
LEVELl .

LW

C)h

STUDENTS FACULTY STUDY R~
ESEARCH DEVELOPMENT FUT
URE CAREER CREATIVITY CC
MMUNITY LEADERSHIP TECF-
NOLOGY FRONTW IG N
ENGINEERING APPC
GEORGE WASHIN1

44 A

SCHOOL OF ENGINEERING

AND APPLIED SCIENCE-4 __



NONLINEAR CREEP BUCKLING ALYS IS
SI__OF IITA MYERFECT HAL LOW

Robert ao

Sponsored by

Office of Naval Research L;

Arlington, Virginia 22217

tract Number

NAVWO-4L 75=C-09467

School of Engineering and Applied Science

The George Washington University

Washington, D.C. 20052

7 4.5



NONLINEAR CREEP BUCKLING ANALYSIS OF INITIALLY

IMPERFECT SHALLOW SPHERICAL SHELLS
1

by

Robert Kao

July 1980

Department of Civil, Mechanical, and Environmental Engineering
*i

The George Washington University

Washington, D. C. 20052

The research reported on here was supported by the Office

oNof Naval Research, Contract Number NAVY 00014-75-C-0946



ABSTRACT

Creep deformations and creep buckling times are obtained

for axisymmetric shallow spherical shells with and without

initial imperfections. For nonlinear creeps, both strain-

hardening and time-hardening rules are employed in the

analysis; results indicate that strain-hardening yields better

estimates of shell life than time-hardening. Results also

show that the initial imperfection plays an important role

in shortening shell creep buckling times. When compared

with the experimental data of test specimens which possess

very small departures from sphericity, it is observed that,

in order to have a satisfactory prediction on both creep

buckling times and creep deformations, in addition to fully

taking into account the presence of initial imperfections,

the analysis should adopt a mathematical creep model which

includes not only the primary and the secondary creep but

also the tertiary creep.
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INTRODUCTION

It is well known that thin-walled structures, whose

material deforms in consequence of creep, collapse if applied

loads of constant magnitude act upon them for a sufficient

time [1]. For uniformly loaded spherical shells, it is

found7-that the length of the collapse time depends on the

magnitude of applied pressure [2]. The collapse time, as

may also be called the creep buckling time or the structure

life, is referred to the passage of time between load appli-

cation and structure failure. The calculation of collapse

times along with creep deformations for axisymmetric shallow

spherical shells is of major interest in this paper.

A key element involved in the creep buckling analysis

is the selection of constitutive equations to describe the

creep behavior of the material [3-6]; an appropriate selec-

tion should provide a good approximation to the test data.

If the equations selected only represent the secondary

creep, a linear relationship between the creep strain and

the time function evolves and the solution procedure to

deal with this situation is very straightforward. On the

other hand, if the equations represent either the primary

or tertiary creep, a nonlinear relationship results. Two

of widely adopted approaches to handle this rather compli-

cated situation are time-hardening and strain-hardening

rules [S,7]. In general, predictions based on these two
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approaches are quite different, and a choice between them

should depend on the comparison of their predictions with

experimental data.

Another key element is initial imperfections which, on

many occasions, are directly resulted from the unavoidable

inaccuracy of manufacturing process. It has been shown

that initial imperfections have a great impact on reducing

buckling pressures of spherical shells in both static and

dynamic responses [8-10]. As to their influence in the

creep buckling analysis, there has been an indication that

the collapse time of cylindrical shells is very much affected

by the imperfection magnitude [11,12].

In an earlier creep buckling analysis of shallow

spherical shells (2], a huge discrepancy was found between

theoretical predictions and experimental results on creep

deformations and collapse times. The shell specimens used

in experiments involved small departures from sphericity.

But the theoretical study on the same specimens was performed

by assuming the shells had no imperfections. Therefore,

it may be quite reasonably to assume that initial imperfec-

tions, among other factors, are at least in part responsible

for the aforementioned discrepancy.

