RADC-TR-80-109, V=i | (of two)
~ tinal Technical Report
April 1980

MAOREI8
SOFTWARE QUALITY METRICS

ENHANCEMENTS

General Electric Company

ames 1. V7 gL
James A. McCall A :_,{ Iy
Mike T. Matsumoto ’ ;(.' L

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

DTIC

ELECTE
JUL 2 2 1989 ;

B

ROME AIR DEVELOPMENT CENTER US ARMY IMSTITUTE FOR RESEARCH IN
AIR FORCE SYSTEMS COMMAND MANAGCMENT INFORMATION AND COMPUTER SCIENCES
GRIFFISS AIR FORCE BASE NY 1344} ATLANTA GA 30332

BDE FiLe copy

80 v 21 01

T g

‘his report rus been reviewed by the RADC Public Affairs Office (PA) and
I re;easable to the National Technilcal Information Service (NTIS). At NTIS
{¢ will be releasable to the generai public, ircluding foreign nations.

RADC-TR—80—109; Volume I (of two) has been reviewed and is approved
fcr publication.

APPROVED: 4:[://1 p&iﬂ/

JOSEPH P. CAVANO
Project Engineer

APPROVED: %‘M : é .y

WENDALL C. RAUMAN, Colonel. USAF
Chief, Information Sciences Division

V4
FOR THE commm%%_p %-4_/

JOHN P. HUSS
Acting Chief, Plans Office

1f your address has changed or if you wish to be removed from the RADC

mailing list, or i1f the addressee is no longer employed by your organization,
please notify RADC (ISIS), Griffiss AFB NY 13441. This will assist us in
maintaining a current mailing 1list,

Do not return this copy. Retain or destroy.

@ TR-44-109- Vo%—17

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
REPORT DOCUMENTATION PAGE per EAD INSTRUCTIONS

ORT NUMBZE 2. GOVT ACCESSION NO.J 3. RECIPIENT'S CATALOG NUMBER
TR-80-109, Vol I (of two) |4 -4 /) A’

i
|
|

‘ 4. TITLE (and Subtitle) §. TYPE OF REPORT & PERIOD COVERED
r—"" T —— Final Technical Report
SOFTWARE QUALITY)!ETRICS ENHANCEMENTS o ! June 1978 - July 1979
/ 6. PERFORMING OG. REPORT NUMBER 3
; | -)/n/umeIo N/A
/\ .- AUTHOR(S) NS i
.) | James A./McCall *
.. : % mk?/Matsmnoco . @ Fqb6p2-78-c-p216 /)
] 9. PERFORMING ORGANIZATION NAME AND ADDRESS i - - PROCRAM ELEMENT. pnd.u:cr TASK
’ AD $3General Electric Company == f WS- ,637‘2.;;“ woRw oMt "u":s
s Information Systems Programs { I; P {i::;Zi———_—“‘ 9
w 450 Persian Drive, Sunnyvale 9408 //o 3.590 202 /7 ﬁ/ (
11, CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE 1
\ Rome Air Development Center (ISIS) ?fﬁ}t.ifsgpAEs
i Griffiss AFB NY 13441 182 eEnoreae
‘ T4, MONITORIN 5 AGENCY NAME & ADDRESS(If dlﬁam(from Controlling Office) 15. SECURITY CLASS. (of thia report) 1
e~ . _
Same (/z 4 gt UNCLASSIFIED
é N) Sa. DECLASSIFICATION/ DOWNGRADING
1 SCHEOULE
{ N/A
% DISTRIBUTION STATEMENT (of this Report) :
O ‘ 3
?3-! Approved for public release; distribution unlimited. -é
ez 7
7. DISTRIGUTION STATEWENY (of the sbateact entered in Block 0. il dilfacent from Ragert) 4
A
we (1) Bina | repte Tun 1-Tul 75
. 1 18. SUPPLEMENTARY NOTES

RADC Project Engineer: Joseph P. Cavano (ISIS) 315 330-4325
USACSC Project Engineer: DNaniel E. Hocking (AIRMICS) 404 894-3111

Y

19, KEY WORDS (Continue on reverse aide iIf y and 1tv by block)

Software Quality
Quality Metrics
Software Measurement

N s 2o

ABSTRACT (Continue on reverse side If and | ly by bleck bor)
Software metrics (or measurements) which predict software quality have
been refined and enhanced. Metrics were classified as anomaly-
detecting metrics which identify deficiencies in documentation or]
source code, predictive metrics which measure the logic of the design .
and implementation, and acceptance metrics which are applied to the end

product to assess compliance with requirements. 6""‘/
> (Cont'd)

DD , 3%, W73 eoimion oF 1 wov 65 18 ORsOLETE UNCLASSIFIED

e v v v vy ey oy
SECURITY CLASSIFICATION OF THIS PAGE (When Date h"n l/

/4q “A4=D

s s e g o -

et D o b e e T L PRGAE, B AR D

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Dets Entered)

A Software Quality Measurement Manual was produced which contained
procedures and guidelines for assisting software system developers in
setting quality gogls, applying metrics and making quality assessments.

| ’ 2

i

[

v UNCLASSIFIED

' SECURITY CL ASSIFICATION OF Tw'* PAGE(Whon Date Entered)

PREFACE

This document is the final report (CDRL A003) for the Metrics Enhancement
Study, contract number F30602-78-C-0216. The contract was performed in
support of the Air Force Systems Command Rome Air Development Center and

the U.S. Army Computer Systems Command Army Institute for Research in
Management Information and Computer Sciences.

The report was prepared by Mike Matsumoto and Jim McCall of the Sunnyvale
Operations, Information Systems Programs, General Electric Company. The
Program Manager was Gene Walters. Significant contributions were made by
Sue Ehnert and Bob Hassell.

Technical guidance was provided by Joe Cavano, RADC Project Engineer and
Dan Hocking, USACSC Technical Monitor.

The report consists of two volumes as follows:

Volume I Software Quality Metrics Enhancements
Volume II Software Quality Measurement Manual

Volume I provides a description of the research activities performed

during the contract. Volume II provides a manual describing how to apply
the metrics oriented toward quality assurance personnel.

ACCESSION for
NTIS White Section

poc Buff Section [
UNANNOUNCED a
JUSTIFICATION

SR |

» S
DISTRIBUTION] RVASLABILTY
Dist. AVAIL. and /of

A

Section

1.0

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS
LIST OF TABLES

INTRODUCTION . . . ¢ ¢ o ¢ ¢ ¢ o o o
1.1 Report Overview
1.2 The Concern for Software Quality
1.3 Factors in Software Quality Task
1.4 Summary of Findings

EXTENSIONS TO THE CONCEPTS OF SOFTWARE QUALITY
METRICS

2.1 Introduction

2.2 Products and Services

2.3 C(Classification of Metrics . e

2.4 Comparing Metrics, Walk-Through and Inspection

2.5 Metrics as a Quality Assurance MIS

ANALYSIS OF METRIC CONCEPTS IN OTHER ENVIRONMENTS . .

3.1 Approach « o v v ¢« ¢ ¢ v ¢ b v v e e e e e e e

3,2 Software Quality Requirements Survey

3,3 Applicability of Criteria in Other Environments

3.4 Review of the Metrics « v ¢ ¢ ¢ ¢« ¢ o o«

3.5 Army MIS and Air Force Software Documentation
Requirements Sources . . . « « + + o ¢ o o

APPLICATION AND VALIDATION OF METRICS . .

4.1 Application Approach + + « . .
4,2 Vvalidation Approach . . v + « ¢ v « ¢ o &
4,3 Validation Results . . . + « ¢« v + s s « &

s e AR 23 P O

TABLE OF CONTENTS (Continued)

Section ' Page
APPENDIX A o 5%

APPENDIXB.._ --------- _o-ouo-oolooconoOo-B"]

REFERENCESo---.o-o-.OOo;'voocOnoq.-o.oR']

Figure
Number
1.1-1
1.3-1
1.3-3
1.3-4
3.1-1
3.2-1

3.2-2
3.2-3
3.2-4
3.2-12
3.2-5
3.2-6
4.1.3-1
4.1.3-2
4.2.1-1
4.2,2-1

4.3.1-1
4.3.2-]

LIST OF ILLUSTRATIONS

Page
Task Descriptions e £Y4
Software Quality Framework v v ¢ ¢ ¢ ¢« s o + 16
Relationship of Criteria to Software Quality Factors . . 1-9
Application and Validation of Metrics 1-12
Evaluation Process Ve e v e e .. 322
Histogram of Average Scores by Type - Support Software
6 Samples e e e e e e e e ‘e e 3210
Histogram of Average Scores by Type - Simulation
5 Samples e e e e e e e v e e e e . 310
Histogram of Average Scores by Type - Command and
Control 4 Samples . . . ¢ ¢ ¢ v ¢« v ¢ o ¢« 4 o v 0 e . 3-N
Histogram of Average Scores by Type - Indications and
WNG 24 Samples + « « + . . B L1 R
Summary by Phase - Development Average Scores for 20
Samples With STD Deviation . . ., + « ¢« ¢ ¢ v v ¢ v o o « 3-12
Histogram of Average Scores by Phase - Development
20 Samples S 3 L
Histogram of Average Scores by Phase - Maintenance
and Operations 19 Samples « « v v ¢« s ¢ + + « 3-14
Metric Worksheets 4 ¢ ¢ ¢« v ¢ ¢ o o 0 o s 4 « 45
Worksheet Coverage . . + v « ¢« s o v ¢« ¢ ¢t ¢ o v s s ¢ « 86
Example System Change Request ., . . + « + + « ¢ ¢+ + + + 4=8
ISDS Data Collection . » + v ¢ ¢ ¢ ¢« ¢ v v v ¢ v 0 o+« 410
Compiler Implementation Anamolies . . +« « ¢+ ¢+ ¢« o ¢+ » + 4=14
Metric Score Comparisons . . « . « « v ¢« ¢« o « v s o+ , 4-24

o O N

RPN 5.y,

Lo IR o SV

‘: LIST OF TABLES '
i |
Table n
Number | Page |
1.3-1 Software Quality Factors ¢ v ¢« v ¢« s o « ¢ 4 o 1-8 3 3
2.4-1 Comparison of Key Properties of Inspection and ; i
Walk-Thrus and Metrics + « ¢« « ¢« o o o o + « « 2-8
3.2-1 Software Quality Requirements Survey Form ., 3-4 ﬁ
3.2-2 Response Type Profile e e e v o s s 35 1 j
3.2-3 Summary by Type - Support Software Sum of Scores for ifﬁ
6 Samples e e e e e e e e e S ! ;
3.2-4 Summary by Type - Support Software Average of Scores a
for 6 Samples With STD Deviation « « + + + 3-6
3.2-5 Summary by Type - Simulation Sum of Scores for o
5Samples ¢ o 4 o v e e e e P 1Y) ?;
3.2-6 Summary by Type - Simulation Average of Scores for
5 Samples With STD Deviation B 124]
3.2-7 Summary by Type - Command and Control Sum of Scores 3
for 4 Samples 4. . I '
3.2-8 Summary by Type - Command and Control Average of Scores
for 4 Samples With STD Deviation 3-8
3.2-9 Summary by Type - Indications and Warning Sum of Scores
for 24 Samples « ¢ 4 o v e e 0 e v e e . 3-9
3.2-10 Summary by Type - Indications and Warning Average of
Scores for 24 Samples With STD Deviation 3-9
3.2-11 Summary by Phase - Development Sum of Scores for
20 Samples . . .« .« ¢ ¢ 4 e 4. s O 1 4
i 3.2-13 Summary by Phase - Maintenance and Operations Sum of
Scores for 19 Samples B) K
3.2-14 Summary by Phase - Maintenance and Operation Average

Scores for 19 Samples With STD Deviation 3-13
3.4.2-1 Accuracy Metric . . v v v ¢ v o o v o 0 o 0 s 0 o s e s 3=19
3.4.2"2 ACCUI‘aC_Y Metric Ana]yS'iS L T R T T 2 TR T S S Y S S) 3-20

4.3.3-4

LIST OF TABLES (Continued)

Code Simplicity Metric
Effectiveness of Comments Measure
Structured Concepts Related to Metrics . .
Compiler Implementation Anamolies
MARDIS Statistics

nnnnnn

ISDS Version Comparison Statistics
ISDS Initial Version Statistics
ISDS Sensitivity Analysis
Metric Scores
Normalization Functions e
Results of Normalization Functions Analysis (Individual
Metrics Which Exhibited Corre]ation to Quality

ooooooooo
oooooooooooo

Results of Normalization Function Analysis (Individual
Metrics Which Did Not Exhibit Significant
Correlation)

Page

. 3-21
. 3-23
. 3-28

4-14

. . 4219
. 4-22

4-23
4-25

. 4-30
. 4-3]

. 4-33

. 4-34

Fa e L

FURALIMTION

The purpose of this rescarch wes to rvefine an® enhance the scftware
quelity reasurement precess that was criainally decumented in PARC
Th=-77-36%. The work cevered by this effcrt is centained in rwo
velumes, The Ffirst velurie includes extensicns te the cencerts of
scfrware quality rmeasurement, analysis cof metric appliceriens and
validaticn of wetrics fov the cquality facrers rerrability and
maintainabilivy. Appendiv U of Volure I Sccuments all the chanes that
heave heen mrade to the scfrware cuality rectrics based cr cthe
exreriences cf this vesearch study.

The seccnd velume cof this report, A Scfrware Cuality Measurerent
vanaal, is criented towavd rthe cunlity assurance process and
icentifies how tc set cuality gcels, how and when te aryly scfrwarve
metvics and how te make a quality assessment.,

This effcrt was initiated in response te RANC TPPE, Scfrware Cost
Reducticn, in the area of OQuality Measurement. The effcrt was
ce-sponsered by the US Army Computer Systems Corranc, Prrmy Institute
for Research in Manacement Informmation and Cemputer Science.

This work was significant hecause iv verified that necrics cricinelly
develaped feor Air Force Command and Contuvcl applicaticns weve alsc
arplicebhle te Army Manaqement Informaticn System appriications. It is
anticipate? that the metries will be arpliceble te other envircnments
as well. In eo&ddition, the nowmalizeticn functicns develeped fcr
pertabilicy’ increases the degree of cenficdence that can be placed on
the quality measurencnts. The fruicful results of this sctody sheuld
rrove tc bhe c¢f qreat Al in corplementine existino software qualivy
assurance technigues by previding quantitative quality descripticns of
software during the develcrient cycle itself.

JOSFP; P. CAVANC

Project Fnoineer

st % agmd

ikhida

SECTION 1
INTRODUCTION f

1.1 REPORT OVERVIEW

The Metrics Enhancements task, contract no F30602-78-C-0216, was conducted

in support of the Air Force Systems Command Rome Air Development Center's

(RADC) and U. S. Army Computer Systems Command's (USACSC) missions to

investigate, sponsor, and develop techniques which enhance the development

of high quality software. The inputs for this effort, the background of

previous related work, the task objectives, and the scope of this final ;
report are described in this section.

1.1.1 OVERALL TASK OBJECTIVES

The major goal of this research effort was to further test the feasibility
and validity of the concept of software quality metrics established during
the Factcrs in Software Quality Contract, Contract number F30602-76-C-0417.
In order to accomplish this goal, the following tasks were performed (fig-
ure 1.1-1).

1.1.2 TASK 1: ANALYSIS OF SOFTWARE QUALITY METRICS

The initial task involved analysis of the set of metrics established in
RADC TR-77-369 for applicability to a Management Information System (MIS)
software production environment. The analysis consisted of an evaluation
of each metric with respect to MIS applications and the COBOL programming ‘
language, and was based on lessons learned from the previous effort. In 8
performing the analysis, the products produced during typical software
developments were identified and the metrics related to those products
here assessed for applicability. In order to provide a complete evalua-
tion of the applicability of the concept of software quality metrics to an

[v MIS environment, an evaluation of the differences in quality requirements
: between Command and Control (Cz) applications and MIS applications was made.
: The results of this task are in section 2 of this report.

g

1-1

T T i T

(-1"L dnb4

130434
WIY3INI

SOIYLIN 40
135 G3INI43Y @

SISATYNY 40
NOI1d14J)S3Q e

18043
TUNIY su013d142s3Q jysey
SNA3208d
NOILVIIddv @
S1INS3Y 40
NOI1dIYIS3a @
]
T
I o
S$34NAI0Ud
S1d3ONOD JIYLIW
ANINMI0G ¢ 3L 40 3N 40
SLINS3Y 39142S3Q ¢ SOIYYNIDS 39192530 o
Qa319naN0D SOIY1IW INIANddY d04

HJYY3S3d 39143530 *

SAUNA3I0Ud HS1TEvLsSI ®

i |
_ - |
- |
SNOILINNA
NOILVZ I TYWION SIIY13W
ELTEEL 40 13S 3IN[43Y @
SNOIL1d 143530 ALIVEVI I Vddv

JIY13W INI 43N

30439 031VaITvA
10N S¥01Jv4
NO NOILVYIN3INOD

69¢-4(-d1
NI Q3HSINEV1S3
A907000HL3W 3ZITILN

JIY13W M3IATY @

SAINGIYLIV IYVML40S
AN A41INIAL ©

S13NA0Yd 1NIWA0T13AIA
IYYMLI0S A4IINIQL ©

S3UNA3I04d
vb 2SovSn MIIAY @

SIIYLIN
40 NOILvaIvA

SIIYLIN
40 SISATWNY

Z ASvL

L dSvl

SLINSIY 40 $33N03304d 40
NOI1Y1IN3WNJ00 IN3IW40T3A30
¥ Syl £ ASvi

SINING0TIAIA

JHVYML40S NI SIIYLIW
HLIM JIN3TY3I4X3

1OVHINOD ONvV GRdI WOY4 IIN31d3IdX3

ONV 3503TMONY 31413W ALITVAD

S1ING0Yd GNV SAIHSNOILY13d ASVL

e ZTglll e e

P e ——

1.1.3 TASK 2: VALIDATION OF THE METRICS

The methodology established in RADC TR-77-369 was utilized to apply the
metrics to the USACSC Modernized Army Research and Development Information
System (MARDIS) development data base as a typical MIS application and to
th General Electric/Integrated Software Development System (GE/ISDS) main-
tenance data base (see Appendix A for brief descriptions of these data
bases) as a typical software support system. In this context the data
bases refer to all of the documents, flowcharts, and source code assocfated
with the development effort for these systems. The establishment and vali-
dation of normalization functions (the mathematical relationships which
relate metrics to ratings of the various quality factors) for factors which
were not validated previously were given most attention. Based on the
application of the metrics and the validation process, further refinements
to the metrics were made. The results of this task are in section 3 of
this report.

1.1.4 TASK 3: DEVELOPMENT OF PROCEDURES

Based on the experience gained during the validation, detailed guidelines
and procedures were developed for applying the metrics. These guidelines
and procedures are oriented toward application by Quality Assurance (QA)
personnel and interpretation of the results by program managers. These
results may be seen in the Software Quality Measurement Manual, an attach-
ment to this report.

1.1.6 SCOPE OF FINAL REPORT

This final report represents satisfaction of CDRL AGO3 of the Metrics
Enhancements contract. It describes the technical effort and results of
the previously mentioned tasks. The report includes a description (sec-
tion 3) of the following:

e Identification of difference in quality requirements between
typical C2 and MIS applications.

o Description of documentation produced in Air Force and Army
software developments

1-3

Review and refinement of software quality metrics in light of
MIS applications

Extensions of the concept of software quality metrics.
Results of a validation of metrics using an Army MIS system
and a software support system.

1.2 THE CONCERN FOR SOFTWARE QUALITY

A brief review of the evolution of major areas of concern in the software
engineaering field over the last decade and the direction of research pursued
as a result of that concern provides support and a historical perspective of
the current emphasis on software quality,

The genesis of software engineering and structured programming, in terms of
community-wide recognition and publication in the literature, is usually
traced to the 1968 NATO Conference on Software Engineering and Edsgar
Dijkstra. At that conference, Dijkstra noted how encouraging it was to see
the extremely well-qualified attendees admitting that problems existed

in the development of software. He felt that the first step towards solving
the problem was recognizing the problem [DIJE69]. The direction of the
research community during this time period was toward solidifying the con-
cepts of software engineering and structured programming, and identifying
the problem areas of software development [BOEB73], [STR74].

The Symposium on the High Cost of Software in 1973 sponsored by the three
Services can be viewed as another key event in the expression of major
concerns in the software community, During this conference, the problem

of the high cost of software and the increasing proportion of system devel-
opment costs attributed to software were the focal points [PR073]. The
direction of research in the ensuing years emphasized improving the pro-
ductivity of programmers. This direction manifested itself in the develop-
ment of tools and aids to assist in the very labor-intensive process of
software development. While many significant results have been achieved

in this area, the attack was on a symptom (high costs) rather than a problem,
and in an area which provided relatively low leverage. Programming has been

1-4

W L S o 54 G i iy TR

_ el
4 N y ',4 . o
VTR UG P TN P e o T T

shown to only account for approximately 20% of the total software develop-
ments cost (Design 40%, Test 40%).

The International Conference on Reliable Software in 1975 was the forum of
a sharper focus of concern [PRO75]. Here the theme was software reliabil-
ity and the concern for the very critical problem of unreliable software.
During this time period, the research community responded with error data
collection efforts, error classification studies, reliability modeling
studies in an attempt to bound and define the problem, Many of these
efforts are currently beginning to show results,

Each step mentioned above has provided some progress. Products of this
research during the past decade have had significant impact on the way we
develop software. Where have we evolved since that point? What are the
major research concerns today? 1979 finds us looking at a larger problem -
the quality of our software systems. The quality of software, a part of
which is reliability and a measure of which is cost, has become a major
concern because it has been recognized that software costs do not end at
delivery. The concern now is for life éyc]e costs, total costs, and user
satisfaction throughout the life of the system, not just at delivery.

Life cycle management and life cycle costs have become the major concerns.
The leverage in this approach can be seen in statistics that identify 60 to
80% of life cycle costs as being post-delivery costs. Thus, a major direc-
tion in research today is software quality with a perspective on software
from a life cycle viewpoint,

The software quality metrics concepts which are the subject of this report
provide a mechanism for addressing software life cycle considerations.

1.3 FACTORS IN SOFTWARE QUALITY TASK

This effort is a continuation and extension of research in software quality
metrics sponsored by RADC, contract no. F30602-76-C-0417, In that

previous effort a framework for addressing the subject of software quality
and its measurement was established. This framewo.k, shown in figure 1.3-1,
has three levels. At the highest level, the level at which management

1-5

PO RO A IS ? MO Sy

e e ot o €

s

o e A

S3LNAIYLLY ISOHL
40 STUNSYIM IALLVIILNVAD

ALITVND 301ACY¥d HOIHM
S3LNGIYULLY G3LNITYO-TIYMLIO0S

ALITVAD 1InA0Y¥d 40
M3IA G3LN31Y0-LNIWIIVN

NoMawedj A3p1onh auemysos |-g°1 dunbj4

YL

vooili
ITULM YL
NOIY3LIND
30L0v4

s LT

1-6

S lamamrratt

£A

2083
y o

PRI T

-2 .J
.t el e - o .

oAttt SIEL

and users interface with the framework, are management-oriented terms
identifying the major aspects of software quality. These terms, called
quality factors, are shown with their definitions in table 1.3-1. At
the next level, sets of attributes of the software which contribute to
the characteristics represented by the quality factors are identified.
Then, at the lowest level, are quantitative measures, metrics, of those
attributes. Al1 of the attributes, or criteria, are shown in figure 1.3-3
as they relate to the factors. The metrics are discussed later in sec-
tion 2. This framework and the definitions represent an hierarchical
definition of software quality, the hierarchy involving different levels
of detail and different orientations or viewpoints of software quality,

Another product of the previous effort was the establishment of a method-
ology for the validation of the metrics. This methodology consists of
the following steps:

(1) Application of the metrics to the products generated during a
software development. The products include documentation such
as requirements specifications, design specifications, test
plans, users manuals, as well as the source code.

(2) Utilizing development and operational historical data, rating
of the software by quality factor can be derived, Using these
ratings as dependent variables and the values obtained from the
application of the metrics as independent variables, a multi-
variate regression analysis can be performed. The resulting
equation, a normalization function, provides a mathematical
relationship between the metrics and the quality factors.

(3) Validation of these normalization functions was performed by
plotting the same data (ratings and metric values) for other
systems or modules and deciding whether they fall within a 90
percent confidence interval, The 90 percent confidence interval
was chosen as the validation criteria because it provides suf-
ficient precision for analysis to be done using the normaliza-
tion functions.

e o ewee e — 4> ——as mmes . PR Cmr e ————ea s -

L P

Table 1.3-1 Software Quality Factors

i i i

FACTORS DEFINITIONS
CORRECTNESS Extent to which a program satisfies its specifications
and fulfills the user's mission objectives.
RELIABILITY Extent to which a program can be expactad to perform its
intended function with required precision.
INITIAL
PRODUCT EFFICIENCY The amount of computing resources and code required by a
OPERATION
program to perform a function.
INTEGRITY Extent to which access to software or data by unauthor-
{zed persons can be controlled.
USABILITY Effort required to leam, operats, prepare fnput, and
interpret output of a program.
LIFE
CYCLE MAINTAINABILITY Effort required to locate and fix an error in an
STAGES
operational program.
PRODUCT TESTABILITY Eft 1 i it perf
REVISTON ort required to test a program to insure it performs
its intended function.
FLEXIBILITY Effort required to modify an operational program.
PORTABILITY Effort required to transfer a program from one hardware
configuration and/or software system environment to
another.
PRODUCT REUSABILITY Extent to which a program can be used in other applica-
TRANSITION R - 4 progr v applica
tions - related to the packaging and scope of the
functions that programs perform.
INTEROPERABILITY Effort required to couple one system with another.

CORRECTNESS

| Traceability | [Consistency | | Completeness |

Cromrd |

| Error Tolerance | | Consistency | | - Accuracy | | stmplicity |

*

| Execution Efficiency | Storage Efficiency |

LEGEND
O Factor @
3 Criteria

| Access Control | | Access Audit |

Training | | Communicativeness | | Operability |

Simplicity | [Conciseness | [wodularity | [Saif-Descriptiveness | *"

1329A-2 ;
Figure 1.3-3 Relationship of Criteria to Software Quality Factors

SRR NCRE

e aanue ot o 03 oy
. . > N

Modulari ty [_Generality | [Expandability]| ['seif-Descriptiveness)

TESTABILITY

| Modularity | | Instrumentation | | Seif-Descriptiveness]

PORTABILITY

| Self-Descriptiveness | | Machine Independence]

Simplicity

Software System

Modularity
Independence

REUSABILITY

Machine | Se1f-Descriptiveness |
Independence

Software System

Modularity
Independence

INTEROPERABILITY,

[Communications Commonality | | Data Commonality |

LEGEND 13298
Factor

3 Criteria ﬂ

Figure 1.3-3 Relationship of Criteria to Software Quality Factors (continued)

1-10

S YT i e itk e -~ .- — - - . o rem—.

This methodology is illustrated in figure 1,3-4,

e e . -

Two other results of the previous effort were the identification of auto-

mated support tools which could be utilized to apply the metrics and the
documentation of a preliminary handbook. The handbook was oriented toward \
an acquisition manager and described our concept of software quality and
three approaches (each one more detailed than the other) for specifying
and measuring software quality. These results are the assumed starting
point for this current effort.

This previous research indicated that the concept of measurable software
quality was a pragmatic approach to improved software. However, the
experience with the metrics was limited to the command and control environ-
ment of the Air Force. Major differences exist in the factors essential

to software quality between a Command and Control (Cz) System and a Man-
agement Information System (MIS). In the former, the emphasis may be on

i reliability and efficiency; in the latter, the emphasis may be on porta-

' bility and maintainability. These differences require that additional
experience be gained in the use of metrics in other environments and with

different applications.

An additional deficiency exhibited by the previous research in software quality ¥
that a broad based confidence in all of the quality factors/metrics had

L not been achieved. The two Air Force software systems used in the previous
A study had not experienced some of the activities necessary to validate
metrics related to certain quality factors. As an example, neither system
had been moved to another environment and therefore none of the metrics
associated with the quality factor, portability, were able to be validated. ;
The USACSC's recent experience in transferring systems to other hardware
: environments and investigation into the portability of software provided
! an excellent basis for validation and refinement of the metrics related
to portability.

S m s o At s WERS ap RS

REEE

ey T

The USACSC Modernized Army Research and Development Information System (MARDIS) .
data base affords an excellent testbed for the application of software
metrics in an MIS environment., In addition to utilizing the MARDIS system

1-Nn

PIRNY Y XL

- - B T e R O T S e S pr— - s >

{

{
SO1J4J9W JO uoLjepliep pue uojjed}iddy p-g°| d4nbi4 _
NOILVOIWA :€ d3iS .
RSV SINNMCD 30 SSIEMAILININD 2 eS . m

D S N N S S L)

YT e T T YT [

£ 40300 WY
1353 J0 309D 8IS
T

[

- oAy LA
140 WIIioNd

1, SNOILINN4
NOLLVZITVWION HSITEVLS3 :2 diLS

Sy SINBSG) 30 SSMMIIININ 2'es
VL ¥ Y S Y e SIIYLIIN 40 NOILVDINddY <1 d31S

(R BTN TRY)

o tepwou g e}
AN 3jejoia sayipas ¢
- abeubuey uy pag)arsap
oy 1eiade 10das 158f 10u Op Slusmme) (/)
e ey
' BIRA 2I001A Sl ¢
" mien P16 SR IIRA PRIREIIP |(* 0 SRy (9)
-~

f, - P Acah-u.!t !«v,, apwon g 101

E

. i areiopa sapupem § !

