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L. INTRODUCTION '.11979

There is great interest in multiple input-output (mio) feedback systems,

for obvious reasons. A great deal of significant work (too numerous to list

but Wonham and Morse 1972, MacFarlane 1973, Wang and Davison 1973, Rosenbrock

1974, Porter and D'Azzo 1978 are representative and include bibliographies) has

been done, primarily in the realization and properties of the closed-loop input-

output relations, under the constraint of a feedback structure around the known,

fixed mio "plant." There has been notable work done with uncertain inputs, but

again' only with fixed, known plants. Of course, plant uncertainty is always

implicit, if only because of the usual approximations required to obtain a linear

time-invariant (iti) model.

In any case, there does not exist as yet any "quantitative synthesis"

technique for the mio problem with significant plant uncertainty, even for the

linear time-invariant case. By "quantitative synthesis" is meant that there

are given quantitative bounds on the plant uncertainty, and quantitative

tolerances on the acceptable closed-loop system response. The objective is

to find compensation functions which guarantee that the performance tolerances

are satisfied over the range of the plant uncertainty. In "quantitative

design," one guarantees that the amount of feedback designed into the system

is such as to. obtain the desired tolerances, over the given uncertainty range.

Li In other designs, the amount of feedback may be more or less than necessary--

it is a matter of chance. The practical experienced designer may find the
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QUANTITATIVE SYNTHESIS OF UNCERTAIN MULTIPLE

INPUT-OUTPUT FEEDBACK SYSTEM

Isaac Horowitz

ABSTRACT "

There is given an n input, n output plant with a specified range of

parameter uncertainty and specified tolerances on thei 2 system response to

command functions and the n response to disturbance functions. It is shown

how Schauder's fixed point theorem may be used to generate a variety of

synthesis techniques, for a large class of such plants. The design guarantees

the specifications are satisfied over the range of parameter uncertainty. An

attractive property is that design execution is that of successive single-

loop designs, with no interaction between them and no iteration necessary.

Stability over the range of parameter uncertainty is automatically included.

By an additional use of Schauder's theorem, these same synthesis

techniques can be rigorously used for quantitative design in the same sense

as above, for nxn uncertain nonlinear plants, even nonlinear time-varying

plants, in response to a finite number of inputs.
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S ' atter aipprutich sufficient. However, it scientific theory of feedback should

/ certainly include quantitative design techniques.

.1In this paper it is shown how Schauder's fixed point theorem can be

used to generate a variety of precise quantitative mio synthesis techniques

suitable for various problem classes. An outstanding feature of each synthesis

procedure is that it consists of a succession-of direct (no iterations

necessary) single-loop design steps. Furthermore, by a second use of

Schauder's theorem, the techniques are rigorously applicable to quantitative

synthesis of nonlinear uncertain mio feedback systems. This paper concentrates

on existence proofs but a 2 x 2 example is included.

1.1 Preliminary Statement of a Linear Time Invariant MIO Problem

In Fig. 1, P = [pij(s)] is a n x n matrix of the plant transfer functions

in the form of rational functions, each with an excess eij > 0 of poles over

zeros, and with a bounded number of poles. The pij(s) are functions of q

physical parameters, with ni an ordered real q-tuple sample of their values.

M = m) is the class of all possible parameter combinations. The elements of

the n x n Iti compensation rational transfer function matrices F - [f i(s)],

G = (g.j(s)] are to be chosen practical (each with an excess of poles (',er

zero). They must ensure that in response to command inputs the closed-loop

transfer function matrix T = tuv (s)] (of c = Tr) in Fig. I where c, r are the

n x I matrices (vectors) of system outputs and inputs, respectively, satisfy

conditions of the form

uv tuv(Jw)i Buv(,),Vm " L°nk °r<A (.) :rri (1)
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If the tuv(s) have no poles or zeros in the right half-plane (are stable and

minimum-phase), then tuv (s) is completely determined by Ituv(jw)l, so (1)

suffices (Bode 1945). It has been shown (Horowitz 1976) that time-domain

tolerances of the form

Uu(t) dc(t) t)

dtV -

v= 0, 1, ..., n, any finite number, can be satisfied by means of tolerances

like (1) on Ic(jw)1, where c(s) =fc(t). The writer finds it much more

convenient to develop the synthesis theory in the frequency domain, and the

above proves its sufficiency for time-domain synthesis.

This presen.tation concentrates on the command response problem, but the

same ideas can be used to handle the quantitative disturbance response problem

under plant uncertainty, as will be shown in Sec. 6. The constraints on the

plant and the specifications are introduced as needed, in order to clarify the

reasons for their need.

2. DERIVATION OF SYNTHESIS TECHNIQUE

In Fig. 1, there are available n2 loop transfer functions in L =

[1,,(s)) = PG. and n2 f.i in F for satisfying the tolerances (1) on the n
-1J

tjj. But In the expansion of T = [t. (s)] =(I + L)'LF, each tab(s.m)

(wJ) is a function of all the I1i(sm) each uncertain, resulting in very

complicated expressions for tab and making direct quantitative synthesis

seemingly impossible--at least so far unsuccessful. The objective here is

to convert each tab(s,m) design problem into an equivalent single-loop problem

with uncertainty. This is done for each tab, by lumping all the other inter-a__ I



acting t.. variables into an 'equivalent disturbance', as follows.

In Fig. 1, c = PG(Fr - c), so

(P- + G)c GFr. (2)

Hence, the following restriction on P:

(P1): A(s) determinant P(s) O,VmeM.

Let rv 1 0 and r. s 0, i 0 v, so the resulting c.(s) tjv (s)r . Let

p-1 = [P ij(s)]. (3)

The uth element of (2) is then

nr((s' (P.i. +  )ti = • fi
* i gui)tv gu v"

To simplify the presentation, we take gui 0 for u i (although in practice

it may be useful not to do so). Then letting rv(s) 1, the last equation can

be written as
.1 duv
P guufuv -

uv= _ uv - duvduv

1+-U
uu

d uv U utiv (4b)

This corresponds precisely to the single-loop problem of Fig. 2, with

Puve = l/Puu. Of course, the tiv in duv of (4b) are not known but the bounds

(1) on Itv I are known generating a set Duv= (duv}1 . We define the extreme duY

Iduvel sup IPuiIlBivl' Bi v of (1) (5)
i fu

(
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Suppose we can find uu(s) and f uv(s), such that in the notation of (4,5)

0 < l'uv1I ± lduvilduvelt [Auv Buvlym M (6)

Then the magnitude of the right side of (4a) c[Auv, B uy for all rME and for

all possible combinations of tiv (i / u) which satisfy (1). Suppose this is so

V u,v combinations, and the other Schauder conditions of Sec. 2.1 are

satisfied. Then Schauder's fixed point theorem can be used to prove that

these same n guu and n2 fiy are a solution to the synthesis problem (1).