The objective of this paper is to utilize the large

deformation creep buckling procedure to obtain creep de-

formations and creep buckling times for simply supported

shallow spherical shells subjected to uniform external

Ii,
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pressure. Solutions to be obtained include those of spheri-

cal caps with and without initial imperfections. A compari-

son of these solutions with experimental data [2] is in-

tended to show the degree of sensitivity of the shell col-

lapse time to initial imperfections. The comparison is also

aimed at a close examination on the reliability of consti-

tutive equations of creep adopted, from which a suggestion

may be made on a more suitable choice of these equations to

improve the theoretical predictions. As may be useful in

practical designs, a plot of buckling pressure vs collapse

time is presented which will demonstrate how the shell life

expectancy is affected by the magnitude of applied pressure.
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PROBLEM FORMULATION

The geometry of a spherical cap is shown in Fig. la,

in which H is the central height and R the shell radius; a

is the base radius; W(r) and U(r) are the displacement com-

ponents along normal and tangential directions, respectively,

and Wi(r) is the initial imperfection; q is the applied uni-

form pressure. The undeformed shape of the perfect shell

can be adequately described by

Z = H [I - (r/a) ] (la)

and the radius of curvature of the shell is approximated by

R = a2/2H (lb)

where r is the radial coordinate.

Figure lb shows the membrane forces Nr and Ne, the

transverse shear Qr and the moments Mr and Me. Equilibrium

of moments requires

(rMr)' -M 0 - rQr = 0 (2)

And equilibrium of stress resultants along radial and normal

directions provides

(rNr)' -N = 0 (3)

[rNr(Wf-Z) + rQr]' + rq = 0 (4)

where ( )' = 3( )/3r and Wf = W + W . Note that the geometric

nonlinearity has been introduced in Eq. (4) by considering the

influence of Wf.



Elimination of Qr in Eqs. (2) and (4) yields

r + Mr r +0 Nr(W" + 1) + No(wi + ) q 0 (5)

Eqs. (3) and (5) are the basic equations for the analysis of

axisymmetric spherical caps.

Stress-Strain and Strain-Displacement Relations

For a shell undergoing the creep deformation after the

existing load acts upon it for a certain period of time, the

strain in a point within the thickness at a given time can

be expressed by

{e} = {ee } + {ec }  (6)

where {e}, {eel and {ec } are the total, elastic and creep

strain vectors, respectively.

Furthermore, the total strain can be considered as the

sum of the membrane and bending components:

{e) = {) + z {K} (7)

where z is the vertical coordinate through the shell thick-

ness (Fig. lb). The membrane and bending strains are re-

lated to displacements by

Cr" U' - W+ . (W')2 + W'W!

C U W
(8)

I r -

~W!
K W1' Ke = r
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Note that the elastic components of strains are the

only strains which can be related to stresses by Hook's

law:

{a} = [E] ({e) {ec1) (9)

where [E], the elastic strain to stress transformation

matrix, is given as

[E] =I ] (10)

in which E is Young's modulus and v is Poisson's ratio.

Membrane stress resultants and bending moments are ob-

tained by

h/2

{N} = f {o} dz (11)
-h/2

h/2
{M} = {c} zdz (12)

- h/2

Substituting Eqs. (6-9) into Eqs. (11) and (12), we obtain

the membrane forces

E r 41(13)INo  1- 1 Co N

where the effective creep membrane forces are

Ncr f h r
rc [r dz (14)

[ E ]/-N ceJ
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and the moments

rM) DL r] r (15)

3 2where D =Eh /12 (1-V ) and effective creep moments are

f h/2 
lc

cl E] J zdz (16)
h/2 0

Governing Equations

In terms of displacements, the governing equation in-

volving the major displacement U is obtained by substituting

Eqs. (13) and (14) into Eq. (3):

Ulf + U'- U 1-v c (W ,17)r r W ~ q

where

G(W) = F'()vF'(W)+1- 0r rv~W + Fr*- 8

F~ (W) = - W/R + (W')2 /2 + W'W!
r1

Fe (W) = - W/R (18)

F' (W) = - W'/R + WIWI' + W1WV + WIT!
r1 1

F1 (W) = - W'/R

c
and q1 , an effective creep load, is expressed in terms of

effective creep membrane forces by
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q (' + Nc/r - N'/r (19)

The governing equation involving the major displacement

W is also obtained by substituting Eqs. (13-16) into Eq. (5):

DV4 W - Eh (C+Vr ) (W"+l/R) - (E+, r) (WI/r + l/R)
1-V1-

C C (20)q q2 -q3

where V4 = V2 (V2) and V2( ) = ( )" + ( )'/r; the membrane

strains cr, e, are defined in Eqs. (8), effective creep

loads q and q are given as

qC = Nc (Wy+l/R) + Nc (WI/r+l/R) (21)

Eqs. (17) and (20) are two fundamental governing equa-

tions in terms of displacements for the present analysis.