P) € 15 W prepury Hr ts)
__safpom g iy,
BRI NG44 LI Rpoe)

PoIvem) 2ped Judpuddap upqem iy (0}

n.mu.ﬂﬂn—m.wf..
BRI AN sijRpom §
POV ummm2
TUOJINVI ISP § (DUl S Sa2jteesy iV (€)
L el 2 L I
BN AR 0 sa(New
SIUNSE WIS} VN W) 2P0 WO §)0 V3% Slulmo) (2)

o Syepum g 1)
13 21%(0)4 1iyapas §

a3edsayay -
sainparoud A120813s 024 -
SIuImdS N2 ADeamidy -
SUU)I)IITRS U LUD(ITI Y -
tueg 1demisy -
oy)wng -
Iy -
Sindu) -
ateding -
a0y -
;qny -
St ey 1380 [t FLRPaY -
3R AILRP YOI SHumam) A"
fitig) ankeiosd prrvase; paoperis 3any Sainpon (1) smpem |

NSV SINBBND 20 SSHOMILIMI 2% 99 SSMUEIIIAD

B8 E BB

X w0 b
nwa Loaronul WWa Louss] #ma
pvinmI M s St

(83AM1 1900} ALEUIMVSAIN - (S)mniwe
ALSTIVIUDS *ALI HVISIL
“ALLUSWIVINIW *ALTHETXDNY

X
, - o

~N

—
1

—

R LR P S S P

g

T .
LA

~ . L
"*%me-w AT A NI DD g e WOARE, ST

AP S - . . v e

as an example of an MIS system, a state-of-the-art software support system
(GE/ISDS) developed at GE/Sunnyvale was also analyzed. This system was
transferred to a number of GE locations and data was collected on the
effort required to accomplish the transfer. Utilization of this data pro-
vided experience in applying the metrics to a sof‘ware support system
environment and allowed additional validation of metrics related to port-

ability and maintainability.

1-13

r-rvvv " ‘ v . R TI— Nl . R T
- . - LR R Y

WYY, Y

1.4 SUMMARY OF FINDINGS 1
1 As a result of the metrics Enhancement study the following conclusions

can be stated (reference is made to paragraphs in this report providing
supporting data):

1) The framework established in RADC-TR-77-369 is applicable to
other environments and provides a useful life cycle management _
viewpoint to software system requirements specification (2.2) ! k

i 2) The metrics established in RADC-TR-77-369 have now been applied

‘ to two JOVIAL command and control systems (~ 40,000 lines of
code), to a financial management information system (~ 54,000
lines of code), and to a FORTRAN software support system
(~ 20,000 lines of code) (3.1)

3) The metrics and the metric worksheets created for their manual _
application provide a quantitative evaluation tool for quality 3 L
assurance personnel (2.6.3, 3.3.1 Vol. II),]

4) Sensitivity Analyses based on the quantitative measures provide P
an immediately applicable quality assurance technique (3.3.2)

5) The concept of Software Quality Metrics is supported by statis-
tical analyses although because of limited samples, further @
research is needed before a high degree of confidence can be
placed on the mathematical relationships established to date
(3.3.3)

6) Because techniques derived during the software metric research
seem to have potential as quality assurance tools, a Software
Quality Measurement Manual has been developed to provide
guidance for establishing quality goals for a software develop-

P ment and measuring the programs toward those goal during the 4

) development (Vol II). Rf

B

S
R

Tl

SECTION 2

EXTENSIONS TO THE CONCEPTS OF SOFTWARE QUALITY METRICS

2.1 INTRODUCTION

Recent literature in the field of Software Engineering has placed increased
importance on Life Cycle Management. The realization that software has
become the most expensive factor in computer systems has caused the emphasis
on the efficient management of the software life cycle.

Throughout this report we will discuss the concept of software quality in
the context of the MIS environment and the C2 environment, In terms of
extending these concepts to a full program for the management of the quality
of software, however, we may take different perspectives on the nature of
software systems. These perspectives are normative and based on the goals
of the organizations which develop software; they should not be construed

as absolute pronouncements on the nature of software,

2.2 PRODUCTS AND SERVICES

Software developers have a tendency to view programs as static, finished
products once they have gone into the operational phase of the Tife cycle.
Most of us, however, are well aware of the fact that this is a chimera, that
in fact, software has a complete life cycle and goes through maintenance and
enhancement phases before its final obsolesence.

Users of software systems have a different outlook. Software usually per-
forms a service for the user and, developers then become the providers of
the system which provides the needed service.

In the C2 environment, where software systems generally are part of larger
(embedded) systems, the product orientation is a convenient one which allows
programmers, engineers, and users to manage the 1ife cycle with respect to
the product in which the software is embedded.

Of particular importance in the MIS environment, however, is the fact that
the development staff almost invariably acts as a support unit to the
primary function of the organization. For the most part, the programs are

2-1

e Y

C el RSNk %

not in themselves the products which the user organization ultimately
produces. In this sense, the developer's staff performs a service for the
rest of the organization, and so the task of the developer's staff is one
of providing that service to the functional (user) components of the _
organization. User components are not in themselves interested in the
technical aspects of programming, or even in that of systems analysis,

but in the systems provided to them, and the way those systems service
their needs.

This is significant for the reason that the user will make systems decisions
based on only one criterion from the developer's viewpoint. If the system
adequately serves the needs of the user, even if the system is of low tech-
nical quality, the user will be hesitant to authorize expenditures for a
replacement system whose quality is much higher, and which might provide
better service. Similarly, if the system does not supply adequate service
to the user, and will entail significant replacement costs as well as tech-
nical complexity, the user will more readily authorize the expenditure of
funds in order to alleviate his immediate need for adequate service. Thus,
while the developer sees the quality of the system in many lights, in terms
of error rates, error tolerance, readability, ease of debugging, etc., the
user perceives the system in only one way - how well it meets his needs.

To the developer, these characteristics obviously have a cumulative effect

on the user's perception of the quality of the system, but for the most part
user's do not have this awareness since it requires that they have some
exnerience in the technical aspects of systems development in order to be
aware of the problems associated with the task. It is the responsibility of
the developer to be aware of the user's needs, his perception of what a qual-
ity system is and to develop the system in consonance with those perceptions.
This often is not a simple task, since perceptions can change in time. Thus,
a user may gain maturity in his appreciation of systems if exposed to "user-
friendly" systems, or may become less systems oriented after being exposed

to systems which are difficult to work with,

2-2

L g, B T o

R
T

=

e

" '3&'**\'}“ N 1

St
-4

At the highest level of our quality metric framework, some of the required
translation between user and developer can be accommodated. The quality
factors show relevancy of technical aspects of the software to the user's
needs over the 1ife cycle of the system. Utilizing the factors, the user can
appreciate the impéct of a system which is unreliable, or hard to maintain,
or hard to change. The user sees this impact in terms of cost, the user's
ultimate measure, and its effect on the service the system provides,

Thus, it is beneficial to organizations to view software developers as pro-
viders of services over long period of time, Many large management infor-
mation systems are developed with planned life spans of ten years, The
enchancement or rewrite of such systems are large undertakings requiring

the investigation of down-stream processing impact. If one views software
systems as services, then one can view such problems in light of their impact
on the provision of service to users and customers, thus on the entire
organization, rather than on individual modules or subsystems. This enables
managers to make more rational decisions based on an overall organizational
viewpoint. ‘

An important point to note, related to the nature of organizations, is that
change is unavoidable, Military organizations and systems change as missions
change and it follows that information systems which they use must change
with them.

A corollary to this is the fact that the tendency of software managers to
engage in "“plant protection." i.e., trying to avoid changing software systems
if at all possible (while positive in some instances) can have a detrimental
impact on the overall goals of the organization.

Products go away after a time. Sometimes the life span is long, such as the
B-52 or the Volkswagen "Beetle, " but eventually they are replaced by new
products. The need for specific services lasts a very long time. This long
life span is a problem which an awareness of the service perspective gives
in the application of quality metrics. The use of metrics throughout the

2-3

P e “"Ji.::v‘)

the life cycle gives us a method for effectively specifying and moni toring

the delivery of service to the user during the operational/maintenance
phase of the life cycle.

2.3 CLASSIFICATION OF METRICS

The actual measurement of software quality is accomplished by applying
software metrics (or measurements) to the documentation and source code
produced during a software development. These measurements are part of
the established model of software quality and through that model can be
related to various user-oriented aspects of software quality.

The metrics can be classified according to three categories:

¢ anomaly-detecting
¢ predictive
® acceptance

Anomaly-detecting metrics identify deficiencies in documentation or source
code. These deficiencies usually are corrected to improve the quality of
the software product. Standards enforcement is a form of anomaly-detecting
metrics.

Predictive metrics are measurements of the logic of the design and imple-
mentation. These measurements are concerned with form, structure, density, and
complexity type attributes. They provide an indication of the quality that
will be achieved in the end product, based on the nature of tne application,
and design and implementation strategies.

Acceptance metrics are measurements that are applied to the end product
to assess the final compliance with requirements. Tests are a form of
acceptance-type measurements.

The measurements contained in Appendix B are either anomaly~detecting or
predictive metrics. They are applied during the development phases to

assist in identification of quality problems early so that corrective actions
can be taken early when they are more effective and economical,

2-4

RSN .3 % apwniais . - - . PR PR N -gus Sy Sy

S T R R

The measurement concepts complement current Quality Assurance and testing
practices. They are not a replacement for any current techniques utilized
in normal quality assurance programs. For example, a major objective of
quality assurance is to assure conformance with user/customer requirements.
The software quality metric concepts described in this manual provide a
methodology for the user/customer to specify life-cycle-oriented quality
requirements, which are usually not considered, and a mechanism for measuring if
those requirements have been attained. A function usually performed by
quality assurance personnel is a review/audit of software products produced
during a software development. The software metrics add formality and
quantification to these document and code reviews. The metric concepts
also provide a vehicle for early involvement in the development since there
are metrics which apply to the documents produced early in the development.

Testing is usually oriented toward correctness, reliability, and performance
efficiency. The metrics assist in the evaluation of other qualities like
maintainability, portability, and flexibility.

2.4 COMPARING METRICS, WALK-THROUGHS AND INSPECTION

Over the past ten years, a number of different quality assurance or soft-

ware design methodologies have been developed in response to the problems
which both the Government and the private sector have experienced in obtaining
and producing quality software. In a field as complex as software engineering,
the dogmatic adherence to one or another methodology is counter productive;

as methodologies evolve in response to the problems, borrowing and sharing

of ideas produces hybrids which will be more capable of coping with the

problems.

Two methodologies related to software metrics are Code Inspections and
Structured Walk-throughs., Both were originally developed to aid in what

is essentially the quality assurance function. In this section we will com-
pare them with software metrics and point out their shared strengths and
weaknesses and the stages of development during which they are most effec-
tively applied.

-

CODE INSPECTIONS

The Code Inspection technique was developed by Fagan [FAGM76]. It has primarily
one purpose, finding errors in design or code. The methodology associated

with code inspections consists of conducting a series of inspections

during the software development, one at the completion of the design stage,

one at the completion of coding, and subsidiary ones (e.g. publications
inspections) throughout the 1BM-defined levels of programming process
operations.

Fagan divides the “"programming process" into three different subprocesses
(or "miniprocesses): Design, Code, and Test. A seperate unnamed sub- 1
process consists of a statement of objectives. Each subprocess is divided into
"Levels". There are nine levels, numbered 0 through 8. The purpose of code b
inspections is to control the programming process by determining when "exit ‘
E criteria" for a particular subprocess or level are satisfied. The major
inspections occur at the completion of Design and Code subprocesses.

"Reworking" of the unit when errors are found in any level or subprocess F
must be done before it can be claimed to be completed,

Code inspections concentrate on error detection and correction through a
formally defined "process-control® methodology.

WAL K-THROUGHS

Design Walk-Throughs have no agreed upon structure common to all groups which
é o make use of them. In some installations, the Walk-Through is structured

' like the Code Inspection, in others there is little or no structure. The
primary idea, however, is the same everywhere, and that is peer-review of the
system design and coding. Walk-Throughs can be conducted at both the design
stage and during coding.

These peer-reviews ane generally conducted as a team meeting, with representa-
tives of the designers (and coders in a code walk-through), sometimes manage-

ment and users. The purpose is to subject the design (or code) to a critical

evaluation.

=X 5

2-6

IBM defines eight basic characteristics to the Walk-Through [IBM 74]:

Arranged and scheduled by developer

Not used for employee evaluation

Participants include all involved areas

Should have a defined set of attainable objectives

Review materials distributed in advance of meeting and reviewers

should come prepared with questions

e Roles of reviewers and tasks to be performed are known to
participants

¢ A moderator controls the course of the Walk-Through and compiles ii
the 1list of errors and inconsistencies to be acted on ‘

e Problem resolution takes place outside of the Walk-Through

INSPECTIONS, WALK-THROUGHS AND METRICS
The application of software metrics is not meant to supplant useful methods

of quality assurance such as Code Inspection and Walk-Through, but to be
used in conjunction with them as part of an intergrated program. Soft-
ware metrics as we have noted previously have both anomaly-detecting and
predictive characteristics, in addition to those which may be classfied

as acceptance metrics.

Code Inspections and Walk-Throughs are oriented towards anamoly-detection.

They can be very useful during certain phases of the development life cycle.
They are development team techniques. The metrics, on the other hand, not

only can be used by the development team but also can be used by the acquisition
A complete comparision between metrics,

manager as acceptance criteria.
walk-throughs, and code inspections is shown in Table 2.4-1, Part of this

table was excerpted from [FAGM 76]. A comparision of walk-throughs and
code inspections based on a classroom experiment was presented in [MYEG 78].

P2
T A e sweas B ¥ At R R P PPN S S

2-7

- .
R BTN S e e
SR s "

}’7")‘
o -

. B el
TABLE 2.4-1
{umparison of Key Properties of Inspections and Walk Thrus and Metrics
Properties Inspection Walk-Thru Metrics
1. Formal Moderator Training Yes No No
2. Definite Participant Roles Yes No Yes
3. Who "Drives" The Insp. or Moderator Owner of Quality
W-T Material Assurance
(Designer Group
or Coder)
4. Use "How to Find Errors"
Checklists Yes No Yes
5. Use Distribution of Error
Types to Look For Yes No Yes
6. Follow-Up to Reduce Bad Fixes Yes No Yes
7. Less Future Errors Because of
Detailed Error Feedback to
Individual Programmer Yes Incidental Yes
8. Improve Inspection Efficiency
From Analysis of Results Yes No Yes
9. Analysis of Data Process
_ Problems Improvements Yes No Yes
10. Lifecycle Impact and
Applicability? Partial No Yes
11. Quantification of Results
For Comparative Purposes No No - Yes
12. Prediction of Quality Level
Based on Current Analysis Methodology
and Figure of Merit? No No Exists
13. Formal Definition of Quality
(Factors, Attributes)? No No Yes
14, Formal Validation of Concept | Partial (lack
Carried Out? of quantifiable
results makes
it difficult to No Yes
statistically
validate)
15, Formal Methodology for
Application Developed? Yes No Yes
16. Applicable in Different
Environments Yes Yes Yes
2-8

L A MR

e, i o

L iy oy g ST 7

T, L

R, .

2.5 METRICS AS A QUALITY ASSURANCE MIS

Current Quality Assurance programs include configuration management systems
which control versions of the software and modifications to baselines. A ;
problem report control system is usually a part of many of these systems
with which problem reports are formally logged, reported, and closed.
These tools have aided quality assurance personnel not only by providing
automated support to activities that are performed during a development
but also from a historical viewpoint. They provide a data base from which
analyses of error types and error rates can be made. Based on these anal- f
yses, the emphasis of testing can be changed during future developments. i

In a similar manner, the metrics data provides a profile of the technical
aspects of the software. Such data as number of lines of code, number
of comments, number of paths through a module, etc. also provides a ;
data base from which analyses can be made to better orient the quality
assurance program to controlling the quality of the software produced.

The control is imparted by audits, standards and conventions, and tests,
Emphasis in each of these activities can be oriented based on past develop-
ment experiences. The metric data base base provides hard data upon which
to base the reorientation rather than basing it on subjective feelings.

oy

T aiad

E § Thus the metric data are not only useful during a development as indicators
SR of the quality being achieved but also complement configuration management
f#, g and problem history data as a quality assurance management information
‘ } system. The retention of the metric data in machine readable form is
; a key to the utility of the data for this purpose.
3 :
- H
B
: ¢
§5
'gf, ' 2'9
S%FJ

o B el T T m— e . e .
‘e " 2 " » . -
" T "
N S e - s d
2 PO e . E I
1 : gl B

SECTION 3

ANALYSIS OF METRIC CONCEPTS IN O-HER ENVIRONMENTS

3.1 APPROACH

The analysis of the applicability of the software quality metrics to
environments other than the command and control environment in which the met-
rics were intially developed is a two-step process. The first step involves
an assessment of the new environment and its real attributes (system life
cycle, users needs, and development environment), a comparison or derivation
of an analogy between these real attributes with those of the C2 environment,
and an evaluation of how well the model of software quality represented by
our framework and definitions fit this new environment. This process is
shown in figure 3.1-1.

The evaluation process represents the derivation of an hypothesized analogy
between the model of software quality developed for the C2 environment and
a broader, more general model (the refined model) which subsumes both the
C2 and MIS environments. This latter model has its basis in certain
observed characteristics (real attributes), which are common to both the C2
and MIS environments. This analysis was performed as Task 1 of this research
effort and is the subject of this section of the report. In actually con-
ducting this evaluation, we proceeded by analyzing the applicability of
each factor, then each criterion and finally each metric. The number of
changes made to the model will be shown to be minimal, primarily because a
goal of the previous effort was to establish metrics which were language
independent.

The second step was performed during the final phase of the research effort.
This step involved the direct application of the same methodology used
during the previous effort to apply the metrics and mathematically validate
their correlation with the qualities of the system as represented by its
operational and maintenance historical data. The results of this step are
contained in the next section.

3-1

S cmain —emesl e M el e

g09L!)

INIWNOYIAN]
INIMJOT3IAN0 -
SQ3IIN S.¥3sSn -
ITOAD 3417 WIALSAS -

S3ingryiLy Wi

A90T000HL W
NO11va1 VA

anv
NOI11VD1ddV

ALITVRD
IYMLI0S
40
13008
G3N1 43

$S30044 UoljenjeAl (-|°¢ 3unbiy

INWNOYIAN]
ININJOT3IAC -
SQ33IN S.¥3Isn -
JTIAD 3417 WILSAS -

SIINGIYLLY VY

< A90TVNV >
NUEL)
A901000HL M
€ NOTLYOI TVA
NO11VI1VddV ONV
173410 NOTLVOI MddV
ALTTVRD
e — TIVM140S
A90TVNY 30
03Z ISIHLOAH 13004

3.2 SOFTWARE QUALITY REQUIREMENTS SURVEY
In order to perform a thorough evaluation of the applicability of the

software quality metrics to other development environments, each level of
the framework must be investigated in 1ight of the peculiarities of each
particular environment. This section describes the approach and the results
of our evaluation at the quality factors level.

At this level, an evaluation of the applicability of the quality factor to
the particular environment is necessary. Each of the eleven quality factors
were evaluated with respect to the Army Computer Systems Command development
environment and particularly the development of the MARDIS system. There
were no indications that any new factors were necessary. Each of the current
factors seemed applicable. In evaluating the support software system, the
same conclusions were made.

It would be naive, however, to expect that those factors which are critical
to one environment would be equally critical to another. In fact, much can
be learned about a system and the usefylness of the software quality metrics
concepts by simply looking at the differences between systems in 1ight of
the quality factors. For example, in paragraph 3.2 of RADC TR-77-369, the
importance of the individual quality factors was discussed in relationship
to various examples of systems, ranging from testbed or R&D laboratory
systems to airborne avionics and manned spacecraft. To accomplish this
evaluation during this effort, a brief survey (see table 3.2-1) was provided
to personnel at the Air Force Electronics Systems Division (ESD). The
intent of the survey was to solicit the viewpoints of personnel concerning
which quality factors are important to the particular system on which they
are currently working. Most responses from ESD involved indications and
warning systems.

o s Ny

Table 8.2-1 Software Quality Requirements Survey Form

1.

2.

4.

The 11 quality factors listed below have been isolated from the cur-
rent literature. They are not meant to be exhaustive, but to reflect
what is currently thought to be important. Please indicate whether
you consider each factor to be Very Important (VI), Important (I),
Somewhat Important (SI), or Not Important (NI) as design goals in the
system you are currently working on.

RESPONSE FACTORS DEFINITION
CORRECTNESS Extent to which a program satisfies its

spacifications and fulfills the usar’s
mission cbjectives.

RELIABILITY Extant to which 2 program can be expectad
to perform its intended function with
required precision.

eFFICIENCY The amunt of comouting resocurces and code
required by a program tc perform a function.

INTEGRITY Extant to whicn accass to software or data
by unauthorized persons can be controlled.

USABILITY tffort required to learn, operata, prepare
input, and interoret gutput of a Jrogram.

MAINTAINABILITY gffort required 20 locate and fix an ervor
in an operational program.

TESTABILITY Effort required to test a program to0 insure

) - {t performs i{ts intended function.

FLEXIBILITY Effort required to mdify an goeracional
program.

PORTABILITY Effort required to transfer a program from

one hardware configuration and/or software
system environment 0 another.

REUSABILITY Extant to which a program can be used in other
applications - related t3 the sackaging and
scope of the fynctions that programs pervorm,

INTEROPERABILITY Effort required t0 couple one systam with
anothar.

What type(s) of application are you currently involved in?

Are you currently in:

1. Development phase
2. Operations/Maintenance phase

Please indicate the title which most closely describes your position:

1. Program Manager

2. Technical Consultant
3. Systems Analyst

4. Other (please specify)

The survey sheet that was sent to ESD was also distributed to several
projects in process at our location. These projects represent command
and control, support software, and simulation applications.

Thirty-nine responses were received. The profile of these responses
by type of application is shown in table 3,2-2

Table 3.2-2 Response Type Profile

NO. TYFE COUNT
1 SUFFORT SOFTWARE é
2 SIMULATION o]
4 COMMAND & CONTROL. 4
6 INDICATIONS §& WNG 24

The responses were grouped by type of application initially. For each type,
the responses were summed, averaged and a standard deviation for the range of
responses for the ratings of the quality factors was calculated. Factors
were rated very important, important, somewhat important, or not important as
design goals by each respondee. These ratings were given the values

four (4) through one (1) respectively.

Histograms of the responses by type of application were also generated for
visual comparison between types.

The responses were then grouped by the phase the responder had participated
in with respect to the subject system. For each phase the sum, average

and standard deviation of the responses were calculated. Twenty responses
were grouped in the development phase and 19 were grouped in the maintenance
phase.

Histograms were generated for comparison between the two phases.

The results of the analysis are given in the following paragraphs.
3-5

e "

3.2.1 SUPPORT SOFTWARE
Tables 3.2-3 and 3.2-4 give the sum, average and standard deviation for 6
responses about a software development support system which has been deve-
loped in Sunnyvale. It is operational and has been distributed to a number
of different sites on a number of different hardware configurations. The
concern for usability reflects the requirement that the system will be
"user-friendly" enough to be an effective development tool., Similarly,

the concern for portability represents the difficulty of the conversion
process and the desire to transfer the system to a number of GE develop-
ment environments. Reuysability is important in this environment because it
is part of an R&D effort in which prototype tools are developed and
evaluated. Those capabilities which users identify as worthwhile are kept
and further developed into a final product. The ability to "reuse" parts
of the software is important.

Table 3.2-3 Summary By Type - Support Suftware
Sum of Scores For 6 Samples

USARIL.ITY Pl
RELIARILITY 21
MAINTALINARILITY 21
FORTARILITY 2
CORRECTNESS 2
REUSARIL.ITY 20
FLEXIRILITY 19
TESTARILITY 18
INTEROFERARILITY 18
EFFICIENCY 10
INTEGRILTY 8

Table 3.2-4 Summary By Type - Support Software
Average of Scores For 6 Samples With STD Deviation

USARILITY .83 0. 41
RELIABILITY 25 0. 5%
MAINTAINARILITY X% 0. 58
FORTABILITY X5 0. ¢
CORRECTNESS X33 0.3
REUSARTLITY XXX 0. a2
FLEXIBILITY 317 0.
TESTABILITY P 0.8
INTEROFERARILITY 2% 1.<
EFFICIENCY 1.67 0.".
INTEGRITY 1. 33 O al

3-6

3.2.2 SIMULATION
Tables 3.2-5 and 3.2-6 provide the results of 5 survey responses for a simula-
The system is utilized as a planning tool
The high requirements for correctness and reliability represent
the fact that the output of the simulation system assumes a critical role in

the planning and operation of the actual system being simulated.
for usability reflects that system's use by analysts and the importance given
to its interaction with customer-users.

tion system developed in Sunnyvale.
by analysts.

Table 3.2-5 Summary By Type - Simulation
Sum of Scores For 5 Samples

CORRECTNESS
RELIARILITY
USARILITY
MAINTAINARILITY
TESTARILITY
FLEXTRILYTY
EFFICIENCY
INTEGRITY
INTEROFERARIL.ITY
FORTARILITY
REUSARILITY

Table 3.2-6 Summary By Type - Simulation

20
<0
18
16
14
14
12

10

]

Average of Scores For 5 Samples With STD Deviation

CORRECTNESS
RELIABILITY
USABRILITY
MAINTAINARILITY
TESTARILITY
FLEXIRILITY
EFFICIENCY
INTEGRITY
INTEROFERARILITY
FORTARILITY
REUSABTLITY

= e RGN D D
5T HPTORC

3-7

OO.--.:-‘Og-‘OOOOO

The concern

s

. \-l\
N
.45

LO%

41

L3

[EH M
R 2w]

—

- b e

The simulation system is an operational system. Thus maintainability is
also an important concern. In addition, for certain analyses, modifications
are required. Therefore flexibility and testability are also important.

3.2.3 COMMAND AND CONTROL

Tables 3.2-7 and 3.2-8 provide the results of the four responses related to
satellite command and control systems which have been developed or are being
developed in Sunnyvale. The fact that correctness, reliability, and testability
are all rated very high tends to reflect the fact that the C2 software is crit-
jcal to the success of the mission of the system. The systems, once developed,
are also maintained by GE for the Air Force, undergo major revisions and

operate on relatively small (in Storage) machines. These characteristics

are represented by the high rankings given flexibility, efficiency, and
maintainability. ‘

Table 3.2-7 Summary By Type - Command & Control
Sum of Scores For 4 Samples

CORRECTNESS 16
RELIABILITY 1%
TESTARILLTY 15
FLEXIRILITY 13
iZFFICTENCY L
MAINTAINARILITY 1e
USARIL.ITY 10
INTEGRITY]
REUSARILITY &
INTEROFERARILITY &
FORTARILITY]

Table 3.2-8 Summary By Type - Command & Control o
Average of Scores For 4 Samples With STD Deviation

CORRECTNESS 4 0
RELTABTLITY 375 O
TESTABILITY X7 O
FILEXTBILLTY 30 O
EFFICIENGY X noap
MATNTATNABTLITY % 0.8z
LSARILITY 2 O oER
FNTEGRLTY 2 Lo
KIEUSARTL ITY 1. 1
ENTEROFERAKILITY Lo L
FORTABTL LT LoD D

hbiidikanne L

3.2.4 INDICATIONS AND WARNING

Tables 3.2-9 and 3.2-10 present the results of the 24 survey responses received
from ESD. The results are similar to the Command and Control software except for
the high ratings given interoperability and usability. The requirements for
effective man-machine interaction and system to system interaction so important
to an indications and warning system is expressed by these ratings.

Table 3.2-9 Summary by Type - Indications and Warning
Sum of Scores for 24 Samplas
CORRECTNESS ?3
RELIARILITY 2?0
MAINTAINARILITY 7%
INTEROFERARILITY 73
USARILITY 72
TESTABILITY 72
FLEXIBILITY 70
INTEGRITY 67
EFFICIENCY b6é
FORTARILITY 44
REUSABILITY 41

Table 3.2-10 Summary by Type - Indications and warning
Average of Scores for 24 Samples with STD Deviation

CORRECTNESS 3.88 0.45

RELIABIL.ITY 3.75 0.53

MAINTAINARILITY 3.13 0.88

. INTEROFERARILITY 3.04 1.08

] USARILITY 3 0.88
- TESTABILITY 3 0.88
FLEXIBILITY 2.92 0.88

INTEGRITY 2.79 1.02

: EFF ICIENCY 2.7% 0.85
‘ FORTABILITY 1.92 0.97
iy 1.71 0.7%

. REUSABILITY

3-9

INNNNNNNNNN

. mm me me e me em me e = =-

INNNNSNNNNNNNNN

 mn me me —- - ea Ar aa me e a= m= e

INNNSNNSNNNNNNN NN

EINNN N NN NNNNNNANN

INNNNNNNNSNN

. . an @e me me e Be = en we e =a ae =

IN NN NNNNNNNNNANN

NN N NN NN NNNNNNNN

INN N NN

TES FLX FRT REU IOF

« - - m- we - o =

INNNNNNN

. . me we e-

INN NN

. me me we an me e

INNNNANN

INN NN NNNNNANN

INN NN NNNNANANN

e e - e e e® en me e ac me - e

INN N NN NNNNNNNN

INSNNNSNSNNNNNNNNN

« - - e ww m- me aa -

INN NN NNNN

REU IOF

"RT

T INT USA MNT

INNNNNN N

INNNNNNNNNN

—. - —- - M em wm = e e-

EFF INT USA MNT TES FLX |

6 Samples
5 Samples

INNNNNNNNNNNNNN

. e —e e e me o= S me G= e a= == me -~

. e amE mn m- e me A *@ *e Aa ma an me ae e .-

INUN N NN NN NNNNNNANANN

-2 Histogram of Average Scores by Type - Simulation
=X

.2-1 Histogram of Average Scores by Type - Support Software
REL.

