (3)

with q + r = m + n. We shall assume that £, g, A, and B have
asymptotic series expansions in € with coefficients being
smooth functions of the remaining variables, and we shall seek
the asymptotic behavior of solutions under the condition that
the n %X n Jacobian matrix gy(x,y,t,O) has a hyperbolic split-
ting with k > 0 (strictly) stable and n - k > 0 (strictly) un-
stable eigenvalues for all x and y and for 0 < t < 1. We
shall also suppose that g > k and r > n ~ k, since linear
examples suggest that a limiting solution as the small posi-

PR | tive parameter ¢ tends to zero is unlikely to occur otherwise.

? K The reader should realize that the corresponding initial
f' B h value problem with k = n has a well-understood asymptotic
) solution, as presented in Wasow (1965) and O'Malley (1974).
i q Initial value problems with a fixed number of purely imaginary
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eigenvalues have been considered by Hoppensteadt and Miranker
(1976) and Kreiss (1979), while Vasil'eva and Butuzov (1978)
and QO'Malley and Flaherty (1980} discuss problems for which g
has a nullspace. We note that such problems can be consider-
ably more complicated when eigenvalues of qy cross or approach
the imaginary axis (c¢f., e.g., the resonance examples of
Ackerberg and O'Malley (1970) and the initial value problem of
Levinson (1949)). Finally, note that the strict eigenvalue
stability assumptions can be weakened in “boundary layer
regions" (cf. Howes and O'Malley (1980)). The two-point prob-
lems arise naturally in optimal control theory (cf. Kokotovic
et al. (1976) and O'Malley (1978)), among many other applica-
tions. Moreover, knowing about the asymptotic behavior of
solutions is extremely helpful in developing schemes for the
numerical solution of stiff boundary value problems (cf.
Hemker and Miller (1979) and Flaherty and O'Malley (1980)).

2. 'THE ASYMPTOTIC APPROXIMATIONS.

With the assumed hyperbolic splitting, we must expect so-
lutions to feature nonuniform convergence as ¢ = 0 (i.e.,
boundary layers) near both endpoints. Indeed, it is natural
to seek bounded (uniform) asymptotic solutions in the form

x(t,e) = X(t,c) + €&(1r,e) + en(o,c)

(4)

y(t.e) = Y(t,e) + u(r,e) + viag,e) ,

on 0 < t <1, where the outer solution (X(t,e),Y(t,c)) repre-
sents the solution asymptotically within (0,1), where the
initial layer correction (e{(r,€),u(t,c)) decays to zero expo-
nentially as the stretched variable

T = t/c (5)
tends to infinity, and where the terminal layer correction

(en(c,e),v(0,e)) goes to zero as

o= (1 - t)/e (6)

becomes infinite. Within (0,1), then, such solutions are re-
presented by an outer expansion
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The limiting uniform approximation corresponding to (4) is
x(t,e) = xo(t) + 0(e) ,

y(t,e) = Yo(t) + uglr) + vglo) + 0(e)

on 0 < t <1l. At t = 0, the singularly perturbed or fast
vector y usually has a discontinuous limit, jumping from
y(0,0) = ¥g(0) + ug(0) to ¥y(0) at t = 0%, An analogous
Heaviside discontin?ity occurs near t = 1 whenever uo(O) ¥ G,
and the derivative y(t,c) generally features delta-function
type impulses as € - 0 at both endpoints. (The relation of
such observations to linear systems theory is of considerable
current interest (cf. Francis (1979) and Verghese (1978)). For
problems linear in the fast variable y, we can also find un-
bounded solutions with endpoint impulses (cf. Ferguson (1975)
and the Appendix to this paper).

