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ABSTRACT

Creep deformations and creep buckling times are obtained
for axisymmetric shallow spherical shells with and without
initial imperfections. For nonlinear creeps, both strain-
hardening and time-hardening rules are employed in the
analysis; results indicate that strain-hardening yields better
estimates of shell life than time-hardening. Results also
show that the initial imperfection plays an important role
in shortening shell creep buckling times. When compared
with the experimental data of test specimens which possess
very small departures from sphericity, it is observed that,
in order to have a satisfactory prediction on both creep
buckling times and creep deformations, in addition to fully
taking into account the presence of initial imperfections,
the analysis should adopt a mathematical creep model which
includes not only the primary and the secondary creep but

also the tertiary creep.
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INTRODUCTION

It is well known that thin-walled structures, whose
material deforms in consequence of creep, collapse if applied
loads of constant magnitude act upon them for a sufficient
time [1]. For uniformly loaded spherical shells, it is
found  that the length of the collapse time depends on the
magnitude of applied pressure [2]. The collapse time, as
may also be called the creep buckling time or the structure
life, is referred to the passage of time between load appli-
cation and structure failure. The calculation of collapse
times along with creep deformations for axisymmetric shallow
spherical shells is of major interest in this paper.

A key element involved'in the creep buckling analysis

is the selection of constitutive equations to describe the

creep behavior of the material [3-6]; an appropriate selec-
tion should provide a good approximation to the test data.
If the equations selected only represent the secondary
creep, a linear relationship between the creep strain and
the time function evolves and the solution procedure to
deal with this situation is very straightforward. On the
other hand, if the equations represent either the primary #
. or tertiary creep, a nonlinear relationship results. Two

of widely adopted approaches to handle this rather compli-

cated situation are time-hardening and strain-hardening

rules [5,7). In general, predictions based on these two




approaches are quite different, and a choice between them
should depend on the comparison of their predictions with
experimental data.

Another key element is initial imperfections which, on
many occasions, are directly resulted from the unavoidable
inaccuracy of manufacturing process. It has been shown
that initial imperfections have a great impact on reducing
buckling pressures of spherical shells in both static and
dynamic responses [8-10]. As to their influence in the
creep buckling analysis, there has been an indication that
the collapse time of cylindrical shells is very much affected
by the imperfection magnitude [11,12].

In an earlier creep buckling analysis of shallow
spherical shells [2], a huge discrepancy was found between
theoretical predictions and experimental results on creep
deformations and collapse times. The shell specimens used
in experiments involved small departures from sphericity.
But the theoretical study on the same specimens was performed
by assuming the shells had no imperfections. Therefore,
it may be quite reasonably to assume that initial imperfec-
tions, among other factors, are at least in part responsible
for the aforementioned discrepancy.

The objective of this paper is to utilize the large
deformation creep buckling procedure to obtain creep de-
formations and creep buckling times for simply supported

shallow spherical shells subjected to uniform external
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pressure., Solutions to be obtained include those of spheri-
cal caps with and without initial imperfections. A compari-
son of these solutions with experimental data [2] is in-
tended to show the degree of sensitivity of the shell col-
lapse time to initial imperfections. The comparison is also
aimed at a close examination on the reliabiiity of consti-
tutive equations of creep adopted, from which a suggestion
may be made on a more suitable choice of these equations to
improve the theoretical predictions. As may be useful in
practical designs, a plot of buckling pressure vs collapse
time is presented which will demonstrate how the shell life

expectancy is affected by the magnitude of applied pressure.
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PROBLEM FORMULATION

The geometry of a spherical cap is shown in Fig. la,
in which H is the central height and R the shell radius; a
is the base radius; W(r) and U(r) are the displacement com-
ponents along normal and tangential directions, respectively,
and Wi(r) is the initial imperfection; q is the applied uni-
form pressure. The undeformed shape of the perfect shell

can be adequately described by

Z=H[1- (r/a)?] (1a)
and the fadius of curvature of the shell is approximated by

R = a®/2H (1b)

where r is the radial coordinate.
Figure 1lb shows the membrane forces N, and Ne, the
transverse shear Qr and the moments Mr and Me. Equilibrium

of moments requires

(rM_)' - My - 1Q =0 (2)

And equilibrium of stress resultants along radial and normal

directions provides
(rNr)' - Ne =0 (3)
[TN. (We-2)' + rQ.]' *+ rq = 0 (4)

where ( )*' = 3( )/3r and Wf = W + Wi. Note that the geometric
nonlinearity has been introduced in Eq. (4) by considering the

influence of wf.