2.1 Application of Schauder's Fixed Point Theorem

This theorem states that a continuous mapping of a convex, compact set of

a Banach space into itself, has a fixed point (Kantorovich and Akilov 1964).

We define the Banach space to be the n2 C[O,-] product space denoted here by

C(n2), with norm = £ individual sup norms. C[O,] is the Banach space of real

continuous functions f(w), wc[O,-] with HlfIt = sup If(w)I. The convex compact

set in each of the n2 C[O,-] is taken as the acceptable set of It uv(Jw)I satis-

fying (1), denoted by [he(w)} = Huv. Additional constraints have to be assigned

to the he (w) in order that each H set is compact and convex in C[O,-]. These

constraints have been justified in detail in (Horowitz 1975) and are therefore

only summarized here. If each set is convex and compact in C[O,-), their n2

product set denoted by H(n2) is convex and compact in C(n2).

Constraints on Huv = {h()) uv

1.3 continuous functions Auv(), Buy(w) with properties of (1) as

bounds on h(w)

2. h'(w) is uniformly bounded: 3 K, 3 !h <K, V hw



3. h(w)-o as cr in the form k/We, e a fixed finite number >3 to allow

at least one excess of pole over zeros for the elements of F,G,P in Fig. 1.

These constraints guarantee (Horowitz 1975) that h(w) can be taken as the magni-

tude of a function h(S)s= which has no zeros or poles in the interior of

the right half-plane or on the jw axis. Arg h(jw) is obtained from h(w)

by anyone of a number of Bode integrals (Bode 1945).

An element of H(n2 ) consists of n2 positive functions on [0,], hlk(a).

Using any appropriate Bode integral, find the associated phase function denoted
AU

here by arg[hik(w)], giving the minimum-phase stable function hik(s).

h(jw) hik(=) + j arg[hik(w)]. For future use, denote this sequence of

operations whereby h(w) is transformed into h(jw), as the "Bode transformation"

B(h(w)). Define t on H(n2 ) by

(*11'12, ..., hnn): H(n ) H(n2), 2 uv(hillh 12 , ..., hnn

guufuv - u P uiB(h iv())

guu
Pu(I + --
u Puu

using for PuiP P any specific fixed mc.M. (Note the similarity of (7) to (4a,b)).I I
In Appendix 2, it is shown that guu" fuv can be found such that t maps

H(n2 ) into itself. It is also necessary to prove t is continuous, as follows.

0 is a continuous mapping

24'is continuous if each of its n components is continuous. The first step

in each mapping is B(h iv(w))= hiv (jw). In (Horowitz 1975, Sec. III) it Is proven

that the step h iv() arg hv (W)Oeiv () is continuous in the C[Ow) norm. Hence,norv Hence

hi
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the mappings h. (w)- .h. (W) cose. (w)eZiv(), hiv(w)- hiv(w) sin eO(,,(w)
iv iv iv vv

Xiv (M) are continuous. The denominator of (7) is a constant on H(n ), and

so are guu fuv and the Pui in the numerator. Thus, the numerator has the form

Num. = JKa + jK i D )i(u) + JXi(=)),J = F-l

all other terms real and only ther , Xi mappings on H(n
2 ). Infintesimal changes

in. ik, Xi clearly result in similar change in Num., so Num. is continuous on

H(n 2 ) and so is each of (7) and hence 4'. The conditions in Schauder's theorem

* are satisfied, so 4' has a fixed point.

This means a set of h. (w) denoted by hij(*), 3

g .u u Puh iO ) itu

huv(u) = (8)uv Pu(1 +Iu

uu +u
uu Puu

u,v = 1, ... , n, where hiv(j) B(h iv(w)).

We would now like to deduce from (8), that

g uuf UV -iu P ui h uv(J)

B * = OW ;9.')uvPuu(+ guu)
+ P uu)

For, if (9) is true, then by letting h (JcO) = tuv(jw), we have recovered (4).

and the n2 h (jw) are a solution to the mio problem for that specific mcM.

The solution is unique if every building block in the mio system has a unique

output for any given input, which is a very reasonable condition. This makes



0

it unnecessary to prove that there are no transitions from (8) to an

expression similar to (9) but with right half plane poles and/or zeros. Since

m is any element of I, this is true for all mEM (of course with a different-

set of h for each m).

The step from (8) to (9) is a crucial one and must be justified with great

care. Given an analytic function O(s), there is an infinitude of *(s) such

that I.(j) I = lip(jw)l, w c[O,-], e.g.

(1 - t1s) (1 + 12s)
*(s) = f(s) (1 + is) (1 - i2 s)

But *(s) t 4-(s) even though 1 (jw)l s 1k(jw)l. But suppose we know from other

sources that f1(s) has no right half plane zeros or poles, then given

I.(jw)I _ M(w) a magnitude function which is Bode transformable, we can
conclude that 01(j) B(M(M)) M(j). Hence, to justify (9) we must prove

that the expression inside the vertical bars in (8) has no right half-plane

zeros or poles. The pole part is easy, because I + guu/Puu is obviously

designed to have no right half-plane zeros; certainly guu, f u won't be

assigned any such poles; hv (s) doesn't have any by definition, and Pui is not

allowed any such poles--see Sec. 3.1. To prove the zero part, note that from

(6) and Rouche's theorem, the number of zeros of the right side of (9) in the

right half-plane, equals such number of

guufuv

uu)"

I.
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which is easily made zero in the single-loop synthesis steps (if P has no

right half-plane poles, a condition necessary for other reasons--see Sec. 3.1).

Thus, the expression inside the bars in (8) has no right half-plane poles or

zeros, justifying (9). This is a very valuable result. The problem of

stabilizing a highly uncertain n x n mio system is automatically disposed of in

the synthesis procedure, which is furthermore one of designing n single-loop

transmission functions.

It, is worth noting that even'.if the above proof was not available, it. -

would not be disastrous for this synthesis theory. It would only be necessary

to guarantee that at one mEM, the system is stable and minimum-phase. For

then, this would be sovmEMf, because by the continuity of the poles (and zeros)

with respect to the parameters, the right side of (8) would have to be infinite

(zero) at some w, in order that for some meAM the system should be unstable

(or have a right half-plane zero). However, the synthesis procedure by

definition precludes this. And it is a relatively easy matter to guarantee

the desired conditions at one md.. ....

