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There is great lnterest in multiple input-output (mlo) feedback systems, .
for obvious reasons. A great deal of significant work (too numerous to list
but Wonham and Morse 1972, MacFarlane 1973, Wang and Davison 1973, Rosenbrock

1974, Porter and D'Azzo 1978 are representative and include bibliographies) has

WA0870 14

been done, primarily in the realization and properties of the closed-loop input-
output relations, under the constraint of a feedback structure around the known,

fixed mio "plant." There has been notable work done with uncertain inputs, but

againﬁonly with fixed, known plants. Of course, plant uncertainty is always

implicit, if only because of the usual approximations required to obtain a linear

time-invariant (£ti) model.

In any case, there does not exist as yet any "quantitative synthesis"

———

technique for the mio problem with significant plant uncertainty, even for the

VTinear time-invariant case. B8y "quantitative synthesis" is meant that there

i o e "
e -

are given quantitative bounds on the plant uncertainty, and quantitative'
tolerances on the accgptab]e closed-loop system response. The objective is

to find compensation functions which guarantee that the performance tolerances
are satisfied over the range of the plant uncertainty. Iq "quantitative

design," one guarantees that the amount of feedback designed into the system

CurYs

is such as to_obtain the desired tolerances, over the given uncertainty range.
In other designs, the amount of feedback may be more or less than necessary—-'

it is a matter of chance. The practical experienced designer may find the
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QUANTITATIVE SYNTHESIS OF UNCERTAIN MULTIPLE
INPUT-OUTPUT FEEDBACK SYSTEM

* R
Isaac Horowitz -

l ABSTRACT ’»M s e j?c;\ ey

There is given an n input, n output plant with a specified range of

parameter uncertainty and specified tolerances on the,n’2

system response to
command functions and the n2 response to disturbance functions. It is shown
how Schauder's fixed point theorem may be used to generate a variety of
synthesis techniques, for a large class of such plants. The design guarantees
the specifications are satisfied over the range of parameter uncertainty. An
attractive property is that design execution is that of successive single-
loop designs, with no interaction between them and no iteration necessary.
Stability over the range of parameter uncertainty is automatically included.

By an additional use of Schauder's theorem, these same synthesis
techniques can be rigorously used for quantitative design in the same sense
as above, for nxn uncertain nonlinear plants, even nonlinear time-varying

plants, in response to a finite number of inputs. - Joo

\
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://al,'lattcr approach sufficient. However, a scicentific theory of feedback should
certainly include quantitative design techniques.

“In this paper it is shown how Schauder's fixed point theorem can be
used to generate a variety of precise quantitative mio synthesis techniques
suitable for various problem classes.._An outstanding feature of each synthesis
procedure is that it consists of a suécessioﬁ‘of direct (no iterations
necessary) single-loop design steps. Furthermore, by a second use of
Schauder's theorem, the techniques are rigorously applicable to quantitative
synthesis of nonlinear uncertain mio feedback systems. This paper concentrates

on existence proofs but a 2 x 2 example is included.

1.1 Preliminary Statement of a Linear Time Invariant MIO Problem

In Fig. 1, P = [pij(s)] is a n x n matrix of the plant transfer functions
in the form of rational functions, each with an excess eij > 0 of poles over
zeros, and with a bounded number of poles. The pij(s) are functions of q
physical parameters, with m an ordered real q-tuple sample of their values.

M = {m} is the class of all possible parameter combinations. The elements of
the n x n 1ti compensation rational transfer function matrices F = [fij(s)]’

G = (gij(s)] are to be chosen practical (each with an excess of poles (ver
zero). They must ensure that in response to command inputs the closed-loop
transfer function matrix T = [tuv(s)] (of ¢ = Tr) in Fig. 1 where c, r are‘the

n x 1 matrices (vectors) of system outputs and inputs, respectively, satiﬁfy

conditions of the form

A .ii0n For

0 < Auv("') s |t'uv(j“’)| s Buv("’)’V MM T ol E‘ ()
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If the tuv(s) have no poles or zeros in the right half-plane (are stable and
minimum-phase), then tuv(s) is completely determined by ltuv(jw)l, so (1)

suffices (Bode 1945). It has been shown (Horowitz 1976) that time-domain

tolerances of the form

“A

w(t) < (B o y3(e)

1 v 2

dt

v=0,1, ..., n, any finite number, can be satisfied by mean§ of tolerances
like (1) on |c(jw)|, where c(s) = JZ(t). The writer finds it much more
convenient to develop the synthesis theory in the frequency domain, and the
above proves its sufficiency for time-domain synthesis.

This presentation concentrates on the command response problem, but the

same jdeas can be used to handle the quantitative disturbance response problem

under plant uncertainty, as will be shown in Sec. 6. The constraints on the

plant and the specifications are introduced as needed, in order to clarify the

reasons for their need.

2. DERIVATION OF SYNTHESIS TECHNIQUE

In Fig. 1, there are available n2 loop transfer functions in L =

Ll‘j(s)] = PG, and n2 fij in F for satisfying the tolerances (1) on the n2
tij' But in the expansion of T = [tij(s)] ='(1 + L)"LF, each tab(s,m)

(mef)) is a function of all the lij(s,m) each uncertain, resulting in very
complicated expressions for tab and making direct quantitative synthesis
seemingly impossible--at least so far unsuccessful. The objective here is
to convert each tab(s.m) design problem into an equivalent single-loop problem

with uncertainty. This is done for each tab’ by lumping all the other inter-
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acting ti' variables into an 'equivalent disturbance', as follows.

J
In Fig. 1, ¢ = PG(Fr - ¢}, so

(P“] + B)c = GFr. (2)

Hence, the following restriction on P:
(P1): aA(s) 3 determinant P(s) % 0,\/msM.

Let rv.# 0 and r; = 0, 1 # v, so the resulting cj(s) f tjv(s)rv“ Let

=1 _

P - [Pij(s)]' (3)
The uth element of (2) is then

7 n 3
rv(S) igl (Pui * 9yt = § uifiv:

To simplify the presentation, we take 9ui = 0 for u # i (although in practice
it may be useful not to do so). Then letting rv(s) = 1, the last equation can

be written as

o Cdw
P usuv P
_ luu uu A _
tv g Tuv ~ Tduvuv (42)
uu _
V45—
uu . . . X
d = Y P .t ' (ab)

uv i#u ur iy

This corresponds precisely to the single-loop problem of Fig. 2, with
Puve = WPy, Of course, the t;, in d,, of (4b) are not known but the bounds

(1) on |tiv| are knowg’generating a set D, = {d 1} We define the extreme d

" o SUP
ldyvel = u igu 1P, 1184, 15 Bsy of (1) (5)
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Suppose we can find guu(s) and fuv(s)’ such that in the notation of (4,5)

0 < fr,l 2 7 quy Hdyyele [Aye Buv]’V meM ' . (8)
Then the magnitude.of the right side of (4a) c[Auv, Buv] for all meM and for
all possible combinations of tiv (i # u) which satisfy (1). Suppose this is so
\f u,v combinations, and the other Schauder conditions of Sec. 2.1 are

satisfied. Then Schauder's fixed point theorem can be used to prove that

2

these same n g,y and n fiv are a solution to the synthesis problem (1).