Elimination of Qr in Eqs. (2) and (4) yields

W|

' " 1 1
Mo s EMr ol e NN e P NS e ra=0 (5)

Eqs. (3) and (5) are the basic equations for the analysis of

axisymmetric spherical caps.

Stress-Strain and Strain-Displacement Relations

For a shell undergoing the creep deformation after the
existing load acts upon it for a certain period of time, the
strain in a point within the thickness at a given time can
be expressed by

{e} = {e®} + {e°} (6)

where {e}, {e®} and {e®} are the total, elastic and creep
strain vectors, respectively,.
Furthermore, the total strain can be considered as the

sum of the membrane and bending components:
{e} = {e} + z {x} (7N

where z is the vertical coordinate through the shell thick-
ness (Fig. 1b). The membrane and bending strains are re-
lated to displacements by

2

‘-r‘U"g*‘lz(W') + W'
U W
€9 " T " K
., (8)
Kp = = w
W|
Ke = - 7
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Note that the elastic components of strains are the
only strains which can be related to stresses by Hook's

law:
{o} = [E] ({e} - {e]) (9)

where [E], the elastic strain to stress transformation

matrix, is given as

E 1 v
v R (1)

in which E is Young's modulus and v is Poisson's ratio.

Membrane stress resultants and bending moments are ob-

tained by
h/2
{N} = J. {0} dz (11)
-h/2
h/2
{M} = f {o} zdz (12)
-h/2

Substituting Eqs. (6-9) into Eqs. (11) and (12), we obtain

the membrane forces
c
{Nr} = _Eh [1 v] {er} } lNr} (13)
y) c
Ne 1-v v 1 €g Ne

where the effective creep membrane forces are

NC h/2 c
{ 1;; = [E] f {ez} dz (14)
Ne

~h/2 €




and the moments
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where D = Eh3/12 (1-v2), and effective creep moments are
: e
c = [E] c zdz (16)
8 “h/2 o

M

Governing Equations

In terms of displacements, the governing equation in-
volving the major displacement U is obtained by substituting

Eqs. (13) and (14) into Eq. (3):

U" +

H‘C:'

A RUEE" S (17)

where

G (W) = FL(W) + vE{(W) + 1;“(Fr-Fe)

F, (W) = - W/R + W2 2 + WO

Fg (W) = - W/R (18)
FL (W) = - W/R « W'W" + W'WY + W'W)

Fy (W) = - W'/R

and qf, an effective creep load, is expressed in terms of

effective creep membrane forces by

- wr
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af = (ND' + NJ/r - Ng/r (19

The governing equation involving the major displacement

W is also obtained by substituting Eqs. (13-16) into Eq. (5):

4

DV'W - ———7(2 +vee)(W"+1/R) ———7(6 +VE )(W /r + 1/R)

=q-aq; - q3 (20)
4 _ 2,452 2 = " ' e
where V° = V°(V®) and V*( ) = ()" + ( )'/r; the membrane

strains €., €g are defined in Eqs. (8), effective creep

loads qg and qg are given as

a; = N§ (WE+1/R) + Ne (WE/T+1/R) (21)

M”42 M) /- (M)t (22)

c
a3
Eqs. (17) and (20) are two fundamental governing equa-

tions in terms of displacements for the present analysis.