3. CONSTRAINTS ON MIO PLANT

The above results hinge on our ability (a) to find guu and fuv to satisfy

(6) w, all u,v pairs and all meJA (b) that each equivalent single-loop design

is stable and minimum-phase V meft. These lead to constraints on the mio plant,

obtained by applying single-loop design theory to achieve (ab). Appendix

gives an existence theorem for single-loop design. The first part of the design

(see Appendix A3) gives bounds on the nominal loop transmission which is

guu/P uu of (4a), where Puuo is the 'nominal' associated with a nominal moEtl.



These bounds must be satisfied in order that a specific system transfer

function tuv satisfy (1). Here guu/Puuo is used for n tuv (v = I,...,n)

functions. It is proven in A3, that a guu/Puuo can be found which satisfies

the conditions for all n tuv functions.

For example, consider tul t = and suppose Au( )  .9, Bu(w 1) =

1.1 in (1). We could split this range [.9, 1.1] into say [.95, 1.05] for -u
and .05 for Tdul dul in (4), using dule of (5) for dul. The technique in A3

or better (Horowitz and Sidi 1972), is then used to find a bound on guu(I).

Here, we note a tough constraint. Sooner or later in w, 1guuO(5w) must become

very small with 1 + guu/Puu I 1 and then in (4a)

guufuv uv (10)tuv -u 1
U1U

and in (7), u * the numerator of its right side divided by N Now (4a, 5, 6)
uvu

in general require that

ituvimax > 2 1Tduvduvel (11)

But Ituvlmax =Buv and at high frequencies

sup
I~ u ui IBivj

, I'du vduvel 1 IPuu

To see what this leads to take, for example, n = 2 so that the above applied

to v = 1, u = 1,2 gives

21P12 1B21  21P 21 1B11B 11 > B~l B21 > ip 1 ,

IP2

A



requi ring

>41PI12 P21 1  a
1 > P22 as (12)

Thus, a constraint on is

(P2a): 3 h' for w > h IPIIP 22 1 > 41P 12P21IVmr M. (13)

It is known that as s ,

k.
9-LPij eij

so the above becomes

Ik k11k221 > 41k 12k211

.e,1+e22 We121e21 .

If the uncertainties in the k are independent and e1 l + e22  e 2 + e

this becomes

kllmink22min > 4k2maxk2imax. (14)

There is an important problem class for which the inequality is less

harsh. This is the "basically noninteracting" class, where one ideally desires

tij -= 0 for i j j, but because of uncertainty accepts Aij = 0, It ij, < Bij

for i t j, in (1). Also, one doesn't care if t ij(i j) is nonminimum-phase.

Condition (6) then applies only to u = v. The f (u v) are set equal to

zero and (13) becomes

w Wh,), IP11P2 2 1 > 21P 12P211 mEl, W > Wh" (15)

M-



It is desirable to ease inequality (13) in the general case. Note that (6)

can be satisfied over any finite w range by making i1 + guu/puu large enough.

Thus, as previously indicaLed, one can split the [Auv,Bu ] tolerance so that

ITuvl > ITduv!Iduve1V mcM, e.g. assign ITuv [E - c, E + e] with

E = (Auv + B u)/2, 2c < B u - A and the balance (B - Auv - 2c)/2 is assigned to

Tduvduv of (4a). But Il + q uu_Iuul must then be made large enough to satisfy

the resulting requirements, and it can for any finite w range. The trouble is

that guu must be allowed to -) zero as w• leading to (13), etc., if we

insist on (6). We could ignore (6) at large w, say for w > wH. with W. as

large as desired but finite, letting ITuvI < ITduvlIduvel for w > w.. Then

for w > wH' (11) is replaced by the weaker

Ituvjmax > ITduvduveI (16)
M

and for n = 2, (13) is then replaced by

(P2b): 3 (h" 4 for t > wh, IPIIP22  > jP12P2 1jm M (/a) !

.-.An important question is whether (17a) is an inherent basic constraint in the

presence of uncertainty, no matter what design technique is used, or is due

only to this specific design technique. The methods suggested in (Rosenbrock

1974, Owens 1978) to achieve diagonal dominance, may be helpful in satisfying

(17a), but they would have to be extended to uncertain plants. Note that in

Rosenbrock 1974, Owens 1978), diagonal dominance is desired V w c [0,-),

whereas in (P2b) it is required only for w > wi.

For the analog of (17a) at n = 3, it is found that diagonal row dominance

of V for w > wH, is a sufficient condition. The necessary condition can be

written as
J
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wi )fo r w > IPiiPjjI > IPijji I and

lPlIP3 3 1 > (P12P231 + IP13 2 2 1)(IP 2 2P31I + IP2 1P3 2 I) (17b)

which can be written as,

11P22P331 > 1Pl1 P23P32 1 + IP12P21P33 1 + JP12P23P31J

+ jP13P22P31 1 + IP13P2 1P3 2 1 for w > wH (17c)

The latter has the following intepretation. Array the matrix P1 in the usual

manner, but twice-one under the other as in Fig. 3a. Then the terms on the

right side of (17c) consist of the products of the entries crossed by the

dashed lines.

However, if w is so used, it is no longer possible to use Rouche's

* •theorem and thereby prove each t.. is minimum-phase. But we can still design

so that the nominal t.. are minimum-phase and we know from (6) that t. O(W) 0

* for We[O,W H. Therefore, from the continuity of the zeros of t with respect
H 1

.to the parameters of the system, if ti has any right half-plane zeros, they

must enter the right half-plane as shown in Fig. 3b. It is unlikely that such

a zero which must migrate all the way up to jw," should move back into the

"significant control b~ndwith region A. The point is that if right half-plane

zeros are "far-off", they have little effect and the system, is "dominantly".

minimum-phase.

MOM



Rouche's theorem can still be used if we can guarantee that (6) is

satisfied for a semicircle consisting of the segment [-jwHJ H] and the right

half-plane half-circumference of the circle of radius wH9 centered at the

origin. Then, there are definitely no right half-plane zeros of tij in this

half-circle, and the system -s "dominantly" minimum-phase This is quite

practical in the design technique of (Horowitz and Sidi 1972), discussed in A3.