2.1 Application of Schauder's Fixed Point Theorem

This theorem states that a continuous mapping of a convex, compact set of

a Banach space into itself, has a fixed point (Kantorovich and Akilov 1964).

We define the Banach space to be the n? C[0,»] product space denoted here by
C(nz). with norm = I individual sup norms. C[0,»] is the Banach space of real
continuous functions f(w), wel0,=] with [|f]]| = sup [f(w)]. The convex compact
set in each of the n? C[0,=] is taken as the accep?able set of Ituv(jm)l satis-

fying (1), denoted by {he(m)} = H, Additional constraints have to be assigned

v.
to the he (w) in order that each Huv set is compact and convex in C[0,»]. These

constraints have been justified in detail in (Horowitz 1975) and are therefore
only summarized here. If each set is convex and compact in C{0,»), their n2
product set denoted by H(nz) is convex and compact in C(nz).

Constraints on H = {h{w)}

1.3 continuous functions Auv(w), Buv(w) with properties of (1) as
bounds on h{w)
2. h'(w) fs uniformly bounded: K, 'h'(m)l <«, Y h.w




3. h(w)0 as ww in the form k/w®, e a fixed finite number 23 to allow
at least one excess of pole over zeros for the elements of F,G,P in Fig. 1.
These constraints guarantee (Horowitz 1975) that h(w) can be taken as the magni-

tude of a function h(s) which has no zeros or poles in the interior of

s=jw
the right half-plane or on the jw axis. Arg h(jw) is obtained from h{w)
by anyone of a number of Bode integrals {Bode 1945).

An element of H(nz) consists of nZ

positive functions on [0,~], hikcnf.
Using any appropriate Bode integral, find the associated phase function denoted

here by arg[hik(m)]. giving the minimum-phase stable function ﬁik(s),

%ik(jw) = hik(w) +j arg[hik(w)]. For future use, denote this sequence of
operations whereby h(w) is transformed into h(jw), as the "Bode transformation®

B(h(w)). Define ¢ on H(nz) by ‘

. R N
¢ = (""”"vlzs ---9‘#’nn)- H(" ) H(n ): wuv(h'n’hlzs ceey hllﬂ)

9yufuy -igu Puie(hiv(”))

(1)

P

g
P (1 + ~uu
uu uu

using for Pui’ Puu any specific fixed meM. (Note the simiIarity of (7) to (4a,b)).

In Appendix 2, it is shown that Yyu® f  can be found such that ¢ maps

uv
H(nz) into itself. It is also necessary to prove & is continuous, as follows.

¢ is a continuous mapping

® is continuous if each of its n2 components is continuous. The first step
in each mapping is B(hiv(aﬁ)= hiv(j”)' In (Horowitz 1975, Sec. II1) it is proven

that the step hiv(m)* arg hiv(“)éeiv(“) is continuous in the C[0,») norm. Hence,
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s A :
the mappings hiv(m)+,hiv(w) coseiv(w)zéziv(m), hy, (w)~> hy () sin 6, (u)
éxiv(m) are continuous. The denominator of (7) is a constant on H(n?), and

so are g fuv and the Pui in the numerator. Thus, the numerator has the form
Num. = |K_+ jK - Z(C. + 3D.)(Z.(w) + X.(w)),J = Iy
3 Jb TV J.‘ .lU J'l s J ¥ ’

all other terms real and only theﬁzi, Xi mappings on H(nz). Infintesimal changes

ind{i, Xi clearly result in similar change in Num., so Num. is continuous on
H(nz) and so is each Vv of (7) and hence &. The conditions in Schauder's theorem
are satisfied, so-¢ has a fixed point.

v This means 3 a set of hij(“’) denoted by h:j(w), 3

~%

g' f ~.2 P .h. (ju)

uu uv ui v . '
b (w) = L . (8)
uv P (1 Yuu | .
+ —=
uy Puu

’ : ~ak *
U,y = 1, ..., n, where hiv(Jm) = E(hiv(m)).
We woﬁld now like to deduce from (8), that

P b (j
Yuufuv -igu ui uv Ju)

g
(1 + 32
uu Puu

Bh (w)) = o, (du) =

adk R . ’
For, if (9) is true, then by letting h  (juw) = t, (ju), we have recovered (a)
and the n? ﬁ:v(jw) are a solution to the mio problem for that specific meM.
The solution is unique if every building block in the mio system has a unique

output for any given input, which is a very reasonable condition. This makes
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o that [¢(Gw)] = Jelde)], o €[0,=], e.g. §

~designed to'havé no right half-plane zeros; certainly Syu® f

“allowed any such poles--see Sec. 3.1. To prove the zero part, note that from

-(6) and Rouche's theorem, the number of zeros of the right side of (9) in the

it unnecessary to prove that there are no transitions from (8) to an
expression similar to (9) but with right half plane poles and/or zeros. Since
m is any e]emeqt of M, this is true for all meM (of course with a different- |
set of ﬁ:v for each m). |

The step from (8) to (9) is a crucial one and mﬁst be justified with great F

care. Given an analytic function ¢(s), there is an infinitude of y(s) such o "

(1 - ; s) (1 + 1,s) ' . ’
¥(s) = ¢(s) 0+ t:ﬂ 7= 125‘) B

But ¢(s) # y(s) even though |¢(jw)]| = |v(jw)|. But suppose we know from other A

sources that ¢](s) has no right half plane zeros or poles, then given

|¢](jm)| = M(w) a magnitude function which is Bode transformable, we can
conclude that ¢](jw) = B(M(w)) = ﬁ(jm). Hence, to justify (9) we must prove
that the expression inside the vertical bars in (8) has no right half-plane
zeros or poles. The pole part is easy, because 1 + guulpuu is obviously

1}
uv won't be

assigned any such poles; ﬁiv(s) doesn’'t have any by definition, and Pui is not

right half-plane, equals such number of

guufuv

g
P (1 +__'-'_‘.’_)
uu Puu
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which is easily made zero in the single-loop synthesis steps (if Puu has no
right half-plane poles, a condition necessary for other reasons--see Sec. 3.1).
Thus, the expression inside the bars in (8) has no right half-plane poles or

zeros, justifying (9). This is a very valuable result. The problem of

stabilizing a highly uncertain n x n mio system is automatical]y disposed of in

the synthesis procedure, which is furthermore one of designing n single-loop |
transmission functions. '

rt'is worth.noting that evenfif the above proof was not available, -it .
would not be disastrous for this synthesis theory. It would only be necessary
to guarantee that at one meM, the system is stable and minimum-phase. For
then, this would be so\’msM, because by the continuity of the poles (and zeros)
with respect to the parameters, the right side of (8) would have to be infinite
(zero) at some w, in order that for some meM the system should be unstable