Boundary Conditions

At shell apex, the nature of axisymmetry requires that
W' (0) =0 (23)
U (0) =0 (24)
Along the outer edge (r=a), if the cap is clamped:

U () =Wa)=HW (a)=0 (25)

On the other hand, if the cap is simply supported, it re-
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quires that .
U (a) =W (a) =0 (26a) H

and that Mr (a) in Eq. (15) to be zero, i.e., n
a?w dw |

D(:l._.z_ + .\i_)- I = - M:- (a), T =a (26b) -

r A

where Mg is defined in Eq. (16).

Nondimensional Forms

For convenience, the following nondimensional quantities

are intreduced

x = r/a n? = 12(0-v9)
,‘ 2% = m2a?/Rh d., = 4Eh%/R%n?
'_ () ' =23()3x  »p=ala, (27)
'{ u = aU/h? w; = W;/h
,f W = Wh

where Ay is the classical buckling pressure of a complete
spherical shell of the same radius of curvature and thickness.
With the adoption of Egs. (27), the nondimensional forms of

Eqs. (17) and (20) become

‘ - - S e g0 = (v &’ g
X

=1

u!l +

a;

"

Eh
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a o A2 _ we 32
Viw - 12(E+VEy) (Wi + =5 ) - 12(gg+ve )\ * =7
m m
4 4
A ma c, . C
=4 P - (a,*+qz) (29)
;T Ehz 2 13

where g (w) and f (w) terms are nondimensional counterparts

of similar terms in Eq. (18):

g (w) = £.(w) + vEa(w) + (1-v)[f (W) - £4(w)]/x
2
fr(w) = - iz w o+ %—(w')2 + w'wi
AZ
fe(w) = - ;7 w (30)
\ AT
fr(w) = - ;T whoe wiwt o Wil o Wt
A2
QW)=-;ZW

and Ee, Ee are nondimensional quantities of membrane strains

€, and € in Eq. (8)

2
_e-r = u' - “Al_z_ w + %’(W')z + W'w'i:
(31)
2
- u A
€ e w
8 X ;7

CREEP THEORY

A typical uniaxial creep strain vs time curve under

constant stress for most material used in engineering struc-

T
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tures is shown in Fig. 2. The first part of this curve is
known as the primary creep, a large portion of which is re-
coverable after unloading. The second part is identified as
the steady creep, which possesses a linear creep strain-time
relationship. The last part of this curve is called the
tertiary creep where the strain rate increases until fracture
occurs. In the present study, we only consider the primary
and secondary creep.

In general, the uniaxial creep strain e in all stages

of creep can be expressed by

e = Kf(o) g(t) (32)

where o, t are stress and time function, respectively; K is
a material constant.
When Eq. (32) is applied to the case of steady creep,

we have g(t) = t and
et = de®/dt = Kf(o0) (33)

A very widely adopted empirical formula for Eq. (33) is the

Norton equation:

e = ko® (34a)
or
Ae€ = Ko" at (34b)

where n is also a material constant.
The creep rate and the creep strain increment for the

general expression, Eq. (32), are given in Eqs. (35a) and

i BT TR
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(35b), respectively:
e€ = Xf(o) g(t) (35a)
re€= Kf(o) glt) At (35b)

Equation (35b) represents the creep strain increment for the
nonlinear creep such as the primary and tertiary creep.

A useful distinction among three different stages of
creep (Fig. 2) may be obtained from the expression g€ =
dzec/dt2 that the primary, steady and tertiary creeps are
associated with &% < 0, 6 = 0 and &% > 0 s respectively.

In this study, the incremental procedure is employed to obtain
solutions for creep problems, and hence, creep strains in
their incremental forms such as Eqs. (34b) and (35b) are of
primary importance,

When o remains constant, the computation of re€ is very
straightforward (Eq. (34b) or (35b)). However, if the com-
putation is under the condition of varying stresses, the
smooth stress-time curve is often approximated by horizontal
and vertical segments as shown in Fig. 3a [13]. Within each
segment, o is assumed to be constant so that Eq. (34b) or
(35b) can be applied.

For the nonlinear creep, two approaches are available
to calculate Ae® from Eq. (35b), namely, time-hardening and
strain-hardening. Graphical representations of these two
approaches are sketched in Fig. 3b and 3c for the strain-

hardening and time-hardening theories, respectively. In

'
¥
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each figure, a number of constant stress e®-t curves asso- a
ciated with various stress levels, and a varying stress e®-t curve it
are shown.