3.1 Modification of mapping D

Note that for the "dominantly minimum-phase" and the "basically noninter-

acting" cases, the application of Schauder's theorem in (2.1), Eqs. (7-9), etc.,

needs modification, because nonminimum-phase tuv(ju) cannot be uniquely

derived from Ituv (jw)I. Redefine h e Huv of 2.1 to consist of an ordered

pair: h() as before and q(w), the imaginary part of huv (jw) with

h = fhuv(Jw)l; h c Huv the same as before but q(w) c C [0,-) with

0 < lq(w)l < h(w). Constraints 2,3 in 2.1 on h(w) also apply to q(w). Let

(HQ)uv C2 [0,-) denote the set [(h(w), q(w))} with jI(hq)jj = tIhl + liql.-

Obviously, (HQ) is compact and convex in C2 [0,-). The extension to the

n2 product set is straightforward.

The mappings *uv in (7) are redefined. Each *ur is a pair of mappings,

one the absolute value as before, the second the imaginary part with the

absolute bars on the right removed. On the right side of (7), B(h. i)) isiv

replaced by r1v(w) + jqiv(w), with hiv = riv + q? (hiv, qi) C (HQ)iv"

It is necessary to prove that ¢ maps each element of (HQ)uv into itself.
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The proof follows immediately from that for the minimum-phase case -- this

is obvious from (6), the definition of duve in (5), and Appendices 1.2. The

proof that 0 is continuous is straightforward. Accordingly, the Schauder

conditions are satisfied and there exists a fixed point which satisfies the

specifications. Such specifications, by themselves, would not be good ones

because they permit highly nonminimum-phase tuv(s). However, they are

satisfactory if it is known from other sources that t is "dominantly

minimum-phase".

3.2 Additional Constraints on P

Constraints Al(l)-(3) in the Appendix, must be applied to the lIPuu1 ,

since in Fig. (2) puve = P p of Appendix. Al.l requires that there be

no change in the excess of poles over zeros of -  = -p- where A det. P
uu uu

and Auu its uuth minor, as m ranges over)1. Also, that for at least one

meji, denoted by muo, Puu has all its poles and zeros in the interior of the

left half-plane. The muo can be different for each u.

Al.2 requires that I/Puu is minimum-phaseV mc , and its zeros do not

get arbitrarily close to the jw axis. Since l/Puu = A/Auu, this means A must

have no right half-plane zeros. Hence the Pij in general have no right

half-plane poles. (For those who wish it, P is restricted to be controllable

and observable VmeN , but these concepts are unnecessary if P is properly

formulated in terms of physical uncertain parameters (Horowitz and Shaked

J 1975)). Since the pij in P = [pijl are finite rational functions, the latter

part of Al.2 is automatically satisfied.

- ........... _ _ - .



A1.3 for n = 2 is the same as (17), which shows that (17) is a

fundamental condition for linear time-invariant design, not an "extra*

condition due to our design technique, at least for n = 2. However, (13)

is an "extra" condition. Note, the extension of single-loop design to

disappearing poles and zeros in A6 may perhaps permit disappearing poles

and zeros in the mio plant functions.

4. OTHER DESIGN EQUATIONS

- 1

The previous design equations constitute only one of many

design techniques derivable from Schauder's fixed point theorem. Only

two more will be briefly mentioned here.

Both are based on the use of a nominal diagonal loop trans-

mission matrix. The design obligations on the loop transmission

elements are then independent of the way the plant input and output

terminals are numbered. If G is made diagonal, such numbering is

important and after one arbitrarily numbers the plant input terminals,

he should try to number the outputs such that the main effect of in-

put i is on output i. Manipulation of (2) somewhat differently from

Sec. 2, gives

f Z +Ev li t ii/6 11
t 11 1/11 Vi1

11= 1 + 1611 (18)

f1/6 + E v2iti1 A 22  etc.
t21 =21 22 22 i2

+ 22
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where V v [vi I I -(P) P is the 'nominal'plant matrix and there-

fore fixed, P is the general uncertain plant matrix, 6 = 1 - v..

The I are the nominal elements of the loop transmission matrix L.

Eqs. (18) lend themselves to single-loop design and use of Schauder's

theorem, pricely as did (4).

Another interesting set of design equations is obtained by de-

signing to control the changes in tij, rather than tij directly. Let

To = [t ijo be the 'nominal' system transfer matrix and T = (ti I the
=[ti Tinjocn e hon3 '

actual which is uncertain, AT [At T - T. Then it can be shown

that

AT = (1+L) -1 VT, V = I-rop1I (19)0L

where2 0 , P are likewise the 'nominal' and uncertain plant transfer

matrices, and L 0 G = [tiJI is the nominal loop transmission matrix.

If L is taken diagonal, the result is (n - 2 for simplicity)

At V11 t11 + 12t21 ' At v11 t12 + v 12t22  (20)
11 1 + 111  12 1+11

and similar obvious ones for At21' At22'

The design problem is now completely one of disturbance

attenuation, with the disturbances d11 M v11t11 + v12t21, etc., whose

range is known. Schauder's theorem is applicable in the same manner

as before. Note that V represents the 'normalized' plant variation

matrix. Eqs. (20) appear to be much simpler to use for design (once



the At.. tolerances are formulated) than (4), and their use needs to

be intensively researched. However, both for (18) and (20) the con-

straints considered in 3., leading to (11-15) must be found, and

these may possibly be tougher than before. Also, both a nominal

and T must be chosenjwhich is not goodjbecause the optimum pairing

is not apriori known. However, the analogs of (14,17) may be more lenient.

4.1 Bandwidth Minimization

An important criterion for comparison of design techniques is

their "cost of feedback," which we take as the bandwidths of the

loop transmission functions--because they determine the system

sensitivity to sensor noise. Obviously, quantitative synthesis

techniques must first be invented before one can turn to their op-

timization (for without such quantitative techniques comparison is

possible at best, by analysis after a specific numerical design has

been made). This approach via Schauder's theorem promises to generate

a variety of such techniques, and the next step will be optimization.

5. DESIGN EXAMPLE

The 2 x 2 plant elements are p.. k ./(l+sA..) with correlated

uncertainties, giving a total of 9 parameter sets in Table 1. The

design was performed to handle the co,vex combination generated by

these 9 sets (Figure 6).