The outer expansion (7) must satisfy the full system (1)
within (0,1) as a power series in €. Thus, the limiting solu-
tion, (xo,Yo), will satisfy the nonlinear and nonstiff reduced
system

Ko = £(Xg/¥,t,0) 0 = g(Xq, ¥y, t,0) (9

there. Because g is nonsingular, the implicit function
theorem guarantees a locally unique solution

Yo(t) = G(Xolt)

of the latter algebraic system, so there remains an m=th order
nonlinear system
kg = F(Xg,t) = £(X3,G(X ,t),t,0) (11)

for xo. Later terms of the expansion (7) will satisfy

linearized versions of the reduced system. The coefficients

of € provide that

and xl = fx(xolYO'C10)x1 + fy(xo,YO't'O)Yl + fc(xo,Yo.t.O) .
Yo = gx(xo.Yo,t.O)Xl + qy(XO,Yo.t.O)Y1 + qe(xo,Yo,t,O) .

-1.dG -1 dG

so Yl(t) - Gxx1 + gy (EE - 95) and x1 = Fxxl + fygy (EE - gc)
+ fc' More generally, for each k > 1, we'll obtain a system
of the form

. 43
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Yt = G (Xg BIX (6 + @y (Xgoeunr Xy q08)

. (12)
; xk(t) = Fx(xo,t)xk(t) + Bk_l(xo....,xk_l.t) ’

with successively determined nonhomogeneous terms.

In order to completely specify the outer expansion (7),
we must provide boundary conditions for the m vectors xk(t),
k > 0. Most critically, we first need to provide m boundary
conditions for the "slow" vector xo(t) = x(t,0) in order to
determine the limiting solution (XO,YO) within (0,1). It may
be natural to attempt to determine them by somehow selecting
some subset of m combinations of the m + n boundary conditions
(2) and (3) evaluated at ¢ = 0 (cf. Flaherty and O'Malley
(1980) where this is done for certain quasilinear problems).
For scalar linear differential equations of higher order, the
first such cancellation law was obtained in Wasow's NYU thesis
(cf. wasow (1941, 1944)). For linear systems (with coupled
boundary conditions), a (necessarily) more complicated can-
cellation law is contained in Harris' postdoctoral efforts
(cf. Harris (1960, 1973)). These significant early works
suggest that we should seek a cancellation law which ignores
an appropriate combination of k initial conditions and of
n-k terminal conditions, so the limiting solution is deter-
mined by a nonlinear m-th order reduced boundary value problem

ko = F(Xg,t) o 0<tcl

(13)
°(x0(0)) =0, V(Xo(l)) =0,

involving g - k initial conditions and r - n + k terminal con-
ditions. Hoppensteadt (1971) considered the reverse problem:
Given some solution of a reduced problem, what conditions
guarantee that it provides a limiting solution to the original
problem (1)-(3) within (0,1). Hadlock (1973) and Freedman and
Kaplan (1976) also consider singular perturbations of a given
) reduced solution, as do Sacker and Sell (1979) who allow the
,,; l Jacobian gy to be singular but subject to a "three-band”
condition. Vasil'eva and Butuzov (1973) consider problems
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with special boundary conditions, though their results are ex-
tended to more general boundary conditions by Esipova (1975).

et

We note that the numerical solution of a reduced problem like

. ‘ -_my,ﬁ.:.-r“) ."_-"._




(13) is much simpler than that of the original problem,
because (13) is not stiff and its order is n instead of n + m.
Thus, the solution of (13) might be used as an approximate so-
lution of the original (full) problem from which to obtain
k better approximations by adding boundary layers and by using
Newton's method. 1
Near t = 0, the terminal boundary layer correction is
negligible, so the representation (4) of our asymptotic solu-
tions reguires the initial layer correction (ef,u) to satisfy
the nonlinear system
g% = g% - gé = f(X + €§,Y ¢+ u,ev,e) - £(X,Y,ev,€) ,
(14)
du

T s(%{ - gé) = g(X + €£,Y + U,eT,¢e) - g(X,Y,eT,e) .