€ from the strain-

First, let's discuss how to calculate Ae
hardening rule. At a generic point f' on the varying stress
e“-t curve of Fig. 3b, we have creep strain ei_l at stress

- * I3 .
level o, ; and at time t, ,. The value of t, _, associated with
point g on e®-t curve for constant stress Ok is computed by

the following equation:
c ®
er.1 = Kf(ok) g(tk_l) (36)

1f the stress level changes from Ok-1 tO Op» 2e® for the next

time increment At can be estimated approximately by
el . &
Ae” = Kf(ak) g(tk_l) At (37a)

or be calculated exactly by

c

2eS = KE(op) gty +at) - ef ) (37b)

If the computation is based on the time-hardening theory,
c

Ae~ in Fig. 3c can be estimated approximately by

be€ = K£(oy) gty ;) At (38a)

or be calculated exactly by

ae€ = Kf(0y) gty 1+At) - Kf(o)) gty ;) (38b)

The varying stress e“-t curves shown in Fig. 3b and 3c,

in fact, are obtained from the exact calculation formulas.




Since the slope of constant stress creep curves almost always

decreases with time, except in the tertiary creep, a compari-
son between these two varying stress e“-t curves in Fig. 3b
and 3c indicates that strain-hardening predicts a higher
creep strain than time-hardening.

In case of the steady creep, since the relationship
between € and t is linear that these two approaches will
yield the same result, the calculation of Ae® should be very
straightforward and the value so obtained is exact.

We shall generalize the calculation of creep strain
increment from the uniaxial stress situation to the multi-
axial state of stress. By adopting the same normality rule
used in the formulation of plasticity theory as has been
described in great details in Refs. (14,15,16,17], the creep

strain in a multiaxial state of stress takes the form of

]

90 c

Ael) = FF;—J— Ae (39)
®

where o , the effective stress, is defined as

" - /3o, ol (40)

.; the deviatoric stress, is given by

t
in which °iJ

0.. = 0.. - 6.. © (41)

where 51j is Kronecker delta and o is the hydrostatic stress.,

After creep strain increments have been obtained, the

current creep strains can easily be updated for the uniaxial

e T ol i e LR Sn e L
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state of stress as

C

c _ _C
ex = ey.q * le (42)
or for the multiaxial state of stress as
c _ c c
(eij)k = (eij)k-l + Aeij (43)

COMPARISON WITH OTHER SOUTIONS

To test the validity and accuracy of creep theory adopted
in this paper, two circular plate example problems are solved,
solutions of which are compared with existing results. The
first example is the bending of a simply supported circular
plate under a constant uniform pressure (see Fig. 4). For
simplicity, the analysis is restricted to the time during
which the deflections are small so that the linear strain-
displacement relations can apply. Elastic material is assumed

with E(Young's modulus) = 7.4 x 106

psi and v (Poisson's ratio)
= 0.3, The plate geometry is outlined in the figure: R = 50 in.
and h = 1 in,

Creep response is assumed in a state of steady creep,
Eq. (34), with K = 1.491 x 10" %/psi3-hr and n = 3. These
values correspond approximately to characteristics of 2024-T3
aluminum alloy at a temperature of 600°F. In the numerical
solution process, a total of 10 evenly spaced nodal points

along the meridian surface and 9 points across the plate

thickness are chosen; a time increment of 50 hr. is also

selected.
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Results showing the time history of the maximum deflection
for three load levels are displayed in Fig. 4. Also shown in
the Figure are those of Ref. [18] in which a variational
theorem for creep was formulated that was an extension of a
variational theorem developed by Reissner. Despite the dif-
ference in the solution method employed, comparison between
these two sets of results is quite favorable which tends to
suggest the validity of the creep theory outlined in this paper.