*

____
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TABLE I

No. k11 k22 k12 k21 A11 A22 A12 A21

1. 1 2 .5 1 1. 2 2 3

2. 1 2- .5 1 .5 1 1 2

3. 1 2 .5 1 .2 .4 .5 1

4. 4 5 1 2 1. 2 2 3

5. 4 5 1 2 .5 1 1 2

6. 4 5 1 2 .2 .4 .5 1

7. 10 8 2 4 1. 2 2 2

8. 10 8 2 4 .5 1 1 2

9. 10 8 2 4 .2 .4 .5 1

A "basically noninteracting" system is desired, with the off-diagonal

transmissions specified in the w-domain It12(J), It21(J)<0.1 Vw. The

diagonal t I, t22 bounds are identical and were originally in the time-

domain in the form of tolerances on the unit step response shown in

Fig. 4a, b (which also shows the design results for those of the 9 cases

which were reasonably distinguishable). These time-domain bounds

were translated into the "equivalent" bounds on Itii(Jw)l shown in

Fig. 5 (Horowitz and Sidi 1972, Krishnan and Cruickshank 1977).

Familiarity with quantitative single-loop design is assumed

here. One can do a problem of this complexity by hand. The

sets {p.. (jw)}, called the plant templates, are obtained on the-1 '

Nichols chart. Some of these templates of £11 = 22 P11
P2



are shown in Fig. 6 at various w values. The larger the template,

the greater uncertainty at that w value. The tolerances on t of
uu

(4a) and Fig. 5 were divided between tuu and 'i duuduu as discussed in

Sec. 2. Each of these, in conjunction with the templates, leads to
guu

bounds on the nominal loop traiismission . = u. Some of these

boulds on Iiio' due to T1IIare shown as solid lines in Fig. 7, i.e.,

it is necessary for L to lie above the indicated boundary. The

tolerances on duuduu lead to the dashed line bounds on I110. No

attempt was made to optimize the division of the tolerances between

T11 and -dlld l. The composite bound on I1lo must satisfy both.

The t11o(jw) chosen is also shown in Fig. 7. There was no attempt

made to optimize the ti*o the design was made by hand quickly, so

the iio (jw) are larger than need be, with the tolerances therefore

satisfied better than necessary--as seen in Figs. 4a, b. Optimal
it(jw) would lie on their boundariesat each w, so in this

example there is considerable overdesign.

Here we took

0 _ 10 (1+.007s)11o P22o ii s( 05)1 s +
(l.OssII400 + 00

.4;
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with

A0  .75 (+3.66s)

22o (l+s)(l+3s)

o (l+.02s)
22o F110 g22  s (+.s) 1+ s 2

L 150 T (50 )'

with

A
0 1.5 (1+3.66s)

f'i 10 (1+3s)(1+2s)

The requirements on flI" f22 (f12  f 21 g12  g21  0 here) were

found using single-loop design technique [15] as briefly explained

here in A4, and
1 1

f1 1 + .5s ' f22 1 + .33s

were found satisfactory. The system was simulated on the digital com-

puter with the results shown in Figs. 4a, b. The t12, t21 tolerances

were easily satisfied by the design.

While this is not a very challenging example of the design techni-

que, nevertheless the uncertainty is very large and one should consider

how quick, simle and straightforward was the design procedure, and

also consider what alternatives are offered in the mio literature.

There are no other techniques available for systematic design to

specifications in the presence of significant uncertainty, which

guarantee design convergence and attainment of design tolerances.



Whatever present popular technique is used, it would be necessary

to cut and try and endeavor to understand the relations between the

cutting and the results as one continued to cut and try, because

these techniques have no provision for significant uncertainty. In

the above design, one sweep was known to be sufficient because the

plant and the design tolerances (u-domain) satisfied constraints,

P1 etc.

5. EXTENSION TO NONLINEAR UNCERTAIN MIO PLANTS

Once there is a quantitative design technique for linear time

invariant mio uncertain plants, it appears at least conceptually

possible to extend it to a significant class of nonlinear, even

nonlinear time-varying, uncertain mio plants. The procedure is a

generalization of that used (based also on Schauder's theorem)

in (Horowitz 1976) for single loop uncertain nonlinear systems,

The key feature is the replacement of the nonlinear plant matrix

set (a set because of the uncertainty), by a linear time invariant

plant set which is precisely equivalent to the original nonlinear

set, with respect to the acceptable system output set. The pro-

cedure is briefly presented for the case where one wants the system

with nonlinear uncertain plant to behave like a linear time-invariant

system for a specified class of command input sets.
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It is essential that the commndnd input sets represent a good

sampling of how the system will actually be used. For example, suppose

n 3 and in actual use ri, r2 always exist simultaneously (with

r 3 :0), and r3 appears by itself (with r, = r2 
= 0). Say there are

ten typical r (t) inputs and for each typical rW(t) there are five

typical r2(t). This makes a subtotal of 50 input sets, to which is

added the number of typical r3(t) say 10, giving a class R = {M} of

60 sets, of which 50 have the form -= (r,, r2, 0) and ? = (0, 0, r3)

for the balance. Choose ER. The family of acceptable outputs for

this input, is known from the tolerances on tij, giving for that one

input vector a family H , f (big h 3 ). The mio plant is re-

presented by a family (because of parameter uncertainty) W of nonlinear

differential mappings

W {W}, W = (wlW 2 1w3);C, z wI(x 2 ,x 2 ,x 3,m), • , c3 =

w3(x1x29x3',m), where the xj are the plant inputs, ci the plant outputs,

and m is the plant parameter vector mM.

Take a sample acceptable outputtriple h = (hi, h2, h3 ) and find

the corresponding plant inputs at some specific mJ (or in other words,

pick a WeW) and let cj = h. and solve the nonlinear equations backwards,

giving the input set (x,, x2 , x3 ). Take the Laplace transforms i(s)

of Xi , .(s) of h. giving the vectors R[s] = (x( X^ (2s), X3(s))

Ai[sl = (fI(s), . . , 6 3 (s)). Repeat for other h samples in the

acceptable output set H, giving two paired families of RIs], A"[s.

I l 3



Select any combination of three ;Is], forming a 3 x 3 ratrix X and
A

corresponding paired combination of three R[sj, forming the matrix H.

Set H = PX and solve for P = H(X)-. P is the linear-time-invariant

equivalent of the specific UEC(1 picked, vith respect to the specific

trio of acceptable output vectors picked. Repeat over different

trios. Repeat the entire operation over different wE', giving a

class P {P1 which is the linear-time-invariant equivalent of the

W family, with respect to the class of acceptable outputs H for in-

put vector r]. Repeat the entire operation for r25 . . ' r60 giving

{-Pi = P which is the linear time equivalent for the nonlinear
total J

W, with respect to the tribe of 60 families of acceptable output sets.

The equivalence is exact if the conditions for application of

Schauder's theorem are satisfied. We now have a linear time-invariant

uncertain mio problem, which let us presume we can solve. If and only

if we can guarantee the solution of the latter, then the same compen-

sation functions will work for the original nonlinear uncertain mio

plant. Hence the importance of quantitative linear time invariant

design techniques (over and above their intrinsic importance)--for they

enable the precise solution of nonlinear uncertainty problems.