on t > 0 and to decay to zero as t - =. This, in turn, pro-
vides successive differential equations for the coefficients
in the asymptotic expansion

g(t,e) ® (g (t)} .
< T3 ed . (15)
u(t,e) j=0 uj(T)
Thus, when ¢ = 0, we have the limiting initial layer system

13
Q . -
I - E(XO(O),YO(O) + JovOIO) E(XO(O).YO(O),O.O) ’

du
0
I " g(xo(O)'Yo(O) + ug.0,0) - q(XD(O),YO(O)'O.O)

The decay requirement determines

- dEO
Eo(t) = - I I (s)ds (16)
T

as a functional of Mg while Mg satisfies a conditionally
stable nonlinear system

du
0 : G .
. q(Xo(O),Yo(O) + uo.0.0) H Go(uo.x(O.O))u° .7

¥ 7 Our hyperbolicity assumption on the eigenvalues of 9y there-~
;'Aﬂ fore implies that the limiting boundary layer correction is
determined by a classical conditional stability problem (17)
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on t > 0. The standard theory (cf. Coddington and Levinson
(1955) or Hartman (1964) or, in more geometrical terms,
Fenichel (1979) and Hirsch et al. (1977)) shows that for each
x(0,0), there is (at least locally) a k-manifold I(x(0,0))
nontrivially intersecting a neighborhood of the origin such
that for

ugl0) € 1(x(0,0)) (18)

the initial value problem for (17) has a unique solution on
T > 0 which decays to zero exponentially as t + «. One very
difficult problem is how to compute the stable initial mani-
fold I, even when x(0,0) is known. Hassard (1979) has begun
to address this problem through a Taylor's series approach and
Kelley's representation of such stable manifolds through the
center manifold theorem.

Recalling that the q limiting initial conditions take the
form,

A(XO(O).G(XO(O).O) + uo(O),O) = 0 (19)

(cf. (2) and (8)), we will assume that it is possible to solve
k of these q equations (perhaps nonuniquely) for an isolated
solution

Hol0) 2 Y(Xy(ONE T(Xy(0)) . (20)

Phrased somewhat differently, in the style of Vasil'eva (1963),
we are asking that the initial vector uO(O) for the leading
term of this initial layer correction belong to the "domain of
influence" of the eguilibrium point uo(r) = 0 of the initial
layer system (17) which is itself parameterized by x(0,0) =
XO(O). Rewriting the remaining q - k initial conditions as

°(X0(0)) z zA(xo(O),G(Xo(O).O) A Y(XO(O)).O))' =0 (21)

{(where the prime indicates the appropriate g - k dimensional
subvector), we thereby specify the initial conditions needed
for the reduced boundary value problem (l13). Because (21)
generally depends on y, we note that the conditions (21) do
not simply correspond to a subset of the original initial con-
ditions evaluated along the limiting solution (XO,YO).

In the important quasilinear case when gy(x,y,c,o) =
gi(x,t) is independent of y (at least near t = 0), the
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resulting initial layer system (17) is linear and uo(f) =
G,T -
e O uo(O) for G0 = GO(XO(O),O). Thus, vy will decay to zero

as T - ® if uo(O) = PO(XD(O))UO(O) where Py = Pg projects onto
the k dimensional stable eigenspace of Go; (More generally,
the manifold I will not coincide with the stable eigenspace of
Gg-) When we further assume that A (X,(0),y,0) £ A(Xq(0)) is
independent of y, there will be a unique solution uo(O) in the
then fixed manifold I(XO(O)). provided the matrix A(X,(0))
'poﬂxo(o))has full rank k (cf. Flaherty and O'Malley (1980)).

A simple nonlinear example occurs when y is a scalar and
glx,y,t,0) = ql(x,t)y2 + gz(x,t)y + gB(X,c). Then u, will
satisfy a Riccati equation with solution

-H.T
0 .
uo(t) = HouO(O)/[(Ho~¥G°uo(0))e - GOJO(O)]

for Gy = gl(xo(O).O) and H, = gy(xo(O),Yo(O).0,0) as long as
the denominator is nonzero. If H, > 0, only the trivial
initial layer correction uo(r) 2 0 will be zero at infinity.
With the stability assumption Ho < 0, however, existence on

T > 0 and exponential decay at infinity is guaranteed provided
Hy + 60”0(0) < 0. Thus, the magnitude of the initial layer
jump uo(O) must be restricted when Gouo(O) > 0.