The second example problem is also a simply supported
circular plate but with the material of 75ST aluminum alloy
at 600°F. and subjected to a uniformly distributed load of
36 psi (Fig. 5). The diameter of the plate is 10 in. and the
thickness h is 0.5 in., Young's modulus of elasticity E for
this material at 600°F., is 5.2 x 106 psi. Poisson's ratio is
0.3 for elastic strain and 0.5 for creep strain. The uniaxial
creep strain-stress-time relation is nonlinear and for constant

stress may be represented by

e = Kel9 ¢B (44)
where e and o are the uniaxial creep strain and stress,
respectively; the values of constant are K = 2,64 x 10'7,

A=1.92 x 1073

, t is in hr, B = 0.66.

The strain-hardening rule is selected to calculate the
creep strain for different stress level; a time increment of
0.2 hr is used in the numerical computation. Results of de-

flection curves at t = 0, 1 hr are shown in Fig. 5. Also

i A bt ae o €
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shown in this figure are those obtained in Ref. [3] which
employed a rather complicated solution scheme to solve govern-

ing equations with a time increment of 1 hr. The comparison

between these two sets of results is quite good, and a better
h agreement between them may be expected should a smaller time

i increment be used in Ref. [3].

NONLINEAR CREEP BUCKLING OF AXISYMMETRIC SPHERICAL CAPS

Shell Model and Its Material Properties

A spherical cap model experimented in Ref. [2] is selected
for the present analysis. The cap, under uniform external

pressure and with simply supported boundary condition, possesses

the following geometrical dimensions (Fig. 1): h (thick-
ness) = 0.125 in., a (base radius) = 2.8387 in., R (shell
radius) = 13,31 in., A (geometric parameter) = 4.

The shell is made of Type 6/6 Nylon, whose creep property
is assumed to obey a nonlinear uniaxial creep relation [2]:

e“ = Ko t" (45)

in which K = 29.1 x 10°8 and m = 0.36 for the temperature at
} 70°F. The material constants are selected so that the rela-
tion closely approximates the family of constant tension creep

curves for the type of material under consideration. The

modulus of elasticity and Poisson's ratio are E = 442,000 psi and

v =20,3,

‘ As time goes on, the creep strain at a point within the

shell structure under the prescribed loading condition will
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progress according to the state of variable increasing stress.
By nature of the assumed nonlinearity between creep strain and
time function, and for the purpose of comparisons, both strain-
hardening and time-hardening approaches are used to obtain
solutions. For solutions to be more reliable, only the exact

forms of both approaches are selected in the computation.

Perfect Spherical Cap Solutions

Creep buckling analysis is performed for the aforemen-
tioned spherical cap model for different uniform pressure
levels. In each stress level case, 12 evenly spaced nodal
points along the shell surface and 9 across the thickness are
selected in the calculation; a Simpson's rule is used for the
numerical integration to obtain effective creep loads.

A judicious choice of the time step is critically important
in numerical creep solutions. This may be demonstrated in
Fig, 6 where the time to collapse for the shell model under
26 psi according to strain-hardening rule is plotted as a
function of the time step used in the computation. It is
obvious from this figure that the results obtained are highly
sensitive to the calculation time step. In the present study,
the appropriate time step for a given loading situation is
selected from the smaller time step region of collapse time
vs time step curve (for example, Fig. 6), so that the difference
between the collapse times based on this selected time step

and one-half of this step is of minor significance.

s AT - e TR T YW




The large deformation creep responses (apex displacement

vs time) based on both strain-hardening and time-hardening

rules are displayed in Figs. 7, 8 and 9, respectively, for
pressure levels of 20, 22 and 24 psi. Substantial differences
] in the creep deformation and the collapse time between both
rules are observed for all three cases. In each case, the
time-hardening solution predicts a collapse time approximately
twice as much as that of the strain-hardening rule. The rea-
son for this is probably due to the nature of development of
both rules as has been clearly demonstrated in Fig. 3.

i When compared with experimental results as will be made
later on in this section, strain-hardening gives a better

prediction than time-hardening; the same observation is also

found in Ref. [5]. Because of this shortcoming, the time-
hardening rule will be excluded from future considerations in
this study.