The design effort in the above appears to be enormous but it is

conceptually straightforward and easy. An ordinary control engineer

can implement it and the digital computer is, of course, an essential

J-
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tool. Conceptually too, it appears possible to extend the method to

obtain nonlinear relations between inputs and outputs within specified

bounds, despite large plant uncertainty, even nonlinear time-varying,

as can be done for the single input-output case. The prospect

is fascinating. Imagine being able to work with the actual nonlinear

equations of a jet engine, or a chemical process, etc., include un-

certainties in the modelling, even uncertainty in system order (see

Appendix), and designing to achieve outputs within specified tolerances

over the given range of uncertainty.

6. DISTURBANCE ATTENUATION

Let x in Fig. 1 be a nxl matrix of distrubances. The resulting

system output (with r = 0) is c 
= (I+PG) - Px b Zx, Z = [Zig, the nxn

disturbance response matrix. Bounds on Z are given in the form

Izuv(Jw)< buy(W) ,Y mcJ (21)

Rewrite c = Zx in the form (P-l+G)c x. Let xi / 0 only for i = v, so

ci =ivXv
, and

n
u (0,u )(Pui + gui)Ziv 'v , u=v )

i/u
UU

(Pu (g 22) v (u g ~ i

UV*V - X. (Pui +g u i )zi v

SUV = .... q(2



Let
A 4t gi

Xuve(w) = sup p bi v (W) (23)
m iu Ua

The gui(w) (i/u) can be chosen to minimize xuve(w), but for simplicity we shall

assume them zero. From (22,23)

Izuv( )l< I uu + Xuve, (24)

uu

If /Puu satisfies the constraints listed, then it is obviously possible

to guarantee tzuv(w)l < any finite number, no matter how small, at any finite

w. Also it can be made zero at a finite number of w values by assigning poles

to guu at these values. Assume that guu can be chosen to satisfy (21)

V c € [0,-). Then one can set up the conditions for Schauder's theorem,

precisely as was done in 2.1. The set b uv() must have been formulated such I

uvthat B(n2), the n2 product set of the buv(ii), is compact convex in n2

analogous to H(n2) in 2.1. The analog of $ in (7) must be formulated

with the modification of Sec. 3.1, inasmuch as we do not care if the z (s) are
uv

nonminimum-phase.

Conditions analogous to (12-17) for n = 2, are obtained as follows.

As w guu/Puu - 0 so in (24), the right side - its numerator. But

IZuv(jw)I : buy(w) of (21). Let u = 1, v = 2 and then u 2, v = I and

obtain the necessary condition (for g,2 = g2l 0),

As w - , p12P21 < p]IP 22 , V mEt (25)
-4
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similar to (17) but here only at , because there is no concern with the F

minimum-phase property. Setting u v = 1, and then u = v = 2 in (24), we

get the conditions

P1P1PlP21 *
Aspp 2 2  b22 > P2  l (26)1s P o l I IPll 22 2 IP22 -

11I p1  P2 21 , 2 p11

But in reality as w o% c + Px so Z - P and z -1- PlI' z22  P22. Hence,

assignment of bii (as w m) to satisfy (25) is no obstacle, because the b (W)

are upper bounds on the 1 z(J)I .

uIF

Uid

JI

i2

-I



APPENDIX 1

EXISTENCE THEOREM FOR SINGLE-LOOP DESIGN

The plant transf2r function p(s) is uncertain, belonging to a

set P= {p(s)} and is imbedded in a two-degree-of-freedom single-

loop feedback structure, as in Fig. 2 (p in place of puve ). The

rational functions f(s), g(s) (replacing fuv' guu in Fig. 2) are

to be chosen to satisfy specified tolerances on the command fre-

quency-response tjw) =c(j ) and disturbance frequency response
r(jW)

td (jw) = c(jw)/d(jw), (r, d, c replacing rv , -duv, cu in Fig. 2).

Al. Constraints on P

1. p(s) is a rational function with a fixed excess e>l of

poles over zeros (this is relaxed later in A6, 7). 3 at least one

peP one of which is designated as po, all of whose poles and zeros

are in the interior of the left half-plane.

2. At each we(O,), - inf. jp(ji)l 0 b(w)>O. a inf b(w)
P I

b >0 for any finite interval I = [0,w]. Also, Ip I of A1(1) has

a sup on each finite interval I = [O,w], sup jp0 = x 0.I
e

3. As s-., p(s) k p / , kp MIS k2] with -> k2>kI>0, uniformly

on P in the following sense: For any c>O, no matter how small, 3

(independent of p(s)), such that for each pEP there is associated a

kpe(ki , k2J so that

knI k w <E and Arg Ip(Jw)+e-2l<e, for a

P/...
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Note that Al(l) permits changes in plant order, e.g. 1+aT1•1+ TlIS

with say ct c [2, 5], T [0, 31. A1(2) dictates minimum-phase p(s)

and that the jw axis is not a limit of any sequence of p(s) zeros.

AI(3) requires a uniform bound on the poles and zeros of all pEP.

A2. Tolerances on It(jw)I and. It(jw)I

(1) O<A(w) <It(jwIj<,B(w) with A, B E C [0, ), B() >B(w)>1.

ainf R(w) = 01>1 on any finite I 
= O,w]. A(w)

(2) X A > 1.05, w - for w>w B(w) 2k This means thatA' A() k

in the high w range, the feedback is allowed to increase the sensitivity

. t(jW)/tL(j )S =p(j)/p(j), rather than decrease it. In fact, as noted by

C

Bode, ,InISIdw = 0 in any practical system, so the decrease

0

in S(ISI<I) achieved in the control bandwidth range, must be balanced

by ISI>l in another range. X can be a large number, because as w-',

t(jw).O, e.g., suppose k2/kI  10, who cares if lt(J)w C[lo , 10-7

(X = 10 3) at very large w.

(3) The tolerances on td(Jiw) are in the form Itd(iw)I,<Q(w)>0.

For any I = [0, oi, 1 inf Q() = ad1 Since td = P( + pg)-I =

pS of A2(2), IQ/pI>l at high frequencies, so - wod' , for w>wd'

0(W) 0 B1MIpOW I, I>1.05.



stricted to the interior of the left half-plane VpEP, and minimum-

phase.