NN NN NNNNNNNNN

e EmE B we e o e . ac e - e —-

. - . me mem m. ee A G ae me Gs e ea ma me o=

NN NN NN NNNNN ONNANN

JOR

C

COR R

Figure 3
Figure 3.2

To facilitate comparison of the expressed quality requirements by type,
3-10

histograms for each type are provided in Figures 3.2-1, 2, 3, and 4,

Figure 3.2-3 Histogram of Average Scores by Type - Command & Control
4 Samples

. - me mn e ae e

INNN NN

. P Em TR ae e w-

. - m- o- o ——

INNN N NN

. - e ww we a=

INN NN N

INN NN NSNNNNNNANN

. e me Sk R e Le ee we e e oe - e
'

. BE B me e Pe e e me e A EC Se e ee ==

INS NN NNNNNNNNNNN

. BE RE ae me P we S® me wa o= a6 o a2n ar ee

INN NN NNNNNNNN

. BE A an an S we G" e en ac e

INNN NS NN NNN

- e we o o T an e~ oo e

. o m. w wm - - - -

INNNNSNNNNN

e A o as . an e em me o ew)ee

IN NN NNNNNSNSNNAN

INSNNSSNSNSNNNNNNNNNN

- — WE me e S G G Ee e e e® e Be e= o

INS N NN NN NNNNNNNNNDN

EL TOF

RT R

F INT USA MNT TES FLX

e
o

OR REL. E

[

Figure 3.2-4 Histogram of Average Scores by Type - Indications & WNG

24 Samples

INNNSNNNNNNNNNN

- . A wa e o a-

INNNSNNN

., e oe = es an e

. Mo o e o e .o an e

INNNNNNNN

. - - me ae we Se e -

 mn Se es am Ee T ce ae *e e en we

IN NN NNNSNNNNNANN

. P e er e e e® ec e e ce oo we

INN NN NN NNNNNDN

L e e me ee Ae e e T Se ee ow e

me e e m m- ww e e me e ea e e

INN NN N NNNNNNANN

P -, mr me S O® e ae e e= e ee

INNNNNNNNNNANN

e - e we TR ae me s me e = e

, e e e S0 ®E ae e S an ee e-

INN N NN NNNNANDN

. - e m- e BE A ee G- s ee oo

me ee e e SO e ae e ea me ew

NN N NN NNNNNAN

. . e - we 6 mn a= e e o= =

. Ah mE e me me = me Se G Be as e e "o e

INN N NN NNNNNSNNNANN

e mr e e e EE e e . e we e me e oo

. e e Ee Ae e A me e PO e e B ew S ==

NN NN N SN N NNNNNNNNN

e e e Ee me me Ss me T G ee e we e e ae

REU I1OF

¢ REL. EFF INT USA MNT TES FLX PRT

c

3-1

3.2.5 DEVELOPMENT PHASE

‘Tables 3.2-11 and 3.2-12 provide the statistics of 20 responses spanning all of
the previously mentioned application types. These responses were from personnel
involved in the development of the system. Note the concern for testability
which to some extent reflects their concern for the immediately succeeding
phases of the development.

Table 3.2-11 Summary By Phase - Development
Sum of Scores For 20 Samples

CORRECTNESS 80
RELIARILITY 77
TESTARILITY p
INTEROFERAEBILITY 60
MAINTAINABILITY 59
USABRILITY o8
FLEXIRILITY S8
EFFICIENCY 54
INTEGRITY T4
FORTARILITY 36
REUSARIL.ITY 34

Figure 3.2-12 Summary By Phase - Development
Average Scores For 20 Samples With STD Deviation

CORRECTNESS 4 0

RELIABILITY 3.85 0. 49
TESTABILITY 3.1 0.91
INTEROFERARILITY 3 1.08
MAINTAINARILITY 2.9 0.89
USABILITY 2.9 0.91
FLEXIBILITY 2.9 0.72
EFFICIENCY 2.7 0.73
INTEGRITY 2.7 1.03
FORTABILITY 1.8 0.89
REUSABIL.ITY 1.7 0.73

I e - T

4
i
i é
[

3.2.6 MAINTENANCE PHASE |
Tables 13 and 14 provide the statistics of 19 responses, again from a number i
of different types of applications, for personnel involved in the operations ’
and maintenance phase. Note the concern in this phase focuses on the main- ,
tainability, usability, and flexibility of the software. i

Table 3.2-13 Summary by Phase - Maintenance and Operations
Sum of Scores for 19 Samples

CORRECTNESS 69 [
RELIARILITY 69 '
USARILITY &5 :
MAINTAINARILITY 65 ‘
FLEXIRILITY 5 .
TESTARILITY 54 |
EFFICIENCY 46 |
FORTARILITY 43

INTEROFERARTLLITY 43 ;
INTEGRITY 39 ~
REUSARILITY 38

Table 3.2-14 Summary by Phase - Maintenance and Operation
Average Scores For 19 Samples With STD Deviation

CORRECTNESS 3.63 0.6
RELIABILITY 3.63 0.5
USARILITY 3.42 0. 69
MAINTAINAKILITY 3.42 0.51
s FILEXIBILITY 3. 0% 0.91
TESTABILITY 2.84 0. 469
EFFICIENCY 2.42 1.02
FORTABILITY 2.26 1.2
d INTEROFERARILITY 2.2 1.2
: INTEGRITY 2.05 1.22
| REUSABILITY 2 1.2
)

3-13

INNNNNNNNNNNN

“mm mE e C* Ly ee am Se e e w= e

INNSNNNYNN

- er ,e @ "% e e

INSNNNN NN

INONN NN NNNNNANN

. m. mn e AS - fe ee e oe aa e .-

INNN NN NNNANNNYN

INNNNNNNNNNSNSN

S WS pe me ca ma s - e we *e e

INNNNNSNNNNNNN

P - e m mE As m- s m- em e ee e

INN NN SNNNNANN

. he ST ae ea ee W me we e we e

INN NN NNNNNNN

.- e An me me as *e ee 6o we =a

INN NN SNNNANN

INNNNNNNN

me mm ee ee ce ew we o

IN NN NN NNANN

. - e ee e ca e e oo e e = e

INN N SNSNNNNNNANN

e M e m- en ve Se Be an Se o-

INNSNNNSNNNNNN

« - me S ma en we P e e me .-

EINN N NN NNNNSNNNNANN

INSN NN NNNSNNSNSSNNNNN

. - me me en = e - e =" e @G- e = .-

INNNNNANANN

INNNNNNNANANN

REU IOF

S FLX PRT

E

EFF INT USA MNT 1

. me e e e ae ee e A6 e e we An e oa oo

INN NN NN NNNNNNNANN

P me me s Ge e A0 e Ce as et e oe ae e =

20 Samples
19 Samples

P mn me e en S e e ee ae e A% e e e e

INN N NNNNSNNNNNNNNN

. e ee ee e eoc ea ea Sh em GF e we ae S= ee

INN NN N NNNNNNNANANN

. mEm e wa am en me e ae ce ek we e e S e

OR REL.

e e me an Ca en me Se B e e G ae . " e

NN N NNNNNNNNNNNANN

 mm me am me eE mm e A ma G- et e e .. =6 m-

.2-5 .Histogram of Average Scores by Phase - Development

COR REL. EFF INT USA MNT TES FLX FPRT REU I0F

o
o

!

Figure 3.2-6 Histogram of Average Scores by Phase - Maintenance & Operations

Figure 3
4

3

2

1

For comparison between phases, Figures 3.2-5 and 3.2-6 are provided.
3-14

These results substantiate the hypothesis that quality concerns relate to the
life cycle phase through which the system is passing and the application
environment in which the system resides. These conclusions support the frame-
work that has been developed on two counts:

1. Since different applications have different quality needs, a
framework is needed in which those needs or goals can be identified,
the interrelationships between quality goals recognized, and the
progress toward achieving those goals monitored.

2. Since the perspective of quality needs changes over the life cycle
of a system, a necessary attribute of the quality framework is
a life cycle view of quality. This attribute forces consideration
of long range quality goals as well as shorter range goals at
the beginning of the systems life.

3.3 APPLICABILITY OF CRITERIA IN OTHER ENVIRONMENTS ¥
The establishment of criteria for software quality factors had a fourfold
purpose - to further define each factor, to describe relationships between
each factor, to establish a unique correspondence between metrics and
criteria, and finally to preserve the hierarchical framework of the factors.
In determining whether the criteria previously established are applicable

j in new environments particularly in the MIS environment, it is necessary

to shuw that the refined definitions of factors using criteria, the relation-
ships between factors, and the correspondence between metrics and criteria
are preserved by our hypothesized analogy between models of software quality.

Criteria are software attributes or characteristics which contribute to
software quality factors. Whereas quality factors are management-oriented
views of software, criteria are software-oriented. To show that the same
criteria hold in non-C2 environments, it must be shown that the same
software attributes are present in other environments and that they still
] contribute to the same quality factors.

In order to show that each software attribute was present in other environ-
ments, each criterion was analyzed to determine if it could be shown to
exist in software in other environments. But since these criteria are

very general, system-level attributes of software, it was seen immediately
that non-C2 software must also share these characteristics. Like factors,

criteria are "about" software, and grouping them in order to preserve a
specific quality factors definition is natural.

To determine if the same relationships between the defining criteria and
* the factors held, an analysis of figure 1.3-3 was conducted. Again the
results indicated that these relationships were preserved in other environ-

ments.

The analysis of the correspondence betwcen metrics and criteria is des-
cribed in Section 3.4. The results of this analysis indicated that except
for a few very minor points, the same set of metrics held in the non-Cz.
MIS environment.

3.4 REVIEW OF THE METRICS

The result of our review of the quality metrics are in Appendix B. Some
examples of the analysis performed and the rationale for modifying,
deleting, or adding metrics are given in the paragraphs that follow. The
examples are grouped logically. Paragraph 3.4.2 has examples of metrics
which apply directly to the COBOL/MIS environment, Paragraph 3.4.2 has
examples of metrics which, because they are not applicable to the new
environment, were deleted. They may also have been deleted because they
were found to be too hard to practically measure. They were only deleted
if modification was not possible. Paragraph 3.4.4 has examples of metrics
which were modified. The modifications in many cases represented wording
changes to make what was being measured clearer or in some cases, to make
the metric a relative quantity metric rather than a checklist type metric.
These changes were based primarily on the additional experience gained using
and applying the metrics during this study. The other reason modifications
were made were to make the metric applicable to COBOL if it was not
previously.

Paragraph 3.4.5 has examples of additional metrics which were considered
during this effort. The validation procedure will reveal their correlation
or value and consideration of retaining them was based on that,

3.4.17 QUALITY METRICS IN DIFFERENT ENVIRONMENTS

Measurements of quality, unlike fundamental measurements such as length,
mass and heat; i.e., extensive properties of things, are ordinal and rela-
tive in nature. There are, however, other types of measurements, less
rigorous, bxt nonetheless useful. A sphygmomanometer does not measure

a fundamental, extensive property of human beings, but blood pressure is

3-17

an important indicator of general health. Measurements such as these are
called pointer measurements. In a certain sense, the "mechanism or pro-
cedure is made to supercede the intuition, and is used to define the pro-
perty which it purports to measure" [STAR73].

Software Quality Metrics are pointer measurements. They do not purport to
measure fundamental properties of software, but instead, characteristics

which provide indication of the qua]ity of the software. The past history of
engineering reflects similar considerations. The desire for uniform quality
is based on practical economic reasoning linked with the need for rationalized
processes in mass production. Thus, uniform quality is based on a tower whose
top level is its goal of quality, the lower levels being standardization of
components, measurement of those components, definition of proper units of
measurement, and whose foundations are fundamental concepts [NOBD77].

The metrics developed during previous research consist of phased sets of
measurements and evaluations undertaken during the development phase of the
life cycle. These are applicable during the requirements analysis, design
and implementation phases of the 1ife cycle. During the requirements analy-
sis phase, 25 elements of measurement are gathered; during the design phase,
108 elements are gathered; during the implementation phase, 157 are gathered
[McCJ77]. The elements of measurement are specific characteristics that are
measured. A number of elements may comprise a metric. While the number of
elements to be gathered may seem excessive, they do serve to give a very
complete profile of the project. Part of the continuing research in the

area of software quaiity engineering has been to develop prototype automated
tools for the gathering of these measurements, and automated methods for their
analysis [LOPC78]. The automated tools alleviate the high cost of manual
application of the metrics and assist in the accurate, consistent application
of the metrics.

Because of the fact that all of the different applications (MIS, CZ, and Sup-
port Software) are developed in basically the same phased approach, i.e.,
requirements analysis, design, implementation, and test, the phase or pro-
gressive application concept of the metrics is relevant to all of them.

3-17a

e . . . 0 S Cie

The technique or automated tool used to take the measurements, however, will
differ depending on what the documentation requirements and formats are and
what programming language is used. The measurement applied during the require-
ments analysis and design phases are independent of the language since they
are oriented toward the documentation rather than the language. Some
metrics relating to design measures could be influenced by the particular
implementation language. This possibility was checked for in our evaluation.
The metrics applied during implementation were the most likely to be lan-
guage dependent. Emphasis during our evaluation was placed in this area.

The major concentration then was in evaluating the applicability of the
metrics to MIS design and COBOL programming practices.

It is important to note a difference between a metric being inapplicable
to COBOL, in which case it is not a generally applicable metric and is
either deleted or modified, and a metric not applicable for a

particular situation. An example of the latter case is the metric,
RECOVERY FROM DEVICE ERRORS (ET.5). If the operating system provides
facilities with this capability, perhaps with a checkpoint/restart capa-
bility, and the system does not have a critical timeline in which to func-
tion, then this metric is unimportant or not applicable to this situation.
This does not mean it has no meaning in an MIS environment. It can be
applied and does have meaning in certain circumstances.

3.4.2 EXAMPLES OF METRICS APPLICABLE TO COBOL

Over 90% of the metrics established in the previous research effort were
determined to be applicable to the COBOL/MIS environment. Table B-1,
Appendix B, is a table of metrics organized by 1ife cycle phase and rela-
tionship to criteria and subcriteria. The organization of this table is
based on the recognition that the main source of error in system develop-
ment is translation from one phase to another, Thus, the three main
development phases are indicated, as well as the criterion/subcriterion
applicable to a factor. The elements of measurement occur in the center
under the heading "METRIC."

One of the criteria of the factor reliability is accuracy, There are five

3-18

f'
*
r
>

pp—— e T

measurement elements associated with this criterion. These are reproduced i
in Table 3.4.2-1 which is excepted from Appendix B.

Table 3.4.2<1 Accuracy Metric

FACTOR(S): RELIABILITY

P REQMTS OESIGN TMPLEMENTAT 1 O !

. METRIC YES/NO YES/NO YES/NO i

SUBCRITERION 1 or 9f VALVE |1 op 9 YALVE |1 0n 9| VALUE i
ACCURACY AC. 1 ACCURACY CHECKLIST:

(1) Error analysis performed and budgeted to D
module,

i accuracy of inputs, outputs, processing,
1 i and constants.
}
{

(3) Sufficiency of math 1ibrary.

]
(4) Suffictiency of numerical methods. G G
] | —

I (5) Execution outputs within tolerances.

SYSTEM - Score tctal from applicable elements L
METRIC VALUE: T appiiceble elements D D D '

]
(2) A definitfve statement of requirement for D %
|
|

Table 3.4.2-2 illustrates the analysis performed to assess how applicable
this metric is in the MIS/COBOL environment.

Initially, it was thought the metrics oriented toward accuracy would not be

2

as applicable to MIS systems as C™ systems. ‘However, when consideration is

given to the possible imnacts of inaccuracies in a financial accounting sys-
tem or a critical item inventory system, the importance of those measurements
are quickly recognized,

AC.1 (1) and (2) simply are checking in a requirements document for recogni-
tion of accuracy requirements. Without a stated requirement, the likelihood }
of the provision of the required accuracy is Jess.

AC.1 (3) is insuring that consideration for accuracy requirements are not

only applied to software being developed but also to “off-the-shelf" soft-

ware or mathematical routines provided in the form of a library of routines

by a vendor. Another situation, probably more typical of MIS development

organizations, are libraries of routines developed in-house for typical

calculatory functions. For example, a large insurance firm may use a library &
{
.

3-19

T A g AP i A e . 4 tiage

A S 4 s W B W

e o Y —— .

Table 3.4.2-2 Accuracy Metric Analysis

ELEMENT

PHASE

INTERPRETATION

AC.1 (1)
Error analysis performed
and budgeted to module.

AC.1 (2)

A definitive statement
of requirement for
accuracy of inputs,
outputs, processing,
and constants.

AC.1 (3)
Sufficiency of math
library

AC.1 (4)
Sufficiency of numerical
methods.

AC.1 (5)
Execution outpus within

REQMTS

REQMTS

DESIGN

DESIGN
IMPL

IMPL

By "error analysis", we
mean the amount of error
which the user is willing
to tolerate in the per-
formance of a particular
function. ly may or may
not be possible to budget
this to a specific module
at this early stage. The
main objective is to
analyze the error which
is tolerable in the
function.

Subsidiary to the error
analysis, and concurrent
to it, the developer and
user should agree on the
amount of accuracy they
wish in the inputs, out-
puts, processing (which
error analysis should
uncover), and constants.

Often routines provided
in a math library are
used. These library
functions should be
checked during design
for compliance with
accuracy requirements.

Having performed the
error analysis in AC.1
(1) and AC.1 (2) it is
necessary during design
and implementation to
satisfy those needs.

During debugging and
testing in implementa-
tion it should be noted
whether the analysis-
set tolerances are
satisfied by the outputs.

3-20

-~ ann ey ot TR

I i g

o

~

g A g " -

- ———

B

L TRERR AN

Rt

of "earning" routines to calculate the complicated question of how 1 ~h of
a policy has been "earned" over periods of time. For each new applicat+ion,
the accuracy of these routines should be checked for compliance with overall
requirements. Calculation of inventory reorder points or budgetary balance
also fall into this category.

AC.1 (4) is the check that the design and implementation of the algorithm
satisfies the requirements. Situations to emphasize in this area might
be round-off errors, number of significant digits, reorder point calculations,

etc.

AC.1 (5) is a check that during debug and unit test, outputs are checked for
compliance with accuracy tolerances. Here report formats as well as calcu-
lations can influence the accuracy of the outputs.

Thus each element of measurement within the accuracy metric has signifi-
cance and is applicable to an MIS environment.

As a more specific example of how the metrics apply to COBOL, one of the
measurement elements (element (5) in table 3.4.2-3) of the Code Simplicity
Metric (SI.4) is a check that the module is not self-modifying. In a
COBOL program, this check would be for the use of an ALTER Statement.

Table 3.4.2-3 Code Simplicity Metric

CODE SIMPLICITY SI. 4 MEASURE OF CODING SIMPLICITY (by module)
(1) Module flow top to bottom.

{2) Negative Boolean or complicated compound D
Boolean expressions used.

(‘ R 1_of abave \

7 executable statements)

(3) Jumps 1a and out of loops D

O

{# single entry/single exit loops)
total ¥ Toops
{4) Loop index modified
(- f loop indices modified)
total ¥ Yoops 4

(5) Module s not self-modifying.

(6) A1) arguments passed to a module are
parametric.

(7) Number of statement labels.

0- # labels)
¥ executable statements

{9) Single use of varfables,

0]

(.|

(8) unique names for variables. (|
: (]

3

The following example illustrates the ALTER construct in COBOL, and its use in
modifying the processing in a module. A similar example is given in [YOUE72].

PRy ey oy R

A COBOL Program with ALTER Statements #

READ-INPUT. READ INPUT-CARDS.
IF TRAN-CODE=Q THEN ALTER ERROR-SWITCH TO
PROCEED TO TOTALS-PARA.
ELSE IF TRAN-CODE=1 THEN ALTER ERROR-SWITCH TO
PROCEED TO FINAL-PARA.
ELSE ALTER ERROR-SWITCH TO PROCEED TO ERROR-PARA.
ERROR-SWITCH. GO TO ERROK-PARA.
ERROR-PARA. d
MOVE TRAN-CODE TO ERROR-TYPE.
MOVE QUANTITY TO ERROR-AMOUNT.
MOVE DOLLAR TO ERROR-DOLLARS.
WRITE ERROR-FILE.
GO TO READ-INPUT.
TOTALS-PARA.
COMPUTE TOTAL-QUANT=TOTAL -QUANT+QUANTITY .
COMPUTE TOTAL -DOLLARS+TOTAL ~DOLLARS+DOLLARS .
‘ MOVE TRAN-CODE TO ORDER-TYPE.
MOVE DOLLAR TO ORDER-DOLLARS.
BE MOVE QUANTITY TO ORDER-AMOUNT.
WRITE ORDER-FILE.
GO TO READ-INPUT.

.

This practice introduces difficulty from both a static sense and a dynamic
sense. The module is difficult to understand (static) and debugging is
very difficult since the state (dynamic) of the module when an error occurs
is uncertain

3-22

Another example is the Effectiveness of Comments Measure (SD.2) shown par-
tially in table 3.4.2-4

i
i
b
]
|

Table 3.4.2-4 Effectiveness of Comments Measure

EFFECTIVENESS OF SD. 2 EFFECTIVENESS OF COMMENTS MEASURE

o
PENTS (1) Modules have standard formated prologue D
comments which describe:

- Module name/version nymber
- Aythor

- Date

- Purpose !
- Inputs 1
- Qutputs

- Function

- Assumptions

- Lim{tations and restrictions
Accuracy requirements

Error recovery procedures

References
1. L modules violate rule
tota ules

{2) Comments set off from code in un{form manner
1. ! _modules violate rule
ota uTes

(3) AN transiers of control & destinations
commen ted
1. 1 modules violate rule
ota ules

(4) AY1 machine dependent code commented D
1. 1 madules violate rule
tota modu les

g d

A1l of these measurements are important in COBOL. The first element, prologue
comments, can be accomodated by the Identification Division and a REMARKS sec-
tion. The Remarks Section should be set off as a comment, though, since it

1 is no longer in the ANSI Standard.

3-23

-

- - - s e S i el
Example:
IDENTIFICATION DIVISION.
PROGRAM - ID. SAMPLE 1.
AUTHOR. JIM PROGRAMMER.
INSTALLATION. COMPUTER CENTER.
DATE - WRITTEN. SEPTEMBER 17, 1978.
DATE - COMPILED. SEPTEMBER 17, 1978.
SECURITY. UNCLASSIFIED.
* REMARKS.
* MODULE NAME/VERSION - SAMPLE 1/VERSION 2 INCLUDES MODIFICA-
* TIONS OF 19 MAY 77, 22 JUN 77, 15 AUG 77, 7 DEC 77,
* 1 MAY 78, 17 SEP 78.
* PURPOSE - TO PROVIDE A SAMPLE IDENTIFICATION DIVISION FOR
* A COBOL PROGRAM WHICH COMPLIES WITH METRIC SD.2(1).
* NOTE THAT THE IDENTIFICATION DIVISION, AND COBOL
* DIVISION/SECTION STRUCTURE PROVIDE MUCH OF THE
* REQUIRED INFORMATION.
* THE ALIGNMENT SHOULD BE SUCH AS TO PROVIDE EASY
* SCANNING.
* INPUTS/OUTPUTS - PROVIDED IN THE INPUTS-QUTPUTS SECTION
* BELOW. ﬁ
* ASSUMPTIONS - NONE.
* LIMITATIONS - NONE. ‘
* ACCURACY REQUIREMENTS - NONE.
* ERROR RECOVERY PROCEDURES - SHOULD BE DOCUMENTED AND
* REFERENCED HERE.
. * REFERENCES - DOCUMENTATION TITLES SHOULD BE REFERENCED
! * HERE.
3-24
. - - e e e

3.4.3 DELETED METRICS
Deletion of individual metrics was based on 3 criteria:

Difficulty in gathering actual measurements.

2. Inapplicability to either the COBOL language or to the MIS
environment, so the metric is not generally applicable.

3. Redundancy.

We show some examples of deleted metrics below. A complete list of met-
rics may be found in Appendix B.

Example:

SI.1 Design Structure Measure:
(2) No duplicate functions

SI.1(2) has been deleted because in actual practice an analysis of
the purpose of a function is too time-consuming and arduous a task
to justify. In any case SI.1(1), SI.1(3), and SI.1(4) should
adequately compensate for its elimination.

Example:

SI.1 Design Structure Measure:
(7) No global data

This measure has been deleted for two reasons. The first relates

to the fact that COBOL is not a block structured language, and thus
variables local to a block cannot be implemented. The second is the
fact that most MIS applications are data-driven and the passing of
common data from one process to another is not only necessary, but
positive.

3-25

Example:

SE.1 Storage Efficiency Measure:
(3) Common data defined only once

This measure has been deleted since it is redundant with SE.1(11)
below:

(11) Free of redundant data elements

1- # redundant data elements
data elements

We believe that SE.1(11) is the more effective measure of data
conciseness.

3.4.4 MODIFIED METRICS
Certain metrics have been modified to make them more applicable to the

COBOL environment.
Example:
Descriptiveness of Implementation Language:

(5) One statement per line

continuation + multiple
statement lines
1- total # lines

Since COBOL is a free-form language and sentences may be sizable
and still perform a useful structuring function it was decided that
a statement should be interpreted in COBOL as a verb clause. Thus
no penalty is assessed for a situation like the following:

3-26

Example:

IF IP-TRAN-CODE NOT EQUAL '0'
OR IP-TRAN-DATE EQUALS '0178*
MOVE ZEROS TO OP-TRAN-TYPE
MOVE IP-TRAN-DATE TO OP-DATE.

Thus when applying this measure to COBOL it will be interpreted as
follows:

(5) One verb clause per line

lines having more than one
1- verb clause
total # lines

Example:

MO.2 Modular Implementation Measure:
(2) A1l modules do not exceed standard module size (100)

modules > 100
1- total modules

The intent of this measure was to identify the
number of modules which exceed the structured
programming guideline for module length. g

The relative difficulty which a programmer has in implementing sub-
programs in COBOL makes it hard to adhere to this rule since data must
be passed in the same precision and length as in the calling routines.
Instead, following YOURDON [YOUE76], we define a micromodule to be a
named paragraph. In COBOL this measurement can be interpreted as para-
graphs should not exceed 50 1ines or one page of output.

The measurement has been changed to

Module Size Profile
The module length should be recorded and the length of
micromodules should also be recorded in the case of a
COBOL program,

3-27

Another area where our metrics deal with an important issue or charac-
teristic but further emphasis, clarity, or sophistication is felt to be
necessary is that of data bases. Two measurements, EE.3(1), data grouped
for efficient processing, and EE.3(5), data indexed or referenced for
efficient processing, represent a static and dynamic view of the data
base area. The application of these metrics may be very difficult de-
pending on the complexity of the system and the size of the data base
jtself. The additional measurements added in this area include (in EE.3):

Size of data base

Segmentation or compartimentalization of data base

% of static elements (referenced but not modified) in data base .
% of dynamic elements (modified) in data base

A recent publication by McClure [McCC78] provides concepts of well-structured
COBOL programs. To illustrate the consistency of our metrics with her
concepts, Table 3.4.5-1 relates existing measures with six properties identi-
fied in [McCC78] as required by a well-structured program:

Table 3.4.5-1 Structured Concepts Related to Metrics
PROPERTY RELATED METRIC

Property 1: The program is partitioned MO.2(1)
into a set of hierarchically
ordered modules.

Property 2: The program controls structure SI.1(1) +
follows a simple, hierarchical M0.2(3) - (7)
scheme.

Property 3: Module construction is stnad- $D.3(2)
ardized.

Property 4: The use of program variables $D.2(6)
in the program is made
explicit.

Property 5: Error processing follows normal ET.1(2) - (3)
control flow.

Property 6: Well structured documentation sD,2
is required in the program

3-28 code.

Lo b ey

.

LA 4 SN

R i T SR A

3.5 ARMY MIS AND AIR FORCE SOFTWARE DOCUMENTATION REQUIREMENTS SOURCES
This section defines the sources of software documentation requirements
for Army Management Information Systems (MIS) and Air Force software
applications.

Army MIS documentation requirements are contained in USACSCM 18-1
While the Air Force requirements come from MIL-STD-490 and DoD

4120-17M.

In defining the sources of documentation requirements we developed the
following outline of generic software project phases:

System Requirements Definition
Functional Design

Detailed Design

Implementation

Formal Testing and Verification
Software Maintenance

Operations

3.5.1 SYSTEM REQUIREMENTS DEFINITION

The system requirements document is the top level document in a system.
The design of the entire system is based on requirements identified in
this specification. The Army's MIS system requirements are documented
in Volume I, Executive Summary, as required by USACSCM 18-1, For Air

Force applications, the system requirements are contained in the Type A -

System Specification which is required by MIL-STD-490.

3.5.2 FUNCTIONAL DESIGN
Functional design is the process of defining what software functions a
system will perform, but does not address how they will be performed.

For an Army MIS, functional design is documented in the General Functional
Design Requirements (GFSR) and the Detailed Functional Design Requirements

3-29

PPAS

(DFSR) which are part of Volume IV, Reference Material as defined in
USACSCM 18-1. The Air Force follows the requirements in MIL-STD-490
for Type BS5-Computer Program Development Specification. The B5 document
is sometimes referred to as the Part I Specification.

