INFLUENCE OF MAGNETIC SHEAR ON THE CURRENT
CONVECTIVE INSTABILITY IN THE DIFFUSE AURORA

J. D. Huba and S. L. Ossakow

Naval Research Laboratory
Washington, D.C. 20375

Defense Nuclear Agency, Washington, D.C. 20305
Office of Naval Research, Arlington, VA. 22217

April 16, 1980

Approved for public release; distribution unlimited.

This research was sponsored partially by the Defense Nuclear Agency under subtask S99QAXHC066,
Work Unit 13, Title "Magnetospheric and High Latitude Implications"; and partially by the Office of
Naval Research.

Current convective instability
Diffuse aurora
Magnetic shear effects
Scintillation causing irregularities

The influence of magnetic shear on the current convective instability is investigated for conditions
typical of the high latitude F region during the diffuse aurora. It is found that magnetic shear (1)
reduces the growth rate of the instability (although does not stabilize the mode) and (2) substantially
localizes the mode structure parallel to the density gradient.

The Influence of Magnetic Shear on the Current Convective Instability

Interim report on a continuing NRL problem.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. THEORY</td>
<td>2</td>
</tr>
<tr>
<td>III. DISCUSSION</td>
<td>6</td>
</tr>
<tr>
<td>IV. SUMMARY</td>
<td>8</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>8</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>9</td>
</tr>
<tr>
<td>DISTRIBUTION LIST</td>
<td>11</td>
</tr>
</tbody>
</table>
INFLUENCE OF MAGNETIC SHEAR ON THE CURRENT
CONVECTIVE INSTABILITY IN THE DIFFUSE AURORA

I. INTRODUCTION

Recently, the current convective instability has been suggested as a mechanism to explain the scintillation enhancements observed by the DNA Wideband satellite in the high latitude diffuse aurora F region (Ossakow and Chaturvedi, 1979). These enhancements are presumably due to field aligned, sheet-like ionospheric irregularities (Rino et al., 1978) generated by the instability. Associated with the enhancements are a density gradient in the north-south total electron content (TEC) and a weak magnetic field aligned current due to precipitating auroral electrons (Fremouw et al., 1977; Rino et al., 1978); both of these features are necessary to excite the current convective instability (Kadomtsev, 1965). Also, the dominant modes appear to be in the north-south direction, i.e., parallel to the density gradient (Rino et al., 1979). This is contrary to the linear theory of the instability which indicates the most unstable waves are perpendicular to both the ambient magnetic field and the density gradient. However, Chaturvedi and Ossakow (1979) have proposed a nonlinear mode coupling mechanism which stabilizes the instability and nonlinearly generates waves parallel to the density gradient, in accordance with observations.

In this paper we discuss the influence of magnetic shear on the current convective instability and its role in the diffuse aurora. Magnetic shear can dramatically affect an instability as witnessed by the controversy over its role in the universal drift instability (Ross and Mahajan, 1978; Tsang et al., 1978). The primary action of shear is to allow the mode to sample a range of \(k_\parallel \) in the localization region.
If the mode is sensitive to k_\parallel, as is the current convective instability, then shear can have a strong influence on the instability (generally, stabilizing and localizing). The magnetic shear in the auroral region is produced by the weak field aligned current and its scale length can be estimated from $(\nabla \times B_\parallel)_{\parallel} = (4\pi/c)J_\parallel_{\parallel}$.

We define the scale length for shear as $L_s = (c/4\pi)B_\parallel_{\parallel}/J_\parallel_{\parallel}$ (Mikhailovskii, 1974) and using $B_\parallel_{\parallel} \approx 0.5$ G and $J_\parallel_{\parallel} \approx 8\mu$ amps/m2 (Ossakow and Chaturvedi, 1979) we find that $L_s \approx 5000$ km. Since the density gradient scale length ($L_n = (d\ln n_0/\ln y)^{-1}$) is $L_n \approx 10-100$ km we obtain $L_s/L_n \approx 50-500$. Thus, a weak magnetic shear can exist in the diffuse auroral region. However, since the current convective modes are predominantly field aligned (i.e., $k_\parallel \ll k_\perp$), even a weak magnetic shear can have an important influence on them. The two major results of our calculation are that magnetic shear (1) reduces the growth rate of the current convective instability, and (2) strongly localizes the mode in the north-south direction.

II. THEORY

The physical configuration we consider is described as follows. The ambient magnetic field is $\mathbf{B} = B_0 \hat{e}_z + B_{0x}(y) \hat{e}_x$ where B_{0x} is produced by J_\parallel_{\parallel} and $B_0 \gg B_{0x}$. The density varies in the y direction (north-south) and a field aligned current exists $J_\parallel_{\parallel} = J_\parallel_{\parallel} \hat{e}_z$.