The terminal layer correction (en{o,e),v{o,e)) can be
analyzed quite analogously to the initial layer correction. In
particular, the 1leading terms (no,vo) will be determined
through exponentially decaying solutions of the conditionally
stable terminal layer system

dvo ~
% " -g(xo(l),Yo(l) + v5.1,0) = -Gl(vo:x(l,O))vo (22)
on o > 0, which has an n - k dimensional manifold T(x(1,0)) of
initial values vo(O) providing decaying solutions to (22) as
T « =, If we then assume that n - X of the r limiting
terminal conditions

B(xotl).G(xo(l),l) + VO(O),O) = 0 (23)
provide an isolated solution
vo(O) H G(XO(lD € T(xo(l)) ' (24)

the remaining r -~ n + k conditions provide the terminal
conditions




V(xo(l)) 2 (B(Xo(l),G(Xo(l).l) + G(XO(I)),O}" =0 (25)

for a reduced boundary value problem (13).

The reduced two-point boundary value problem (13) con-
sists of the nonlinear reduced equation (11) of order m
together with the m separated nonlinear boundary conditions
(21) and (25). If it is solvable, such a reduced problem can
have many solutions. Corresponding to any of its isolated
solutions xo(t), one can expect to obtain a solution of the
original problem (1)-(3), for ¢ sufficiently small, which con-
verges to (XO.G(Xo,t)) within (0,1) as € = 0. Sufficient
hypotheses on the corresponding linearized problem to obtain a
uniform asymptotic expansion (4) are provided by Hoppensteadt
(1971) and others. For this reason, we shall merely indicate
the considerations involved in obtaining further terms of the
initial boundary layer correction and boundary conditions for
higher order terms of the outer expansion.

Further terms of the initial layer correction (15) are
determined from the corresponding coefficients of ek in the
nonlinear system (14). Thus, we must have

a—T— = fy(Xo(O),Yo(O) + UO(T)IO'O)Uk + Pk_l(f) v

(26)
k
i gy(xo(o),vo(o) +ug(t), 0,0, + gy, (1),

for k > 1, where the nonhomogeneous terms will be exponen-
tially decaying as t - « because the preceding Ej's, uj's, and
their derivatives so behave. The homogenecus systems are
linearizations of that for (Eo,uo), and the decaying vector Ek
will be uniquely provided in terms of Uy by

®

dEk
Ek(r) = - I T (s)ds . (27)
T

To obtain Hyr it is natural to first consider the variable

coefficient homogeneous system

%% = g(t)u (28)

with g(t) = gy(xo(O),Yo(O) + ugl(1).0,0). Our hyperbolicity
assumption (more specifically, the eigenvalue split for g(=)
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and the exponential convergence of g(T) to J(»)) guarantees
that (28) will have k linearly independent exponentially
decaying solutions as t - o, We assume that the split is
maintained for all t > 0. If we let U(r) be a fundamental
matrix for (28) with U(0) = I and let 50 be a constant n x n
matrix of rank k such that U(T)Po provides the linear subspace
of decaying solutions to (28), the decaying solution My of
(26) must be of the form

u (1) = UledBgey + wP_) (7) : (29)

with the particular solution
T
® (1) = | ump,uTl (£)d
el TP, r)q,_,; (ridr
0

- j ult) (I - Eo)u'l(r)qk_l(:)d: .
T

The vector Sy remains to be determined. 1In problems where G
is constant, P0 is the PO used for the quasilinear problem.
The use of such exponential dichotomies (cf. Coppel (1978)) in
the singular perturbations context goes back to Levin and
Levinson (1954). 1Indeed, the "roughness" of the exponential
dichotomy might be used to justify the use of U(T)l;° all the
way back to vt = 0. Proceeding analogously, the terminal layer
term vk(o) will be determined in the form