(or have a right half-plane zero). However, the synthesis procedure by

definition precludes this. And it is a relatively easy matter to'guarantee

the desired conditions at one ﬁeM. L e

3. CONSTRAINTS ON MIO PLANT

The above results hinge on our ability (a) to find yu and fuv to satisfy
(6)¥ w, al1 u,v pairs and a1l meM (b) that each equivalent single-loop design
is stable and minimum-phase v meM. These lead to constraints on the mio plant,
obtained by applying single-loop design theory to achieve (a,b). Appendix L
gives an existence theorem for single-loop design. The first part of the design

(see Appendix A3) gives bounds on the nominal loop transmission which is

. N . . .
guulpuuo of (4a), where Puuo is the 'nominal' associated with a nominal moeﬂ.
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These bounds must be satisfied in order that a specific system transfer
function t  satisfy (1). Here 9y’ Puwo 15 used for n L (v=1,...,n)

functions. It is proven in A3, that a guu/Puuo can be found which satisfies
the conditions for all n tuv functions.

For example, consider ty ctw = and suppose Au](w]) = .9, Bul(wl) =
1.1 in (1). We could split this range [.9, 1.1} into say [.95, 1.05] for T
and .05 for Tdu]du] in (4), using du]e of (5) for dul' The technique in A3
or better (Horowitz and Sidi 1972), is then used to find a bound on guu(jw]).
Here, we note a tough constraint. Sooner or later in w, [guu(jm)| must become

very small with 1 + guu/Puu -+ 1 and then in (4a)

(10)

and in (7), Y,y * the numerator of its right side divided by Phu’ Now (4a, 5, 6)

in general require that

ItyvImax > 2ltguvduve! (m)

But ltuvlmax = B, and at high frequencies

su
M s; IPui“Bivl
u
I quvduve! » By, T

To see what this leads to take, for example, n = 2 so that the above applied

tov=1,u=1,2 gives

o, 2Pplty o 2By IBy,
NIRRT Ba TIET
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11
requiring
_41PyaPy |
—Tp;;$£;1— as w > o (12)
" Thus, a constraint Qni?’is' -
(Ppad Fups D for w> s [PyPopl > 41Py Py ITmei. - (13)

It is known that as s » e,

Ks s
s I

Ps s
J e
S 1

so the above becomes

Kiikapl  4lkypky |
Ntz &1ztey
w: _—

If the uncertainties in the kij are independent and e]] + ey, = e, + €
this becomes

k

K1 imink22min > *12max®2imax- (14)

There is an important problem class for which the inequality is less

harsh. This is the "basically noninteracting" class, where one ideally desires

1)

tij 0 for i # j, but because of uncertainty accepts Aij = 0, Itijl <B
4 { for i # j, in (1). Also, one doesn't care if tij(i # j) is nonminimum-phase.

| Condition (6) then applies only to u = v. The fuv (u # v) are set equal to

| zero and (13) becomes

F g 30 1PPyl > 21P P00 | ety w > . (s)

Ry




It is desirable to ease inequality (13) in the general case. Note that (6)

can be satisfied over any finite w range by making ]1 +q /P
uu’ “uu

Thus, as previously indicated, one can split the [A v*By ] tolerance so that

| large enough.

lruv] ’Tduv’l uvel \flnai e.g. assign lruv' e [E- ¢, E+ €] with

E = (Auv + Buv)/Z, 2¢ < Buv - Auv and the balance (Buv - Auv - 2e)/2 is assigned to
Tquvduy ©F (4a). But |1 + guu/Puul must then be made large enough to satisfy-

the resutting requirements, and it can for any finite w range. The trouble is
that g,y Must be allowed to - zero as w + =, leading to (13), etc., if we

insist on (6). wg could ignore (6) at large w, say for w > wy> With wy as

large as desired but finite, letting lrgvl << gy lld wel for © > w,. Then

for w > wy, (11) is replaced by the weaker

It, |m;x > gy d avel (16)

and for n = 2,'(13) is then replaced by

(Pp): - A wpe D forw > wp [Py Pyl > (PP LY ekl (172)

-An important question is whether (17a) is an inherent basic constraint in the

presence of uncertainty, no matter what design technique is used, or is due
only to this specific design technique. The methods suggested in (Rosenbrock
1974, Owens 1978) to achieve diagonal dominance, may be helpful in satisfying
(17a), but they would have to be extended to uncertain plants. Note that in
Rosenbrock 1974, Owens 1978), diagonal dominance is desired ¥ w ¢ [0,=),
whereas in (PZb) it is required only for w > w,.

For the analog of (17a) at n = 3, it is found that diagonal row dominance
of P~ for w > wys is a sufficient condition. The necessary condition can be

written as

ppryw o




EE] wys D for w > w, lPiinj| > Ipijpjil and
|P]-|P33l > (IP]2P23| + IP]3P22|)<|P22P3]| + |P21P32|) (17b)

which can be written as,
[P11P22P33l > 1P13PasPaal + [P1oPoP33l + [PyoPo3P4,

* PygPooPal + 1P PPyl forw >, . (17¢)

The latter has the following intepretation. Array the matrix P'] in the usual
manner, but twice -one under the other as in Fig. 3a. Then the terms on the

right side of (17c) consist of the products of the entries crossed by the

| , . dashed lines.

However, if ¥y is so used, it is no longer possible to use Rouche's

“theorem and thereby prove each taj is minimum-phase. But we cah still design

so that the nominal tij are minimum-phase and we know from (6) that tij(j“) #0
for weIO,wH]. Therefore, from the continuity of the zeros of tij with respect
to the parameters of the system, if tij has any right half-plane zeros, they
must enter the right half-plane as shown in Fig. 3b. It is unlikely that such
a zero which must migrate all the way up to ij, should move back into the

' ’significant'control bLndwith region A. The point is that if right half-plane

zeros are "far-off", they have little effect and the system is "dominantly" .

" minimum-phase.

F 3P R AP IR T
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Rouche's theorem can still be used if we can guarantee that (6) is

satisfied for a semicircle consisting of the segment [—ij,ij] and the right

half-plane half-circumference of the circle of radius Wy s centered at the

origin. Then, there are definitely no right half-plane zeros of t.j in this
i
half-circle, and the system s "dominantly" minimum-phase This is quite

t practical in the design technique of (Horowitz and Sidi 1972), discussed in A3. [

-

3.1 Modification of mapping ¢

Note that for the "dominantly minimum-phase" and the "basically noninter-
acting” cases, the application of Schauder's theorem in (2.1), Eqs. (7-9), etc.,
needs modification, because nonminimum-phase tuv(jm) cannot be uniquely

, derived from Ituv(jm)l. Redefine h ¢ Huv of 2.1 to consist of an ordered F
pair: h{w) as before and q(w), the imaginary part of ﬁuv(jm) with !

h = Iﬁuv(jm)l; he Huv the same as before but q{w) € C [0,») with

o 0 < |q(w)] < h(w). Constraints 2,3 in 2.1 on h(w) also apply to q(w). Let
(HQ),,, € c? [0,») denote the set {(h(w), q(w))} with |[(h,q)|] = ||hl] + llall.
Obviously, (HQ)uv is compact and convex in C2 (0,=). The extension to the

n2 product set is straightforward.