Following Ossakow and Chaturvedi (1979), the basic set of equations we use is

$$\frac{\partial n_{\alpha}}{\partial t} + \nabla \cdot (n_{\alpha} \nabla \iota) = 0$$

(1)
\[V \cdot j = 0; \quad j = \sum_{\alpha} e_{\alpha} n_{\alpha} V_{\alpha} \quad (2) \]

\[V_{1} = \frac{c}{B_{0}} F \times e_{z} + \frac{c}{B_{0}} \frac{V_{1}}{N_{1}} E_{z} + \frac{c}{B_{0}} \frac{\Omega_{1}}{v_{1}} E_{\parallel} + \nabla V_{10} \parallel \quad (3) \]

\[V_{e} = \frac{c}{B_{0}} F \times e_{z} - \frac{c}{B_{0}} \frac{\Omega_{e}}{v_{e}} E_{\parallel} \quad (4) \]

where \(\alpha \) denotes the species (e: electrons, i: ions), \(n \) is the density, \(V \) is the velocity, \(\nu \) is the collision frequency, \(e \) is the charge.

\[\Omega_{\alpha} = \left| e_{\alpha} \right| B_{0} / m_{\alpha} c, \quad j \text{ is the current and } V_{10} \parallel \text{ is the diffuse auroral precipitation velocity along } B. \]

Note that \(V_{10} \parallel = V_{10} \parallel - V_{e0} \parallel \) and we have chosen a reference frame such that \(V_{e0} \parallel = 0 \). We neglect inertial and temperature effects, and the electron Pedersen drift compared to the ion Pederson drift. In Eqs. (3) and (4) we assume \(v_{i} \) represents ion-neutral collisions and \(v_{e} \) represents electron-ion collisions.

Equations (1) - (4) are valid in the high latitude F region where \(\nu_{a} / \Omega_{a} \ll 1 \).

We linearize Eqs. (1) - (4) using \(n = n_{0}(y) + \delta n, \quad \nabla = - V \delta \phi, \)

\(\nabla = \partial_{y} + \delta \chi \) and assume perturbed quantities vary as \(\exp[i(k_{x}x + k_{y}y + k_{z}z - \omega t)] \). Making use of quasineutrality, we find from the electron continuity equation and \(\nabla \cdot \delta j = 0 \) that

\[\left[\frac{k_{z} V_{d}}{\omega} \left(i k_{x} e_{n} - \frac{\Omega_{e}}{v_{e}} k_{x}^{2} \right) + \frac{v_{i}}{N_{i}} \left(k_{x}^{2} + k_{y}^{2} \right) + k_{z}^{2} \left(\frac{\Omega_{i}}{v_{i}} + \frac{\Omega_{e}}{v_{e}} \right) \right] \delta \phi = 0 \quad (5) \]

where \(V_{d} = V_{10} \parallel - V_{e0} \parallel = V_{10} \parallel, \quad e_{n} = \partial n / \partial y \) and we have assumed \(e_{n} \ll k_{y} \). Note that the local dispersion equation is recovered by setting the bracketed quantity in Eq. (5) equal to zero (using \(k_{y} = 0 \)).
We can obtain a differential equation for $\delta\phi$ which describes the non-local mode structure, including the effect of magnetic shear, by making the following identifications (Mikhailovskii, 1972)

$$k_y^2 = -\frac{\partial^2}{\partial y^2}; \quad k_z = k_x(y/L_s)$$

We find that

$$\frac{\partial^2 \delta\phi}{\partial y^2} - k_x^2 Q(\omega, k_x, y) \delta\phi = 0 \quad (6)$$

where

$$Q = 1 + \frac{y^2}{L_s} \frac{\Omega_1}{v_i} \left(\frac{\Omega_1}{v_i} + \frac{\Omega_e}{v_e} \right) + \frac{k_x^2}{\omega} L_s \frac{\Omega_1}{v_i} \left[\frac{e_n}{k_x} - \frac{\Omega_e y^2}{v_e L_s^2} \right] \quad (7)$$

Since the mode is almost purely growing ($\omega_x \ll \gamma$ where $\omega = \omega_x + i\gamma$), we can approximate Q by

$$Q_R = 1 + \frac{y^2}{L_s} \frac{\Omega_1}{v_i} \left(\frac{\Omega_1}{v_i} + \frac{\Omega_e}{v_e} \right) + \frac{k_x^2}{\gamma} L_s \frac{\Omega_1}{v_i} \frac{e_n}{k_x} \quad (8')$$

$$Q_I = \frac{k_x^2}{\gamma} \frac{\Omega_1}{v_i} \frac{\Omega_e}{v_e} \frac{y^3}{L_s^3} \quad (9)$$

where $Q = Q_R + iQ_I$. For the parameters of interest we note that

$Q_I \ll Q_R$ (to be justified a posteriori)