A3. Choice of Compensation Functions

Let p0 (s) of Al(l) be the 'nominal' plant with k0c[k1 , k2] its

associated k value of Al(3).P

Let .01 k_ in Al(3), wt largest of {o" W' Od} ' It [O'tl'
k2

sup 1P0(ii)l, of Al(2). In Fig. 2,
It  bIt

ft
t(s) g _ .o g p. (Al)

0g Po 0+2

p 0

slip It(w) I

We want )P  B M of A2(). This is achieved ininf it(jw) i A(w)P

sup Po + 1o
I t if inf p + Io < 11it of A2(I).

i: P

Since < yt in Its it suffices for It. if It >ytand i -'

giving the sufficient condition

I 0 t + 1) in It. (A2)

1 t t*
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To satisfy A2(3) in It. it is necessary that Itd -

PO "<Q( , which is certainly achieved if
-+ zo

p 0

i t 0> sup :Po + sul po I- - + bi ) - , od , .
Pdl t  +inflP I - ° t dlt +I

Therefore, choose

It0(ji)I> larger of (Itot I' Iodl - ox1, in I t .  (A3)

Next, we find a bound on Zo in It = [W t ) to satisfy A2 in I t -

From Al(3), in I t = [t o), {-[-W1 lies in the narrow sliver V int t'pk

Fig. Al, .01 ;.01 radians angular width, with magnitude bounds
k2

99-R 1.01 l. Let A in Fig. Al be a trial value of I , so

P k P0

is the vector originating at point - in V and terminating
p 0 p

at A. Bounds on tg0 may be obtained so that

s lip PO + t satisfies A2(,2) and A2(3) in it= t W a "

P + jo

It is easily seen that a very conservative boundary for 1. in

i t is the vertical line s = -a, with

(. = 0 k -- .99 1 0 (A4a)

4 i.e., go on the right of the line s = -a, satisfies A2(1, 2) in V

0



or This is easily satis-
!0

0 p o

fied if the above

k-- = 02  99 k (01-1) (A4b)
2.

Therefore, choose

a= smaller of (aI a2) (A4c)

Thus, the problem is to find (s) such that it (jw)I is outside the
o o

circle C in Fig. Al for wt and to the right of the line s =-a for

w > It is obviously very easy to find such an Z (s) which alsoo 0!
has all its poles and zeros in the interior of the left half-plane,

with any desired finite excess of poles over zeros, and which further-

more has the property shown in Fig. Al, i.e., lies on the right of

sz-o, for all w. For example, let

i 2 ox

L0 =  e
i(I + _) ( + )

t I ti

21l oxwt), + 0 w
e any desired finite number, w -larger of (lOw t,  o ' i+l lO =i-

Note that it would be impossible to guarantee the existence of the desired

1 0 if po was nonminimum-phase (Horowitz and Sidi 1978).

J
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It is conceivable that even though A2(l)-A2(3) are satisfied,

PA2(4) is not satisfied. Consider the zeros of 1 + pg = 1 + t - or
0o

of (P- + 2o). Recall that in [0, w tpI lies in the circle of radiusp 0 t p

Yt which is inside the circle C of Fig. Al, while Z lies outside the

larger circle C. In [wt, C,), X. lies on the right of the line s=- a

while {-41} is contained in V of Fig. Al. Also, . (jw) lies on the
p 0

right of s = -a, Vw. Hence, the vector P - + 2 does not encircle the
p 0

origin clockwise (or alternatively t. does not so encircle P.), Ypip,
0 p

and the system is stable.

Application to mio system

In the mio system (4a), the loop function = /P must handle

the n tuv problems v = 1,2,..., n. The bounds on tuuo will be, in general,

different for each v with its own 9, oxv, Itv of (A3) and av of (A4c).

Let Iu = max Itv, I = max Y. xv Gu = min a be the design parametersuv ou ovv v v

for kuuo Obviously such a 2. is satisfactory for all n tuv problems.uuo, uuo u
In Sec 3 (just before 3.1), there was noted the desirability of

satisfying (6) on the boundary of a semicircle of radius w. in the right

half-plane. This requires, in addition to the previous, rewriting

Sec A3, replacing jw by wHe j e, OE [0, ir/2]. The development is easier if

N is large enough so that each Pij ki /s on s = w Clearly,

there will emerge bounds on t uuo on s = w He3e , which will have to be

satisfied, in addition to those on s = jw. Obviously, such bounds can

always be satisfied by suitable shaping of kuuo' so that It uuo is

large enough on HeiO



There remains the design of f(s), inasmuch as Z O(s) = g(s) po (s)

only determines g(s). Note that Zo (s) only guarantees that

P0

.in 1(w) of A2(l);

f(s) is chosen so that It(jw)lc [A(w), B(w)]. For example, suppose

A( = .9, B(WI) 1.04, and at w1I SAI1 + 100, while inf

po+ j 01= 90 with it 0(wl )I = 80. The range of tt(jw )I =

PO +11is therefore [.81f(jwH) , .889lf0W )11, so we need

.81f(jw 1)>.9, .8891f(jW1 )<1.04, giving the permissible range of

1.041
•8 8891 for If(jW )I. In this way, the bounds on lf(jw)l are

found and it is always possible to find an f(s) with left half-plane

poles and zeros which satisfies such bounds.

4 The above procedure in all its details, is not reconnended as a

practical design procedure. Simplifications were made to make the

proof easier, but the loop bandwidth is much larger than necessary.

Its primary purpose is as an existence theorem. A practical optimum

design procedure based on these ideas, but without the rigor, has

been given in (Horowitz and Sidi 1972) and used a great deal with

considerable success.

I .
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A5. Extensions

(1) It is possible to have A(w) = B(w), Q(w) 0 in A2(l), (3)

at a finite number of w, values, by choosing g infinite at these points.

The sensitivity zeros can be single or multiple.

(2) Some or all pEP can have zerox on the jw axis. If these zeros

are precisely known (unlikely), g(s) can be assigned poles there. Other-

wise, t(jw) must be zero at these points for such p, requiring obviously

much more careful statement of the tolerance on t(jw) and td(Jw) near

such points.

(3) The most significant extension is that Constraint Al(l) can

be relaxed. There can be uncertainty in the order of the plant due to

disappearing poles and zeros--closely related to the problem of singu-

lar perturbations (Porter and Tsingas 1978).

A6. Disappearing Poles and Zeros

Let

m

p = P1i (l+sa i )
n pl T(S) (MS)

i (1+sb.)

with ai c[O, aix], b c[O, bjX ]and p ePsatisfying Al. The question of

concern is: "For what m, n values can the loop transmission be arbi-

trarily large over an arbitrarily large bandwidth but still be practical,

i.e., go to zero as w * - with any desired finite excess of poles over

zeros?" For such m, n any tolerances satisfying A2 but otherwise ar-

bitrary, can be satisfied.