Boundary Conditions

At shell apex, the nature of axisymmetry requires that

W, (0) = 0 (23)

U (0) = 0 (24)

Along the outer edge (r=a), if the cap is clamped:

U (a) - W (a) ' I (a) = 0 (25)

On the other hand, if the cap is simply supported, it re-
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quires that

U (a) = W (a) 0 (26a)

and that Mr (a) in Eq. (15) to be zero, i.e.,

rd2w+ y dW Mr(a) r a (26b)

where Mc is defined in Eq. (16).
r

Nondimensional Forms

For convenience, the following nondimensional quantities

are introduced

x =r/a M4 = 12(1-v2)

x 2 m 2a2/Rh qcr = 4Eh2/R2m2

3 ) ' = 3( )/ax p q/qcr (27)

u = aU/h 2  wi = Wi/h

w = W/h

where qcr is the classical buckling pressure of a complete

spherical shell of the same radius of curvature and thickness.

With the adoption of Eqs. (27), the nondimensional forms of

Eqs. (17) and (20) become

u' u :-21  3c
u" + !L - u[ + g(w) (-v ) a c (28)

x Eh

and

. - ~-----.~ - - - - - -
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V4w _ 12(ZFr+ ve) (W m- 12(e+Vr) x 2 7

4 x p - m a (q +qc) (29)

where g (w) and f (w) terms are nondimensional counterparts

of similar terms in Eq. (18):

g (w) = fr(W) + vfn(w) + (1-v)[fr (W) -fe~w)l/x

gr (w) = -lw + +fX2 1. 12 w
fr(w) ----2W + (w' + w i

m

2
fe(w) = - - (30)

m

f'(w) - +w'w" + w'w" + W"Wjri x
m

fl(w) = -4w'
: m

and are nondimensional quantities of membrane strains

e r and e in Eq. (8)

X2 W+1 2 + ,r -- u' -w 7w)+ww
m

(31)

= x- --- w
, m

CREEP THEORY

A typical uniaxial creep strain vs time curve under

constant stress for most material used in engineering struc-
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tures is shown in Fig. 2. The first part of this curve is

known as the primary creep, a large portion of which is re-

coverable after unloading. The second part is identified as

the steady creep, which possesses a linear creep strain-time

relationship. The last part of this curve is called the

tertiary creep where the strain rate increases until fracture

occurs. In the present study, we only consider the primary

and secondary creep.

In general, the uniaxial creep strain e in all stages

of creep can be expressed by

ec = Kf(a) g(t) (32)

where a, t are stress and time function, respectively; K is

a material constant.

When Eq. (32) is applied to the case of steady creep,

we have g(t) = t and

;c = dec/dt = Kf(o) (33)

A very widely adopted empirical formula for Eq. (33) is the

Norton equation:

;c = Kan  (34a)

or

Ae c = Kan At (34b)

where n is also a material constant.

The creep rate and the creep strain increment for the

general expression, Eq. (32), are given in Eqs. (35a) and
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(35b), respectively:

ec = Kf(c) g(t) (35a)

Aec= Kf(a) g(t) At (35b)

Equation (35b) represents the creep strain increment for the

nonlinear creep such as the primary and tertiary creep.

A useful distinction among three different stages of

creep (Fig. 2) may be obtained from the expression 6c =

d2 eC/dt2 that the primary, steady and tertiary creeps are

associated with <0, 0c = 0 and 6c > 0 , respectively.

In this study, the incremental procedure is employed to obtain

solutions for creep problems, and hence, creep strains in

their incremental forms such as Eqs. (34b) and (35b) are of

primary importance.