We now let $\tilde{y} = y/L_n$ and $l_s = L_s/L_n$ where $L_n = 1/e_n = (d \ln n_o/\ln)^{-1}$ and rewrite Eq. (6) as

$$A \frac{\partial^2 \delta\phi}{\partial \tilde{y}^2} + [B - C(\tilde{y} - \tilde{y}_M)^2] \delta\phi = 0 \quad (10)$$

where
\[A = 1/k x^n \]
\[B = \frac{1}{4} \left(\frac{e n d}{\gamma} \right)^2 \left(1 + \frac{v_i e}{v_i e} \right)^{-1} \]
\[C = \frac{\Omega_i}{v_i} \left(\frac{\Omega_i}{v_i} + \frac{\Omega_e}{v_e} \right) \frac{1}{\xi^2} \]
\[\tilde{\gamma}_M = -\frac{\xi}{2} \left(\frac{\epsilon n d}{\gamma} \left(\frac{\Omega_i}{v_i} + \frac{\Omega_e}{v_e} \right)^{-1} \right) \]

Here, \(\tilde{\gamma}_M \) is the position of the minimum in the potential well \(Q \).

Equation (10) is in the form of Weber's equation and the eigenfrequency is defined by
\[B = (2m + 1)(AC)^{\frac{1}{2}} \]
(11)
where \(m \) is the mode number (i.e., \(m = 0, 1, 2, ... \)). Thus the growth rate of the current convective instability, including the effect of magnetic shear, is found to be
\[\gamma = \frac{\Gamma}{\gamma_M}(1 + (2m + 1)\Delta_{\xi})^{\frac{1}{2}} \]
(12)
where
\[\gamma_M = \frac{1}{2} \epsilon n d \left(1 + \frac{v_i e}{v_i e} \right)^{-\frac{1}{2}} \]
(13)
\[\Delta_{\xi} = \left[\frac{\Omega_i}{v_i} \left(\frac{\Omega_i}{v_i} + \frac{\Omega_e}{v_e} \right)^{\frac{1}{2}} \right]^{\frac{1}{2}} \]
(14)

Note, in the limit \(\xi_{\xi} \rightarrow 0 \) (i.e., no shear) that \(\Delta_{\xi} \rightarrow 0 \) and Eq. (12) reduces to the expression obtained by Ossakow and Chaturvedi (1979)
for the maximum growth rate based upon local theory. Also, we find that the effective k_z associated with the fundamental mode ($m=0$) to be

$$k_{\text{eff}} = k_{\text{x}} \left(\frac{\gamma_M}{L_s} \right) = -k_{zM}^L (1 + \Delta_s)^{\frac{1}{2}}$$ \hspace{1cm} (16)

where

$$k_{zM}^L = k_{\text{x}} \left[\frac{\Omega_i}{v_i} \left(\frac{\Omega_i}{v_i} + \frac{\Omega_e}{v_e} \right) \right]^{-\frac{1}{2}}$$ \hspace{1cm} (17)

is the value of k_z for the maximum growing mode from local theory.

Moreover, the fundamental mode is localized about

$$\tilde{y}_M = -l_s \left[\frac{\Omega_i}{v_i} \left(\frac{\Omega_i}{v_i} + \frac{\Omega_e}{v_e} \right) \right]^{-\frac{1}{2}} (1 + \Delta_s)^{\frac{1}{2}}$$ \hspace{1cm} (18)

within a region

$$\tilde{y}_{tp} = \tilde{y}_M \pm \frac{\Delta y}{k_{\text{x}} L_s \frac{1}{2}} \left[\frac{\Omega_i}{v_i} \left(\frac{\Omega_i}{v_i} + \frac{\Omega_e}{v_e} \right) \right]^{-\frac{1}{2}}$$ \hspace{1cm} (19)

III. DISCUSSION

We now apply our results for typical ionospheric conditions during the diffuse aurora to assess the influence of magnetic shear on the current convective instability. We choose $L_n \approx 50$ km, $L_s \approx 3000$ km, $v_i/\Omega_i = v_e/\Omega_e = 10^{-4}$, $k_{\text{x}} \approx 1$ km$^{-1}$ and $v_d \approx 500$ m/sec. We find that the growth rate of the fundamental mode is $\gamma \approx 2 \times 10^{-3}$ sec$^{-1}$ which is a factor of 2 smaller than that obtained from shearless local theory. Higher order modes have somewhat lower growth rates. Thus, although the growth rate has been reduced by shear effects, it is still sufficiently large to account for the observed scintillation enhancements. The mode is localized in the north-south direction within a region $\Delta y \approx 2 \times 10^{-2} L_n \approx 1.0$ km. Moreover, if we define an effective k_y as
we obtain $k_{\text{eff}} \approx 6 \text{ km}^{-1} > k_x$. This result indicates the strong two-dimensional structure of the mode in the plane perpendicular to the magnetic field during the linear phase of the instability.