» The mappings Yuv in (7) are redefined. Each Vay is a pair of mappings,

“one the absolute value as before, the second the imaginary part with the

absolute bars on the right removed. On the right side of (7), B(hiv(w)) is |

|
replaced by riv(w) + jqiv(w)’ with h%v = r%v + qfv, (hiv’ qiv) € (HQ)iv‘

SO RS s T -

It is necessary to prove that ¢ maps each element of (HQ)uv into itself.
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The proof follows immediately from that for the minimum-phase case -- this
is obvious from (6), the definition of dyye 10 (5), and Appendices 1,2. The
proof that ¢ is continuous is straightforward. Accordingly, the Schauder
conditions are satisfied and there exists a8 fixed point which satisfies the
specifications. Such specifications, by themselves, would not be good ones
because they permit highly nonminimum-phase tuv(s). However, they are

satisfactory if it is known from other sources that tyy is “"dominantly

minimum-phase".

3.2 Additional Constraints on P

Constraints A1(1)-(3) in the Appendix, must be applied to the llPuu.
since in Fig. (2) Puve = Fl—'= p of Appendix. Al.1 requires that there be
uu

no change in the excess of poles over zeros of LN where A = det. P

PUU Auu

and Auu its uuth minor, as m ranges over J{. Also, that for at least one
meM, denoted by Muo?® Puu has all its poles and zeros in the interior of the
left half-plane. The Mo €20 be different for each u.

A1.2 requires that 1/P  is minimum—phase\flnqw, and its zeros do not
get arbitrarily close to the juw axis. Since 1/P = A/Auu. this means A must
have no right half-plane zeros. Hence the Pij in general have no right
half-plane poles. (For those who wish it, P is restricted to be controllable
and observable V’mgn, but these concepts are unnecessary if P is properly
formulated in terms of physical uncertain parameters (Ho?owitz and Shaked

1975)). Since the Pi; inp = [pij] are finite rational functions, the latter

part of Al.2 is automatically satisfied.




A1.3 for n = 2 is the same as (17), which shows that (17) is a
fundamental condition for linear time-invariant design, not an “extra®
condition due to our design technique, at least for n = 2. However, (13)
is an "extra" condition. Note, the extension of single-loop design to
disappearing poles and zeros in A6 may perhaps permit disappearing poles

and zeros in the mio plant functions.

4. OTHER DESIGN EQUATIONS

The previous design equations constitute only one of many
design techniques derivable from Schauder's fixed point theorem. Only
two more will be briefly mentioned here.

Both are based on the use of a nominal diagonal loop trans-

mission matrix. The design obligations on the loop transmission

elements are then independent of the way the plant input and output
terminals are numbered. If G is made diagonal, such numbering is
jmportant and after one arbitrarily numbers the plant input terminals,
he should try to number the outputs such that the main effect of in-
put i is on output i. Manipulation of (2) somewhat differently from

v Sec. 2, gives

r v.,.t../8
. - f]]2]]/6]1 + i 1Y N
1 1+ 8,,/8
"N (18)
T v,..t../68,,, etc.
b, = fo29a/8,p * 542 21 1122
14 255/659

S .‘.“; ..<.-‘
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where V = [vij] = I-Q#B)'], Po is the 'nominal'plant matrix and there-
fore fixed, P is the general uncertain plant matrix, 61i =1 - Qii'
The 2., are the nominal elements of the loop transmission matrix L.
Eqs. (18) lend themselves to single-loop design and use of Schauder's
theorem, pricely as did (4).

Another interesting set of design equations is obtained by de-

signing to control the changes in tij‘ rather than tij directly. Let

T = [t

[} 3 ] 3 -
o ijo] be the 'nominal’ system transfer matrix and T [tij] the

actual which is uncertain, AT =[Atij] =T - To‘ Then it can be shown

that

AT = (1+L)" VI, V = 1-?5?“ (19)

wheré.Po,.P are likewise the ‘'nominal’ and uncertain plant transfer

matrices, and L =ZPOG = [Rij] is the nominal loop transmission matrix.

If L is taken diagonal, the result is (n = 2 for simplicity)

Yt t et
n 1+2

v,.t.,t vt
At = 11712 12722

(20)
n 12 14 l]]

At

and similar obvious ones for At 1’ At

2 22"

The design problem is now completely one of disturbance
attenuation, with the disturbances d]] = v]]t'] + VIZtZT’ etc., whose
range is known. Schauder's theorem is applicable in the same manner

as before. Note that V represents the 'normalized' plant variation

matrix. Eqs. (20) appear to be much simpler to use for design (once




the Atij tolerances are formulated) than (4), and their use needs to
be intensively researched. However, both for (18) and (20) the con- ; :
straints considered in 3., leading to (11-15) must be found, and
these may possibly be tougher than before. Also, both a nominal P '

and T must be choseanhich 15 not gooquecause the optimum pairing

is not aprfori known. However, the analogs of (14,17) may be more lenient.

4.1 Bandwidth Minimization P

An important criterion for comparison of design techniques is .

their “cost of feedback," which we take as the bandwidths of the 5
loop transmission functions--because they determine the system
sensitivity to sensor noise. Obviously, quantitative synthesis
techniques must first be invented before one can turn to their op-

timization (for without such quantitative techniques comparison is

possible at best, by analysis after a specific numerical design has
been made). This approach via Schauder's theorem promises to generate

a variety of such techniques, and the next step will be optimization.

5. DESIGN EXAMPLE

The 2 x 2 plant elements are pij = kij/(1+sAij) with correlated

uncertainties, giving a total of 9 parameter sets in Table 1. The

‘i . design was performed to handle the convex combination generated by

these 9 sets (Figure 6).

s

¥

L e e _..-._——..-..-_.._._—._....._._.———‘
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TABLE |
oo R R o P A A M
1. )| 2 .5 i 1 2 2 3
2. 1 2 .5 1 .5 1 1 2
3. 1 2 .5 1 2 .4 .5 1
q. 4 5 1 2 1. 2 2 3
5. 4 5 1 2 .5 1 1 2
6. 4 5 1 2 2 .4 .5 1
7. 10 8 2 4 1 2 2 2
8. 10 8 2 4 .5 1 1 2
9 10 8 2 4 2 .4 .5 |

A “"basically noninteracting" system is desired, with the off-diagonal
transmissions specified in the w-domain Itlz(jw)l, |t21(jm)|<o.] Yo. The
diagonal t]], t22 bounds are identical and were originally in the time-
domain in the form of tolerances on the unit step response shown in
Fig. 4a, b (which a]sp shows the design results for those of the 9 cases
which were reasonably distinguishable). These time-domain bounds
were translated into the "equivalent" bounds on Itii(jw)| shown in
Fig. 5 (Horowitz and Sidi 1972, Krishnan and Cruickshank 1977).