When a remains constant, the computation of Aec is very

straightforward (Eq. (34b) or (35b)). However, if the com-

putation is under the condition of varying stresses, the

smooth stress-time curve is often approximated by horizontal

and vertical segments as shown in Fig. 3a [13]. Within each

segment, a is assumed to be constant so that Eq. (34b) or

(35b) can be applied.

For the nonlinear creep, two approaches are available

to calculate Aec from Eq. (35b), namely, time-hardening and

strain-hardening. Graphical representations of these two

approaches are sketched in Fig. 3b and 3c for the strain-

hardening and time-hardening theories, respectively. In
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each figure, a number of constant stress e C-t curves asso-

ciated with various stress levels, and a varying stress eC-t curve

are shown.

First, let's discuss how to calculate Aec from the strain-

hardening rule. At a generic point f' on the varying stress
c c

e C-t curve of Fig. 3b, we have creep strain ek_ at stress

level ak-l and at time tkl* The value of tkl associated with

point g on ec -t curve for constant stress ak is computed by

the following equation:

e. 1  Kf(ok) g(tk1 ) (36)

If the stress level changes from ak.1 to ak, Aec for the next

time increment At can be estimated approximately by

Aec = Kf(ck) g(tk_1 ) At (37a)

or be calculated exactly by

Ae Kf(k) g(t +At) - ek- (37b)

If the computation is based on the time-hardening theory,

Aec in Fig. 3c can be estimated approximately by

Aec - Kf(ak) g(tk. I) At (38a)

or be calculated exactly by

Aec - Kf(Cak) g(tk-l+At) - Kf(Ok) g(tk-1 ) (38b)

The varying stress ec -t curves shown in Fig. 3b and 3c,

in fact, are obtained from the exact calculation formulas.
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Since the slope of constant stress creep curves almost always

decreases with time, except irn the tertiary creep, a compari-

son between these two varying stress ec-t curves in Fig. 3b

and 3c indicates that strain-hardening predicts a higher

creep strain than time-hardening.

In case of the steady creep, since the relationship

between ec and t is linear that these two approaches will

yield the same result, the calculation of Aec should be very

straightforward and the value so obtained is exact.

We shall generalize the calculation of creep strain

increment. from the uniaxial stress situation to the multi-

axial state of stress. By adopting the same normality rule

used in the formulation of plasticity theory as has been

described in great details in Refs. (14,15,16,171, the creep

strain in a multiaxial state of stress takes the form of

c = Aec (39)
0e.

where a , the effective stress, is defined as

a 7 0 ij (40)

in which aij; the deviatoric stress, is given by

ij = aij - 6ij ( (41)

where 6ij is Kronecker delta and a is the hydrostatic stress.

After creep strain increments have been obtained, the

current creep strains can easily be updated for the uniaxial



-15 -

state of stress as

ek =e_+ Aec  (42)

or for the multiaxial state of stress as

(eij)k = (eCij )ki + (43)

COMPARISON WITH OTHER SOUTIONS

To test the validity and accuracy of creep theory adopted

in this paper, two circular plate example problems are solved,

solutions of which are compared with existing results. The

first example is the bending of a simply supported circular

plate under a constant uniform pressure (see Fig. 4). For

simplicity, the analysis is restricted to the time during

which the deflections are small so that the linear strain-

displacement relations can apply. Elastic material is assumed

with E(Young's modulus) = 7.4 x 106 psi and v (Poisson's ratio)

= 0.3. The plate geometry is outlined in the figure: R = 50 in.

and h = 1 in.

Creep response is assumed in a state of steady creep,

Eq. (34), with K = 1.491 x 10- 15/psi3-hr and n = 3. These

values correspond approximately to characteristics of 2024-T3

aluminum alloy at a temperature of 600*F. In the numerical

solution process, a total of 10 evenly spaced nodal points

along the meridian surface and 9 points across the plate

4 thickness are chosen; a time increment of 50 hr. is also

selected.