3.5.3 DETAILED DESIGN

The detailed design is developed from the functional design and describes
how each software functional will be performed. The detailed design for
an Army MIS is contained in two volumes as described in USACSCM 18-1;
Volume V, General System Analysis Documentation and Volume IV, System
Program Documentation.

Detailed design documentation for the Air Force is contained in the Type
C5 - Computer Program Product Specification as required by MIL-STD-490.
The Type C5 document is sometimes referred to as the Part II specification.

3.5.4 FORMAL TESTING AND VERIFICATION

The Ariny requires some test planning documentation in the GFSR which is
part of Volume IV, Reference Material, however, some classes of programs
do not require formal test documentation, Chapter 5 of USACSCM 18-1
contains requirements for the documentation of test planning, test con-
ducting, and reporting.

Air Force guidelines for documentation of the Test and Implementation
Plan and the Test Analysis Report are contained in DoD 4120,17M.

3.5.5 SOFTWARE MAINTENANCE
Software maintenance includes software error correction and modifying,
adding, or removing software functions,

USACSCM 18-1, Chapter 9, ADP System Maintenance defines documentation
for software maintenance for an Army MIS. DoD 4120.17M describes the
requirements for a Program Maintenance Manual.

3-30

P ——

3.5.6 OPERATIONS

Operations includes those functions required by an operatibn or system
user to exercise the software system. USACSCM 18-1, Volume III, Opera-
tions and Maintenance, contains the documentation defining system opera-
tions for an Army MIS. Operations for the Air Force are documented in
the Computer Operations Manual as defined by DoD 4120.17M. Volume II,
User Documentation as defined in USACSCM 18-1 contains user information
for an Army MIS. DoD 4120.17M defines the User Manual for Air Force
Systems.

3.5.7 COMPARISON

A comparison between documentation requirements was planned in an initial
report plan. At first, the comparison was to be between Army require-
ments and Air Force requirements., To be of more general use, it was then
felt that a more meaningful comparison would be between MIS documentation
requirements and C2 documentation requirements. Neither comparison has
been documented for the following reasons:

e A single comparison using only the documentation specifications
(the Military Standards and CSCM 18-1) would be ambiguous since
it is the interpretation and enforcement of those specifications
that are important.

e A single comparison using our C2 environment and the MARDIS
environmeént could not be generalized and would be misleading
as representative of a comparison of all AF/Army systems or
of all CZ/MIS enyironments.

e The quality (including completeness and consistency) of the
documentation is what is important. Different applications
require different levels of detail in their documentation.
However, certain key information should exist, The metrics
which are applied to documentation are oriented toward asses-
sing the quality and the existence of the key information.

3-31

To provide some general observations about current documentation reguire-
ments relative to the general application categories of C2, MIS, and
support software, the following points are made:

0 C2 environments have the most formal, voluminous, detailed
documentation requirements., These systems are almost always
developed in a government acquisition manager-development
contractor environment where formal contractual requirements
are levied on the developer for deliverable documentation. The
requirements are usually a rigorous application of military
standards with additional local requirements also imposed. In
some cases, detailed outlines of what information should be pro-
vided in each document are given. The documents are milestone
driven and often delivered more than once in draft, final, and
updated forms.

e MIS environments have less volume and detail in documentation
than CZ. The systems are more typically in-house development
efforts. The USACSC, for example, is the central developer of
multicommand MIS for the Army. The documentation requirements

are more like formal in-house standards. The user/customer is
less Tikely to require additional documentation other than the
normal standards. The reviews and timing requirements of the

documents are less strict.

e Support software, unless developed for commercial marketing,
usually has only very informal documentation. At best the
documentation requirements may follow some informal in-house

development standards. Many support software tools are devel-

oped without a wide user population in mind or with little user
interaction early in the development process. Often, a software : N
tool will be developed as a prototype and then evaluated by

users after completion of the initial development.

E

3-32

i Y TP N

[

i T o e

o ————

Appendix A provides additional information on the USACSC documents
typically produced during an MIS software development. Appendix B,
RADC TR-77-369, provides a description of the documents typically
produced for an Air Force C2 software development.

3-33

e

A

SECTION 4 :
APPLICATION AND VALIDATION OF METRICS

4.1 APPLICATION APPROACH
The metrics established in RADC TR-77-369 were applied under this contract

to two systems described in the subseguent paragraphs. The operational
: and maintenance histories of the two systems were then used to determine
the validity of the metrics as indicators of software quality. The

g application and validation are described in this section, i

T < e g A s o e e g

e -

4.1.1 MARDIS OVERVIEW

The Modernized Army Research and Development Information System (MARDIS) is
a vertical management information system. MARDIS supnorts the program form-
ulation, phase schedule, and budget apportionment processes in R&D through
the processing of resource, performance, and milestone data.

MARDIS assists the R&D community by providing timely, accurate,and consistent
management information dealing with the Army's RDTE program. The source of
most of the data in MARDIS originates from the laboratory scientist, techni-
cian, or engineer engaged in research and development. The information includes
performance, schedule, and resource data. The system takes information once
included in 21 separate R&D reports and consolidates it into a single report,

thereby eliminating redundancy and insuring data consistency.

MARDIS DOCUMENTATION DATA BASE
The following documents are being used to evaluate the MARDIS software sytem:

———— —— .

Source Code Listings

General Functional Specification Requirements
Detailed Functional Specification Requirements
Project Master Plan

System Documentation (Volumes I through VI)
Software Change Requests

REMARCS Manpower Data

MARDIS Conversion Plan/Report

4-1

- — g
j

The MARDIS system has 28 COBOL programs, consisting of approximately 54,000
lines of code. Because of the unique requirement for high portability which
the U.S. Army Computer Systems Command must satisfy in each of its delivered
systems, a special preprocessor is used to accomodate the COBOL dialects
implemented on the IBM, CDC and UNIVAC computers used at various Army instal-
lations.

T B et At . 48 - o € s

o e

4.1.2 1ISDS OVERVIEW

The Integrated Software Development System (ISDS) is an evolving collection
of software tools and aids which has been developed under an independent re-
search and development project at GE. ISDS consists of several subsystems
which support the various personnel and processes involved in the software

O i SO N

s e W A e e
e o et ..

e e 3o e

developments. The subsystems are:

e Computerized Interactive Charting System (CINCH)
- Assists in interactive development of graphic design material. : %
e Chart Analysis Subsystem N
- Performs various analyses on design material such as standards
enforcement, path flow analysis and complexity measure calculation.
e Program Design Language Processor/Analysis Subsystem
- Accepts, formats, and analyses a program design language. An-
alyses include calculation of a complexity measure and creation

of a hierarchy chart.
e Programming Language Processors/Parser Subsystem
- Includes structured language preprocessor and generalized parser.
Currently parses FORTRAN, JOVIAL, and PASCAL.

The 1SDS project is directed at developing practical methods for improving

the software development process throughout all phases of development from
requirements analysis to maintenance. In particular, it is concerned with
too's which aid in reducing problems associated with the high cost of soft-
ware development, satisfying customer requirements, meeting contract shedules,

and generating adequate documentation.

4-2

ISDS DOCUMENTATION DATA BASE
The following documents where used to evaluate ISDS:

Software Development and Implementation Aids IR3D Project Final Report

for 1974, GE TIS 75CISO1, P. Richards and P,Chang, July 1975.
Software Development and Implementation Aids IR&D Project Final Report
for 1975, GE TIS 76CISO1, P, Richards and P. Chang, January 1976,

Locialization of Variables: A Measure of Program Complexity, GE TIS
76CIS07, P. Richards and P. Chang, December 1976,

Enhancements to the Integrated Software Development System (GE/ISDS),
GE TIS 76CIS04, C. Lopez de Nava and W, Neff, December 1976.

Developing Design Aids for an Integrated Software Development System,
Proceeding of 1977 Computers in Aerospace Conference, P. Richards,
December 1977.

“"The Integrated Software Development System - ISDS Users Manual for
RSC-11D and RSX-11M", GE Working Paper, de Nava, C.,, September 1978.

“Computerized Interactive Charting System - Program Specifications",
GE Working Paper WP76SEL03, de Nava, C., October 1976.

These documents, except for the last two, are technical reports describing
IR&D efforts. Contained within each report is a statement of a problem to
be solved or a requirement for an additional capability (tool) for the

GE/ISDS, a statement of the design approach, and the results of the project.

Each document therefore contains the progressive information usually pro-
vided during a large scale development effort. They will be utilized in
that manner for application of the metrics. The last two documents are
more typical of documents found in normal system developments, a users
manual and a program specification document. '

4,1.3 APPLICATION OF THE METRICS

The format with which the metrics are presented in Appendix B is conducive
to iTlustrating their relationship with respect to the criteria and fac-
tors and their progressive application during the phases of development.
It is not conducive to actually applying the metrics, i.e., taking the

L [9P SV

e i

measurements from the product available during development. The purpose
of the second volume of this report, the Software Quality Measurement
Manual, is to describe the procedures for applying the metrics during a
development. The tool which was developed to facilitate application of
the metrics in a formal manner are worksheets, The worksheets are des-
cribed in the second volume of this report. A sample is shown in'Figure
4.1.3-1. The worksheets facilitate the manual collection of the raw data
used to calculate the metrics, They are organized by phase, by system

or module level measurements, and to provide a systematic, organized view
of the product being inspected.

To demonstrate the thoroughness or coverage provided by the worksheets,
Figure 4.1.3-2 contains a very simple example of the elements of a module
that were examined or counted using the source code worksheet (Metric
Worksheet 3). The individual elements are underlined if a question or
count on the worksheet caused the inspector to look at the particular
element. Note the completeness of the coverage. These worksheets are
oriented toward the manual applications of the measurements. If tools
exist in a particular environment which allows some of the metrics to be
taken automatically then the worksheets can simply serve as a bookkeeping
form for those particular measurements.

The worksheets presented in the manual represent the final form derived

during this study. A preliminary form was used to take the measurements
from the ISDS and MARDIS products.

=

R

; o . T N "3.@'-\"7"' e
1 .
"\“\d\q.mc‘w“’ o)
ariay
METRIC WJORKSHEET
o N 2
awe " " R e are JESIGN/SYSTEM LIVEL AME oATE:
o :
ot T et ref® il FsPecTOR;
3 la
e at av [, oMy
‘::.MI\‘) € POt et ETENESS (CORRECTNESS, RELIARILITY
! " ¢ 1 Is =
E $uf) s there 4 matrix rei i i
wow ! jpperr reiating itamized remen -
e ecatd those requiraments® et ts 10 nadules enich inplement
How many major func:ions L.)

a?)

Comoutational
L3gie
Inout/oucoyc
Jata nandliag

o 0S/Systam 5
14 .1.\ v . X ar "upwn
q, turoer of macnine ! ments - 8. ¢ o008 T Cantiquration
&uv.um"-_ < arative Seatef ‘g, queea? T wnat AT uun./gcu““
wugoe! gt 28 o 533 1000 e of 1060 ipaicies ’ ":::;g.
et o v yszem
. sumoer 2f atd naniould - 18- m“‘“auo apetrics -_“.E::rféﬂ‘ utine/Sy
O et 1S) vy, et 7 Sane (T de Procassing
3. WS Ay format ﬂ“‘n‘“mg'(. \ mocule 1icated r intarface
3+ (go "0t '-‘u.'::éra cas ML at iR 5 aeqat’ve fx;":”m“ st meerfaca
wupoer 3T T 18, yume” e ‘ F requestad
T - e ! et _ € 1anquad® used nges
e crues et 2ata
N 19. At ™ ag2of (are rnere ‘ 1 varadla
0 aeing e i ¢ion
(o] 14

nt errors

tation
t

1iance

an

Figure 4.1.3-1 Metric Worksheets

4-6

|

Y- K- XL F Y™

ERRUR S

~

‘n
e

e

l;qn jo
>

& B

____SEARCH THRU DATA
__.__OF THE SYMBOL

SUBROUT INE TABSCH(NSYM, I ,NFLAG)

w/mua/%i

Figure 4,1,3~2 Worksheet Coverage

4.2 VALIDATION APPROACH

The validation approach was basically the approach described in RADC-TR-
77-369 and in paragraph 1.3 of this report. This approach was augmented
with some additional analyses made possible by the historical data avail-
able. These analyses and some assumptions that were necessarily made due
to the historical data available will be described in the subsequent
paragraphs.

4.2.1 MARDIS HISTORICAL DATA

The historical data provided about the MARDIS system development and
operation consisted of (1) a Final Report documented after the effort to
make the system compatible with the three computer evnironments, (2) Sys-
tem Change Requests (SCRs), and (3) a resource accounting (REMARCS)
system listing.

Seventy-six (76) SCRs were provided. An example is in Figure 4.2.1-1.
Typically an SCR is documented when a problem or enhancement has been
identified. The problem is identified, a solution recommended, and a
priority assigned for completion of the necessary modification. The
resource accounting system maintains person hour expenditures against
the SCRs. Over 50 man years of effort were recorded on the REMARCS
Tistings provided.

Our initial intention was to use this data to provide the quality rating
for MARDIS. However, because (1) we found little overlap between the
SCR's and the REMARCS data, (2) the SCR's were not very explanatory, and
(3) only 2 SCRs seem to cover the entire conversion effort, these data
sources were only used as a gross indication of the effort and as insight
into the problems that were encountered. Instead, we utilized the number
of changes that were made to the source code and the problems identified
in the final report as more detailed indicators of the portability of the
system. The changes were identified by the multi-line entries in the
source code relating to the different computer environments. Our

_* SYSTENS CHANGE REQUEST (STh)
1. T0: 2. FROM: 3. ORIGILATOR 1O
COR, USACSC COR, USACSC R11-A159-213
ATTN: CSCS-0A ATTN: CSCS-FSS-C 4. POLIIT OF CTNTACT.
Ft. Belvoir, VA Ft. Belvoir, VA L. Whitt, 756-5350
[C CATEGLRY ([Cricrr one): 6. SUBSYSTER! 7. IRCIDINT ENCOUNTERED
- -) -1 P
(Temensency [Mnoutne| Procraniio _ALL STATION
Jurcent Cleaiority| vERsiGH o DATE e |
8. SHORT TITLE. 120 CHARACTERS VMAXIN UM INCLUDTG SPACESI.
| _MULTI-ADPE CONVERSION —
== — ——— —
9, DOCLLEHTATION ICEMTIFICATION
A. DPl USER MA.‘JU(’.LS (2 new) m C. EXECUTIVE SCAT\VARE
B. FUNCTIONAL USER tianuals [D. FUNCTIONAL SOFTWARE [(J
10. ATTACHMENTS
A." MAPS O D. FILE PRINTOUTS 0 . outrur uisTs
8. CORE CUI.PS O E. CONSCLE SHEETS [0« sosstaean SEQ o
MULTT-A
R3PACT STATENENT O F. DFSR Bd . oTHERCAWERSTON PLAN

11 RARFRATIVE:

A. PROSLEM DESCRIPTION: MARDIS must be made compatible with CDC and UNIVAC ADPE as
well as [BM

8. RECOMVENDCED SOLUTION/ACTION TAKEN: Make necessary program, systam and cocumentatios
changes to establish MARDIS as a multi-ADPE AMIS, compatibility will be required to
operate on: I3M 360/370 (0S)

CDC 6500/6600 (SCOPE)
UNIVAC 1106/1108 (EXEC 2)
Wark will be performed IAW attaghed plan at the highest wark oriority. 1

12. COFY FURNISHED" 13. PREPANCID CY:

DATE: SGNR: DATE: /'//5:/7"6

14. PROFPONENT AGENY REVIEW:

A. TYPE OF CHANGE B. CLASS OF CHANGE C. EXTENT OF CHANGE
FUNCTIONAL REGULATCRY* [mador
[(FTecrnica NON-REGULATORY [wanor

D. REFERNED TO ARA FOR ANALYSIS (DATE):

E. DISPOSITION:
(] ApPROVED. REQUESTED IMPLEMENTATION:
[] cisapeaoven

F. FUNCTIONAL GUIDANCE: (O attacHeD [CjnoT requiReD
D TO BE PROVIDED 9(/ /
/ n /
SIGNED: //‘/L/L/ﬁ \7/‘:2/(DATE:
< w
/
DA Form 4157-R, Y'Feb 76 /

Figure 4.2.1-1 Example System Change Request
4-8

assumption is that the effort to transport the original system is propor- !
tional to the number of changes in the source code, This assumption was made ;
basically because the data avajlable did not allow more detailed analysis, R
Other changes described in the final report but not identified by multi-line

entries were analyzed for impact, E

The data available supported formal analysis of portability, Less formal
assessments were made concerning the maintainability of the software,

4.2.2 1SDS HISTORICAL DATA
The ISDS system was developed as a prototype tool in an R&D environment. ;
As such, a formal software problem reporting system was not in place
during its development. In the past year, ISDS has been transferred to

a number of GE installations. In transfering the system, considerable
effort was made to transition the software from a prototype version to

a production tool. This effort during a four month period was captured
by use of a data collection form. The form was designed to collect the
effort being expended on an ISDS task (a funttionally-related group of
routines) by quality factor. For example, if changes were being made to
enable transportation of a task to a different operating system, the
effort to make those changes was recorded against Portability, If
changes were made to enhance the Maintainability of the software, such

as the addition of standard format prologue comments, use of a structured
language, conforming with naming conventions, etc., then effort was re-
corded against Maintainability. Figure 4,2.2-1 illustrates how we cap-
tured the effort required to transport from the prototype version of

ISDS on a PDOP 11/40 running under the RSX 11d operating system to a
number of other environments. The original source code was maintained

as well as the new version.

The documentation supporting ISDS is also representative of an R&D or
support software environment. The documentation did not represent
formal specifications but were instead technical reports describing
the R&D project. Involved in transitioning ISDS to a production tool

Uo1302||0) ®IeQ SOSI 1-2°2°h 4nbLy

NOILVZIWILHO 3WIL NNY -
AIN3IDI443 e

ALITNOILONNS 0L SIONVHD -
ALITIGIX37d o

SIId -
SSANLIIYY0D o

SINILNOY WILSAS - :

0009H NOILVINISTYdI vivd - m
0L/l JOVOYILNI SNOLLYIINNWWOD - i
St/11 ALITISYINOd ® »
Ot/LL dad ® ;

5029 SNOILN3IANOD DNIWYN -

VI NYY1¥04 QIINLONYLS -
WLL-XSY SINIWWOD QIQ0IBWI - Ov/LL dad
PLL-XSY ® SIN90T0Yd - SO PLL XSy @
NOILONGO¥d @ JONYNILNIWW 3dALOLOYd ®

4-10

INOW
ASvL MIN ——— oL 10143 @——— svL a0

has been the development of documentation which will support its operation
and maintenance. The documentation was not available during this study.

e e - A etrma—_—.
—m————

L L I

4.3 VALIDATION RESULTS

The validation results are presented at three levels corresponding to the
three levels of quality assessment analysis described in the Software
Quality Measurement Manual (volume II): Inspectors Assessment, Sensitivity
Analysis, and use of normalization function.

4.3,1 INSPECTORS ASSESSMENT

In evaluating the MARDIS and ISDS systems, a qualitative assessment of
the code was made as pari of the investigation. The qualitative assess-
ment (review or audit) would normally be part of a quality assurance pro-
gram and is enhanced by use of the worksheets and quantitative measure-
ments. The assessment identifies problem areas which should be addressed
in subsequent phases of the development.

GENERAL OBSERVATIONS OF MARDIS
Two quality factors analyzed in MARDIS were Portability and Maintainability.

PORTABILITY

Portability is a quality factor which is important to the Army Computer
Systems Command because of the operating environment in which it must
exist. This operating environment consists of multiple mainframes and
operating systems, and the attendant incompatibilities inherent in such
an environment. These incompatibilities force an overhead on software
development to create portable systems. In the instance of MARDIS, a
major redesign of the original system was undertaken to make the system
compatible with Honeywell and UNIVAC systems. Had such a requirement
been identified early in the lifecycle, the transition would have re-
quired much less effort.

The portability of a system written in COBOL is still a significant
problem even though government purchased computers used in business
applications generally use approved COBOL compilers,

L

P

A . e b+ - o A— e <%

. i e A P Bl V7 8T

The approach used by the MARDIS team was to redesign the code using a
strict ANSI COBOL subset. In the process of developing the new system,
they found that there was 16 compiler implementation anamolies

Table 4.3.1-1 breaks the anamolous cases into 3 categories: I/0, Semantics
of Implementation and Character Set. The I/0 category is any situation
where the operating system, which allocates system input and output re-
sources, interacts with the COBOL compiler. Semantics of Implementation
refers to differences in interpreting the language specification for the
compiler. Character Set refers to the available character set of the
particular machine. Eleven of the anamolies are semantic, 4 are I/0 and
1 related to character set.

One tends to expect some I/0 related problems, given the multiple hard-
ware environment. The semantical problems, however, are surprising since
a considerable amount of initial development effort had been put into the
original COBOL specification to enhance portability. The use of a subset
of the ANSI standard set alleviated many of the semantic problems for
MARDIS, However, the use of "muitiple-line code (duplicate statements,
each statement or group of statements targeted for a specific machine)
was especially necessary for 1/0 related code.

For example, the program PIOAYE, which updates and loads tables used by
other MARDIS programs, has multi-line code in the following areas:

INPUT - OUTPUT SECTION

FILE CONTROL

FILE SECTION

FILE DESCRIPTIONS (FD)
requests for CURRENT - DATE
carriage control areas

error return codes from SORT (IBM)

v ke Ay e £ -

o b R o S

e st i it

A . e -
e el

A

Table 4.3.1-1 Compiler Impiementation Anamolies

CASE 1/0 SEMANTICS OF CHARACTER
IMPLEMENTATION SET

1. SYSTEM DATES

" SYSTEM

2. TABLE INITIALI-
ZATION

3. GOTO DEPENDING
ON

4. REDEFINES

COLON

FILES IN SUB-
PROGRAMS

7. MOVE

8. RANDOMLY ACCESSED
FILES

9. INDEXED BY

ASSIGN TO X

SUBSCRIPTS OUT
OF RANGE

LINAGE CLAUSE

SPECIAL-NAMES *l X

LENGTH OF
PRINT LINE X

PARAGRAPH
NAME

DISPLAY VERB

4-14

RPN

The program P40HAUE, which selects and formats records for the Cost
Reduction report, has muiti-line code in the following areas:

o CONFIGURATION SECTION
® carriage control areas

It is significant that no multi-line code appeared in the P40HAUE LINKAGE
SECTION. This tends to indicate that the areas which impacted the Porta-
bility of MARDIS most were those where the compiled code had to interact
with the operating system, i.e., in those areas which dealt with I/0.

Py

A S ey

Thus the design strategy utilized by the MARDIS conversion team is an
effective one for controlling Portability - restrict the language used

R ——

to a subset common to the target machines (necessarily slightly lower
in level than any single implamentation language) and, in those instances :
where the compiled code must interact with the operating system, control

the code through the use of a pre-processor. Had the standards and con-

ventions in effect during the initial development of MARDIS imposed these
restrictions on the developers the conversion effort would have been

significantly less.

MAINTAINABILITY [
The Maintainability of MARDIS is impacted by the size of the sytem (54,000 ?
Tines of code), the lack of modularity, the lack of comments and the evi-

dence of multiple authors. The software criteria which relate to these
problems are conciseness, modularity and consistency.

The size of the system makes it less concise. Halstead's measure is used
as a metric for this criteria. The combination of the natural verbosity

of COBOL and the fact that quite a lot of information about the system is
stored in the program, for example as tables, contributes to the relatively
larger sizes of COBOL programs. Since the language and application mili-
tate against the cenciseness of MARDIS, there is fixed "overhead" impact

on the system. This must be controlled as much as possible as the system
evolves during the lifecycle.

4-15

T——

|

A S ——— e e i

B . 2 T

It is difficult to implement modular systems in COBOL because of the diffi-
culty of coding subprograms. This results in larger programs than is
generally convenient to read or write. This impact on ease of scanning

or reading a program directly effects Maintainability. In order to in-
crease modularity, COBOL programmers tend to "localize" code, so that
single functions have all their statements isolated in a paragraph or
section. However, this is left to the discretion of the programmer and

is not a "natural" attribute of the language. In the case of MARDIS,

the average program length exceeded 2,000 lines of code.

The lack of adequate comments in MARDIS makes it difficult to identify
the function of particular groups of statements. Generally, COBOL is
said to be a "self-descriptive" language, which, relative to many lan-
guages, is true. The code, however, only tells us what is happening,
not why it is happening. This "why" aspect can be very helpful to the
maintenance programmer, since it can help him to identify the function
and avoid side effects in his modifications to the code.

In reading MARDIS code it becomes immediately apparent that there were
multiple authors involved in its development. On the face of it, this
is obvious given the size of the undertaking. Beneath the surface,
however, is the realization that a uniform development methodology with
adherence to uniform standards and conventions was not used. Uniformity
and standardization of coding practice, for example, in indentation or
naming of data, is an important aid to establishing Maintainability.
This does away with the need to learn many different personal styles of
coding and can Jead to uniform product quality.

In general, the MARDIS doucmentation provided a good overview of the
MARDIS system, its purpose and its operation. However, the documentation
did 1ittle to support its maintenance. Maintenance-oriented documenta-
tion requires a yreater level of detail in its description of design and
implementation strategies and description of the internals of the system.

GENERAL OBSERVATIONS OF ISDS
The initial version of the ISDS code reflected its development environment, |3
an R&D or prototype development. In such a development environment, more !

concern is shown in the algorithm development or technique than in the
user interface or operability. The initial concern was to build a proto-
type quickly and utilize the prototype to evaluate the effectiveness of |

. r
the tool in support of a software development

Most of the personnel involved in the developr it of ISDS were aware of
and practiced modern programming practices. In almost all cases, struc-
tured programming techniques and a structured FORTRAN pre-processor were
used. However, there were not coding standards and conventions or

enforcement techniques in place in the initial development and the re-
sult is that different styles or approaches to modern programming
practices are evident. While this is a step above "unstructured" tech-
niques, the lack of consistency has a negative impact on the maintaina-
bility of the system, i.e., uncontrolled modern programming practices
are not much better than traditional techniques.

The conversion of ISDS to a production environment required considerable
effort but has resulted in a much higher quaiity product. The changes
made to the system, illustrated in Figure 4.2.2-1, indicates what specif-
ic attributes of the software where enhanced.

The documentation reflected the code. The interest was in the algorithms
and functionality of the software. Little concern was shown for opera-
bility or methodology of use. The transition to a production tool is
attaking that problem.

The modularity of ISDS was excellent. The average size for a module was
less than 100 lines of code. This attribute alone had a significant
effect on its transportation to other environments and its transition to
a production tool.

4.3.2 SENSITIVITY ANALYSIS
The sensitivity analyses proved to be a very effective quality assessment
technique. The analyses possible with the quantitative data available
from applying the metrics provides an immediately useful quality assurance
technique.

MARDIS SENSITIVITY ANALYSIS

Table 4.3.2-1 provides a subset of the statistics of the MARDIS system
evaluated. Note the large size of -the programs and the large number of
branches (most of which are PERFORMS). The profiles provided are inter-
esting from the standpoint that two programs were very large (over 10,000
lines of code) and represent maintenance difficulties just from their
size. Also, 27% of the programs contained most of the changes which had
to be made in transporting the system (greater than 10% of the code in
each of those programs had to be changed). These are the programs which
consumed most of the effort. This illustrates a benefit of the metric
analyses. These programs are identified and can be emphasized in plan-
ning for a conversion effort.

There were very few comments. Only three percent of the lines of code

were comments and in fact one-third of the programs contained no com-
ments at all except for a standard ten line comment at the beginning

about the multi-computer version implementation,

These type of statistics are not only valuable for quality control but
statistics on language construct usage contribute to new standards and
conventions and avoidance of future problems [ALJIM 79].

TG ey e o T = O oy

3 R W T L AN T 1 . . e ok W« ey .

QIINVHD
%6/-05 %05-01 %010 3002 40 SINIT
10 1NID¥3d
: 3114044
SHY¥90Yd 3007
%0 %0€ %€l 40 ¥3INNN IN3ON3430
40 INI¥3d INTHOVN
3009
3002 40 SINIT 40 %5°2 :IIVHIAV INION3430
INTHOWW
: SIHINVYS
25 :I9VHINY Bk
3000 40 SINIT 40 %€ :IOVHIAV SINIWWOD
00001 < 00001 -000§ 0005-0002 0002-0001 0001-005 005-0 uwu«M
S3INAON
2 0 t L L v 40 43BN 3114084 371S
(3005 32¥n0S
L2 :SWYY90Yd 40 YIGWNN €202 39VYINY 0E9%S :TWIO0L 70800 40 S3INIT)
I71S WYH90Ud
$31151303S SIQWWW |-2°€' 2198l

4-19

AL ¢ 4

i 2 T

ISDS _SENSITIVITY ANALYSIS

Table 4.3.2-2 and 4.3.2-3 provide a subset of the ISDS statistics eval-
vated. Note the high degree of modularity evidenced by the statistics and
the high percentage of comments. In evaluating these statistics at a task
level (subsystem level) considerable variance was realized in percent of
comments and average number of branches. We were able to establish
significant correlation between those statistics and the effort required
to transport and enhance the various tasks.

As a more detailed analysis, the metrics related to Maintainability and
Portability were calculated for a subset of the modules of the new ver-
sion of ISDS and compared to the old version. Figure 4.3.2-1 provides
some examples. The acronyms are indexes into the metric table in
Appendix B.