Familiarity with quantitative single-loop de;ign is assumed.
here . One can do a problem of this complexity by hand. The

sets'{p (Jw)}, called the plant templates, are obtained on the

Nichols chart. Some of these templates of P I?
| ‘ P22 Pll

I —




are shown in Fig. 6 at various w values. The larger the template,
the grecater uncertainty at that « value. The tolerances on tuu of
(4a) and Fig. 5 were divided between Tuu and Tduuduu as discussed in
Sec. 2. Each of these, in conjunction with the templates, leads to

g

! bounds on the nominal loop trausmission Euwo = EHH—. Some of these ;

uuo z
] boulds on ziio’ due to Tyy» are shown as solid lines in Fig. 7, i.e.,
it is necessary for 2]]0 to lie above the indicated boundary. The
tolerances on Tduuduu lead to the dashed line bounds on 2]]0. No
attempt was made to optimize the division of the tolerances between
™ and Td]]d]]. The composite bound on gllo must satisfy both.
The lllo(jm) chosen is also shown in Fig. 7. There was no attempt , k

made to optimize the Riio; the design was made by hand quickly, so

the 2iio(jm) are larger than need be, with the tolerances therefore i

satisfied better than necessary--as seen in Figs. 4a, b. Optimal
i ' £iio(jm) would lie on their boundariesat each w, so in this
5 example there is considerable overdesign.

’ Here we took ?

A

_ 10 (1+.007s) :
s ( ‘

-

l lllo

P220

+
(400)°

400

]+.025$)[l+§__ s¢ ]




8 .75 (1+3.665)

220 (1+4s)(1+3s)
A o
. . _o0 g =9 (1+.02s)
220 Fi]o 22 s (1+.1s) []+_§_ . 2 !
I ) (150)2_i
with
A
o__ 1.5 (1+3.66s)
Pﬁlo (1+3s)(1+2s)

The requirements on f]], f22 (f’]2 = f21 = 912 =9y = 0 here) were
found using single-loop design technique [15] as briefly explained

here in A4, and

S N N B
M Tv 5 277 3%

were found satisfactory. The system was simulated on the digital com-
puter with the results shown in Figs. 4a, b. The t12’ t21 tolerances
were easily satisfied by the design.

| While this is not a very challenging example of the design techni-
que, nevertheless the uncertainty is very large and one should consider
how quick, simfle and straightforward was the design procedure, and
also consider what alternatives are offered in the mio literature.
There are no other techniques available for systematic design to
specifications in the presence of significant uncertainty, which

guarantee design convergence and attainment of design tolerances.




Whatever present popular technique is used, it would be necessary
to cut and try and endeavor to understand the relations between the |

cutting and the results as one continued to cut and try, because !

these techniques have no provision for significant uncertainty. In
the above design, one sweep was known to be sufficient because the

plant and the design tolerances (w-domain) satisfied constraints, »

N

Pl etc.

5. EXTENSION TO NONLINEAR UNCERTAIN MIO PLANTS

gy

} Once there is a quantitative design technique for linear time

invariant mio uncertain plants, it appears at least conceptually J:

possible to extend it to a significant class of nonlinear, even

nonlinear time-varying, uncertain mioc plants. The procedure is a

generalization of that used (based also on Schauder's theorem)

in (Horowitz 1976) for single loop uncertain nonlinear systems,

The key feature is the replacement of the nonlinear plant matrix

set (a set because of the uncertainty), by a linear time invariant

plant set which is precisely equivalent to the original nonlinear ;#

set, with respect to the acceptable system output set. The pro-

cedure is briefly presented for the case where one wants the system ‘

system for a specified class of command input sets.

with nonlinear uncertain plant to behave 1ike a linear time-invariant '
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It is essential that the command input sets rcpresent a good
sampling of how the system will actually be used. For examplie, suppose

n = 3 and in actual use r], r2 always exist simultaneously (with

= 0), and ry appears by itself (with ry=r, = 0). Say there are

ten typical r](t) inputs and for each typical r](t) there are five

3

typical rz(t). This makes a subtotal of 50 input sets, to which is
added the number of typical r3(t) say 10, giving a class R = {¥} of
60 sets, of which 50 have the form r = (r], Fos 0) and ¥ = (0, O, r3)
for fhe balance. Choose FleR. The family of acceptable outputs for
this input, is known from the tolerances on tij’ giving for that one

jnput vector a familyff = {h}, h = (hys h,, h3). The mio plant is re-

presented by a family (because of parameter uncertainty) ¢ of nonlinear

~ differential mappings

= {u}, W= (w],wz,w3)3c] = w](xz,xz,x3,m), C e Cys
w3(xi,x2,x3,m), where the x; are the plant inputs,ci the plant outputs,
and m is the plant parameter vector meM.

Take a sample acceptable outputtriple h = (hys hys h3) and find
the corresponding plant inputs at some specific meM (or in other words,
pick a Hel) and let ¢; = hj and solve the nonlinear equations backwards,
giving the input set (x], Xps x3). Take the Laplace transforms 4;(5)

of X, ﬁj(s) of hj giving the vectors X[s] = (il(s), 22(5), §3(s))

Ats) = (A,(s), . . ., Aj(s)). Repeat for other h samples in the

acceptable output set H, giving two paired families of R[s], ﬁj[s].




Select any combination of three ;[s], forming a 3 x 3 matrix X and

corresponding paired combination of three his], forming the matrix‘a.
Set H = PX and solve for P = ﬁ(i)—l. P is the linear-time-invariant
equivalent of the specific Welt picked, with respect to the specific
trio of acceptable output vectors picked. Repeat over different
trios. Repéat the entire operation over different wel!, giving a
class P] =" {P} which is the linear-time-invariant equivalent of the
W family, with respect to the class of acceptable outputs H for in-
put vector ?]. Repeat the entire operation for ;2’ . e s FGO giving
AR} = Py, ,q Which is the Tinear time equivalent for the nonlinear
W, with respect tg the tribe of 60 families of acceptable output sets.
The equivalence is exact if the conditions for application of
Schauder's theorem are satisfied. We now have a linear time-invariant
uncertain mio problem, which let us presume we can solve. If and only
if we can guarantee the solution of the Iatte}, then the same compen-
sation functions will work for the original nonlinear uncertain mio
plant. Hence the importance of quantitative linear time invariant
design techniques (over and above their intrinsic importance)--for they
enable the precise solution of nonlinear uncertainty problems.