Figure 10 presents a buckling pressure vs collapse time
curve (based on strain-hardening) for the shell model con-

sidered herein, which shows that the shell buckling pressure

decreases with an increase of the collapse time. In other
terms, it may be interpreted as that the longer the shell
: structure lasts, the smaller the buckling pressure is to be

anticipated.

fJ Also shown in Fig. 10 is the result (straight broken
| lines) obtained by assuming the spherical cap to remain free

from the creep effect throughout the entire analysis. In




general, the degree of sensitivity of the spherical cap to
the creep effect is proportional to the degree of the
buckling pressure vs collapse time curve staying away from
the straightline solution.

The significance of results shown in Fig. 10 may be ex-
tended to other structures. As a matter of practicality that
the materials of general structures possess a certain degree
of creep behavior, a determination of service loads for a
structure should, among others, take the creep behavior and
the anticipated structure life into considerations. At any
rate, constructions of this type of buckling pressure vs
collapse time curves should provide very useful informations

for practical designs.

Imperfect Spherical Cap Solutions

Considering the practicality of manufacturing techniques,
it is quite hard, if not impossible, to avoid any degree of
deviation from the ideal geometrical configuration in a
structure., The initial imperfection so induced has been re-
garded as a major factor to lower the load-carrying capacity
for shell structures. Here, we shall examine how the initial
imperfection affects the collapse time for the shell model
considered herein. The examination may help explain the
discrepancy between experimental data and perfect spherical

cap solutions,

A dimple type of the axisymmetric imperfection [14,19] is
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arbitrarily adopted here, which, nevertheless, does provides
a quite adequate description for actual shells since the
important parameter is the maximum eccentricity and not the
imperfection shape function itself. The adopted imperfection

may be expressed mathematically as

wo = (W /h) (1 - x°)

. (46)

where in is the maximum imperfection which occurs at the shell
apex.

Figures 11, 12 and 13 show the results in the form of
collapse time vs maximum imperfection magnitude for the shell
model under pressures of 20, 22, 24 psi, respectively. It is
surprising to find from these results that initial imperfec-
tions have such a profound impact on shortening the shell
life. For example, with a Wio/h = 0.06, which, in effect, is
sometimes very hard to be measured accurately and may be re-
garded too small to be significant, the corresponding shell
lifes in these cases are less than 1/3 of those for the per-
fect shells. By showing such a high degree of sensitivity
of the collapse time to the initial imperfection, results
obtained strongly suggest “hat the presence of initial im-
garfections must be fully taken into consideration in any
creep analysis before such analysis can be expected to accu-

rately estimate the collapse time of practical shell structures.




Comparison With Test Results

As already mentioned at the beginning of this section, the
shell models selected for investigation in this study were
originally manufactured in Ref. [2]. The creep data were ob-
tained from constant stress tests, and the mathematical model,
Eq. (45), fitted to the creep curves was also proposed in this
reference. Experiments were performed for three different
pressure levels of 20, 22, and 24 psi, and, at each pressure
level, the center displacement was recorded continuously for
five separate test shells. Experimental results in terms of
the apex displacement history are displayed in Figs. 14, 15,
and 16 for pressure levels of 20, 22, and 24 psi, respectively.
Also displayed in these Figures are present theoretical solu-
tions for the same shell model with and without initial imper-
fections.

If comparisons are made between experimental data and
perfect spherical cap solutions, it is evident that a huge
discrepancy exists between them in both creep deformation and
collapse time. The discrepancy has to be at least in part
attributed to initial imperfections which, according to the
claims made in Ref. [2], is resulted from the fact that the
measured data showing that the test shells are not perfectly
spherical even if the deviation frcm sphericity is small.
Another factor also contributing to this discrepancy is re-
lated to the validity of the mathematical model used to

describe the creep behavior,.

=%
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Now, we turn our attention to the comparison between
experimental data and theoretical results for the imperfect
spherical caps, noting that, in each pressure level case, a
~amber of theoretical solutions associated with imperfection
magnitudes ranging from 0 to 0.1 are displayed in the figures.
To be more specific, comparisons should be focused on two
different aspects, namely, the collapse time and the center
deflection history.