LL
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Results showing the time history of the maximum deflection

for three load levels are displayed in Fig. 4. Also shown in

the Figure are those of Ref. [18] in which a variational

theorem for creep was formulated that was an extension of a

variational theorem developed by Reissner. Despite the dif-

ference in the solution method employed, comparison between

these two sets of results is quite favorable which tends to

suggest the validity of the creep theory outlined in this paper.

The second example problem is also a simply supported

circular plate but with the material of 75ST aluminum alloy

at 600 0 F. and subjected to a uniformly distributed load of

36 psi (Fig. 5). The diameter of the plate is 10 in. and the

thickness h is 0.5 in. Young's modulus of elasticity E for

this material at 600 0 F. is 5.2 x 106 psi. Poisson's ratio is

0.3 for elastic strain and 0.5 for creep strain. The uniaxial

creep strain-stress-time relation is nonlinear and for constant

stress may be represented by

ec = KeAa tB (44)

C
where e and a are the uniaxial creep strain and stress,

respectively; the values of constant are K - 2.64 x 10-

A - 1.92 x , t is in hr, B - 0.66.

The strain-hardening rule is selected to calculate the

creep strain for different stress level; a time increment of

0.2 hr is used in the numerical computation. Results of de-

flection curves at t - 0, 1 hr are shown in Fig. S. Also
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shown in this figure are those obtained in Ref. [31 which

employed a rather complicated solution scheme to solve govern-

ing equations with a time increment of 1 hr. The comparison

between these two sets of results is quite good, and a better

agreement between them may be expected should a smaller time

increment be used in Ref. [3].

NONLINEAR CREEP BUCKLING OF AXISYMMETRIC SPHERICAL CAPS

Shell Model and Its Material Properties

A spherical cap model experimented in Ref. [2] is selected

for the present analysis. The cap, under uniform external

pressure and with simply supported boundary condition, possesses

the following geometrical dimensions (Fig. 1): h (thick-

ness) = 0.125 in., a (base radius) = 2.8387 in., R (shell

radius) - 13.31 in., X (geometric parameter) = 4.

The shell is made of Type 6/6 Nylon, whose creep property

is assumed to obey a nonlinear uniaxial creep relation [2]:

e c = K a tm  (45)

in which K = 29.1 x 10 -8 and m = 0.36 for the temperature at

700F. The material constants are selected so that the rela-

tion closely approximates the family of constant tension creep

curves for the type of material under consideration. The

modulus of elasticity and Poisson's ratio are E - 442,000 psi and

v = 0.3.

As time goes on, the creep strain at a point within the

shell structure under the prescribed loading condition will
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progress according to the state of variable increasing stress.

By nature of the assumed nonlinearity between creep strain and

time function, and for the purpose of comparisons, both strain-

hardening and time-hardening approaches are used to obtain

solutions. For solutions to be more reliable, only the exact

forms of both approaches are selected in the computation.

Perfect Spherical Cap Solutions

Creep buckling analysis is performed for the aforemen-

tioned spherical cap model for different uniform pressure

levels. In each stress level case, 12 evenly spaced nodal

points along the shell surface and 9 across the thickness are

selected in the calculation; a Simpson's rule is used for the

numerical integration to obtain effective creep loads.

A judicious choice of the time step is critically important

in numerical creep solutions. This may be demonstrated in

Fig. 6 where the time to collapse for the shell model under

26 psi according to strain-hardening rule is plotted as a

function of the time step used in the computation. It is

obvious from this figure that the results obtained are highly

sensitive to the calculation time step. In the present study,

the appropriate time step for a given loading situation is

selected from the smaller time step region of collapse time

vs time step curve (for example, Fig. 6), so that the difference

between the collapse times based on this selected time step

and one-half of this step is of minor significance.
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The large deformation creep responses (apex displacement

vs time) based on both strain-hardening and time-hardening

rules are displayed in Figs. 7, 8 and 9, respectively, for

pressure levels of 20, 22 and 24 psi. Substantial differences

in the creep deformation and the collapse time between both

rules are observed for all three cases. In each case, the

time-hardening solution predicts a collapse time approximately

twice as much as that of the strain-hardening rule. The rea-

son for this is probably due to the nature of development of

both rules as has been clearly demonstrated in Fig. 3.