The design effort in the above appears to be enormous but it is

conceptually straightforward and easy. An ordinary control engineer

can implement it and the digital computer is, of course, an essential

‘i
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tool. Conceptually too, it appears possible to extend the method to
obtain nonlinear relations between inputs and outputs within specified
bounds, despite large plant uncertainty, even nonlinear time-varying,
as can be done for the single input-output case. - . The prospect
is fascinating. Imagine being able to work with the actual nonlinear
equations of a jet engine, or a chemical process, etc., include un-
certainties in the modelling, even uncertainty in system order (see
Appendix), and designing to achieve outputs within specified tolerances

over the given range of uncertainty.

6. DISTURBANCE ATTENUATION

Let x in Fig. 1 be a nx 1 matrix of distrubances. The resulting
-1 _
system output (with r = 0) is ¢ = (1+PG) ~ Px bx, 1+ [zig]’ the nxn

disturbance response matrix. Bounds on Z are given in the form

|z, (Ju)] < by (@) Y men (21)

Rewrite ¢ = Zx in the form (P'1+-G)c = x. Llet x; # 0 only for i = v, so

. = Z. and
C.l wav,

n
a0, utv
) (Puii'gui)ziv =6y = (l, u = v) :
i=1
u
(Puu* 9uu)2yy = Sy - I (Pui*9yilziy
ifu
u
6y - ! (Pui*'gui)ziv
z.. = ifu (22)
uv q

- . Tt M B R Ay
- e e - - ] ) . . s f il




Pui ! gui
sup |- by, (w) (23)

A
Xyvelw) =

The gui(“) (i#u) can be chosen to minimize xuve(w), but for simplicity we shall

assume them zero. From (22,23)

u
P 4+ x
[z ()] < |2ty
uu
O+
uu

If ]/Puu satisfies the constraints listed, then it is obviously possible
to guarantee |zuv(w)| < any finite number, no matter how small, at any finite
w. Also it can be made zero at a finite number of w values by assigning poles
to g, at these values. Assume that g,y can be chosen to satisfy (21)

\/ w € [0,). Then one can set up the conditions for Schauder's theorem,

precisely as was done in 2.1. The set buv(m) must have been formulated such

that B(nz), the n? product set of the buv(m), is compact convex in C(nz)J

analogous to H(n2) in 2.1. The analog of ¢ in (7) must be formulated
with the modification of Sec. 3.1, inasmuch as we do not care if the zuv(s) are
nonminimum-phase.

Conditions analogous to (12-17) for n = 2, are obtained as follows.
As w > o, guu/Puu + 0 so in (24), the right side » its numerator. But
|zuv(jw)| 5_buv(m) of (21). Lletu=1, v=2and thenu=2,v=1 and

obtain the necessary condition (for g;, = g,y = 0),

As w » o« , Pi2P21 < P11P22 » Y meM
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similar to (17) butlhere only at «, because there is no concern with the
minimum-phase property. Settingu =v =1, and then u=v = 2 in (28), wve

get the conditions

plzpzll

P1oP
b P2 21|
P22

» by > 1Py P

|
As W > >, b]] > lF_lTl - Ip]] = (26)

But in reality as w + o, ¢ +Px so Z » P and 211~ P1ye Za2 * Pop- Hence,

assignment of bii (as w + =) to satisfy (25) is no obstacle, because the buv(w)

are upper bounds on the {zuv(jw)l.

TS SNSRI
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APPENDIX 1

EXISTENCE_THEOREM FOR_SINGLE-LOOP DESIGM

The plant transfer function p(s) is uncertain, belonging to a
set P = {p(s)} and is imbedded in a two-degree-of-freedom single-

loop feedback structure, as in Fig. 2 (p in place of puve)’ The

rational functions f(s), g(s) (replacing fuv’ g in Fig. 2) are

uu
to be chosen to satisfy specified tolerances on the command fre-

quency-response t(jw) = $§§$; and disturbance frequency response

t(Jw) = c(juw)/d(juw), (r, d, ¢ replacing r , -d ., c, in Fig. 2).

uv

Al. Constraints on P

1. p(s) is a rational function with a fixed excess e>1 of
poles over zeros (this is relaxed later in A6, 7). 3 at least one
peP one of which is designated as bos all of whose poles and zeros
are in the interior of the left half-plane.

2. " At each wel0,), 3 igf. Ip(Gw)] a b(w)>0. 3 i?f b(w)
g bI>0 for any finite interval I = [0,w]. Also, |p°| of A1(1) has
a sup on each finite interval 1 = [0,u], sgp lpol = X1

) e . .
3. As s, p(s)+kﬁ& R kpe[k], kyd with e> k2>k]>0, uniformly

on P in the following sense: For any >0, no matter how small, 3 We

(independent of p(s)), such that for each peP there is associated a

kpe[k], k2] so that

|’2nl P(|<e and Arg Ip(iu)tegi<e, for v > W -
kol 2
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Note that Al(1) permits changes in plant order, e.g., Tralys

1+ T]s

with say a € [2, 5], T]E (0, 31. A1(2) dictates minimum-phase p(s)

and that the jw axis is not a limit of any sequence of p(s) zeros.

A1(3) requires a uniform bound on the poles and zeros of all peP.

A2. Tolerances on Jt(jw)] and |t (jw)l

(1) 0<A(w) <|t(jw)|<B(w) with A, B e C [0, ), B{w) 28(w)> 1.

A(w)
3 inf Blw) = Bl>] on any finite I = [0,w].
1
) Ak
(2) 2 x> 1.05, w,,3 for wuo,, Blw) _ ——g. This means that
A AT Alw) k]

in the high w range, the feedback is allowed to increase the sensitivity

- Ot(jw)/t(jw) .
30 (jw)/p (jw)’ rather than decrease it. In fact, as noted by
(-
Bode, S—lnlsldm = 0 in any practical system, so the decrease
0

in S(|S|<1) achieved in the control bandwidth range, must be balanced
by |S|>1 in another range. A can be a large number, because as wwe,
t(jw)+0, e.g., suppose k2/k] = 10, who cares if |t{jw)] c[]O']], 10'7]
(A = 103) at very large w.

(3) The tolerances on td(jm) are in the form |td(5w)|$0(w)>0-
For any 1= [0, wl, 3 inf Q) = 8, Since t, = P(1 + pg)™" =

pS of A2(2), |Q/p|>1 at high frequencies, so I w,, 9 for Wy

Qw) = B,(w)|pjul, 8,>1.05.

e repee s ww——

s - r———




stricted to the interior of the left half-plane ¥peP, and minimum-

phase.