0

v (o) = v(e)Ba + vP_ (o) , (30)

where v(o)f’l is assumed to span an n - k dimensional space of
decaying solutions to

$ = -9, (% (1.Y (1) + vy(a), 1,00

on ¢ > 0 and vi_l(a) is exponentially decaying and success-
ively determined. N (9) will uniquely follow from vy by
integrating dnk/do. To complete the formal determination of
our expansion (4), we must successively specify the constants

!
!
]
t
:i 2% in (29}, dk in (30), and the m boundary conditions for each

} Xk(t). k > 0.

2

!




Since x(0,€) ~ X(0,e) + e£(0,¢) and y(0,e) ~ Y(0,¢)
+ u(0,e), the coefficient of ek (for any k > 0) in the initial
condition (2) implies that
Ax(xo(O),Yo(O) + uo(o).O)xk(O)
+ Ay(xo(O) Y (0) + uo(O),O)(Yk(O) + uk(O))
is successively determined. Since Yk(O) - Gx(xo(O)’O)xk(O)

and ”k(O) - Pock are also known in terms of preceding
coefficients, we have

(A + A .G )X (0) + A .P.c, = 3§

x0 y0 x0 y0 07k k-1 (31

determined termwise. (The zero subscripts indicate evaluation
along (x(0,0),y(0,0),0).) Assuming that the matrix

Ay(x(0.0),Y(0,0),O)Po (32)

has its maximal rank k, it will be possible to (perhaps non-
uniquely) solve k of the q equations (31) for

5 T
= p.c (AYOPO)

Sk 0%k [8

(B * A,gC,0) Xk (D] (33)

k-1 = ‘"xo0 y0~x0

(with the dagger representing the matrix pseudoinverse). This
leaves the remaining q - k initial conditions
YX (0) = &y (34)

to be solved for xk(O). Here

(A B} ](A + A G ),

¥o= 01— AP (A 0P, v0%x0

Ek-l = yO O(Ayopo) 6 -1’ and vy will have rank q - k.

In analogous fashxon. if the matrix
B, (x(1,0),y(1,0),0)8, (35)

has its maximal rank n - k, we can use n - k of the terminal

conditions (3) to (generally nonuniquely) provide dk = §1dk in

(30), and the remaining r - n + k terminal conditions

Exk<1) =N, (36)

for the outer expansion term xk(t). Here, n, is known

e ALY cv -

k-

successively and
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By1P1(By1Py v1%x1
with the subscript 1 indicating evaluation at
(x(1,0),y(1,0),1).

Putting everything together, we've shown that the k-th
term in the outer expansion should satisfy an m-th order
linear boundary value problem

xk = Fx(xolt)xk + sk_l(xor..-rxk_llt) ’
) X (37)
Yx, (0) = Epo1 ¢ 8%, (1) = M-l *

with successively determined nonhomogeneities £ and

k-1’ Sk-1’
N+ These problems for all k > 0 will have unigue solutions

xk(t) provided the corresponding homogeneous system
X = Fy (X, €)X,

¥YX(0) =0 , §X(1) = 0 ,

has only the trivial solution on 0 ¢ t < 1. Otherwise, one
must impose appropriate orthogonality conditions on (37) to
achieve solvability.

Altogether, we've determined possibilities for con-
structing multiple formal asymptotic solutions to our boundary
value problem (1)-(3) in the form (4). To prove that the
corresponding solutions exist for ¢ sufficiently small re-
guires some further analysis (cf. Hoppensteadt (1971),
vasil'eva and Butuzov (1973), and Eckhaus (13%79)), but no
surprises.