These values were then compared to a relative indicator of the effort re-
quired to transport and enhance the maintainability of ISDS, The relative
indicator represents the percent of the total effort to enhance the
maintainability or transport the system., Table 4,3,2-4 provides some
examples of this analyses. Our analysis of this data was aimed at
determining whether the difference between the metric score for the initial
version and the new version correlated with the effort required to produce
the new version from the old version, The following metrics demonstrated
significant correlation (correlation coefficients better than .75):

SI.4 Coding Simplicity Measure

SD.1 Quantity of Comments

SD.2 Effectiveness of Comments Measure
SD.3 Descriptiveness of Language Measure
MO.2 Modular Implementation Measure

Se.1 System Software Independence Measure
MI.1 Machine Independence Measure

4-20

A surprising result was that the complexity measure did not improve
generally between versions, The reason was because we were using a
modification of McCabe's measure and there is no penalty for unconditional
branches, Therefore in cases where we went from an unstructured module
implementation to a structure implementation, and replaced GOTO's with
structured constructs. In these situations, the number of paths may

have increased or at least stayed the same, even though the structure was
more simple or easier to understand, This attribute was reflected in the
Code Simplicity Measure,

These types of analyses, using the quantitative technical statistics pro-
vided by the application of the metrics, can be a very beneficial aid to a
quality assurance person, The identification of how certain measures

vary in a system gives insight into the adherence to standards, what
characteristics need to be controlled by new standards, and which modules
vary from the average significantly and should be evaluated further.

4-21

B

L e

2002
INION3d30
%p :IOVHIAY INTHOVW
[S* :NOIS¥IA MIN
9'L :NOIS¥IA 470 SIHINVYE
: 39VHINY 40 IBHON
%29 :NOISYIA MIN
956 :NOISYIA 010
: J9VHIAY SINIWWOD
0052 005-002 002-001 001-05 05-0 JONVY 37IS
%5 %82 %06 %01 NOISHIA MIN (37dwvs
%5 %02 e %€ NOIS¥IA 070 NO 035vE)
$37N00W
40 ¥ITWON I71408d 3ZIS
v82 16 00972 :NOISHIA MAN (3007 374N0S
612 28 0p0SL :NOISYIA G10 NV4LY04 40 SINIT)
:SWYHD0ud 40 *ON : JOV4IAY W10L 3715 WYH90Yd
N
[4¥]
$21151303S UOSLJRdWO) UCLSUIA SASI 2Z-2°€'¥ 9tiqel -

D

. —a— ..

Table 4.3.2-3 ISDS Initial Version Statistics
AVERAGE STANDARD DEVIATION

TOTAL LINES

OF CODE (LOC) 85 54
LOC WITHOUT

COMMENTS 52 43
4 OF DECISIONS

(IF, DO WHILE, ETC) 7.8 7.5
4 OF UNCONDITIONAL 6 .2

BRANCHES (GOTOS) : :
OF EXITS/

ENTRANCES 2.3 -9
OF LOOPS 2.5 3.2
4 OF STATEMENT

LABELS 1.6 2.8
OPERATORS 47.8 35.5
OPERANDS 59.3 45.8
% COMMENTS 34. 19.
OF INPUT/OUTPUT) 8]

STATEMENTS : :
CALLS TO OTHER

MODULES ' 4.5 10.5
OF SYSTEM . 5

SOFTWARE REFERENCES : :
OF LOCAL

VARIABLES 8.3 6.3
OF GLOBAL

VARTABLES 3.6 3.9

4-23

R e —————

E e e

— s

ot i

-— e — -

Figure 4.3.2-1

Metric Score Comparisons

w
o~
]
<3
st g 6L g g 0 *430NI
HIVW
80° 50" o
6L s L L 1 sL° " 43ONI h
“SAS M/S :
1404 5
V .
9" ' L 8’ 9° 0 SINIWWOD
, 40 443
3 €L 05" 8L oL 65° 227 | SINIWWOD
i £l . : .
08’ 1L 60 g8’ 28° 02 9 12 | dWrs 3009 X
5¢ s 0 0 §2° €€ |ALIXINdWuo
INIVH
140443 WaN 10 140443 MaN a0 190433 Man a0 ,
w 3 INLLNOY g INILNOY v INILOOY

sisALeuy A3LALILSUIS SAST b-2°€°v 3Lqel

.‘Mw‘iv.\‘;,, - -
18’ 885" s | sz g 52" d30N1
6" 30" 00" HOh,
518" 529" L 5.0 L L e
SAS M/S
140d
01 0z 9 p- L b S INIWWO?
167443
09’ A 9' b 60" 92" S INTWHOD
0¢” g6’ L e 918" | 18’ 60 v p9- | ¢wIs 3007
- - ol ol 90° L0 | ALIX31dWOD
INTVW
190443 MaN a0 190343 WaN | a0 190133 LB T
4 INTLNOY 3 INILNOY a INILNOY

(te)

Ny

(panuLjuc)) sisAleuy A3LALILSUSS SAST p-2°¢ v 3LQel <

T ENADE NI, -+ b e B - S AR AAET N 2 G ¢ et

v st

S OB e ste—

e it -+ Aot et

4-27

L L S0° S0° G(8° 99° ‘d3ANI
HIVYW
10° 0 9l

96" 96° l l GL8" AN d30N]
“SAS M/S
140d
LS° g 98" G 98" (S° SIN3KWOD
40 443

. €L’ lg* 0g° 92" ’ 2¢"
20 10° 50" A € SINIWWOD
pS° 29° ls” 09’ 28" 33" dWis 34003
Ge° §e* 90" 90" - - ALIX37d40D
INTYW

140443 M3N aio 140343 M3N aio 140443 MIN 070

I INILNOY ’ H INILNOY 9 3INILNOY

(Panut3u0)) sisAeuy A31ALILSUIS SQSI p-2°€°Y 3[qel

. 2 i iR - amme o A s a—— e evm— -

4.3.3 NORMALIZATION FUNCTION ANALYSIS

The normalization functions established in RADC~TR~77~369 [McCJ77] were
modified or further validated based on the additional data sample pro-
vided by this effort. In addition, a normalization function for Porta-
bility was established. The same process used in RADC-TR-77-369 was used
in this study.

Table 4.3.3-1 provides a summary of the metric scores (average score and
standard deyiation) achieved by MARDIS and ISDS. These scores were val-
culated as a consistency check to evaluate if the metric scores were

reasonable with respect to our experience of applying them to JOVIAL code 144
during the Factors in Software Quality study.

The results of the normalization functiona analysis and derivation are
shown in Table 4.3,3-2, The table identifies a multivariate relationship }7
as well as normalization functions calculated for individual metrics. In '
most cases, the multivariate normalization function would b2 the preferred
relationship to use because greater precision can be achieved with it,

The metrics related to Maintainability at implementation were an exception
to this statement. Some of the individual metrics showed higher correla-
tion. However, in this case, the sample size or the fact that several
dimensions should be examined would still encourage the use of the multi-
variate relationship. However, in cases where data availability or ef-

r— g
.

fort to measure are limited, single metric relationships can be used.

Caution must be taken in using these results, Our sample size, even

though we have now applied the metrics to two JOVIAL command and control

systems (~ 40,000 lines of code), and COBOL financial management informa-

tion system (~ 50,000 lines of code) and a FORTRAN software support sys-

tem (~ 20,000 lines of code), is still small to place too much confidence !
in the results. It is significant, however, that relationships do exist

and our intuitions in establishing the measurements have statistical

reinforcement, As shown in Table 4,3.3-3, the measurements that exhibit

correlation to Portability and Maintainability, the quality factors
emphasized during this study, are logical. The metrics that did not
exhibit significant correlations are shown in Table 4,3,3-4, An
explanation or description of the action taken is provided,

4-30

Table 4.3.3-1

Metric Scores

METRIC AVERAGE SCORE SATANDARD DEVIATION
€0.1 .12 .14
Cs.2 .68 .42
ET.2 .02 .07
ET.3 07 .2
SI.1 .87 .09
SI.3 .23 .25
S1.4 .57 .07
MO.2 N .18
GE.2 .35 47
EX.2 .07 .26
SD.1 .35 .16
SD.2 .40 ;19
SD.3 .57 1
EE.2 .50 .16
EE.3 .85 .23
$s.1 Q1 .01
MI.1 .21 .49

.oy

= i i o

Table 4.3.3-2 Normalization Functions

o STANDARD CORRELATION
QUALITY FACTOR/NQRMALIZATION FUNCTIONS ERROR COEFFICIENT
RELIABILITY (DESIGN)
Multivariate .18 M(ET.1) + .19 M(S1.3) 7 .87
Function
Individual .34 M(ET.1) .18 .82
Functions
.34 M(SI.3) .16 .85
RELIABILITY (IMPLEMENTATION)
Multivariate .48 M(ET.1) + .14 M(SI.1) .33 .85
Function
Individual .57 M(ET.1) A .83
Functions
.58 M(SI1.1) 3 .78
.53 M(SI.3) .32 .78
.53 M(SI.4) .34 .77
MAINTAINABILITY (DESIGN)
Individual .67 M(SI1.3) .28 .88
Functions
.53 M(SI.1) .27 .83
MAINTAINABILITY (IMPLEMENTATION)
Multivariate .61 M(SI.3) + .14 M(MO.2)
Function + .33 M(SD.2) -.2 .06 .78
Individual 2.1 M(SI.3) .185 .89
Functions
.71 M(SD.2) .29 .74
.6 M(SD.3) .23 .84
.48 M(S1.1) .15 91
.43 M(S1.4) 7 .89

vl i i, B NI

Table 4.3.3-2 Normalization Functions (Continued) E
STANDARD CORRELATION
QUALITY FACTOR/NORMALIZATION FUNCTIONS ERROR COEFFICIENT
FLEXIBILITY IMPLEMENTATION)
Multivariate .22 M(M0.2) + .44 M(GE.2)
Function +.09 M(SD.3) KT .98
.6 M(M0.2) 12 .96
.72 M(GE.2) .15 .93
.59 M(SD.2) .16 .95
.56 M(SD.3) .14 .96
PORTABILITY (IMPLEMENTATION)
Multivariate .19 M(SD.1) + .76 M(SD.2)
Function + .25 M(SD.3) + .64 M(MI.1)] .05 .93
Individual 1.07 M(SI.1) .28 .90
Functions _
1.1 M(MI.1) .33 .90
1.5 M(SD.2) .39 .86
b]
- 4-32

Table 4.3.3-3 Results of Normalization Function Analysis

(Individual Metrics Which Exhibited
Correlation to Quality Factors)

PORTABILITY
SD. Quantity of Comments
SD.2 Effectiveness of Comments
SD.3 Descriptiveness of Language
MO.2 Modular Implementation
MI.1 Machine Independence
MAINTAINABILITY
SI.1 Design Structure Measure
SI.3 Complexity
SI.4 Coding Simplicity
MO.2 Modular Implementation
$D.2 Effectiveness of Comments

T3

Table 4.3.3-4 Results of Normalization Function Analysis
(Individual Metrics Which Did Not
Exhibit Significant Correlation)

FACTOR/METRIC EXPLANATION
PORTABILITY
MO.1 Degree of Independence System level metric
(Myer's) - not calculated

SS.1 Software System Independence System dependencies were for
the most part alleviated by the
use of multi-line entries in
MARDIS code. Further evalua-
tion required.

MAINTAINABILITY
cs.1 Procedure Consistency System level metric -
considered anomaly detecting
metrics
Cs.2 Data Consistency System level metric -
considered anomaly detecting
metrics
SI.2 Structured Programming Little variation found
- dropped from candidate
metrics
MO.1 Degree of Independence System level metric
(Myer's) - not calculated
SD.1 Quantity of Comments The percentage of comments alone
did not show significant cor-
relation - considered anomaly
detecting metric
4-34

B

PRI AR AR YD o~

Table 4.3.3~4 Results of Normalization Function Analysis
(Continued)
FACTOR/METRIC EXPLANATION
SD.3 Descriptiveness of Language Did not exhibit much variation
within system
€0.1 Conciseness (Halstead's The comparison of calculated
Tength) length with observed length
varied greatly

4-35

W ORABLTY SN A A . oy ae P I

A YERER

g g

Sioms.

it TR Tt e i e Gl e

APPENDIX A
PRODUCTS PRODUCED IN TYPICAL ARMY SOFTWARE DEVELOPMENT

This is a listing of documentation required by the Army for software develop-
ment according to CSCM 18-1.

SYSTEM DOCUMENTATION REQUIREMENTS
CSCM 18-1, Paragraph 6.1.1.4

A System Overview will be prepared by the developer whenever a multicommand
system has two or more subsystems. The manual provides the needed interface
between subsystems in a modularly developed ADP system.

SYSTEM DOCUMENTATION REQUIREMENTS
CSCM 18-1, Paragraph 6.1.1.5

A separate six volume manual will be published, using the assigned unique
subsystem identification code for each application subsystem and for each
executive software subsystem maintaining a baseline as defined in Chapter 1
of this manual and qualifying as a integrated assembly of separate but
functionally interrelated programs, routines, procedures, or techniques
operating in consonance as an entity in the performance of a predefined
functional ADP task. Each of the six volumes is specifically tailored

to the various users of the subsystem and is intended to be self-con-
tained. The six volumes of documentation required for the application
subsystems and for the executive software subsystems determined to
perform predefined functional ADP tasks are described in the following
paragraphs.

EXECUTIVE SUMMARY, VOL I
CSCM 18-1, Paragraph 6.1.1.5.1

This volume will contain an overview of the subsystem to include the
objectives and general description written in nontechnical language.

2 i

1

RN Y SR
e e e - AR DR SN, v

USER DOCUMENTATION, VoL II

CSCM 18-1, Paragraph 6.1.1.5.2

This document prescribes the procedures that must be followed for successful
utilization of the subsystem. It contains instructions for the general use

of the subsystem, preparation of input, audit of output and interface proce-
dures between the functional area and the data automation activity. The doc-
ument will be presented in one of the two following formats: Functional User
Documentation or Users Procedures, Volume II. Users Procedures, Volume II,

is intended for those subsystems where the ADP developer is also the proponent.

OPERATIONS AND SCHEDULING, VOL III
CSCM 18-1, Paragraph 6.1.1.5.3

This volume will contain instructions necessary to schedule the subsystem, run
the computer, produce outnut products, and distribute the results.

REFERENCE MATERIAL, VOL IV
CSCM 18-1, Paragraph 6.1.1.5.4

This volume will contain all of the material which preceded the technical design
and analysis of the subsystem. This volume will not be distributed below the
agency maintaining the subsystem.

GENERAL SYSTEM ANALYSIS DOCUMENTATION, VOL V
CSCM 18-1, Paragraph 6.1.1.5.5

This volume will contain all of the material used or developed during the
technical design and analysis of the subsystem. This volume will not be
distributed below the agency maintaining the subsystem.

SYSTEM PROGRAM DOCUMENTATION, VOL VI
CSCM 18-1, Paragraph 6.1.1.5.6

This volume will contain completed material necessary to understand the pur-
pose and processing of a program used and developed during the programming
and testing of the subsystem. This volume will not be distributed below the
agency maintaining the subsystem.

A-2

i I IR SN

EXECUTIVE SOFTWARE AND SOFTWARE DEVELOPMENT TOOLS DOCUMENTATION REQUIREMENTS
CSCM 18-1, Paragraph 6.1.1.6

This portion of the chapter defines the detailed documentation requirements
for documenting executive software and development tools: i.e., macro
instructions, subroutines, stand-alone utility programs, and utility systems
operating primarily in support of functional applications subsystems not
maintaining a baseline as defined in the preceding paragraph.

TECHNICAL PAMPHLETS
CSCM 18-1, Paragraph 6.1.1.7

Technical pamphlets are used to provide DPI ADP personnel with information
such as language syntax, input sequencing, input coding instructions, and
other procedures necessary to utilize USACSC systems, subsystems, and
executive software. The use of technical pamphlets, however, does not
preclude the requirement for documentation of the software in application
subsystem or executive software documentation format as described above.
The content of a technical pamphlet will be determined by its proponent.
The preparation of a technical pamphlet will be the same; in general, as
for the preparation of application subsystem documentation.

I

TR e

ST, v AT M S M TR | e o

APPENDIX B
SOFTWARE QUALITY METRICS

The metrics established in [MCCJ77] have been refined based on the exper-
iences of this research study. The changes are contained in this appendix.
The changes are indicated to the far right of the table as follows:

m - A modification has been to the previous metric to make it more
generally applicable or to quantify it.

d1 - The metric was daleted because it was too difficult to measure.
d2 - The metric was deleted because it was not generally appiicable.
d3 - The metric was deleted because it was redundant with another
metric.
a - The metric was added based on further research.

Also indicated in the table that follows is whether the current state of
the metric makes it an anomaly-detecting metric or a predictive metric. If
a normalization function has not been established for the quality factor
the metric corresponds to then it is automatically an anomaly-detecting
metric. In cases where a normalization function has been established for
a quality factor but the metric is not included it is because the metric
did not illustrate sufficient correlation with the operational history.

In lieu of inclusion in the normalization function, some metrics are main-
tained as strictly anomaly-detecting metrics. They are felt to identify
or assist in identification of problems which should be and are typically
corrected immediately to enhance the quality of the product. An (a)
beneath the criterion/subcriterion name identifies an anomaly detecting
metric and a \p) identifies a predictive metric. As further research in
software metrics continue, more predictive metrics will be identified.

One last indication has been added to the table. Within the boxes that

identify during what phase a particular measurement element can be taken,
a reference to what Metric Worksheet applies is given. The reference is

B-1

to the worksheet number such as Worksheet 1 or Worksheet 2a and what
section of the worksheet such as Section III or Section VI. The Metric
Worksheets are contained in the Software Quality Measurement Manual
[Vol. I1]. Explanations of the individual measurement elements follow
the table in this appendix.

P S

P R TP T A e s v
i

Ip
(P

(L NYC €L) ObL W404 SIDD

L
1
1 JudwR|d Joj aJ40dS 1 = INTVA JTYLIN

™

& |0

EMELE
EMERE

]

‘ufLsap y3im saauabe apo) (6)
*sjuausaLnbaua yiim saaube ubysag (g)
(s340doa woqoad | L3103 /paAjOSaL

$340d3J WO |qoJd) "PIAL0S3A Sjuodad wd|qoud |1y (L)

(s4938weded
{©303 /29468 sudjduesed) *daube suaajoweded
aouanbas But||ed> paduauajaa pue paurjap tly (9)

*jutod uoysio9p

yoea 4oy pduljap Huissaoouad pue suotiLpuod |ty (§)

(paitjtjuapl suoildunj |e303/pauljap suoLIouny

paouaLa4aYy) *pauULI3P SUOLIOUNY PAJUBURSRL LLY (¥)
{paLjijuapy suoljouny (e303/pasn

uoLIduny pauLiaq) °*pasn suoiiouny pauLiap Ly (¢€)
{s3ouduasau eIep [°I03/pAULJIP SIIUILBSIUL
©1B(]) °9O4NOS |BUJIIXD Ue WOLS PIULLIQO

40 “pajndwod ‘pautiap sadusuadjad ejep 1Ly (2)

andino

‘uoilouny “3Indut) sSIOUIUIIA shonbrqueupn (|) (®)
*L1STTAIIHD SS3NILATAWOD L°d) SSINILITdW0D
] 3ui| Aoge e aweS :INTYA ITYLIW WILSAS
m | (2
*SjuawaJaLnbaa 03 sa|npow bupje|ad IdudUADSBL SSOU) | YL ALITISYIOVYL
g ¥0 L N g 30 1
WA Jon/s3a] 3NVA [owssaa] 3NMYA |owssan UL M
OI1VIN3IWI1dW] N9IS30 S1WO3Y

SSINLIWY0D :(S)¥OLIVd

(L2 WY £1) OFL W03 SIDD

= 3NTVA JTULM

P

BED O]
B EE0 0|0

ST VR

-—v

Aoud3s|suod adAy weg (§)

safnpow # [©30}

A

3LNa 93| 0JA Sa(npow §#

A safnpow # [e303
aln4 33C[0LA Sa|npou #

- V £oua3sysuod pun (p)

-_v

suojLuisap teqolb Jualsisuo) (¢)
sa|npow # [ej03

sajnpow § [e303
J[Na SIC|OFA SI[Npow §

-pv SUO|3URAUCD Bujwey (2)

n..v

uojjejuasaadaa abesn eyep paepueis (1)
NINSVIW AINILSISNOD VIVA 2 °SD

i

SIUMI (I Ilqedyidde jo §
SjUdR (@ 9(qed|(dde JO Sa4005 JO

= INTVA JIYL3NW

[

sa|npow # 1030}
Ao:: 93V [OFA SOLNpow ¢

-—v

SUOLIUdAUOD Buf|puey Jouual (p)

Ao sajnpow # |e30y

{Nd 93€[OLA So;Npow §

-&

SUO§3udAu0d 3Indyno/ indul (¢g)

A sa|npow § |e303

aLNa 93C[OIA SI[Npowl §

-1)

SUOLIU3AU0D dduanbas bupjie) (2)

(®)
AINILSISNOD Viva

sajnpou § [030} -—V (e)
JLNA 9ICLO}A SO Npow §
uojjejuasaudaa ubysap paepuess (i) >uum%ww%w
WNSYIW AINILSISNOD FWNAII0¥d L "SI /AINILSTSNOD
T U0 L g 40 *
INWA Ton/saa| 3IMVA [on/san] 3NVA lon/saa I1YLIW NeHaLIOgS
OILVINIWITdWI] N9IS3a S1WD3Y NOT¥3LI¥

ALITIGYNIVINIWW :(S)4012V4d
‘ALITISVINIY “SSINLITYYOD

s

e S s e et

~r

(£ wye £1) OFL WN03 SI9D

SJudwe |3 a|qediidde g

duduamﬁu1uﬂadmﬁddmﬂquuHIauﬂuw|Adqu

SINTVA JTULIN

E

3

*8upnod bup||ed 03 dn passed ag pinoys

.aov = u o

pvuuovmp Nwwwwumvcmmss :o:mgzamv
4043 | 0303 /2{qexX |} SA044T) panuijuod

budgssasoad pue ajqexty aq pihoys suoua3 (2)

‘paLos3ued
A11eaquad Bupssasoud Juaaunduod Auy (t)

*ASITII3HD T031NOD 3INVYITOL ¥O¥3 | °13

SIUI|D d(qed|(dde ¢
sjuswa |9 8jqed)jdde wWou} [©30F 84035

SINTWA ITYLIN

R
Oy

"S30URJ3 |03 ULYILM SININO UOLINaXT ()
"SPOYIawW |edLaaunu Jo Aouaididsng (v)
"Adeagii yaew Jo AdudldLysng (g)

*SJUeISUO0D pueR
‘bulssasodd ¢s3ndno *sindup jo Adeandde
404 JuduRJLnbas 4O JuawdIe)S AALILULISP v (2)

*a|npow
03 pa3jabpng pue pawuojuad sisfeue 40443 (1)

SASTDIOIHD AJWINOOY L ¥

(d)

J0U1NDD
/3ONWY3T0L HOWY3

(e)
ANV

guot
IMvA ON/SIA

gt
INWA | on/s3n

R

INWVA {on/s3A

NOILVINIWI TdWI

N91S3d

S1NU3Y

JIYLIN

NOI¥311¥08ns
/NOTYILIND

ALITIGVIN3Y

:(S)40LIV4

R A T Coetel

. Loy

e ———

oy

(L2 WC €1) ObL W04 SI9D

| N PR L P

SIUWI|3 I1qed}dde SINVA JTULM
SJUWI |3 apqedi|dde wodj 9403S [e30L

bupssasoud Bypanp paNsayd ;
Ssaua|qeuoseas saajaweded IndIno (BI4314) () «

*bugydeyd 3dpaosqng (g) N
‘9sh a409q paysay abued :
sudjaweded xapuip 4djsued3 3|dj3imw pue dooq (2)

“SAUn(Ley 1ou0LIRvINdWOD WOAS AAA0DDA (d)

- STMIVA
@ 404 Juawad |nbau JO JudwdIes AL uLIAPp ¥ (1) TYNOLLVLNdH0D
$1SITIOIHY SUNTIV TYNOLLVLNGWOD WOYS A¥IA0IW € 13 3T19VI3A003Y

E BB
BEEIE

Sjusus|a ajqed}qdde § <3NTVA JTYLIW
SjUuS (9 9[qes[dde wouj a403s [e30]

*6u)ssaooud 03 sotud
ajqe(ieae sy e1ep (1€ 30yl uojjeuywualag (g)
sujbaq burssasoud au0jaq payoayd sy ynduy LIy ()

‘P3NIYD pue payyijuspy
uoijeujquod (ebag(y pue s3sanbax buy3dgguo) (€)

1@
© P9YI3YI pue pajjpoeds
@ Swdy| Joj (SSauaiqeuosead) sanieA jo abuey ()

*e3ep 3ndup JO I2URI|0} JOJIUD
E 404 JudwRU(NDIL 4O JUBWBIRIS IALILULIAP Y (L) (d)

‘ASIDIIIHD VIVQ LNANI Y3IOYAWI WO¥4 AYIN0IT 2 °13 VivQ 1NdNI

A

940 1 780 1 0 %0 1
IR Jowssan] IR fonssan| ITTVA Jow/san 1YL HOIY3LIEIANS

/NOI¥ILIY)
JLVINIWI 1dIW] N9IS3d SLW0IY
ALITIEVITN :(s)y010v4

B-6

WP

(ZL wve £1) OFL w304 SITD

SIUD |3 3|qedy dde s

$3NVA 1YL
SIUSS[9 3[qeI71[dd¢ WoJ4j 34075 [930]

*SJ0ULD DA WOUS A43A003Y (2)

*SJ0AJD LA WOU AIIA0D3u
40) Juawa4|nbas jo JuawRIeys BALILuLsag (1)

$1SITIJIHY SHO¥YI 3JIAIC WOUS AWIA0IW S °13

SIUWI |9 3 qeo||dde
(@ 3[Ge3} | dde woidy 3105s (e30]

SINTVA JTULM

U

*(N9012 ‘aanyjey aamod ‘s3|ney dpjum3 pJe
¢:6°3) s3Lhej duempaey WOUy AJIA0IY (2)

(e)

SNOILIONGD
SALV1S 3IIA30

*SILNRS JUPMPURY WO} A4IA0I (e)
E 403 JuawBLLNDIL JO JUARILIS AALIJULIP ¥ (1) SLIWE TIVNGUVH
SAISIDIOIHD S1TNV JYVMQUVH WOUS AYIA0OTY ¢ 13 J19VY3IA00 Y
g3 L gwit g1
INVA | on/saa] 3NV |on/saa | 3NTVA ow/san STYLIN MOL¥aLLXAnS
m:&.zg._&: N9IS30 SIHOTY
ALIT16vII3Y (S)¥oLdvd

il i st

-

S i et

(LL Nve €L) OFL W04 SITD

D 0= PISN J0U i L = PASN 4T :INTWA ITULIM ()
MNINVIONJ
Na | YOSSII0UI3U YO ISVNONYT JWNLIMILS 40 3S0 2 °IS WNLINMLS
SJUNI19 d1qedyjdde SINTVA JTYL M
D D SIUMDLI 31qed} |dde wous 31098 (¥30)
2 D v3ep 1oqotb oN (6)
_i . D *SU0L3dun) ajed}idnp oN (g)
. @ E s34 J aseg ®ieQ JO uOLIeZ||eJuawelaedwo) (/)
9zys ¥seq vIep 40 IZLS (9)
[¥1¥g Xi¥ so s {9
Aﬂm:a f , S3ueaue #
L 1
E *31x3 3buis ‘adueajua albus sey anpow yoe3 (g)
*suojjeywy(*6ujssadsoad
3 {TeR| IndIno ‘anduj sepnidu} uoi3diaIsap 3 npow yoel (y)
buyssasoud
D J@ 4044d U0 juapuadap jou buissadsoud ajnpoy (g)
E alnpow jo Iduapuadapu] (2) (d)
7o E *uolysey umop doj uy paziuebao ubLsag (1) TUNLIWLS NOISIO
CRINSYIN WNLIMILS NOIS3A L IS /ALIIINGNIS
g9 L fuwl WL
ITVA {ow/saa] VA foussaa] 3MVA on/sau Mu1M S auns k
1LVANINI 1dW] N91S30 S1NO3Y :
. ALITNGVLSIL :(S)¥OLIVS
ALITIGWNIVINIW ‘ALIVIGVI TN
coome g o W, .