A3. Choice of Compensation Functions

Let po(s) of A1(1) be the 'nominal® plant with koe[k], k2] its

o associated kp value of A1(3). f
: . | 1
Let € = .01 Eg_ln A1(3), w, = largest of {we' W, » md}, It = [O,wt].
Ky
Y= sup lpo(J“’)‘, of A1(2). In Fig. 2,
‘ I b
L t L 3
fop %, .
t(s) = Teap "5 20 =9 P, (AY) x
2 4y
o
sup |t(jw)] W)
_ i { B(w . s . . .
We want < - G S Alw) of A2(1). This is achieved in
‘ P
: sup Eg + 20]
I, if Lo L < B_ of A2(1) é
5 F 1gf ES + 20 It |
i p
|
3 N L . . . . l"’o“yt
B Since Pl AR AL I, it suffices for I, if lz°|>ytand |"°| - sﬂxt.
giving the sufficient condition
1t ] >y, (f +1) ' |
: ol 77t VI, ale .|, inI,. (R2)
] . - ]) - Ot t
(¢
t

. ———— g g~ ——
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To satisfy A2(3) in I., it is necess: = =
. wry thet |t| Fretie

<Q(w), which is certainly achieved if

'OI'U 7
o |O

+ 2
0

L 1> su
AN FETL WA
Bar inflp |~ %t b od
t

Therefore, choose

. 4 .
|20(Jm)l> larger of (Izotl’ |20d|)=|£ox|, in 1.

Next, we find a bound on 20 in it = [mt,m) to satisfy A2 in it;

From AT1(3), in it = [wt, ®), {:EO} Ties in the narrow sliver V in
k
Fig. Al, ¢ .01 EQ < .01 radians angular width, with magnitude bounds
2
ko koﬁ
.99 — , 1.01 —|. Let A in Fig. Al be a trial value of £ , so

k2 k] (0]

P p

ry + 20 is the vector originating at point 7f-in V and terminating

at A. Bounds on zo may be obtained so that

sup|Pa
P

inf

satisfies A2(/2} and A2(3) in it= (W, ).

It is easily seen that a very conservative boundary for io in

Tt is the vertical line s = -0, with

k

feo Ko (.QQA - 1.01) o

1 2 Akz - k]

i.e., & on the right of the line s = -0, satisfies A2(1, 2) in it.

(A3)

(Ada)

ey ez g




— e —————

= = 0 -
o =0, .99 K (B1 1) (Adb)

Therefore, choose

o = smaller of (o], 02)

Thus, the problem is to find zo(s) such that lzo(jm)[ is outside the

circle C in Fig. Al for wsw, and to the right of the line s =-g for

t
w > w. It is obviously very easy to find such an zo(s) which also
has all its poles and zeros in the interior of the left half-plane,
with any desired finite excess of poies over zeros, and which further-

more has the property shown in Fig. Al, i.e., lies on the right of

=-0, for all w. For example, let

220X

e
G+ Syn@+s)
Yt @5

lo =

22°xmt
o

e any desired finite number, wy = larger of (IOwt,

Note that it would be impossible to guarantee the existence of the desired

% if p, was nonminimum-phase (Horowitz and Sidi 1978).

- -— -~ —

)g wi+] = ]00wi .
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It is conceivable that even though A2(1)-A2(3) are satisfied,

. . os : p
A2(4) is not satisfied. Consider the zeros of 1 + pg =1 +2 —or
o

of (gi + 20). Recall that in [0, mt],{g&} lies in the circle oforadius
Yy which is inside the circle C of Fig. Al, while 20 lies outside the
larger circle C. In [mt, w), 2 Ties on the right of the line sz- o
whi]e'f35} is contained in V of Fig. Al. Also, Eb(juﬁ lies on the

right of s = -g, VYa. Hence, the vector %ﬁ + 20 does not encircle the

origin clockwise (or alternatively 2 does not so encircle-;g), Ypep,

and the system is stable.

Application to mio system

In the mio system (4a), the loop function Loy = guu/Puu must handle
the n tuv problems v = 1,2,...,n. The bounds on %uuo will be, in general,

different for each v with its own loxv’ Itv of (A3) and oy of (Adc).

Let Iu = mix Itv’ zou = msx loxv’ o, = m;n o, be the design parameters

for luuo' Obviously such a zuuo is satisfactory for all n tuv problems.
In Sec 3 (just before 3.1), there was noted the desirability of
satisfying (6) on the boundary of a semicircle of radius wy in the right
half-plane. This requires, in addition to the previous, rewriting
Sec A3, replacing jw by mHeje, 6e [0, w/2]. The development is easier if
Wy is large enough so that each Pij = kij/seij ons = wHeje. Clearly,
je

e

there will emerge bounds on zuu ons = » which will have to be

W,
0 H
satisfied, in addition to those on s = jw. Obviously, such bounds can

always be satisfied by suitable shaping of £ . so that |%
jo

uuo| is

large enough on wye

o e e — -
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There remains the design of f(s), inasmuch as % (s) g{s) Po {s)

only determines g(s). MNote that zo(s) only guarantees that

sup {Eg ‘g
P lp "ol  B(w)
T b, < o) of A2(1);
P —+ 1
P 0

f(s) is chosen so that |t(jw)| € [A(w), B{w)). For example, suppose

Aley) = .9, B(w) = 1.04, and at o S”pl—+ 2,

1’ = 100, while inf
m
p
o - . . = : =
l;; + LOI 90 with IZO(Ju])I 80. The range of lt(Jw])l =

fe
—2 —iis therefore [.8[f(jm])|, .889|f(jm])|], so we need

.8|f(jw )|>.9, .889|f(jw )|<1.04, giving the permissible range of
Fz, 3823] for |f(Jw )I. 1In this way, the bounds on |f(juw)| are
found and it is always possible to find an f(s) with left half-plane
poles and zeros which satisfies such bounds.

The above procedure in all its details, is not recommended as a
practical design procedure. Simplifications were made to make the
proof easier, but the loop bandwidth is much larger than necessary.
Its primary purpose is as an existence theorem. A practical optimum

design procedure based on these ideas, but without the rigor, has
been given in (Horowitz and Sidi 1972) and used a great deal with

considerable success.




AS5. Extensions
(1) It is possible to have A(w) = B(w), Q{w) = 0 in A2(1), (3)
at a finite number of w values, by choosing g infinite at these points.

The sensitivity zeros can be single or multiple.

(2) Some or all pePcan have zerox on the jw axis. If these zeros
are precisely known (unlikely), g(s) can be assigned poles there. Other-
wise, t(jw) must be zero at these points for such p, requiring obviously
much more careful statement of the tolerance on t(jw) and td(jm) near
such points.

(3) The most significant exténsion is that Constraint AI(1) can
be relaxed. There can be uncertainty in the order of the plant due to
disappearing poles and zeros--closely related to the problem of singu-

lar perturbations (Porter and Tsingas 1978).

A6. Disappearing Poles and Zeros

Let

m

p=plt (1+sai)
L= p u(s) o we)

I (1+sbj)

P s » . 3
with aie[O, aix]’ bjc[O, bjx]and Py€ satisfying Al. The question of
concern is: "For what m, n values can the loop transmission be arbi-
trarily large over an arbitrarily large bandwidth but still be practical,
j.e., go to zero as w * = with any desired finite excess of poles over

zeros?" For such m, n any tolerances satisfying A2 but otherwise ar-

bitrary, can be satisfied.