-M FIR Pow I....... -.r.

In Fig. 2 and using (A5)

t(s) ff- (A6)I + 9 p + gpi + t

The question posed can be answered by referring to the logarithmic

complex plane (Nichols chart) in Fig. A2. The intersections of the

zero db line with the vertical lines (2n+l) 1800, n = 0 ± 1,

is the point -I.. Because of uncertainty, k = gplY is not a point but

a set {} denoted here as the template of Z, VJ(w) which occupies

some region in the complex plane--Fig. A2. The shape of is

that of {pI T1 because there is no uncertainty in g. The latter

permits the translation (but not rotation of L) in the complex

logarithmic plane, horizontally by arg g and vertically by Igj in

db. For some finite w range, large jIJ is needed so j lies above

the zero db line, e.g., L( i) in Fig. A3. At large enough w, ILI

must be very small (-0 asw+-) so must be well below the zero db

lines and continue downwards to - w. In the transition of I from

above to below the zero db line, it must not interest -1, nor en-

circle it. Hence, the width of must be restricted to <3600

for some w interval in which jcan squeeze in between two -1 points

on its way downward (Fig. A?-). But we want arbitrary sensitivity

reduction for arbitrary bandwidth. This requires 9 ' H for

W> w. the width of 3) < 360.
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Consider now the shape of which is that of which is

that of3pl +y7 in the Nichols chart. Constraint Al(3) assures

that at large enough w the width of 41 -) zero degrees, so it

is entirely a question of the width of ,. Consider any factor
1

of T, e.g., 1 + jwb 1 b c [0, ml. At any specific w, the maximum

width of the template is tan -I wb = tan tin. For un = 20, the
max

template is OAB in Fig. A3 (Oat b -- , B at ob = 20); for wm = 100

it is OABU and for wm = 1000, it is OABUV. For two such independent

factors, it is easy to find the new template. This is done in Fig. A3

for un = n 2 = 20. Draw O"A"B" = OAB and position 0" at points on

OAB (because of the independent uncertainties). The result is

ABEJDEFO :j[( 1 )(1+-b 2 i), b2 CfO, m). The template of a

zero factor (1+jwea) is obtained by reflecting that of the pole if

((a)max = (Nb) max' giving OA'B' in Fig. 3.

As w increases, the contribution of each factor (pole or zero) 90°

in width. Therefore, while theoretically four factors can be admitted

between two -Ipoints, stability margins dictate a maximum of three.

But this is only a necessary condition, because it must also be possible

to decrease ILI from arbitrary large to small values. This basically

means that over arbitrary large frequency range Arg L must be over-

whelmingly negative. The extreme right side of must then lie on the

left of the 00 line in Fig. A2. One disappearing pole or zero poses no

problem, but two do because the left side of will then intersect -1



be made rigorous, of course.) Note that this is for the most demanding

situation. If only stability is desired, then any finite number of

disappearing poles or zeros can be handled.

APPENDIX 2

2
A7. CONDITIONS THAT ' MAPS H(n2 ) INTO ITSELF

The constraints on Huv were given in 2.1. The first is satisfied

if (6) is. From Appendix 1, it is seen that at finite w, the only

possible difficulty is, if in Fig. 2, d uv(j) is unbounded but guuPuve

is bounded. If such unboundedness of duv is at a finite number of w

values, it is possible to assign poles there to guu" Since duv is a

function of the plant parameters (Eq. 4b), an infinite number of such

poles is conceivable, in fact is so in practice if there is one,

because of inevitable uncertainties. How can d be unboundeo while

Puve is bounded? From (3,5)

(-I) iu Aiu tiv

dP V- (A7)
A y (_)iu PiuAiu I PuuAuu Pu

iu

Hence, such a situation is possible, if Aiu has such a pole which is

cancelled by a zero of Piu and is not present in PuuAuu e.g. n = 2,

P21 has a pole at ±ja, P12 has a zero there and pllP 22 does not have
a pole there. Such situations are therefore not allowed. It can be

argued that they are in practice impossible (Horowitz and Shaked 1975),

________

~i
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because P 2 1 P21 must involve different physical parameters and the

uncertainties in each cannot be 10'" correlated. Irrespective of this

argument, the constraint is

jPij(jw)l is uniformly bounded on [0,) and M, V i/j (A8)

The problem is more difficult as w and is treated in Section 3.
To satisfy constraint (2) on, H in 2.1, note first that if

uv

z(jW) = zI + jz2 with z,, z2 real functions of w, then IzI' is bounded

if z' is bounded. For

2 l1 1 1 1 .+Iz ' (z I  + z2)' = ; . If z z2 I  + .12

2 2zI +z 2
1 2

is bounded, so are z , z2 and z1. Consider separately T' (jw) and
uv

(Tdu v d) ' (jw) of (4). The former can be written

' f f gp ) + g')l+ , +- - + )2

(A9)

SgP P = Puve' § = guu

of Fig. 2. Since f2/(l+X) is bounded by the appropriate Buv, the

first term on the right of (A9) needs only uniform boundedness o f',

which is easy as f is chosen by the designer. Obviously, the only

possible difficulties with the second term of (A9) are g', p, which

can be infinite only at jw axis poles. However, at such poles, the

denominator forces the second term to be bounded. At large w where

gp, g', p' -0 0, there is obviously no problem.
Next, consider (t d )'(u) written as

duv uv



yIp_. + d (p. AIpfy +cjp 1+gp (1 + gp)~ (2o

9,p of (AM), d--du

From (A8), d and sinve.4 jcs. a .ratgnol functiopn. i'*, ,arjMit'II~

bounded on the jw axis. From the previous discussion re p', g' etc. and

Appendix 1, y' can be uniforml~y bounded on any finite w range by proper

choice of g. At large w each of d, d', p, p' etc -~0.

It is easy to see that constraint (3) is satisfied, because it has

been required that the. elements of P, G, F all -~0 as s '
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Fig. 1 Multiple input-output two matrix dcgree-of-freedom feedback I
structure c =Tr, T [t. i], c [ ... Cn r [r1 rn

Fig. 2 Single-loop structure equivalent, for synthesis of tv

f *
uv uupuve P~v uve
lv + guupuve du +g 9 up

abovev
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Fig. Al . Bounds on C in [o1J C,0) - ,

and a satisfactory t DOW)
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Fig. A2. The logarithic complex plane (Nichols Chart) with
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