——— e i n e e

b . R b P e

(ZL NV £1) OFL W04 SI®D

Sajqeiaea § [Lz12)

SI|qeideA [PuaaJuy # aLnpow ® Ul Xju I|qejJep (UL)

SJuauevIes 9L qeINIBX § -1
SJUWIIPIS 0109 # S0L09 30 Jaqunp (6)

Sjuaw
-93e3s d|qeindaxad § -t
sayouedq # saydueaq jo saquny (g)
A 19A9] bujjsau xew
L 13A3| Buiysan ()
SjuauRIeIS 3| qendaxa § -_v
A s(aqef #
‘Staqe| juawalels jo saquny (9)
230 . -
T%&.»v BuiAyipou-413s Jou S} atnpow ()
sdoo -
pow saotpu} dooi § - U
P3LJ1pow xapu} doot ()

Avo_.:

sdoo
sdoo| 31xa 3|buis/Aujua albuys ¢
sdoo| J0 Ino pue uj sdunp ()

SJUBWIIRIS 91qRINIAXD § _
9AOqR JO § c
‘pIsn suojssaadxa ueaoog
punodwod pajed) |dwod 4o Ue3|00g aapebaN (2)
*00330q 03 doj mo(j atnpow ()

ALIJITGWIS 9NIGOD 40 WNSYIW + °IS

1

$3] npouw
INPOU 3PS J0J seansesw A3|xa(duo> 3O wng

SINTVA JIYL3N

0] @ @ BEE EE BE

NSYIN ALIXIVIWOT € °IS

(d)
ALIDIGWIS 3002

(d)
ALIX31dWO) MOd

fia2] T0MINOD GNY ViVO
940 1 950 [% U0 (
INVA Jonssan] ITVA | on/saa| INVA fon/san STELM NOI¥3LINOANS
/NOT¥ILIN)
TIVININIIaWI]__ W15 SIH03Y
Q3INNILINOD :(S)¥01Iv4

-

(2L wor €1) OFL W403 SIDD

-

Sjuswa(d ajqedydde ¢ “INTIVA UL
SJUawR|d a1qeo}|dde wody 3405§ 9301

A e

N N

£

*S3S|X2 IPOd snodues3xa oN (91)
*suo|LssaJdxa apow paxjuw oN (§|)
*sajqeiaeA jo asn 31buis (y1)
*Sd|qeLaeA Joy saweu anbiun (g1)
*JjJjaweaed
aJe a|npow e 03 passed sjuaunbae [y (21)
SJUSWAIRIS J9XD § _
sajqetaean § L

RL:] K31suap 3|qepaep (1)
, (Q3N1LNOD) ¥ °IS
}
Towo t ¥ 50 [§ %0 (
WA Jon/saa] I VA |oussaa} 3NTVA |ow/san T813M MOIEILIS
TLVINMWI1dWI]__ W91530 STy

|3

GINNIINGD :(S)¥0LIVd

vo,n

-G ke

.

s

s - am—na s wmra

e ST

bt vt~

(L2 NYE €1) OPL W¥O3 SITD

3 |53

SJUBWR @ a|qedydde ¢
\'sjusuwa |3 3 qed}|dde wouy 84035 €30

vu INTVA JIYLIW

p

EEIOD [

§ EE

A mo:_vo._;_,uuou -—v
aNa 3Je(O4A S3a|npow §
uoLIduny duo Juasaadad sanpow ||y (8)

abeuols Aaedoduny adueys jou op satnpow (L)

aLnpow buiiled 03 pauaniaa (043u0) (9)
alnpou buyj(ed> 03 papiaoad ejep 3nding (G)
anpou buryfes Aq pa|io43uod eyep Indul (p)

sJdjaueded bur|jed ¢
SI[qeLJABA [043U0D ¢

anhpow
bui(|ed Aq pauljap sadjaweded buiyfoazuo) (g)
3144044 3z1S 3LNpow (2)

no:_vcs‘—-uou -
Aydaeuaiy j0 Suog3e|OLA § ;

"l

8-11

E 34NIONAIS [RIPYIARIBLH (1) zom..__.vﬁzm:m._&—
FINSVIW NOLLVININITAWI ¥VINGOW 2 O BV IN0OW

D aAoqe Aa3ud se auweS INTVA JIWLIW
59 V JINIONIJION]
pabueyd sa|npow § pai3dadx3 40 33930
JUNSVIN ALITIGVIS | “OW /ALT¥VINOON

I s %01 % % (
INVA Jow/s3a] 3A Jou/saa] 3MVA fon/saa LM MoI¥ILLEANS
MEE.!S&_. N91S30 SINO3Y

ALITISVEIOUIANT “ALITIGVSN3Y :(S)¥OLIVS

‘ALITIGVINOd “ALITISVIS3L
*ALITISIXIN “ALITISWNIVINIWM

e 3 o el W @ aiad G

LI L

e e i -

.

r4

(L2 NYC €1) OFL W404 SIBD

SJUBWR1S a|qedy(dde ¢#
SIUBWD [? d1qed} dde wouj a.403S (w301

vn INTVA JL1YLM

ERE

mo_..En_Sou -
) Ao:_.. 10(0}A SI(Npow § —v
33U0 pauLJap 3q PLNOYS SIuRISUOD LLY (S)

pajjui| anjeA ejep jou bupssadroud (p)

P33jwi| AN OA B3RP J0u Bupssadodd (g)

\mcopuuceu:mu:wnovwc_ﬁﬂ* v
\ L
‘anpow d|buls e uy paxiw Jou aue
suojjouny juspuadap-suiyoew pue uoijedy|ddy (2)

*apnpow 3|buis © uj paxiw
Jou 3de suojjouny Indino *bujpssadoad “anduy (1)

LSITHITHDI ALITVYIN3T ¥04 NOILVININITdNI

dAOQe dup| se awes :INTVA JIULIK

ERIRERCIERERURI

™

A Sajnpow § [v303
SO NPOW UOuDD §

- SIINA0W
Y3IHIO A8 GIINIYIL3Y SI 3INAOW HIIHM 01 IN3LX3

L3

(d)
ALIV43IN3D
NOTLVINIWNIVdNI

(d)
SIINTYI4N
/ALITVY3NDD

INTVA

@ 30 L
ON/S3A

g% 1
WA | on/san

g ¥ (
INWA |on/s3a

NOLLVANINI1dN]]

N91530

S1W0IY

J1YLIW

NOIY3LIu3Uns
/NOTY3LI¥D

ALITIGYSNIY “ALITIGIXIT4 :(S)¥0LIV4

B-

T P T

o e A

B-13

vl i e 2 [et 3 TV R T S S O S . o ey s il
(L WC €1) OFL W04 SI3
SJUMI[D 3| qedy|dde
D D SIUSWA19 91qeo}10d¢ Wou) a40ds |e30) = INIVA JIUIM
auwi) buissadoad (e303
P33 fWRIOIUN B3 a[9Xd JO Funowy
@ P33 tumodun K3iaeded paads 3o Juaduad (g)
sajnhpow # |v303 _
USATAP 91G03 30U SoLnpou §
@ E U3ALJp 3Lqel sa|npoy (2)
Sa|npow # |e303 -1
SLNA 93¥(0}A SaLnpow ¢
Jtajaweded e 6uLssIIOAd [OUFUOD YILYyM (e)
] ¢ []
H”_ E saInqia33e bupwgy *aousbuaauod *Adeandsy (1) ALITISISNILX3
SRNSYIW ALITIQISNILXI 2°X3 NOILV.INdWOD
SjuawWa|d arqestdde
1] SJUBUI(3 S[qEI}(dde Wouj au0>s (eol - INWA JI¥LM
AJowdw d)qejLeAR JO junowe {e30
PI33 LUKIODUN AUCW3UW JO JUROUY
@ Pa33sumiodun A31oeded Aowdw jo Uy (2)
. sajnpou # |e303 -1
9|Nd 93B|OLA Sajnpou §
(athpow Aq) sjudwduainbaa/uoijedyyidads (e)
NOISNvdX3
Aqe E abeuoys jo juapuadapu) bupssasoud edtboy (1) J9VH0LS VIVG
SUNSYIM NOISNVAXI 39WHOLS ViVa 1°X3 /AL1119VaNVdX3
g 40 L gy 1L g4l
3WA Jonssaa] VA | onssan| INVA Jon/s3a TIEY NOI3L1¥2ANS
OTLVINIWI1dWI] _ No1s3q SIW03Y NOIY3LI¥D

ALITISIX3T4 *(S)¥0LIV4

B T T P JRpPw DN IO 2 SO o

¢ TR

P e

L vl

1

N

P

b

(L2 Nve €L) OYL WY04 SIP)

O

SJUSUP @ 3yqedt|dde §
sjuswa|a@ ajqedt(dde wodj a40ds [R3O)

= INTVA JIYLIW

™

™

. wioy Adeumns
uj sindino pue sindup 3sa3 Jo uolIedLyL3udpl (2)
sa|npow jo § (€303
poIndaxa aq 03 so|npow #
(sopueuads 3sa3 [0 403) abeadnod arnpoy (1)

3UNSY3W 9NILS3L WILSAS € NI

SJUBWR | 3|qedtdde §
SIUMD [d{qed} (dde wouay 24035 |e30]

= INTVA JTYLM

sjuauRJinbad juaad § |e303
Pa3sel 9q 03 sjusudainbaa #
abesanod
(3be403s g bugwil) sjuswddinbau adueusogaad (Z)

sadejadjul § [e303
pa3sa] aq 03 #
Pa3sa3} sadeyuazul anpow (1)

JYNSYIW ONILSIL NOILVY9IINI 2 °NI

Sajnpow # |e303

9| Npow yove
404 saanseaw buj3say afnpow jo ung

= INTYA JI4L3IW

)
Lukid

sJadj39weaed # 0303
paisay Auepunoq aq 03 ssajaweded §
p33sa) Auepunoq suadjaueaed jndup |1y (2)

syjed § |®30}
pa3sa] aq 03 syjed §
abuaaaod yjed (1)

(9Inpow Q) IWNSVIW DNILSIL IINGOW L °NI

(e)
140ddns
ONILSIL WILSAS

(e)
140ddNS 9NI1S3L
NOILVY93LINI

(e)
140ddns
ONILS3L 3INCOW
/NOLLVINIWNYLSNI

INA

g3 L
ON/S3A

90 L
WA | on/san

%0 L
INVA {on/saa

I1VINIW3 T1dW]

N91S3a

SN0

JINLI

NOIY¥3LINIENS
/NOT¥3LIND

ALII8VISIL ‘(S)¥01Ivd

(LL NYC €1) ObL WH04 SI%I

SN

sajnpow § e303 -1
I[Nt 3je(0fA Sa(npow #
p3ajuauwod apod judpuadap supyoew ||y ()

sa|npow § 1e303

a(na 23e(ojA sanpow § L
pajudumed
SUO}IRULISAP § [04JU0D JO Sadysue4l |V ()

sa|npow § [e303

S(na a31e[OfA sajnpod §
J3uuell WA0JLUN UL IPOD WOAJ $30 33S wu=u=gao

sajnpou § Le30} -
S(nA a31e(0lA satnpow § |
$S3JUdUL93Y
$34npadoad £43A0234 40443
sjuauRJinbaa Aoeuandoy
SUOL3J{a3S3L pue suopjez g -
suotjdunssy
uogyouny -
s3ndang
synduy -
asodand -
aeg -
J043ny -
J3GQUNU UCYSJBA/3WRU I | Npoy -
13QLIIS3P YOLYM SIUBURNOD
anbo|oad pajeuoy paepuels aaey sainpoy (1)

JUNSY3IN SINIWWO0D 40 SSINIAILIILII 2 °aS

(@)

]

sajnpou # je303

ﬁHHHu aLhpow ydea = 3NTVA JIYL3N
40} s34nseaw juauwod jo A3p3uenb jo ung
(Mueiquou) saug| # (e39]

(yuepquou) SIUBUIOT JO §

(d)
SINIWWOD
40 SSINIAILIIIA3

(d)
SINIWMOI
40 ALIINVND/SSIN

B-15

HH”HU (3thpow AQ) SINIWWOD 30 ALIINVOD L °@S -3A114143530-473S
70 1 %0 1 g2t
INWA Jou/san] 3VIVA fonzsan| IMVA fon/san JTULIH ML 3LLEANS
TLVINIHITdWI] _ N91S30 STy
ALITIAYSNIY “ALITIGVI¥Od :(S)u01IV4

ALITIEVISIL “ALITIGVNIVINIWW
fALII91XI

il 4 s L e

(£ NYr €1) ObL WYO4 SI9I

R A TR A A

.

s3|npow § {e303 -1 ,
a|nd a1e|OLA Sa|npow § 4

‘ pamMo| {04
sajnpow jo uorjeziuebuo 4oy jewsoy puaepuess (g)

Saul| # (e303 -1

SRul| jusuRjels

aldLa1nw + SuopjenuL3ucd §
auil J4ad Juawalels aup () 1

sajnpow # [e103 -1 #
dINJ4 dIB|0LA S3|Npow § 1
pajuspul pue paxydo(q A|[edibof 3pod adunos (g)

salnpouw # (e303 o
9|N4 93e[O}A Sa|npow § ¢

paludsaudas A3dadoud [euor3ouny Jo [ea1sAyd
40 3A13d140S3p (dLuowduw) saueu 3| qerdep (2)

sa|npow § [v30} _
8p0d ID94LP YILM Sa|npou § t
pasn abenbuey Jspao ybiy (1) J9VNONV

v . 34NSVIW NO11VINIW3TdWI 40
JOVNINYT NOLLVINIWITIWI 40 SSINIAILAIYISIA £ °aS SSINIALL4TY¥ISIA

£p

Sjuaua|d 3|qed}|dde § = INTIVA JIY¥LIW
SJUdWA |9 atqed} (dde wouay sa3a03S |ejo) WILSAS
sajnpow ¢ jejol -t

3LNA €| 0LA S3I|npow §
abenbue| uL paqiu4asap
uotjeaado jeadaa 3N Jou Op sjusumo) (/)

sa|hpow § €30} -1
I|NA 33| 0LA Sajnpow §
PAIU3WWOd S| qelARA PAJR[IAP [|€ JO SIINGL4ITY (9)
a|npow § |e303 -1
3|ha 330 OLA Sa|npow §
Pajuaumod sjudwajlels JOH pJepuels-uou (Ly (G)

Joo |0 gfdgoo

d 40 (@ 50 1 d %0 |
: INWVA Jonssan] 3MA fonssan] 3R fonssa ITULIN MRIINIT o
NOILVINIHIIdWI] _ WDIs30 SIWO3 i

(GINNIINOD) ALIVIGVSAIY :(S)y0LDV4
‘ALITIGYINOd ‘ALITIGVISIL
*ALITISYNIVINIYH *ALIT18IX3T4

(LL Nve €1) 0L W04 SI%)

|
¢ ~
, &
H sjusud|a ajqedtidde § = INTVA JIYLIN
S3u3wW3 |3 alqedt|dde woaj au0dS {B30] WILSAS
sa|hpou § te30} -1
3LNa 31e|OLA Satnpou §
Lp D sawieu se pasn spJomAay abenbuey oN (9)
g 40 1L ¢ ¥ L g ¥ 1 V
INVA Ton/saa] 3ITWA Jonssan] 3A on/san TYLIN NOTY3LI¥DANS
[NorLvINIHITaWI] N9IS30 SINDY /NOTY3LIY)
(QINNILINOD) ALITIGYSNIY :(S)¥01dv4 _
‘ALITIBYI¥0d *ALIIgVISIL i
CALETIGUNIVINIVW “ALTIATXAM A
¢
L
nra.,u.w.‘u ,

e ri o 5 e

(ZL NYP €1) OFL WS04 SI%D

§ B B

aupy UopINoeXe
aupy abeyul{ S0

sabeyuLy SO (¢)

WL} UOLINDAXD .
33 abeyui| ajnpow L

sabeyuL| anpow (9)
sdoo(uy buypydedun/buiyoed 334q/31q 40 sy (§)

sAR}49A0 jO §
i

E sAe(Jan0 jJo Jaquny (b)
suo}ssaadxa punoduod # _
aou0 L
ueyl 30w pau}jep uoissaadxa punodwod #
—H_ 20U0 pauyjap suo}ssaadxd punodwo) (g)
pasn abenbue(
@ Alquesse/4a|tdwod Bupziwgido aduewsojuaad (2)
sjusuPle)s dooy # L®3I03 _
doo| u; sjusuwe3e3s Juapuadap doojuou F - |
doo|
@ [fAqz] 40 3no 3day suojje3ndwod Juapuadap dool-uoN (1)
(aLnpow Aq) (e)
*JUNSYIW AINIIIIA43 INISSII0Nd IATLIVHILT 2 "33 INISS3004d
ELYOALETR
D 3Aoqe Jul| se Jwes = INTYA IIY1IW
()
N9IS3d 01 @3lvi0TTy JAIN3IO1443
ONY QIIJIINIQI SINIWIVIND3Y IONVWHOJYId L "33 NOILNJ3X3
¢ 40 1 g3 L g a0 L
3NVA Jonssaa) 3MVA | owssaa] IMVA low/saa STHLIN e
01LVINIWNI 1di] NI1S30 SLKO3Y i
-]
AIN3IOI443 :(S)¥oLdvd

(4L NYC €1) ObL W¥O4 SITD

REACLCACACILRAS (UL] = JMIVA JIY1IW
sjuawala afqedyidde wouay 34025 |v307 300w

9 9Z1S 95eqQ v3Pp .
. 1Xe Swa3l ejep patjLpow # ejep diweulg (/)

@ 9ZLS aseq ejep : ,ﬂ

o™

: Swajl ejep 313e3s # ejep d13e35 (9)
fuyssasoud
E @ JU3104448 404 PIDUBIIAL U0 paxapul eIeg ()
. SU0$3043d0 3LUN UOWIODUN JO SBOUBLINII0 §/|

w @ 8dA3/s311un j0 3D10Yd> UOWALOY) (v)

SJUBUDIRYS 91qRINIAXD §
suotssaudxs apow Xfuw § "L

1IAE suofssauxdxa apouw-Xiw oN (€)

s3{qelaeA § (103
pode|Jap USUM PoZLLelI]

BN

B-19

"N SATR RN 2 4T ST

. @ p34e(J3p UIYM paziielIpul safqeiaep (2)
| Hmw _Hw 6uissadoad JuaLdL44a 404 padnoab eyeq (1) (e)
. (atnpow Aq) :3¥NSY3IW AINIIII443 39VSN Vivd € "33 Vs viva
) sjuaws|a 3ajqedtidde § 1evj09 = INTVA ITYLIW
D D SIudwa|?d 3|qedi|dde wouay a3a03s |030)

S3UBLWIILIS UOLSLIBp # |e30) i
SIUSWSILIS UGLSLIap Fuatolggaur § |

e D Papod A{JU3LDL443 SIUBWAILIS UOLSLIAQ (ot)

SJUABIRIS 3|QRINIIXD |e303
3p0> 9[qe3nJaxa [euolzounjuou # |

P 3p0d 3(qe3INIX3 [BUOLIIUNJUOU O 3344 (6)
] A3L(13e4 3BRA03S 4O Bsn 3uaLdL44] (g)
40 1 K 6 40 (
WA |onssaa] INVA |ossan] 3NA [onssay J1uLM NOIYILI¥IENS
LLVINIWIIWI] — N91s3a S1W03Y /NOT¥ILIY)

AINIIDIJ43 :(S)¥0LIvA

(£ NVC €1) O¥L WHO3 SIPD

]
3

= JNWA JTULM

STURBTIUIEp -
SIUsWa(a e3ep Juepunpad § L

SJUBWR |3 eIRP JUPPUNPAJ JO 33a4 (1)
PI0p jO junowe |v303 _

°IRp pasnun J0 Junoiwy L
D uoyiejuawbas ejeq (0L)

1p

P
SJUdWIIeIS # (P30} -1
sjuauRIPls ajedy(dnp ¢

sapod ajest{dnp oN (6)

SJUBRIRIS # P03 -
SjUaWA7eYS [euoL3ounjucy § L

apod {euolidunjuou jo 3au4 (g)

. pasn
E abenbue| A|quesse/4a|tdwod Burziwiido abeaols ()
E pasn buiyoed eyeq (9)
[AT®Z

E Pazi13n Juawebeuew Aowdw diweulqg (G)

Lp

Lp

0 0 00 [0)0

@ uopjejuawbas weabouad (v)
sd|qeiJeA § (o303 -1

JJUO URY) dJOW PIU[IIP SOLqeldeA §

i 32u0 A|uo pauyjiap eIRp UOUNIO) (¢)

] m E E pasn saiyy|)oey abeaoys tenjaip (2)
, E ubLs3ap 03 pajedo||e sjuawsdinbaa abedois (1) ()

(Lnpow £q) :3¥NSV3IW AINIIII433 IOVHOLS | °3IS INIIII443 I9VHOLS

9 U0 1 0 1 0% [
INVA {onssaa} 3MVA [onssaa| 3TVA on/san 4L NOINILINIENS

; JLVININI TdWI N9IS3a SIWOY Ao
F ANIIIT443 :(S)uoldvd

8-20

(L2 NYP €1) OFL W303 SIDD

SJUNLd Qe idde

8-21

© s

. T

S PR WS e

= INTIVA UL M
D D D SIUWd] 9 3|qed)|dde wouy 34035 [¥303
uoL3IR|01A
@ HNI._ E SS300 JO UOIIRI|PUL IV |PIMM| 404 SUOLSIAOLY (2)
@ E E $$3200 Buj3a0das pue Buyp.0Ied 405 SUOESEAOLd () (e)
SISTTIOIMD 110NV SSOW 1'W 110Ny SS3V
Sjuaue|a 31qedy dde = INWA JIULM
]]] TIN0NB(® I[q| (4dV 104} 34005 (1103
B E E papiacad syse3 sso4d® uci3Isajoud Atouwdn (¢) _
(sn20| Adeajsd ‘sajqey uogeziaoyine) m
@ @ E PapLAOLE S|OMIUOD SSATTE ISRq PIeg (¢) !
(spdomssed ‘s, g1)
i _.Hw_ @ E P3pLAGAd S|043U0d $S330R (/] Jasn (1) (®) .
SISITTAIIHD TOWANOY SSIIIY L7 IV T0UINOY SSIIW w
§30 1 § 90 # % |
INTWA ow/saa] IMVA | guysaa] 3TVA on/san J1¥13H T
T1LYININITdW] NOI1S3Q S1WH0Y P
! ALTY93IINI :(s)u0lIv4 w
) ”
T “ w e ea . :

- ..\A 1&} ”JAMW
R

T —— " y ’ Ko+ <l A

e st

(4L woe €1) OFL W04 SIDD

sjuawa|d djqeoydde

= INTVA 1L
SS9 9|quo}idde Wo4y 4098 [¥303

UL1-U0 d|qeLeAR
] (1A% uoyjemiouy d3soubep pue 413y, IUSEDL NS (£)

@ pPapiAcud S3s|343XD vouu:l'u d13s1Ledy (2)

s4augejuiew *s4asn pua *saojeaado
) 4oj padojandp |epuajew Bupupeay/sueld uossa (i) (®)

*1SITIOIHD ONINIVYL | ML ONINIVYL

SJUSWR1d 31qeotdde

D D D SJUBuR|d I qedydde wouy 310ds |e307

= ANTVA ITULM

paepuels
sasuodsau pue JudIs|suod sabessawm Jojeuadp (¢)

L4 | B Paujejuiew suoj3dedazu jo 6oy Adod paey (g)

E P3q140s3p saunpadcoud umop Jed3 pue dn 33s qor (§)

suoj3de aojedado .oy aury - |

e

ERERE

uLe3qo ‘3dnuudjur 03 403e43d0 404 SUOLSLADUY (c)
W fireg] |
(smo1J 3ALIeusdlLe pue (euuiou)
anwwa |9 80 U} 3pqyp |8 20 L] o0y,

_E d|qeuoseas suoLlde Jojesado Jo Jaquny (p)
bugssadoud anugjuod pue Kyipow aaes ‘snyels
f1rez] 1{rez]
Jojeaado 03 paqiadsap A|ajeirsdoadde
E $asSUOdsad puv SUOLILPUOD JUOULD [V (2)
; Paqiadsap uojjedado jo sdays |y (1 e
| 2| I : v (1 *
i SISITIDIHY ALINISVYI0 | dO ALIT19v43d0
ON/S3A ON/S3A N STEY NI aans
ILVINIWI 1dW] NO1S30 SIWOIY

A%

[} .}
W
> —

B-22

ALITIGVSN i (S)yoldV4

[.a(!.i‘ri‘.!h e

(2L NVC €1) 0L W3OJ SI%)

uojjeuiuwexa
E 49sn 403 pajesedas Indino jo sdnoub [esy607 (s)

Siewioy Indino Jud43331p #
L

sjeutoy Indino waogiun ()
SI{Un pajuajdo aasn aAey synding (¢g)

sajqe| pajuajao
43sn 3A13d1adsap anbiun aaey synding (2)

()
S1043u0d u:&.:o 3A1323135 (1) . TIVI¥IINI
$JYNSYIW JIVIYIANI 1N4LNO ¥ISN 2 “WD 1nd1no ¥3sn

SJUBWA[d 3jqedtdde SINTVA ITHLIN
sjuduR |3 3|qedt(dde wouy 94035 (€303

elp3uw JU34345 1P
wouas Indup Bupkj19ads 40) uo)s1AOLg (9)

nduy jo pua |edibog
pautjap A131941dxa Aq pajeurwsal 3ndul ()

uoLINIAXD
03 Joi4d 43sn Aq payjLaaAa aq ued nduj (v)

$p40294 3ndu 230 -1
ULAJLIUap} J13S J0U 4@ oY) §

6uLfyLjuapt j|as paodad Indup yoe3 (€)

Sjewtoj psodad Indug JuIJdSILP #
|

™3
E _E wiojrun sjeuioy Indug (2)
™

Sa9jaueded § |ejo3 (e)
i..l...ﬂ_ sIthejsp §# PauLjap sanjea 3ineyag (1)
JOVAYIINI

1NdNT ¥3Sn
PJUNSYIW JOVAUIINI INANT ¥ISN L "W /SSINIATLVIINNKNOD

anwa |98 U 304y “zwme_, anwa |8 20 1 NOT¥3L1¥080S

ON/SIA ON/S3IA JIYLIN /NOTY¥3LIYD
ILVININIdWI] N9IS3 S1W03Y
ALITIGVSN :(<S)NOLOVS4

& Sehe ™Y b
48 'hﬂv'? .;a

A F e AN

(LL WP €1) OFL WHO4 SI%)

= INTYA IIYIM
SJuUBuB|d 3| qed}|dde woay a403s [€307

™=

™

(A

eLpau
3u34333:" 03 3IndIN0 BuLoNPaL 403 UOLS|AOL4 (1)

. snonbiqueun sy sandino

[1A®3 E pue sabessaw Joa42 udam3aq diysuoielay (9)
¢ ¥ L g0 L (K
INWA Jonssaa] INVA Jonssan) 3MVA [on/san YL wonaLioans |
1LVINIWI TdW] NDIS30 S1WO3Y : M
ALIT18YSA :(s)yoLav4
S we) R

g

o SR

S 4

(£L WC £1) OFL W03 SITD

€p

£p

SU3WI3 a|qed}idde wody 94005 9303

= INTVA IYL3W

8 00 |0

Jd 0 |0

T

mu_zmmmn_umom -
S9oUSJ9394 SO YIIM salnpoa 7 |
$3JUdJa4au waIsAs Buijedado wody d3u4 (p)
SaLnpow # [e303} -
Pasn sautanod Aaeaqi| # L

sauLInos
Kaeaqy| waysAs aueM3j0s uo aduspuadag (¢)
sajnpow # [e303
3d|na 33°|0LA S npou ¢ L
pasn abenbue| 40 38sgNs paepuels *uouno) (2)
A J01 (e3o)
S3JUAUBSAL WAYSAS # /0 saLL[Loes
wd3SAS 43Y30 pue ‘saurInod Auedqi| wasAs
d604d A31113N WRISAS aueMIJ0S U0 -ddUIPUIdaQ (1)

*TYNSYIN 3INIONIAIONT WILSAS FHVMLIO0S

(d)

/30N3ON343ONT
WILSAS JWYM140S

B-25

@ u0 L

é 30 1
3NWA 1 on/s3a

Nva
4

g uo
ON/S3A

TLYINIWNI Tdui]

NDIS3d

S1WO3Y

JIY13W

NOIY3LI¥O8NS
/NOTYILIYD

34 T ALI18V190d

1($)¥n1Iv4

- w A RN VRIS W i

TR e LR |

.y

.

[.A.or..nu#.i.c Aarimﬂ. n *& ..Tlm ..uf
. —t &5 x A

.

TRV A - ¢

(L2 N¥P €L) OFL WHO4 SI9D

SIUV|I 3|qedy jdde
Sjuauwe |3 a|qed;(dde woiy aa0ds (€303

Sajnpow § {e303 1

3N 93%(0\A Sa[npow §
juapuadapu} aulyoew uojjejuasaudas eieq (v)

S3jnpow § [®303 L

91 N4 9Je[O}A So|npow §
321s u4330RdRyd pue pUoM SO juapuadapu} sy 3po) (g)

A 201 1030} V
Saduau3djad 0/| #

(19 S35udu3434 Indano/indul wouy 3844 (2)
saugyoew (d)

E @ 43y30 uo oZo:ga.vom: abenbue| Buuureaboud (() 39N3ON343ON]
*JUNSYIW 3INIANIJIONT INTHOW L "IN INTHOW

=INTVA ITNOOW

d EE |0

[T dw i1 f 40 |
INWA Jonssan] ITVA | on/saa) ITVA Jow/sa UL MOUILLRANS

1LVINIWITdHI N91S3d S1WO3Y
ALITIGVSAZY “ALITISVINOd :(S)y¥0LIVd

B-26

(£L NVP €L) OFL W¥O4 SIDD

8-27

D D SjudB |3 dLqed}dde = INWA u_x__.u‘
D Sjusue |9 9|qed}jdde wolj 84005 (€302

uojjejsuedy uuojaad 03 pasn sapnpow #
—

E B uojIe|SuURL} Yous uogsad 03 atnpow a16uLs (g)

PamoL[0) pue pays}|qe3sd
, E E suojjejuasaadat buowe spiepuels uojpe|sues) (2)
N suRsAs
: 49430 Y3LM UO|JRILUNUOD 404 UOLjRjuasaidad
LY vIEp PUEPURIS U0 JUIBITIS IALIIULIA (1) ALTTVNOWOD

SISITHI3HD ALITVNOWWOD VIVG L °2d viva

SJuUauD L3 djqed}jdde = INTVA JTYLIM
D D D SJUdWA |d 3|qed||dde wodj 3.403S |00}

andyno oy pasn sajnpow §
t

Ind3no J40j 3dejad3ul apnpow 3L6uLs (p)

3ndul 40} pasn sajApow §
L

[1=4
E E Indup Joj adejuaaju} apnpow afbuls (g)
g [RLL PaMOL (0} Pue Pays|iqeIs? SpJepue3s 10303044 (2)

SWR)SAS JIYI0 YILM UOLII | UNUOD (e)
B 404 JusuRuLNbaL 40 JUBWIIRIS FALILULSAQ (1) ALTTVNOWNGD

SASITHIIHD ALTTYNOWMOD SNOTLVOINNWMWO) L)2 SNOT LV INMWOD
guo 1L du 1

INVA [onssan] IMVA [on/san] 3MVA Jon/san —_ NOI¥3LINYENS
ILVINIWITdWI] _ NDIS3O S1W03Y /NOTY3L1¥)

ALITISVYIdOYIINT :(S)¥0L1DV4

R S At R YRR P S

R N

LL NP £1) OPL WHOJ SI9D

i
(—

-

SRS

Parary

paje|ndied yjbual apnpou
< IMWA
D poAJasqo yibus| alnpow-paje|nofed yjbuay ainpou u::uL

e1n31® yjbuag an

PaAI3sqO Y3bu3| 3|npow-paendied ybus| ajnpow] -! (d)
E (3Lhpow £q) YNSYIW S.QVIISTVH | '0) SSINISIINGD
KT 9% 1L # 40 L
INVA WA INWA NOIY¥3LINOANS
ON/S3A ON/S3A ON/S34 I1YLIN /NOT¥ILIN)

T1LVININI TdNI NOIS30 S1NO3Y

8-28

ALITIGWNIVINIVW :(S)¥012V4

EXPLANATIONS OF METRICS

Each metric and each metric element are described in the following paragraphs.
Indication is provided if the metric ic applied at the system level or the
module level and during which phases,

Traceability
TR.1 Cross reference relating modules to requirements (design and imple-

mentation phases at system level).