When compared with experimental results as will be made

later on in this section, strain-hardening gives a better

prediction than time-hardening; the same observation is also

found in Ref. [5]. Because of this shortcoming, the time-

hardening rule will be excluded from future considerations in

this study.

Figure 10 presents a buckling pressure vs collapse time

curve (based on strain-hardening) for the shell model con-

sidered herein, which shows that the shell buckling pressure

decreases with an increase of the collapse time. In other

terms, it may be interpreted as that the longer the shell

structure lasts, the smaller the buckling pressure is to be

anticipated.

Also shown in Fig. 10 is the result (straight broken

lines) obtained by assuming the spherical cap to remain free

from the creep effect throughout the entire analysis. In



- 20

general, the degree of sensitivity of the spherical cap to

the creep effect is proportional to the degree of the

buckling pressure vs collapse time curve staying away from

the straightline solution.

The significance of results shown in Fig. 10 may be ex-

tended to other structures. As a matter of practicality that

the materials of general structures possess a certain degree

of creep behavior, a determination of service loads for a

structure should, among others, take the creep behavior and

the anticipated structure life into considerations. At any

rate, constructions of this type of buckling pressure vs

collapse time curves should provide very useful informations

for practical designs.

Imperfect Spherical Cap Solutions

Considering the practicality of manufacturing techniques,

it is quite hard, if not impossible, to avoid any degree of

deviation from the ideal geometrical configuration in a

structure. The initial imperfection so induced has been re-

garded as a major factor to lower the load-carrying capacity

for shell structures. Here, we shall examine how the initial

imperfection affects the collapse time for the shell model

considered herein. The examination may help explain the

discrepancy between experimental data and perfect spherical

cap solutions.

A dimple type of the axisymmetric imperfection [14,19] is
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arbitrarily adopted here, which, nevertheless, does provides

a quite adequate description for actual shells since the

important parameter is the maximum eccentricity and not the

imperfection shape function itself. The adopted imperfection

may be expressed mathematically as

wi = (Wio/h)( - x3 (46)

where Wio is the maximum imperfection which occurs at the shell

apex.

Figures 11, 12 and 13 show the results in the form of

collapse time vs maximum imperfection magnitude for the shell

model under pressures of 20, 22, 24 psi, respectively. It is

surprising to find from these results that initial imperfec-

tions have such a profound impact on shortening the shell

life. For example, with a Wio/h = 0.06, which, in effect, is

sometimes very hard to be measured accurately and may be re-

garded too small to be significant, the corresponding shell

lifes in these cases are less than 1/3 of those for the per-

fect shells. By showing ,uch ; high degree of sensitivity

of the collapse time to the initial imperfection, results

obtained strongly suggest '.hat the preseice of initial im-

perfections must be fully taken into consideration in any

creep analysis before such analysis can be expected to accu-

rately estimate the collapse time of practical shell structures.

... i
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Comparison With Test Results

As already mentioned at the beginning of this section, the

shell models selected for investigation in this study were

originally manufactured in Ref. [2]. The creep data were ob-

tained from constant stress tests, and the mathematical model,

Eq. (45), fitted to the creep curves was also proposed in this

reference. Experiments were performed for three different

pressure levels of 20, 22, and 24 psi, and, at each pressure

* Ilevel, the center displacement was recorded continuously for

five separate test shells. Experimental results in terms of

the apex displacement history are displayed in Figs. 14, 15,

and 16 for pressure levels of 20, 22, and 24 psi, respectively.

Also displayed in these Figures are present theoretical solu-

tions for the same shell model with and without initial imper-

fections.

If comparisons are made between experimental data and

perfect spherical cap solutions, it is evident that a huge

discrepancy exists between them in both creep deformation and

collapse time. The discrepancy has to be at least in part

attributed to initial imperfections which, according to the

claims made in Ref. [2], is resulted from the fact that the

measured data showing that the test shells are not perfectly

spherical even if the deviation frcm sphericity is small.

Another factor also contributing to this discrepancy is re-

lated to the validity of the mathematical model used to

describe the creep behavior.