Of course, for the comparison to be completely satis-
factory, good agreements should be achieved simultaneously on
these two aspects., Unfortunately, results displayed in these
figures show that good agreement can only be obtained for
either the collapse time or the deflection history, not both
at the same time. For example, in Fig. 14, the entire
theoretical deflection history for wio/h = 0.1 (curve AB)
agrees almost completely with that of experiment (curve ABC),
but the theory predicts a much shorter collapse time than

“e experiment. On the other hand, the theory associated
w_o/h = 0.06 yields a good prediction on the collapse time
but a poor estimate on the creep deformation when compared
with experimental curve AD.

It is interesting to note that, in the case of
Wio/h = 0.1 of Fig. 14, theoretical deflection curve AB is
only a part of experimental curve ABC. When these two curves
are compared with the sketch of the general creep behavior

(Fig. 2), it may suffice to say that the present mathematical




creep model, Eq. (45), is valid only up to the secondary stage
of creep, and that the difference between these two curves,
Curve BC, is related to the tertiary creep which obviously is
not implemented in the present creep model.

We may sum up all the discussion here by stating that,
for the shell models considered herein, in order to have a
completely satisfactory comparison with experimental data,
the theoretical analysis should fully take the presence of
initial imperfections into consideration, and should also
adopt a mathematical creep model which includes not only the

primary and the secondary creep but the tertiary creep.

CONCLUSIONS

A numerical procedure has been developed for the large
deformation creep buckling analysis of axisymmetric spherical
caps. The problem formulation is based on governing dif-
ferential equations, treating creep deformations as effective
creep loads which are combined with actual applied forces.
The shell models selected for the present analysis are simply
supported, uniformly loaded spherical caps, made of Type 6/6
Nylon and previously tested in Ref. [2]. A nonlinear mathe-
matical creep model proposed in Ref. [2] is adopted in the
present analysis, which closely approximates the family of
constant stress tension creep curves.

For the nonlinear creep analysis, both strain-hardening

and time-hardening rules are employed. Results obtained in-




dicate that, when compared with experimental data, strain-
hardening provides better predictions on collapse time than
time-hardening, and that they are highly sensitive to the
calculation time step that a jucicious choice of this value
is essential to their accuracy.

In Fig. 10, the buckling pressure is plotted as a func-
tion of the collapse time for the shell model considered
herein, which shows that the shell buckling pressure decreases
with an increase of collapse time. In other words, for a
structure which displays a significant creep behavior at the
given temperature, the longer the structure life, the smaller
the load-carrying capacity. Construction of this type of
buckling pressure vs collapse time curves should provide very
useful information for the purpose of practical designs.

The present theoretical solutions for the perfect spher-
ical cap models predict very poorly for both creep deflections
and collapse time when compared with experimental data. The
poor theoretical predictions have to be attributed primarily
to initial imperfections which, according to the measured
data in Ref. [2], are resulted from deviations from the
sphericity of test specimens. On the other hand, results of
imperfect spherical caps indicate that, with very small
magnitude of imperfections introduced in the shell models,
theoretical predictions are improved substantially,

Two important points are noted here. First, the collapse

time of the shell models is very sensitive to initial
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imperfections as can be seen from Figs., 11, 12, and 13.

For example, with a maximum imperfection magnitude of Wio/h !

equal to only 0.06, the collapse time of imperfect shell
models is only about 1/3 of perfect shell values. Second,

| for an adequate imperfection magnitude, good agreement i

between theoretical and experiment results can only be ob-

tained for either the collapse time or the creep deformation,

i

not both at the same time. A careful examination on the
course of this shortcoming reveals that, in order to have a
completely satisfactory comparison with experimental data,
in addition to fully taking into account the presence of
initial imperfections, the theoretical analysis should adopt

a mathematical creep model which includes not only the primary

and the secondary creep but also the tertiary creep.
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Fig.1- Geometry, stress resultants and moments for axisymmetric
simply supported spherical cap with initial imperfection.
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