During design, the identification of which itemized requirements are satis-

fied in the design of a module are documented. A traceability matrix is an
example of how this can be done. During implementation, which itemized require-
ments are being satisfied by the module implementation are to be identified.
Some form of automated notation, prologue comments or imbedded comments, is

used to provide this cross reference. The metric is the identification of

a tracing from requirements to design to code,

Completeness
CP.1 Completeness Checklist (A11 three phases at system Tevel).

This metric is the sum of the scores of the following applicable elements
divided by the number of applicable elements.

(1) Unambiguous references (input, function, output).
Unique references to data or functions avoid ambiguities such as
a function being called one name by one module and by another
name by another module. Unique references avoid this type of
ambiguity in all three phases.

(2) A1l data references defined, computed. or obtained from an
external source.
Each data element is to have a specific origin. At the
requirements level only major global data elements and a few
specific local data elements may be available to be checked.
The set of data elements available for completeness checking at
the dasign level increases substantially and is to be compiete

at implementation.
B-29

(3)

(3)

(5)

(6)

(7)

B-30

P it i % oo 5 -

All defined functions used.
A function which is defined but not used during a phase is
either nonfunctional or a reference to it has been omitted.

A1l referenced functions defined.
A system is not complete at any phase if dummy functions are
present or if functions have been referenced but not defined.

A1l conditions and processing defined for each decision point.

Each decision point is to have all of its conditions and alter-
native processing paths defined at each phase of the software
development. The level of detail to which the conditions and alter-
native processing are described may vary but the important element
is that all alternatives are described.

A11 defined and referenced calling sequence parameters agree.
For each interaction between modules, the full complement of
defined parameters for the interface is to be used. A par-
ticular call to a module should not pass, for example, only five
of the six defined parameters for that module.

A11 problem reports resolved.

At each phase ir. the development, problem reports are generated.
Each is to be ciosed or a resolution indicated to ensure a
complete product.

X - M s 4, L ke kS Siliodidiaais _— v - "
L - o I G T LA o i e e i emtis s - 3 o m———— s

Consistency
CS.1 Procedure Consistency Measure (design and implementation at system

level).
The metric is the sum of the scores of the following applicable elements
divided by the number of applicable elements.

(1) Standard Design Representation.
Flow charts, HIPO charts, Program Design Language - whichever form
of design representation is used, standards for representing the
elements of control flow are to be established and followed. This
element applies to design only. The measure is based on the number of
modules whose design representation does not comply with the standards.

It 00 e et O R WA B

(2) Calling sequence conventions.

‘ Interactions between modules are to be standardized. The stan-
dards are to be established during design and followed during
implementation. The measure is based on the number of modules
which do not comply with the conventions,

(3) Input/Output Conventions.
Conventions for which modules will perform I/0, how it will be
accomplished, and the I/0 foimats are to be established and
followed. The measure is based on which modules do not comply with
the conventions. .

(4) Error Handling Conventions. R
A consistent method for error handling is required. Conven-
tions established in design are followed into implementation.
The measure is based on the number of modules which do not
comply with the conventions. i

B-31 l

;
"
.,

CS.2 Data Consistency Measure (Design and implementation at system level)
The metric is the sum of the scores of the following applicable elements
divided by the number of applicable elements.

(1)

(2)

(3)

B-32

Standard data usage representation.

In concert with CS.1 (1), a standard design representation for

data usage is to be established and followed. This is a design metric
only, identifying the number of modules which violate the standards.

Naming Conventions.
Naming conventions for variables and modules are to be established
and followed.

Consistent Global Definitions,

Global data elements are to be defined in the same manner by all
modules. The measure is based on the number of modules in which
the global data elements are defined in an inconsistent manner
for both design and implementation.

) e L. s M A% ol e sl b+ - i

\4.., - - 2 o - R o " o
ST P AN B MY * g o e e -

VA e s ey e . — -

Accuracy
AC.1 Accuracy Checklist (requirements, design, implementation phases at

system level). Each element is a binary measure indicating existence, or
absence of the elements. The metric is the sum of the scores of the
following applicable elements divided by the number of applicable elements.

(1) Error analysis performed and budgeted to module (requirements
phase only).
An error analysis must be part of the requirements analysis performed
to develop the requirements specification. This analysis allocates
overall accuracy requirements to the individual functions to be
performed by the system. This budgeting of accuracy requirements
provides definitive objectives to the module designers and
implementers.

(2) A definitive statement of requirement for accuracy of inputs,
outputs, processing, and constants (requirements phase only).
See explanation above (1),

(3) Sufficiency of Math Library (design phase only).
The accuracy of the math library routines utilized within the
system is to be checked for consistency with the overall
accuracy objectives.

(4) Sufficiency of numerical methods (design and implementation
phase).
The numerical methods utilized within the system are to be consis-
tent with the accuracy objectives. They can be checked at design
and implementation.

(5) Execution outputs within tolerances (implementation phase only
requiring execution).
A final measure during development testing is execution of mod-
ules and checking for accuracy of outputs.

B-33

B T S S S i i a i

Error Tolerance

ET.1 Error Tolerance Control Checklist (design and implementation phases

at system level).

The metric is the sum of the scores given to the following elements divided
by the number of applicable elements.

(1) Concurrent processing centrally controlled.
Functions which may be used concurrently are to be controlled 1
centrally to provide concurrency checking, read/write locks, etc.
Examples are a data base manager, I/0 handling, error handling,
etc. The central control must be considered at design and then
implemented.

(2) Errors fixable and processing continued.
When an error is detected, the capability to correct it on-line
and then continue processing, should be available. An example is |
an operator message that the wrong tape is mounted and processing i
will continue when correct tape is mounted. This can be measured
at design and implementation.

(3) When an error condition is detected, the condition is to be passed up to
calling routine.
The decision of what to do about an error is to be made at a
level where an affected module is controlled. This concept is
built into the design and then implemented.

ET.2 Recovery from Improper Input Data Checklist (all three phases at
system level). The metric is the sum of the scores of the following appli-
cable elements divided by the number of the applicable elements.

N e 2 T I

e W e e e

(1) A definitive statement of requirement for error tolerance of
input data.
The requirements specification must identify the error tolerance
. capabilities desired (requirements phase only).

(2) Range of values (reasonableness) for items specified and checked
(design and implementation phases only).
The attributes of each input item are to be checked for reason-
ableness. Examples are checking items if they must be numeric,
alphabetic, positive or negative, of a certain length, nonzero,
etc. These checks are to be specified at design and exist in
code at implementation.

(3) Conflicting requests and illegal combinations identified and checked
(design and implementation phases only).
Checks to see if redundant input data agrees, if combinations of param-
eters are reasonable, and if requests are conflicting should be docu-
mented in the design and exist in the code at implementation.

(4) A1l input is checked before processing begins (design and imple-
mentation phases only).
Input checking is not to stop at the first error encountered but to con-
tinue through all the input and then report all errors. Processing is
not to start until the errors are reported and either corrections are
made or a continue processing command is given.

(5) Determination that all data is available prior to processing.
To avoid going through several processing steps before incomplete
input data is discovered, checks for sufficiency of input data
are to be made prior to the start of processing.

ET.3 Recovery from Computational Failures Checklist (all three phases at
system level), The metric is the sum of the scores of the following appli-
3 cable elements divided by the number of applicable elements.

B-35

(1) A definitive statement of requirement for recovery from compu-
tational failures (requirements phase only).
The requirement for this type error tolerance capabilityare to
be stated during requirements phase.

(2) Loop and multiple transfer index parameters range tested before
use. (design and implementation phase only).
Range tests for loop indices and multiple transfers are to be
specified at design and to exist in code at implementation.

(3) Subscript checking (design and implementation phases only).
Checks for legal subscript values are to be specified at design
and coded during implementation.

(4) Critical output parameters reasonableness checked during
processing (design and implementation phases only).
Certain range-of-value checks are to be made during processing to
ensure the reasonableness of final outputs. This is usually done
only for critical parameters. These are to be identified during
design and coded during imp]ehentation.

ET.4 Recovery from Hardware Faults Checklist (A11 three phases at system
level). The metric is the sum of scores from the applicable elements divided
by the number of applicable elements.

(1) A definitive statement of requirements for recovery from hardware
faults (requirements only).
The handling of hardware faults such as arithmetic faults, power
failure, clock interrupts, etc., are to be specified during require-
ments phase.

B-36

(2) Recovery from Hardware Faults (design and implementation phases

only).
The design specification and code to provide the recovery from

the hardware faults identified in the requirements must exist
in the design and implementation phases respectively.
k

ET.5 Recovery from Device Errors Checklist (all three phases at system

level). The metric is the score given to the applicable elements below

at each phase.

(1) A definitive statement of requirements for recovery from device

errors (requirements only).
The handling of device errors such as unexpected end-of-files

or end-of-tape conditions or read/write failures are specified

during the requirements phase.

(2) Recovery from Device Errors (design and implementation phases

only).
The design specification and code to provide the required

handling of device errors must exist in the design and implementation

phases respectively.

Simplicity

SI.1 Design Structure Measure (design and implementation phases at system
level). The metric is the sum of the scores of the applicable elements

divided by the number of applicable elements.

: . (1) Design organized in top down fashion.
' A hierarchy chart of system modules is usually available or easy

to construct from design documentation. It should reflect the
accepted notion of top down design. The system is organized
in a hieracrchal tree structure, each level of the tree represents

Tower levels of detail descriptions of the processing.

B-37

(2)

(3)

(4)

(5)

(6)

Module independence.

The processing done within a module is not to be dependent on the
source of input or the destination of the output. This rule can
be applied to the module description during design and the coded
module during implementation. The measure for this element is

based on the number of modules which do not comply with this rule.

Module processing not dependent on prior processing.

The processing -done within a module is not to be dependent upon
knowledge or results of prior processing, e.g., the first time
through the module, the nth time through, etc. This rule is
applied as above at design and implementation.

Each module description includes input, output, processing,
limitations.

Documentation which describes the input, output, processing, and
limitations for each module is to be developed during design and
available during implementation. The measure for this element is
based on the number of modules which do not have this information
documented.

Each module has single entrance, single exit.
Determination of the number of modules that violate this rule at

design and implementation can be made and is the basis for the metric.

Size of data base.
The size of the data base in terms of the number of unique data

items contained in the data base relates to the design structure
of the software system, A data item is a unique data element
for example an individual data entry or data field.

-

o~

(7) Compartamentalization of Data Base
The structure of the data base also is represented by its
modularization or how it is decomposed. The size determined
in (6) above divided by the number of data sets provided this
measure. A data set ccrresponds to the first level of decom-
position of a data pase, e.g., a set in a CODASYL data base,
a record in a file system, a COMMON in FORTRAN, or a Data
Block in a COMPOOL system

SI.3 Data and Control Flow Complexity measure (Design and implementation
phases) .

This metric can be measured from the design representation (e.g., flowcharts)
and the code automatically. Path flow analysis and variable set/use informa-
tion along each path is utilized. A variable is considered to be 'live' at a
node if it can be used again along that path in the program. The com-
plexity measure is based on summing the 'liveness' of all variables along

all paths in the program. It is normalized by dividing it by the maximum
complexity of the program (all variables live along all paths).

(See [RICHP76] and page D-16 of Volume II.)

SI.4 Measure of Simplicity of Coding Techniques (Implementation phase
applied at module level first). The metric at the system level is an
averaged quantity of all the module measures for the system. The module
measure is the sum of the scores cf the following applicable elements
divided by the number of applicable elements.

(1) Module flow top to bottom.
This is a binary measure of the logic flow of a module. If it
flows top to bottom, it is given a value of 1, if not a 0.

Negative Boolean or complicated Compound Boolean expressions
used.

Compound expressions involving two or more Boolean operators and
negation can often be avoided. These types of expressions add
to the complexity of the module. The measure is based on the
number of these complicated expressions per executable statement

in the module.
B-39

(3)

(4)

(5)

(6)

(7)

(8)

B-40

Jumps in and out of loops.

Loops within a module should have one entrance and one exit.

This measure is based on the number of loops which comply with this
rule divided by the total number of loops.

Loop index modified.

Modification of a loop index not only complicates the logic of a
module but causes severe problems while debugging. This measure
is based on the number of loop indices which are modified divided
by the total number of loops.

Module is not self-modifying.

If a module has the capability to modify its processing logic it becomes
very difficult to recognize what state it is in when an error occurs. In
addition, static analysis of the logic is more difficult. This measure
emphasizes the added complexity of self-modifying modules.

Number of statement labels.
This measure is based on the premise that as more statement labels
are added to a module the more complex it becomes to understand.

Nesting level,

The greater the nesting level of decisions or loops within a mod-
ule, the greater the complexity. The measure is the inverse of
the maximum nesting level,

Number of branches.,

The more paths or branches that are present in a module, the
greater the complexity, This measure is based on the number
of decision statements per executable statements.

A e e o s PSR o r U

-+ g,

-

(9) Number of GOTO's.
Much has been written in the literature about the virtues of
avoiding GOTO's. This measure is based on the number of GOTO
statements per executable statement.

(10) Vvariable mix in a module,
From a somplicity viewpoint, local variables are far better than
global variables. This measure is the ratio of internal (local)
variables to total (internal (local) plus external (global))
varialbes within a module.

(11) Vvariable density,
The more used of variables in a module the greater the complexity
of that module. This measure is based on the number of variable
uses in a moduie divided by the maximum possible uses.

Modularity
MD.2 Modular Implementation Measure (design and implementation phases at

system level). The metric is the sum of the scores of the fo]]ow{ng ap-
plicable elements divided by the number of applicable elements.

(1) Hierarchical Structure.
The measure refers to the modular implementation of the top down
design structure mentioned in SI.1 (1). The hierarchical struc-
ture obtained should exemplify the following rules: Interactions
between modules are restricted to flow of control between a pre-
decessor module and its immediate successor modules, This mea~
sure is based on the number of violations to this rule,

(2) Module Size Profile,
The standard module size of procedural statements can vary. 100
statements has been mentioned in the literature frequently.
This measure is based on the number of procedural statements in
a module.

B-41

(3) Controlling patrameters defined by calling module.
The next four elements further elaborate on the control and
interaction between modules referred to by (1) above. The
calling module dé%ines the controlling parameters, any input
data required, and the output data required. Control must
also be returned to the calling module. This measure is basec
on the number of calling parameters which are control para-
meters. The next three are based on whether a rule is vio-
lated. They can be measured at design and implementation.

(4) Input data controlled by calling module.
See (3) above.

(5) Output data provided to calling module.
See (3) above.

(6) Control returned to calling module,
See (3) above.

(7) Modules do not share temporary storage.
This is a binary measure, 1 if modules do not share temporary
storage and 0 if they do, It emphasizes the loss of module
independence if temporary storage is shared between modules.

Generality
GE.1 Extent to which modules are referenced by other modules (design and

jmplementation at system level), This metric provides a measure of the
generality of the modules as they are used in the current system. A mod-
ule is considered to be more general in nature if it is used (referenced)
by more than one module. The numoer of these common modules divided by
the total number of modules provides the measure.

GE. 2 Implementation for Generality Measure (design and implementation
phases). This metric is the sum of the scores of the following applicable
elements divided by the number of applicable elements.

(1) Input, processing, output functions are not mixed in a single ﬂ
function. |
A module which performs I/0 as well as processing is not as
general as a module which simply accomplishes the processing.
This measure is based on the number of modules that violate
this concept at design and implementation.

B e T L R

-~

(2) Application and machine dependent functions are not mixed in
a single module (implementation only).
Any references to machine dependent functions wiihin a module
lessens its generality. An example would be referencing the
system clock for timing purposes. This measure is based on the
number of machine dependent functions in a module.

(3) Processing not data volume limited.
A module which has been designed and coded to accept no more-
than 100 data item inputs for processing is certainly not as
general in nature as a module which will accept any volume uf
input. This measure is based on the number of modules which
are designed or implemented to be data volume limited,

(4) Processing not data value limited.
A previously identified element, ET.2 (2, of Error Tolerance
dealt with checking input for reasonableness. This capability
is required to prevent providing data to a function for which
it is rot defined or its degree of precision is not acceptable,
etc. This is necessary capability from an error tolerance
viewpoint. From a generality viewpoint, the smaller the subset

B-43

-

of all possible inputs to which a function can be applied the
less general it is. Thus, this measure is based on the number
of modules which are data value limited., This cin be deter-
mined at design and implementation.

. A st Nt

> . -

Expandability

EX.1 Data Storage Expansi n Measure (design and implementation phase at
system level). The metric is the sum of the scores of the following appli-
cable elements divided by the number of applicable elements.

(1) Logical processing independent of storage specification/require-
ments. The togical processing of a module is to be independent
of storage size, buffer space, or array sizes. The design pro-
vides for variable dimensions and dynamic array sizes to be defined
parametrically. The metric is based on the number of modules con-
‘taining hard-coded dimensions which do not exemplify this concept.

v e~ N o

(2) Percent of memory capacity uncommitted (implementation only).
The amount of memory available for expansion is an important mea-
sure. This measure identifies the percent of available memory
which has not been utilized in implementing the current system.

EX.2 Extensibility Measure (design and implementation phases at the system
level). The metric is the sum of the scores of the following applicable
elements divided by the number of applicable elements.

(1) Accuracy, convergence, timing attributes which control processing
are parametric.
A module which can provide varying degrees of convergence or timing
to achieve greater precision provides this attribute of extensibil-
ity. Hard-coded control parameters, counters, clock values, etc.
violate this measure. This measure is based on the number of mod-
ules which do not exemplify this characteristic. A determination
can be made during design and implementation.

A RS L e b e 08 o - AN e tatngm
—————

(2) Modules table driven.

The use of tables within a module facilitates different representa-
! tions and processing characteristics. This measure which can be
applied during design and implementation is based on the number of
modules which are not table driven.

- s -

(3) Percent of speed capacity uncommitted (implementation only).
A certain function may be required in the performance requirements
specification to be accomplished in a specified time for overall
timing objectives. The amount of time not used by the current
implementation of the function is processing time available for
potential expansion of computational capabilities. This measure
identifies the percent of total processing time that is
uncommitted.

et g~) A s . o L

E:
E
]
i
;

Instrumentation
! IN.1 Module testing measure (design and implementation phases, first at mod-

ule level then system level). The system level metric is an average of all
module measures. The module measure is the average score of the following

two elements:

(1) Path coverage.
Plans for testing the various paths within a module should be made
during design and the test cases actually developed during imple-
mentation. This measure identifies the number of paths planned to
be tested divided by the total number of paths.

(2) Input parameters boundary tested.
The other aspect of module testing involves testing the input

B-45

-

sy 4

ranges to the module. This is done by exercising the module at the
various boundary values of the input parameters. Plans to do this
must be specified during design and coded during implementation.
The measure is the number of parameters to be boundary tested
divided by the total number of parameters.

IN.2 Integration Testing Measure (design and implementation phases at system

level).

(1)

(2)

B-46

The metric is the averaged score of the following two elements.

Module interfaces tested.

One aspect of integration testing is the testing of all module to
module interfaces. Plans to accomplish this testing are prepared
during design and the tests are developed during implementation.
The measure is based on the number of interfaces to be tested
divided by the total number of interfaces.

Performance requirements (timing and storage) coverage.

The second aspect of integration testing involves checking for com-
pliance at the module and subsystem level with the performance
requirements. This testing is planned during design and the tests
are developed during implementation. The measure is the number

of performance requirements to be tested divided by the total
number of performance requirements.

Yo Jamee

bt o ..

I TP RO . T3

NPV NP U TIPS WSO SOV, .S YR

IN.3 System Testing Measure (design and implementation phases at the system

level).

(1)

(2)

The metric is the averaged score of the two elements below.

Module Coverage.

One aspect of system testing which can be measured as early as the
design phase is the equivalent to path coverage at the module level.
For all system test scenarios planned, the percent of all of the
modules to be exercised is important.

Identification of test inputs and outputs in summary form.

The results of tests and the manner in which these results are
displayed are very important to the effectiveness of testing. This
is especially true during system testing because of the potentially
large volume of input and output data. This measure simply identi-
fies if the capability exists to display test inputs and outputs

in a summary fashion. The measure can be applied to the plans

and specifications in the design phase and the development of

this capability during implementation.

Self Descriptiveness

SD.1 Quantity of Comments (implementation phase at module level first and
then system level). The metric is the number of comment lines divided by the
total number of lines in each module. Blank lines are not counted. The
average value is computed for the system level metric.

B-47

_ . T]
C AR VN RO

SD.2 Effectiveness of Comments Measure (implementation phase at system level).
The metric is the sum of the scores of the following applicable elements
divided by the number of applicable elements.

(1)

(2)

(3)

(4)

(5)

B-48

Modules have standard formatted prologue comments.

The items to be contained in the prologue comments are listed in
Table 6.2-1. This information is extremely valuable to new

personnel who have to work with the software after development,
performing maintenance, testing, changes, etc. The measure at

the system level is based on the number of modules which do not
comply with a standard format or do not provide complete information.

Comments set off from code in uniform manner.

Blank lines, bordering asterisks, specific card columns are some of
the techniques utilized to aid in the identification of comments.
The measure is based on the number of modules which do not follow
the conventions established for setting off the comments.

A11 transfers of control and destinations commented.

This form of comment aids in the understanding and ability to follow
the logic of the module. The measure is based on the number of
modules which do not comply.

A11 machine dependent code commented.

Comments associated with machine dependent code are important not
only to explain what is being done but also serves to identify
that portion of the module as machine dependent. The metric is
based on the number of modules which do not have the machine
dependent code commented.

A1l non-standard HOL statements commented.
A similar explanation to (4) above is applicable here.

(6) Attributes of all declared variables commented.
The usage, properties, units, etc., of variables are to be explained \
in comments. The measure is based on the number of modules which do
not follow this practice.

(7) Comments do not just repeat operation described in language.
Comments are to describe why not what. A comment, increment A by 1, |
for the statement A=A+l provides no new information. A comment, \
increment the table look-up index, is more valuable for under- !i
standing the logic of the module. The measure is based on the i
number of modules in which comments do not explain the why's.

SD.3 Descriptiveness of Implementation Language Measure (implementation
phase at system level). The metric is the sum of the scores of the following ;
applicable elements divided by the number of applicable elements.

(1) High Order Language used.
An HOL is much more se]fldescriptive than assembly language. The
measure is based on the number of modules which are implemented,
in whole or part, in assembly or machine language. §

(2) variable names (mnemonics) descriptive of physical or functional
property represented.

i_ While the metric appears véry subjective, it is quite easy to

s identify if variable names have been chosen with self- t
‘ 5’ descriptiveness in mind. Three variable names such as NAME, §

5 POSIT, SALRY are far better and more easily recognized as bet- f

ter than Al, A2, A3. The measure is based on the number of
modules which do not utilize descriptive names.

B-49

P BT S

(3) Source code logically blocked and indented,
Techniques such as blocking, paragraphing, indenting for specific
constructs are well established and are to be followed uniformly
with a system. This measure is based on the number of modules
which do not comply with a uniform technique.

(4) One statement per line.
The use of continuation statements and multiple statements per line
causes difficulty in reading the code, The measure is the number
of continuations plus the number of multiple statement lines divided
by the total number of lines for each module and then averaged over
all of the modules in the system.

Execution Efficiency
EE.1 Performance Requirements allocated to design (design phase at system

level). Performance requirements ror the system must be broken down and
allocated appropriately to the modules during the design. This metric simply
identifies if the performance requirements have (1) or have not (0) been
allocated during the design.

EE.2 Iterative Processing Efficiency Measure (design and implementation
phases at module level first). The metric at the module level is the sum of
the scores of the following applicable elements divided by the number of
elements. At the system level it is an averaged score for all of the modules.

(1) Non-loop dependent computations kept out of loop.
Such practices as evaluating constants in a loop are to be avoided.
This measure is based on the number of non-loop dependent statements

B-50

(2)

(3)

(4)

(5)

e e Y
oo

tacilon.

found in all Toops in a module. This 1is to be measured from a
detailed design representation during design and from the code
during implementation. p

Performance Optimizing Compiler/Assembly language used (implementation
only).

This is a binary measure which identifies if a performance optimizing]j
compiler was used (1) or if assembly language was used to accomplish
performance optimization (1) or not (0).

Compound expressions defined once (implementation only). *
Repeated compound expressions are tobe avoided from an efficiency
standpoint. This metric is based on the number of compound

expressions which appear more than once. 4

Number of overlays.

The use of overlays requires overhead as far as processing time.
This measure, the inverse of the number of overlays, reflects that
overhead. It can be applied during design when the overlay scheme
is defined and during implementation.

Free of bit/byte packing/unpacking in loops.

This is a binary measure indicating the overhead involved in bit/byte
packing and unpacking. Placing these activities within loops should
be avoided if possible.

B-51

(6)

(7)

(8)

Module linkages (implementation only, requires execution).

This measure essentially represents the inter-module communication
overhead. The measure is based on the amount of execution time
spent during module to module communication.

Operating System linkages (implementation only, requires execution),
This measure represents the module to 0S communication overhead.

The measure is based on the amount of execution time spent during
module to 0S communications,

Efficient Use of storage facility.
This measure represents an evaluation of the utility of the storage
facility.

EE.3 Data Usage Efficiency Measure (design and implementation phases applied
at module level first). The metric at the module level is the sum of the
scores of the following applicable elements divided by the number of applicable

elements.
values.

(1)

(2)

B-52

The system metric is the averaged value of all of the module metric

Data grouped for efficient processing.

The data utilized by any module is to be organized in the data base,
buffers, arrays, etc., in a manner which facilitates efficient
processing. The data organization during design and implementation is
to be examined to provide this binary measure.

Variables initialized when declared (implementation only).
This measure is based on the number of variables used in a module
which are not initialized when declared.

) mﬂ““‘ Ra il SR

=

.

Eilen s 2o end 2 b L L I

(3)

(4)

(5)

Efficiency is lost when variables are initialized during execution
of a function or repeatedly initialized during iterative processing.

No mix-mode expressions (implementation only).
Processing overhead is consumed by mix-mode expressions which are
otherwise unnecessary. This measure is based on the number of mix-

mode expressions found in a module.

Common choice of units/types. o
For similar reasons as expressed above (3) this convention is to be

followed. The measure is the inverse of the number of operations
performed which have uncommon units or data types.

Data indexed or referenced for efficient processing.

Not only the data organization, (1) above, but the 1inkage scheme
between data items effects the processing efficiently. This is a
binary measure of whether the indexing utilized for the data was

chosen to facilitate processing.

Storage Efficiency

SE.1 Storage Efficiency Measure (design and implementation phases at module
level first then system level). The metric at the module level is the sum of
the scores of the following applicable elements divided by the number of
applicable elements. The metric at the system level is the averaged value of

all of the module metric values.

(1) Storage Requirements allocated to design (design phase only).

The storage requirements for the system are to be allocated to the
individual modules during design. This measure is a binary measure
of whether that allocation is explicitly made (1) or not (0).

B-53

(2)

(3)

(4)

(5)

(6)

B-54

P L R B i £ ¢

Virtual Storage Facilities Used.

The use of virtual storage or paging techniques enhances the

storage efficiency of a system. This is a binary measure of whether
these techniques are planned for and used (1) or not (0).

Common data defined only once (implementation only).

Often, global data or data used commonly are defined more than
once. This consumes storage. This measure is based on the number
of variables that are defined in a module that have been defined
elsewhere.

Program Segmentation.

Efficient segmentation schemes minimize the maximum segment length
to minimize the storage requirement. This measure is based on

the maximum segment length. It is to be applied during design when
estimates are available and during implementation.

Dynamic memnry management used,

This is a binary measure emphasizing the advantages of using dy-
namic memory management techniques to minimize the amount ef
storage required during execution. This is planned during design
and used during implementation.

Data packing used (implementation only).

While data packing was discouraged in EE.2 (5) in loops because of
the overhead it adds to processing time, in general it is bene-
ficial from a storage efficiency viewpoint, This binary measure
applied during implementation recognizes this fact,

oA YRR R oy .o

(7)

Storage optimizing compiler/assenbly language used (implementation
only).