3. A SIMPLE EXAMPLE.

A relatively simple example is provided by the harmonic
oscillator system

x=1-~x,
e}l =¥y (38)

592 = uz(x)yl + 8(x) ,

where

a(x) = 1 + 2x and B(x) = B8x(l - x) .
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Sincem = k = n - k = 1 whenever a(x) remains nonzero, we can
expect one dimensional boundary layer behavior at each end-
peoint. Using the three linear boundary conditions

x(0) + yl(O) =0,
~bx(0) + yz(o) =0, (39)
x(1) + yl(l) =4 ,

we could hope that the limiting interior behavior is deter-
mined by the reduced system

X0=1°X0,

YZO =0, (40)

! 2
H a (XO)Y10 + S(Xo) =0

and a combination of the limiting initial forms xo(o) + YlO(O)
and -bxo(O) set to zero.

By expliciting analyzing the initial layer system and
determining the appropriate projection matrix PO' we find the
initial condition O(XO(O)) = 0 (needed for the reduced solu-
tion) to be

fa(x,(0)) [ (X101 + ¥,,(0)) = bXy(0) =0 . (41)
u Rewriting this as a cubic polynomial, we obtain the three
roots
xO(O) =0
and
; 3 1 2
! xo(O) =~ 3+ 7son ao[b +F/(b sgn ag - 4)" + 48‘

arranged so that sgn a, = +1 depending on the sign of

1+ Zxo(O). All roots are appropriate for determining an xo
except for that range of initial values for which the re-
sulting a(X,(t)) = 3 + 2(X5(0) - Lye™*
Then, the equation for Y, has a turning point and Ylo(t)
becomes unbounded. When bxo(O) = 0, both of the initial
conditions for the system are satisfied by the limiting
solution, and there is no nonuniform convergence at t = 0.

. At A—-— s

has a zero in 0 ¢ t < L.
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Otherwise, there is an initial layer with a nontrivial uo(t).
Integrating xo(t) to t = 1 (or evaluating the explicit
solution) also determines Ylo(l)’ If xo(l) + ¥, ¥ 0, the
terminal layer correction vo(o) is also nontrivaal.

For b = 2, we obtain the three roots xo(O) = 0, 0.803,
and -4.29 and three corresponding asymptotic solutions. For
small values of £, the asymptotic solution can be used as a
first guess to obtain nrumerical solutions {(cf. Flaherty and
O'Malley (1980) and Figures 1-3). For b = 0 and xo(o) = -7/2,
u(xo(t)) has a zero above t = 1. This forces the boundary
layer jump lYlo(O) - y(1,0)| to be large (89.8 compared to 0.4
and 0.6 for the other b = 0 roots, xo(O) = 0 and 1/2) (cf.
Figure 4).

APPENDIX: THE CONSTRUCTION OF IMPULSIVE
SOLUTIONS TO QUASILINEAR PROBLEMS.

It is basic to the preceding development that we can
solve the limiting boundary conditions for initial values of
the boundary layer correction terms (i.e. uo(O) in (19) and
vo(0) in (23)). Moreover, the solutions must lie on the
stable manifolds I and T for the_corresponding boundary layer
systems. This will certainly belgassible when the limiting
boundary conditions A(x(0),y(0),0) or B(x(1),y(l),0) are inde-
pendent of y and suggests that the corresponding asymptotic
solutions will then no longer have the form (4). 1Indeed, the
earlier work of O'Malley (1970) (with m = n = 1) suggests that
the endpoint behavior will then be more singular (i.e.,
impulsive). With the resulting unboundedness in the y vector,
we ask for linearity in the fast variables in order to
generate expansions.

As a sample problem, consider

dx
3t fl(x.t.c) + tz(t.c)y ’

(42)
€ %% = gl(x.:,c) + qz(t.c)y ’

where gz(t,O) has k > 0 stable and n - k > 0 unstable eigen-
values throughout 0 < t < 1, subject to the g + r am + n
boundary conditions




A(x(0),y(0),€)  Ay(x(0),€) + cA,(c)y(0) = 0,
B(x(l),ytl),e) = 0 .