IIII I i lL
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Now, we turn our attention to the comparison between

experimental data and theoretical results for the imperfect

spherical caps, noting that, in each pressure level case, a

n.imber of theoretical solutions associated with imperfection

magnitudes ranging from 0 to 0.1 are displayed in the figures.

To be more specific, comparisons should be focused on two

different aspects, namely, the collapse time and the center

deflection history.

Of course, for the comparison to be completely satis-

factory, good agreements should be achieved simultaneously on

these two aspects. Unfortunately, results displayed in these

figures show that good agreement can only be obtained for

either the collapse time or the deflection history, not both

at the same time. For example, in Fig. 14, the entire

theoretical deflection history for W io/h = 0.1 (curve AB)

agrees almost completely with that of experiment (curve ABC),

but the theory predicts a much shorter collapse time than

'e experiment. On the other hand, the theory associated

%-0/h = 0.06 yields a good prediction on the collapse time

but a poor estimate on the creep deformation when compared

with experimental curve AD.

It is interesting to note that, in the case of

Wi0 /h = 0.1 of Fig. 14, theoretical deflection curve AB is

only a part of experimental curve ABC. When these two curves

are compared with the sketch of the general creep behavior

(Fig. 2), it may suffice to say that the present mathematical
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creep model, Eq. (45), is valid only up to the secondary stage

of creep, and that the difference between these two curves,

Curve BC, is related to the tertiary creep which obviously is

not implemented in the present creep model.

We may sum up all the discussion here by stating that,

for the shell models considered herein, in order to have a

completely satisfactory comparison with experimental data,

the theoretical analysis should fully take the presence of

initial imperfections into consideration, and should also

adopt a mathematical creep model which includes not only the

primary and the secondary creep but the tertiary creep.

CONCLUSIONS

A numerical procedure has been developed for the large

deformation creep buckling analysis of axisymmetric spherical

caps. The problem formulation is based on governing dif-

ferential equations, treating creep deformations as effective

creep loads which are combined with actual applied forces.

The shell models selected for the present analysis are simply

supported, uniformly loaded spherical caps, made of Type 6/6

Nylon and previously tested in Ref. [2]. A nonlinear mathe- I
matical creep model proposed in Ref. [2] is adopted in the

present analysis, which closely approximates the family of

constant stress tension creep curves.

For the nonlinear creep analysis, both strain-hardening

and time-hardening rules are employed. Results obtained in-
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dicate that, when compared with experimental data, strain-

hardening provides better predictions on collapse time than

time-hardening, and that they are highly sensitive to the

calculation time step that a jucicious choice of this value

is essential to their accuracy.

In Fig. 10, the buckling pressure is plotted as a func-

tion of the collapse time for the shell model considered

herein, which shows that the shell buckling pressure decreases

with an increase of collapse time. In other words, for a

structure which displays a significant creep behavior at the

given temperature, the longer the structure life, the smaller

the load-carrying capacity. Construction of this type of

buckling pressure vs collapse time curves should provide very

useful information for the purpose of practical designs.

The present theoretical solutions for the perfect spher-

ical cap models predict very poorly for both creep deflections

and collapse time when compared with experimental data. The

poor theoretical predictions have to be attributed primarily

to initial imperfections which, according to the measured

data in Ref. [2], are resulted from deviations from the

sphericity of test specimens. On the other hand, results of

imperfect spherical caps indicate that, with very small

magnitude of imperfections introduced in the shell models,

theoretical predictions are improved substantially.

Two important points are noted here. First, the collapse

time of the shell models is very sensitive to initial
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imperfections as can be seen from Figs. 11, 12, and 13.
For example, with a maximum imperfection magnitude of Wi0/h

equal to only 0.06, the collapse time of imperfect shell

models is only about 1/3 of perfect shell values. Second,

for an adequate imperfection magnitude, good agreement

between theoretical and experiment results can only be ob-

tained for either the collapse time or the creep deformation,

not both at the same time. A careful examination on the

course of this shortcoming reveals that, in order to have a

completely satisfactory comparison with experimental data,

in addition to fully taking into account the presence of

initial imperfections, the theoretical analysis should adopt

a mathematical creep model which includes not only the primary

and the secondary creep but also the tertiary creep.
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