This binary measure is similar to EE.2 (2) except from the view-
point of storage optimization.

Access Control

(1)

(2)

AC.1 Access Control Checklist (all three phases at system level).
The metric is the sum of the scores of the following applicable elements
divided by the number of applicable elements.

User I/0 Access controls provided.

Requirements for user access control must be identified during the
requirements phase. Provisions for identification and password
checking must be designed and implemented to comply with the require-
ments. This binary measure applied at all three phases identifies
whether attention has been placed on this area.

Data Base Access controls provided.
This binary measure identifies whether requirements for data base

controls have been specified, designed and the capabilities imple-
mentated. Examples of data base access controls are authorization
tables and privacy locks.

B-55

(3)

Memory protection across tasks.

Similar to (1) and (2) above, this measure identifies the progression

from a requirements statement to implementation of memory protection
across tasks. Examples of this type of protection, often times pro-

vided to some degree by the operating system, are preventing tasks from

invoking other tasks, tasks from accessing system registers, and the
use of privileged commands.

Access Audit
AA.1 Access Audit Checklist (all three phases at system level).
The metric is the averaged score of the following two elements.

(1)

(2)

B-56

Provisions for recording and reporting access.

A statement of the requirement for this type capability must exist in

the requirements specification. It is to be considered in the design
specification, and coded during implementation. This binary metric
applied at all three phases identifies whether these steps are
being taken. Examples of the provisions which might be considered
would be the recording of terminal linkages, data file accesses,
and jobs run by user identification and time.

Provisions ‘for immediate indication of access violation.

In addition to (1) above, access audit capabilities required

might include not only recording accesses but immediate identifica-
tion of unauthorized accesses, whether intentional or not. This
measure traces the requirement, design, and implementation of
provisions for this capability.

!
!
i
|
|
g
!
i
|
;

o) e

iy

- <
T MW,

Operability
OP.1 Operability Checklist (all three phases at system level).

The metric is the sum of the scores of the following applicable elements
divided by the number of applicable elements.

(1) A1l steps of operation described.
This binary measure applied at all three phases identifies whether
the operating characteristics have been described in the require-
ments specification, and if this description has been transferred
into an implementable description of the operation (usually in an
operator's manual). The description of the operation should cover
the normal sequential steps and all alternative steps.

(2) A1l error conditions and responses appropriately described to
operator,
The requirement for this capability must appear in the requirements
specification, must be considered during design, and coded during
implementation. Error conditions must be clearly identified by
the system. Legal responses for all conditions are to be either
documented and/or prompted by the system. This is a binary mea-
sure to trace the evolution and iinplementation of these capabilities.

(3) Provisions for operator to interrupt, obtain status, save, modify,
and continue processing.
The capabilities provided to the operator must be considered during
the requirements phase and then designed and implemented. Examples
of operator capabilities include halt/resume and check pointing.
This is a binary measure to trace the evolution of these
capabilitier

(4) Number of operator actions reasonable (implementation only, re-
quires execution).
The number of operator errors can be related directly to the number
of actions required during a time period. This measure is based on
the amount of time spent requir.ng manual operator actions divided
by the total time required for the job.

B-57

(5) Job set up and tear down procedures described (implementation only).
The specific tasks involved in setting up a job and completing it
are to be described. This is usually documented duriny the imple-
mentation phase when the final version of the system is fixed.

This is a binary measure of the existence of that description.

(6) Hard copy log of interactions maintained (design and implementation
phases).
This is a capability that must be planned for in design and coded
during implementation. It assists in correcting operational errors,
improving efficiency of operation, etc. This measure identifies
whether it is considered in the design and implementation phases (1)
or not (0).

(7) Operator messages consistent and responses standard (design and
implementation phases). ‘
This is a binary measure applied during cesign and implementation to
insure that the interactions between the operator and the system are
simple and consistent. Operator responses such as YES, NO, GO, STOP,
are concise, simple, and can be consistently used throughout a system.
Lengthy, differently formated responses not only provide difficulty
to the operator but also require complex error checking routines.

Training
TN.1 Training Checklist (design and implementation at system level). The
metric is the sum of the scores of the following applicable elements divided by

the number of applicable elements.

(1) Lesson Plans/Training Material developed for operators, end users,
maintainers (implementation phase only).
This is a binary measure of whether this type documentation is
provided during the implementation phase.

B-58

(2) Realistic simulated exercises provided (implementation only).
This is a binary measure of whether exercises which represent the
operational environment, are developed during the implementation
phase for use in training.

L. 4 -k g A s T e A el

(3) Sufficient 'help' and diagnostic information available on-line.
This is a binary measure of whether the capability to aid the
operator in familiarization with the system has been designed and
built into the system. Provision of a list of legal commands or a
list of the sequential steps involved in a process are examples. ' ?{

poapepn—a

Communicativeness

CM.1 User Input Interface Measure (all three phases at system level).

The metric is the sum of the scores of the following applicable elements divi-
ded by the number of applicable elements.

e o e | s S~ . L

(1) Default values defined (design and implementation).
A method of minimizing the amount of input required is to provide
defaults. This measure, applied during design and implementation,
is based on the number of defaults allowed divided by the toutal
number of input parameters.

v e

(2) Input formats uniform ((/esign and implementation).
The greater the number of input formats there are the more difficult
the system is to use. This measure is based on the total number of
input formats. ;

- ——— .
grow ———

(3) Each input record self-identifying.
Input records which have self-identifying codes enhance the accuracy
X, of user inputs. This measure is based on the number of input
records that are not self identifying divided by the total number of
input records. It is to be applied at design and implementation.

l B-59

{
: l _
i

R TOT

(4) Input can be verified by user prior to execution (design and
implementation).
The capability, displaying input upon request or echoing the input
i automatically, enables the user to check his inputs before
i processing. This is a measure of the existence of the design and
implementation of this capability.

! (5) Input terminated by explicitly defined logical end of input (design
and implementation).

The user should not have to provide a count of dinput cards. This is
a binary measure of the design and implementation of this capability.

(6) Provision for specifying input from different media.
The flexibility of input must be decided during the requirements
analysis phase and followed through during design and implementation.
This is a binary measure of the existence of the consideration
of this capability during all three phases.

CM.2 User Output Interface Measure (all three phases at system level).
The metric is the sum of the scores of the following applicable elements divided
by the number of applicable elements.

(1) Selective Output Controls.
The existence of a requirement for, design for, and implementation
of selective output controls is indicated by this binary measure.
Selective controls include choosing specific outputs, output formats,
amount of output, etc.

(2) Outputs have unique descriptive user oriented labels (design and
implementation only).
This is a binary measure of the design and implementation of unique
output labels. In addition, the labels are to be descriptive to the
user. This includes not only the labels which are used to reference
an output report but also the title, column headings, etc. within that
report.

- o

PR

(3)

(4)

(5)

(6)

i (7)

Outputs have user oriented units (design and implementation).
This is a binary measure which extends (2) above to the individual
output items.

Uniform output labels (design and implementation).
This measure corresponds to CM.1 (2) above and is the inverse of
the number of different output formats.

Logical groups of output separated for user examination (design

and implementation).

Utilization of top of page, blank lines, lines of asterisks, etc.,
provide for easy identification of logically grouped output. This
binary measure identifies if these techniques are used during design
and implementation.

Relationship between error messages and outputs is unambiguous
(design and implementation).

This is a binary measure applied during design and implementation
which identifies if error messages will be directly related to the
output.

Provision for redirecting output to different media.

This is a binary metric which identifies if consideration is given
to the capability to redirect output to different media during
requirements analysis, design, and implementation.

\ Software System Independence

. e

] SS.1 Software System Independence Measure (design and implementation phases
: at system level). The metric is the sum of the scores of the following applic-
able elements divided by the number of applicable elements.

B-61

(1)

(2)

B-62

© - st e e e e S "

Dependence on Software System Utility programs,

The more utility programs, library routines, and other system
facilities that are used within a system, the more dependent
the system is on that software system environment, A SORT
utility in one operating system is unlikely to be exactly
similar to a SORT utility in another, This measure is based
on the number of references to system facilities in a module
divided by the total number of lines of code in the module,
It is to be applied during design and implementation,

Common, standard subset of Tanguage used,

The use of nonstandard constructs of a language that may be
available from certain compilers cause conversion problems
when the software is moved to a new software system environment.
This measure represents that situation. It is based on the
number of modules which are coded in a non-standard subset of
the language. The standard subset of the language is to be
established during design and adhered to during implementation.

Machine Independence

MI.1 Machine Independence Measure (design and implementation at system level).
The metric is the sum of the scores of the following applicable elements
divided by the number of applicable elements. ﬁ

PO

(1) Programming language used available on other machines.
This is a binary measure identifying if the programming language
used is available (1) on other machines or not (0). This means
the same version and dialect of the language.

! (2) Free from input/output references.

Input and output references bind a module to the current machine con-
figuration. Thus the fewer modules within a system that contain .
input and output references, the more localized the problem becomes
when conversion is considered. This measure represents that fact
and is based on the number of 1/0 references within a module.

It is to be applied during design and implementation.

N

(3) Code is independent of word and character size (implementation only).
Instructions or overations which are dependent on the word or
character size of the machine are to be either avoided or param-
etric to facilitate use on another machine. This measure applied

to the source during implementation is based on the number of
modules which contain violations to the concept of independence of
word and character size.

L (4) Data representation machine independent (implementation only).
The naming conventions (length) used are to be standard or com-

‘ patible with other machines. This measure is based on the number
of modules which contain variables which do not conform to standard

data representations.

B-63

£l el

S e

Communications Commonality

CC.1 Communications Commonality Checklist (all three phases at system
level). The metric is the sum of the scores of the following applicable
elements divided by the number of applicable elements.

(1) Definitive statement of requirements for communcation with other
- systems (requirements only).
During the requirement phase, the communication requirements
with other systems must be considered. This is a binary measure of ﬂ
the existence of this consideration. E

(2) Protocol standards established and followed.
The communcation protocol standards for communication with other
systems are to be established during the design phase and followed
during implementation. This binary measure applied at each of
these phases indicates whether the standards were established and
followed.

(3) Single module interface for input from another system.
The more modules which handle input the more difficult it is to
interface with another system and implement standard protocols.
This measure based on the inverse of the number of modules which
handle input is to be applied to the design specification and source

code.

(4) Single module interface for output to another system
For similar reasons as (3) above this measure is the inverse of
the number of output modules.

Data Commonality

DC.1 Data Commonalitv Checklist (all three phases at system level). The
metric is the sum of the scores of the following applicable elements divided
by the number of applicable elements.

B-64

N

(1) Definitive statement for standard data representation for communica-
tions with other systems (requirements only).
This is a binhry measure of the existence of consideration for
standard data representation between systems which are to be interfaced.
This must be addressed and measured in the requirements phase.

(2) Translation standards among representations established and followed
(design and implementation).
More than one translation from the standard data representations used
for interfacing with other systems may exist within a system. Standards
for these translations are to be established and followed. This binary
measure identifies if the standards are established during design and
followed during implementation.

(3) Single module to perform each translation (design and implementation).
For similar reasons as €C.1 (3) and (4) above, this measure is the
inverse of the maximum number of modules which perform a translation.

Conciseness

C0.1 Halstead's Measure (implementation phase at module level first then system
level). The metric is based on Halstead's concept of length ([HALSM77]). -
The observed length of a module is

N1 + Np where:
total usage of all operators in a module
total usage of all operators in a module

=
—
nonn

The calculated length of a module is
Nc = nilogpny + n2logany where:
n; = number of unique operators in a module
n2 = number of unique operators in a module

The metric is normalized as follows:

No
0 if 'FC - No| greater than 1

No

1 or,

At a system level the metric is the averaged value of all the module metric
values.

B-65

REFERENCES

[ARRK74] Arrow, K. J.
“Limited Knowledge and Economic Analysis"
American Economic Review, March 1974. E

[AR18-1] AR18-1 Management Information Systems Policies,
Objectives, Procedures, and Responsibilities.

(BAUF73] Bauer, F. L. (Ed)
Advanced Course on Software Engineering
Springer - Verlag, Berlin, 1973,

[BOEB73] Boehm, B.
i “Software and Its Impact: A Quantitative Report" 5
Datamation, April 1973. :

[BOWJ78] Bower, J. L. L.
"The Business of Business is Serving Markets" 1
American Economic Review, May 1978, Vol. 68, No. 2.

[BRAR61] Brady, R. A.
Organization, Automation and Society: The Scientific
Revolution in Industry, University of California Press,
Berkeley and Los Angeles, 1961.

[CASM77] Cashman, M. W,
“An Interview With Professor Dr. Edsger W. Dijkstra"
Datamation, May 1977.

[CAVJ78] Cavano, J., McCall, J.
“A Framework for the Measurement of Software Quality",
Proceedings ACM Software Quality Assurance Workshop,
November 1978.

REFERENCE (continued)

[CHAR78]

[CHER]

[CONS75]

[COTI75]

{DeMR76]

[DEWR78]

[DIJE69]

[DIvE?5]

Chapman, R.
“Facing Financial Realities in Banking"
Datamation, June 1978.

Chevance, R. J., et.al.
“Static Profile and Dynamic Behavior of COBOL Programs"
SIGPLAN, reference open.

Constantine, L., Yourdon, E.
“Structured Design", Yourdon Press, N. Y., 1975

Cotton, I. W.
“Microeconomics and the Market for Computer Services"
ACM Computing Surveys, Vol, 7, No. 2, June 1975,

DeMillo, R. A., et.al.
“Can Structured Programs be Efficient?", SIGPLAN Notices,
October 1976.

Dewar, R., Hage, J.

“Size, Technology, Complexity, and Structual Differentiation:
Toward a Theoretical Synthesis", Administrative Science
Quarterly, pp 111-136, March 1978.

Dijkstra, E. W.
NATO “"Science Committee Report, January 1969".

Dijkstra, E. W.

“Correctness Concerns and, Among Other Things, Why They
are Resented", Proceedings of the 1975 International
Conference on Reliable Software, Los Angeles.

wWww

SN TP N SR arm S L e s e L T

REFERENCE (continued)

[DoDMAN]

[DZIN78]

[FAGM76]

[FITA78]

[FLEJT72]

[FosL76]

[FRIR78]

[FAIE78]

DoD Manual 4120.17-M
Automated Data Systems Documentation Standards

Dzida, W., et.al.
“User-Perceived Quality of Interactive Systems", Proceedings
of 3rd International Conference on Software Engineering.

Fagan, M. E.

“Design and Code Inspections and Process Control in the
Development of Programs", IBM Technical Report TR 00.2763,
Poughkeepsie, 1976,

Fitzsimmons, A, Love, T.
“"A Review and Evaluation of Software Science", ACM
Computing Surveys, Vol. 10, No. 1, March 1978,

Fleiss, J. E., et.al.
“Programming for Transferability"
NTIS Memorandum AD-750 897, 1972.

Fosdick, L. D., Osterweil, L. J.
“Data Flow Analysis in Software Reliability", ACM Computing
Surveys Special Issue: Reliable Software I, 1976.

Fried, R.
"Monitoring Data Integrity"

Datamation, June 1978.

Gainer, E., et.al.
“The Design of a Reliable Applications System"

3rd Proceedings.

R-3

- ettt o

- ————

[GALJ73]

[GETC78]

[60LJI73]

[GORG71]

[HANS76]

[HECST77]

[HETB78]

R-4

¢ e o o R o T T W

REFERENCE (continued)

Galbraith, J.
Designing Complex Organizations

Addison-Wesley, Reading, Mass 1973.

Getz, C. W.
"DP's Role is Changing"

Datamation, February 1978.

Goldberg, J., ed.

Proceedings of the Symposium on the High Cost of Software,

Monterey, 1973.

Gorry, G. A., Scott Morton, M.S.
“A Framework for Management Information Systems"
Sloan Management Review, Vol. 13, No. 1,

Fall 1971, MIT Cambridge, Mass.

Hantler, S. L., King, J. C.

"An Introduction to Proving the Correctness of Programs"
ACM Computing Surveys Special Issue: Reliable Software I,
September 1976.

Hecht, M. S.
Flow Analysis of Computer Programs, Elsevier North-Holland,
New York, 1977.

Hetzel, B.
“A Perspective on Software Development”
3rd Proceedings.

e T A i T £ T R 5+t SO s i V0 M - = st . et -

T
i
£
g
B '-‘1-.
”x
8y

wri, Fre Py EVIE e

T X¥Be g -

T

VAN

[HIBP78]

[HIRA70]

[HOAC78]

[HOLJ77]

[HORJ73]

[JACM78]

[KEEP77]

« g

REFERENCES (continued)

Hibbard, P. G., Schuman, S. A.
Constructing Quality Software, IFIP Working Conference,
Novosibirsk, USSR North Holland 78

Hirschman, A. 0.
Exit, Voice, and Loyalty: Responses to Decline in Firms,
Organizations and States

Harvard University Press, Cambridge, Mass 1970.

Hoare, C.A.R.

“Software Engineering: A Keynote Address", 3rd Proceedings
of the International Conference on Software Engineering,
Atlanta, 1978.

Holton, J. B.
"Are the New Programming Techniques Being Used?"
Datamation, July 1877.

Horning, J. J., Randell, B.
"Process Structuring"
ACM Computing Surveys, Vol. 5, No. 1, March 1973.

Jackson, M. A,

“Information Systems: Modeling, Sequencing and Transformations
3rd Proceedihgs of the International Conference on Software
Engineering, Atlanta, 1978.

Keen, P. G. W., Gerson, E. M,
“The Politics of Software Systems Design"
Datamation, November 1977,

R-5

o = - gy
e -
——— ..

T e e L Gty APV ot 0

[KINJ78]

[KLEL76]

[KLIR78]

[KNUD73]

[K0SS74]

[KURS75]

[LEIH78]

Lk i

REFERENCES (continued)

King, J. L., Schrems, E. L.
“"Cost-Benefit Analysis in Information Systems Development

and Operation™, ACM Computing Surveys, Vol. 10, No. 1,
March 1978,

Klein, L.
New Forms of Work Organization
Cambridge University Press, Cambridge, 1976.

Kling, R,

“Value Conflicts and Social Choice in Electronic Funds
Transfer System Developments”, CACM, Vol. 21, No. 8,
August 1978,

Knuth, D. E.
"A Review of "Structured Programming"", Computer Science
Dept. STAN-CS-73-371, Stanford University.

Kosaraju, S. R., Ledgard, M, F,
Concepts in Quality Software Design
NBS Technical Note 842, Washington 1974,

Kurki-Suonio, R.

“Towards Better Structured Definitions of Programming
Languages", STAN-CS-75-500 Computer Science Dept.,
Stanford University, 1975.

Leibenstein, H.
"On the Basic Proposition of X-Inefficiency Theory"

American Economic Review, May 1978.

M e

i e o

i s crm——

. e ——r—

[LINT76]

[LITB78]

[LOVL77]

[LOVT77a]

[LOVT77b]

[LUCH74]

[LY0G78]

REFERENCES (continued)

Linden, T, A.

“Operating System Structures to Support Security and
Reliable Software", ACM Computing Surveys, Vol, 8,
No. 4, 1976.

Littiewood, B.

"How to Measure Reliability, and How Not to..."

3rd Proceedings of the International Conference on Software
Engineering, Atlanta, 1978.

Love, L. T.

Relating Individual Differences in Computer Programming
Performance to Human Information Processing Abilities,
Ph.D Thesis University of Washington, 1977.

Love, T.

An Experimental Investigation of the Effect of Program
Structure on Program Understanding,

G.E. Technical Information Series TIS77ISP006.

Love, T.

A Preliminary Experiment to Test Influences on Human
Understanding of Software,

G. E. Technical Information Series TIS771SP007.

Lucas, H. C.
Toward Creative Systems Design
Solumbia University Press, New York 1974.

ityon, G.
“COBOL Instrumentation and Debugging: A Case Study"
NBS Special Publication 500-26, U. S. Dept. of Commerce 1978,

R-7

hl 2 S

A AN b >

e Y e . L

. e o,

REFERENCES (continued)

[MARR71]

[MATM78]

[McCC78]

[McCd77a]

[McCJ77b]

[McCJ78a]

[McCJ78b]

R-8

Marris, R., Wood, A., eds.
The Corporate Economy Growth, Tompetition and Innovative

Potential, Harvard University Press, Cambridge, Mass, 1971.

Matsumoto, M. %
“Design and Quality in MIS Environments"”
Software Metrics Enhancement Task Internal Memorandum No. 1, y
August 1978, é '
§
|
!
i
i
i

McClure, C. L.
Reducing COBOL Complexity through Structured Programming

Van Nostrand Reinhold Cn., 1978,

McCall, J., Richards, P., Walters, G.
“Factors in Software Quality", 3 Vols. (A049014) (A049015)

4
RADC TR 77-369, November 1977 (A049055)

McCall, J., Richards, P., Walters, G.
"Metrics for Software Quality Evaluation and Prediction"
Proceedings of the NASA/Goddard Second Summer Engineering

Workshop, September 1977.

AN
A\
\

McCall, J.

"The Utility of Software Quality Metrics in Large-Scale
Software System elopments", Proceedings of the Second
Software Life Cycle Management Workshop, August 1978.

McCall, J.
"Software Quality: The Illusive Measurement"

Software Quality Management Conference, September 1978,

REFERENCES (continued)

; [McCP78] McCarter, P. M, f
; "Where is the Industry Going?" ~i
i Datamation, February 1978,

{

i [McCK75] McKeeman, W. M. ’

f "On Preventing Programming Languages from Interfering
i with Programming", IEEE Transactions on Software

% Engineering, March 1975,)
!

[MILSTD] MIL-STD-490
' Specification Practices

[MIY178] Miyamoto, I.
“Toward an Effective Software Reliability Evaluation"

3rd Proceedings of the International Conference on Software
Engineering, Atlanta, 1978.

 ————~ e~

(MYEG75] MYERS, G. S.
Reliable Software Through Composite Design
Petrocelli/Charter, 1975.

[NOBD77] Noble, D.
America By Design, Harper Row,
New York, 1977.

[PAND76] Panzl, D. J.
"Test Procedures: A New Approach to Software Verification®

Proceedings of the Second International Conference -
on Software Engineering, San Francisco 1976,

————— P e

e ermang

-

T AT e et T AT i 4 A, - . a— e e e

S b} o < gt .

REFERENCES (continued)]

[PARET7S]

[PARD75]

[PEDJI78]

[PEED78]

[PETI77]

[PODJ77]

[PRO73]

(PRO75]

Proceedings of the International Conference on Reliable

Parker, E. B. :'4
“Social Implications of Computer/Telecommunications '
Systems",

Conference on Computer/Telecommunications Policy - :
Organization for Economic Co-operation and Development

Paris, 4-6 February 1975.

Parnas, D. L.
"The Influence of Software Structure on Reliability

Software, Los Angeles, 1975.

T s RS, DN -
o .

Pederson, J. T., Buckle, J. K.
"Kongsberg's Road to an Industrial Software Methodology"

3rd Proceedings.

Peeples, D. E.
"Measure for Productivity"
Datamation, May 1978.

Peterson, J. L.
"Petri Nets", ACM Computing Surveys, Vol. 9, No. 3, 1977

Podolsky, J. L.
"Horace Builds a Life Cycle",
Datamation, November 1977.

“Proceedings of a Symposium on the High Cost of Software"
AFOSR, ARO, ONR, 1973.

"Proceedings of the International Conference on Reliable
Software", ACM, 1975,

- ——— e

-

REFERENCES (continued)

[PYSA78] Pyster, A., Dutra, A.
"Error-Checking Compilers and Portability"
Software Practice and Experience, Vol. 8, Issue 1,
January - February 1978.

[RICP76] Richards, P., Chang, P,
“Localization of Variables: A Measure of Complexity"
GE TIS 76CIS07, December 1976.

[R1CD70] Richardson, D. W. .
Electric Money: Evolution of an Electronic Funds -
Transfer System, MIT Press, Cambridge, Mass, 1970.

LD W T

(RIDW78] Riddle, W. E., et.al.
"Behavior Modelling During Software Design"

3rd Proceedings of the International Conference on Software ‘
Engineering, Atlanta, 1978.

[ROBL75] Robinson, L., et.al.
“The Verification of COBOL Programs"”
NTIS Memorandum, J'me 1975.

[ROGE76] Rogers, E. M., Agarwala-Rogers, R.
Communications in Organizations
The Free Press, New York, 1976.

[SAMST76] "Contractor Software Quality Assurance Evaluation Guide"
SAMSO Pamphlet 74-2, Los Angeles, 1976,

‘ . [SCOM] Scott Morton, M.S.

"Some Perspectives on Computerized Management Decision
Making Systems", Unpublished draft

I R-N

[STR74]

[VINW77]

REFERENCES (continued)

[SHAW69]

Sharpe, W. F.
The Economics of Computers

[SPeA74]

Columbia University Press, New York, 1969.

Spence, A. M.

- T TR gy .=

“An Economist's View of Information"
Annual Review of Information Science, Vol. 9, 1974,

[STAR73]

[TAGW77]

[THOD78]

Stamper, R.
Information in Business and Administrative Systems
John Wiley and Sons, New York, 1973,

"Structured Programming Series"
RADC, 15 Vols., 1974-1975.

Taggart, W. M, Jr, Tharp, M. 0.
“A Survey of Information Requirements Analysis Techniques”
ACM Computing Surveys, Vol. 9, No. 4, 1977.

Thomas, D. R. E.
“Strategy is Different in Service Businesses"
Harvard Business Review, July-August 1978

[USACSCM]

pp 158-165, Cambridge, Mass.

USACSC Manual 18-1
Automatic Data Processing System Development, Maintenance
and Documentation Standards and Procedures Manual.

Vinson, W. D., Heany, D. F.
"Is Quality Out of Control?"
Harvard Business Review, November-December 1977.

REFERENCES (continued)

[WALG78a] Walters, G., McCall, J. ‘
“The Development of Metrics for Software R&D" !
1978 Proceeqdings, Annual Reliability and Maintainability
Symposium, January 1978.

[WALG78b] Walters, G.
“Application of Metrics to Software Quality Management
Programs”, Software Quality Management Conference,
September 1978.

[WEGP76] Wegner, P.
"Research Paradigms in Computer Science"
Proceedings of the 2nd International Conference on Software
Engineering, San Francisco, 1976.

[WEGP78] Wegner, P.
“Research Directions in Software Technology"
3rd Proceedings.

[WIRN6S] With, N,
"On Certain Basic Concepts of Programming Languages" |
Technical Report No. CS65, Computer Science Department,

Stanford University, 1965.

[WONG78] Wong, G.
“Design Methodology for Computer System Modeling Tools" k
Symposium on Modeling and Simulation Methodology, r
August 1978, Rehorot, Isreal.

[YEHR76] Yeh, R. T., ed.
ACM Computing Surveys Special Issue! Reliable Software I:
’ Software Validation 1976. '

R-13

3 ’ . » RSO O " _] i - i
- . DT ot e S a— - - < e SR

REFERENCES (Continued)

[CULK79] Culik
“The Cyclomatic Number and the Normal Number of Programs"
{ ACM SIGPLAN Notices, Vol. 14, No. 4, April 1979
[MILE79] Miller, E.

“Some Statistics from the Software Test Factory"
ACM Software Engineering Notes, Vol. 4, No.l, January 1979.

[JOHI75] Johnson, J.P.
"Software Reliability Measurement"
NTIS AD-A019-147, December 1975,

[KAUR75] Kauffman, R. ‘
“COBOL/Structured Programming - Win the Marriage Survive"
Infosystems, February 1975,

[GELD79] Gelperin, D.
“Testing Maintainability"
ACM Software Engineering Notes, Vol. 4, No. 2, April 1979,

[ALIM79] Al-darrah, M., et. al.
"An Empirical Analysis of COBOL Programs"
Software - Practice and Experience, Vol. 9, Issue No. 5,
May 1979.

[MCkJ79] McKissick, J., et. al,
"The Software Development Notebook - A Proven Technique"
Proceedings 1979 Annual Reliability and Maintainability

i Symposium, January 1979

[IMP74] "Improved Programming Technologies - An Overview"
IBM TR-GC20-1850-0, 1974.

R-14 "

S O

REFERENCES (Continued)

[LIEB78] Lientz, B., et, al.
"Characteristics of Applications Software Maintenance”
Communications of the ACM, Vol. 21, No. 6, June 1978.

[BASV78] Basil, V., et. al.
"Investigating Software Development Approaches" :
AFOSR TR-688, August 1978.

[PHIM76] Phister, M.
Data Processing Technology and Econortics, Santa Monica

Publishing Co., 1976.

CAS WAF LAV RAF

§
|

MISSION
of

Rome Awr Development Center

RADC plans and executes nescarch, develovment, test and
selected acquisition programs in aupport of Command, Control
Communications and Intelligence (C31) activities. Technical
and engineering support within ascas of technical competence
4L provide. to ESD Program Of4/ces (POs) and othen ESD
elemenis. The principal technical mission aveas are
comiunications, electremagnetic guddarce and control, sur-
velllance of ground and aerospace objects, intelligence data
collection and handling, infjormation sysiem technology,
Lonospherice propagation, solid state sciences, microwave
physics and electronic reliability, maintainabit ity and
compatibility.

OO oK 901 HAF RS A RAIF S5

L RAF XK

L S LS XL 9SS 9 A I SF X AF 9

%

e T T e g Vi e g U i AR R I 5 ol Ul PR e i i S R e G Yo e IR RO R T, e SRS
Y S i o S 2 S Rty S A Gy TR Regn T A LT) . B v Tl *
BENEY LN ONES XL RO T R EEARPCERIR N T TRl e Y ST N NP R SR ST A

o RN VS i A