(43)
Since AY 2 0 at e = 0, we shall now seek asymptotic solu-
tions in the form

x(t,c) = X(t,e) + £(tr,e) + en(o,€) ,
(44)

* y(t,e) = ¥Y(t,e) + é u(t,e) + v(o,e) ,

(as an alternative to (4)) where the terms are all expandable
in € and the boundary layer corrections decay to zero as
before.

The limiting solution (xo,Yo) within (0,1) satisfies the
reduced system

dx
0 z
H‘E" = F(Xo;t) = fl(xoltlo) + fz(tlo)c(xolt) . (‘5)
where
Yolt) = G(Xg.t) = -g;l(e,00q, (X, t,0) . (46)

The initial layer correction (E.% u) now satisfies the almost
linear system

g% = fz(ct.c)u + c[fl(x + E,e1,e) - fltx,cr,c)l '

g% = qz(cr.c)u + C(gl(x + E,é1,e) - gl(x,er,c)] .

so its leading coefficients satisfy the constant linear system
dEo duo
IT " Fodo ¢ I " So¥o ¢
for (FO,GO) = (fz(0,0).qz(0.0)). The decaying solutions are
Got
uo(r) = e Pouo(O).

-1 (47)
£ =
.o(r) FOGO HO(T) ’

t ) where Po projects onto the constant k dimensional stable
J eigenspace I of Go. These vectors and higher order terms in
E- . the initial layer correction will necessarily lie in this same

(known) eigenspace. With the expansion (44), our initial
condition takes the limiting form




1
AI(XO(O) + FOGO Poug(0),0) + AZ(O)POMO(O) =0 . (48)

We wish to solve k of theses q nonlinear equations for
Pouo(O) H Y(xo(O)) .

The solution will be locally unique if the appropriate k x k
Jacobian is nonzero. The remaining q - k initial conditions
will then provide the initial values

. -1
O(XO(O)) 3 (A(XO(O) + FoGy v iXy(00),0)

0
(49)
+ AZ(O)y(xo(O)))' =0,

for the limiting solution xo(t).

Preceding analogously, the limiting terminal layer cor-
rection will satisfy the linear system

dno dvo

"I " Ve T " GV

where "1'“1’ = (fz(l,O).gz(l.O)). The decaying solution is

-Gld

vo(o) - e Plvo(O)‘

-1 (50)

no(o) = Flcl vo(a) ’
where matrix Pl projects onto the constant n - k dimensional
unstable eigenspace T of Gl' The limiting terminal conditions
take the form

B(Xo(l)'G(Xo(l).l) + Plvo(O),O) =0 . (51)

Assuming that we can solve (perhaps nonuniquely) n - k of
these equatjons for

Pyvg(0) = G(XO(I)) ’ (52)

there will remain r - n + k terminal conditions

?(xo(l)) 2 (B(x°(1>.c(xo(1),1) + G(XO(I).O)}' =0 (53)

for Xy 23 in (25). Thus, any limit of a solution of the form
(44) must be determined by

xo = F(xort) ’

(54)

O(XO(O)) =0. (X, (1)) =0 .




.i\‘

Assuming this redaced problem is solvable, we should be able
to construct highker order approximations to solutions without
unusual difficulty.

We wish to point out that the initial impulse 1 uo(t) =

1 Got/c ' ¢
ce Pouo(O) in the representation (44) of the fast vector
y behaves like a multiple of a matrix delta function in the
limit ¢ = 0. It forces the rapid transfer (i.e., the non-
uniform convergence) of the slow vector x from x(0,0) =

Xy 10) + &0 (M = X0(0) + F,GolRou (0) to X (0) in the k dimen-
sional range i or the stable eigenspace of Go. This is in
contrast to the initial Heaviside jump in the y vector and the
uniform convergence of the x vector for asymptotic solutions

of the form (4).
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