4
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In Fig. 2 and using (A5)

. fgp _fepy¥y  _fu
t(s) Trop 14 X ol el (A6)

The question posed can be answered by referring to the logarithmic

complex plane (Nichols chart) in Fig. A2. The intersections of the }%
zero db line with the vertical lines (2n+1) 180°, n=0=+1, . . .
is the point -1. Because of uncertainty, & = gp]V is not a point but
a set {2} denoted here as the template of £, :L(w) which occupies
some region in the complex plane--Fig. A2. The shape of :llis

that of {p; ¥l because there is no uncertainty in g. The latter

permits the translation (but not rotation of £) in the complex

logarithmic plane, horizontally by arg g and vertically by |g| in

db. For some finite w range, large |&] is needed so éL lies above
| the zero db line, e.g., :1éuh) in Fig. A3. At large enough w, |%]
must be very small (+0 asw) so :L must be well below the zero db
lines and continue downwards to - . In the transition of ;Lfrom

above to below the zero db line, it must not interest -1, nor en-

T T Dpe St ias od 0l

circle it. Hence, the width of:l must be restricted to <360°

! for some w interval in which :Lcan squeeze in between two -1 points
on its way downward (Fig. A2). But we want arbitrary sensitivity
reduction for arbitrary bandwidth. This requires 3 Wy S for

w > w, the width of 34(“) ‘,,3500-
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Consider now the shape of ;Z which is that ofypW which is
that of:7p] +:7V in the Nichols chart. Constraint A1(3) assures
that at large enough w the width of ;&1 + zero degrees, so it
is entirely a question of the width of :jv . Consider any factor

of ¥, e.qg., 7—11355 » b e [0, m]l. At any specific w, the maximum

width of the template is tan—] mbmax = tan”! wn. For wm = 20, the
template is OAB in Fig. A3 (Oat b = 0, B at ub = 20); for wn = 100
it is OABU and for wm = 1000, it is OABUV. For two such independent
factors, it is easy to find the new template. This is done in Fig. A3

for wn, = wm, = 20. Draw 0"A"B" = 0AB and position 0" at points on

0AB (because of the independent uncertainties). The result is

ABEJDEFO =£][(}:;wb])(l+jtb2)], bl' b2 €[0, m]. The template of a
zero factor (l+jwa) is obtained by reflecting that of the pole if
(wadpax = (wb) pay» giving OA'B' in Fig. 3.

As w increases, the contribution of each factor (pole or zero) - 90°
in width. Therefore, while theoretically four factors can be admitted
between two -1 points, stability margins dictate a maximum of three.

But this is only a necessary condition, because it must also be possible
to decrease |L| from arbitrary large to small values. This basically
means that over arbitrary large frequency range Arg L must be over-
whelmingly negative. The extreme right side of:Z must then lie on the
left of the 0° 1iﬁe in Fig. A2. One disappearing pole or zero poses no

problen, but two do because the left side of;lwi]l then intersect -1




be made rigorous, of course.) HMNote that this is for the most demanding
situation. If only stability is desired, then any finite number of

disappearing poles or zeros can be handled.

APPENDIX 2

A7. CONDITIONS THAT ¢ MAPS H(nz) INTO ITSELF

The constrainfs on Huv were given in 2.1. The first is satisfied
if (6) is. From Appendix 1, it is seen that at finite w, the only
possible difficulty is, if in Fig. 2, duv(jm) is unbounded but 9uuPuve
is bounded. If such unboundedness of duV is at a finite number of w
values, it is possible to assign poles there to 9uu° Since duv is a
function of the plant parameters (Eq. 4b), an infinite number of such
poles is conceivable, in fact is so in practice if there is one,

because of inevitable uncertainties. How can duv be unboundea while

Puve is bounded? From (3,5)

iu
D) T
ifu _ A
= q s p e (A7)
uv A = ): (_])1“ PiuAiu +p A uve AUU
ifu

uu uu

Hence, such a situation is possible, if Aiu has such a pole which is
cancelled by a zero of Piu and is not present in Pudyy €9-0° 2,
P21 has a pole at #%ja, Pi2 has a zero there and p”P22 does not have
a pole there. Such situations are therefore not allowed. It can be

argued that they are in practice impossible (Horowitz and Shaked 1975),
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because Py2» Ppy must dinvolve different physical parameters and the

uncertainties in each cannot be 1009 correlated. Irrespective of this

argument, the constraint is

lPij(jw)l is uniformly bounded on [0,=) and M, V’ifj (A8)

The problem is more difficult as @ - and is treated in Section 3
To satisfy constraint (2) on Huv in 2.1, note first that if

z(jw) = z, * jz, with z,, z, real functions of w, then |z|' is bounded

if z' is bounded. For

1
. 2 1 _z.2' + z. 2 1
lz]' = ( zZy+t2,) =17y 2% L gf 2 = z: + jz;
. 1 ]
is bounded, so are 2y, 2, and lz]'. Consider separately T&v (jw) and

(

Tyuv duv)'(jw) of (4). The former can be written

Y B £ T NPT | f(gp' + g'p)
v (1 ¥ n) = f ! ‘

T+
* (1 + gp)?
(A9)
2=gp, p= Puve> 9 7 9uu
of Fig. 2. Since f2/(1+2) is bounded by the appropriate B the

uv?

first term on the right of (A9) needs only uniform boundedness o* f',
| which is easy as f is chosen by the designer. Obviously, the only
; possible difficulties with the second term of (A9) are g', p' which

can be infinite only at jw axis poles. However, at such poles, the

! denominator forces the second term to be bounded. At large w where

gp, g8', p' + 0, there is obviously no problem.

Next, consider (t }' (w) written as

duvduv




. y' =(ﬁéﬂw JECE dlp’ - 9'p’)
gp +9p

g,p of (A9), d - duv .

4 From (A8), d and, since.d is a ratignal function d', arg gniteonly
: bounded on the jw axis. From the previous discussion re p', g' etc. and
Appendix 1, y' can be uniformly bounded on any finite w fande by proper ’?

choice of g. At large w each of d, d', p, p' etc + 0.
It is easy to see that constraint (3) is satisfied,.because it has

been required that the elements of P, G, F all + 0 as s + o,

e
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Fig. 1  Multiple input-output two matrix degree-of-freedom feedback

structure ¢ = Tr, T = [tij]’ c = [c] ... cn]', r = [r] . rn]‘. :
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Fig. 2 Single-loop structure equivalent, for synthesis of tuv;

_ S - 1p..
duv - ): Puitiv’ P - Pij]’ P HDJ]
ifu
. = fuvSuuPuve . - Puve .
w149, Puve © duv 1 # YuuPuve
.—}QH

N

Fig. 3b To reach A in right half-plane, a zero must cross ju axis
— above juH.
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