Finally, several aspects of the present analysis deserve mention. First, we have neglected the ambient electric field E_o which is generally directed west or northwest in the diffuse aurora. (Note that the plasma is stable to the standard $E \times B$ drift instability). This assumption is valid in the limit $|k_z V_d| > (k_x c E_o / B_o) v_i / \Omega_i$ which is satisfied for $k_z \approx k_{\text{eff}}$. However, because k_z varies in the y direction, it is possible that this condition breaks down in part of the mode localization region. Moreover, for the geometry under consideration, E_o is a stabilizing effect and we anticipate that including E_o in the theory will reduce the growth rate slightly (Eq. (12)) and skew the mode structure of the eigenfunctions. We will discuss this effect in more detail in a later publication. Secondly, we have ignored the spatial dependence of the density and considered mode localization only due to shear. We have investigated the nonlocal behavior of the current convective instability for a density profile $n(y) = n_o + \Delta n \tanh(y/\lambda)$ (with $\Delta n \sim n_o/2$) in a shearless magnetic field. We find that the eigenmodes are localized in a region $\Delta y \gtrsim \lambda/4 \approx L_n/4$ and that the fundamental eigenfrequency agrees well with the local theory. Thus, for ionospheric conditions in the diffuse aurora, the mode structure is determined by magnetic shear and the neglect of the spatial dependence of density is justified. And finally, inertia and diffusion damping should be considered in a more comprehensive analysis. Again, we defer a discussion of these effects to a future report.
IV. SUMMARY

In conclusion, we have considered the influence of magnetic shear on the current convective instability for conditions typical of the high latitude F region during the diffuse aurora. We find that magnetic shear (1) reduces the growth rate of the instability from its value based upon shearless, local theory and (2) substantially localizes the mode structure in the north-south direction. This final result indicates that the mode structure is two dimensional in the plane perpendicular to the magnetic field during the linear phase of the instability. However, since the scintillation enhancements occur over a region \(\geq 100 \) km in the north-south direction (Rino et al., 1978) a nonlinear mechanism is required to spread or convect the shear localized turbulence over this much larger region.

ACKNOWLEDGEMENTS

We thank P. K. Chaturvedi, T. Gladd and J. F. Drake for several helpful discussions. This work was supported by the Defense Nuclear Agency and the Office of Naval Research.
REFERENCES

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCIENCES APPLICATIONS, INC.</td>
<td>P. O. BOX 2351</td>
</tr>
<tr>
<td></td>
<td>LA JOLLA, CA 92938</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>RAYTHEON CO.</td>
<td>530 BOSTON POST ROAD</td>
</tr>
<tr>
<td></td>
<td>SUBURB, MA 01778</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>SCIENCE APPLICATIONS, INC.</td>
<td>HUNTSVILLE DIVISION</td>
</tr>
<tr>
<td></td>
<td>2189 W. CLINTON AVENUE</td>
</tr>
<tr>
<td></td>
<td>SUITE 706</td>
</tr>
<tr>
<td></td>
<td>HUNTSVILLE, AL 35805</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>SCIENCE APPLICATIONS, INCORPORATED</td>
<td>8400 WESTPARK DRIVE</td>
</tr>
<tr>
<td></td>
<td>MCLEAN, VA 22101</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>SCIENCE APPLICATIONS, INC.</td>
<td>80 MISSION DRIVE</td>
</tr>
<tr>
<td></td>
<td>PLEASANTON, CA 94566</td>
</tr>
<tr>
<td></td>
<td>CICY ATTN SZ</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>SII INTERNATIONAL</td>
<td>333 RAVENSWOOD AVENUE</td>
</tr>
<tr>
<td></td>
<td>MENLO PARK, CA 94025</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>R & D ASSOCIATES</td>
<td>P. O. BOX 9605</td>
</tr>
<tr>
<td></td>
<td>MARINA DEL REY, CA 90291</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>RAND CORPORATION, THE</td>
<td>1706 MAIN STREET</td>
</tr>
<tr>
<td></td>
<td>SANTA MONICA, CA 90406</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>RIVERSIDE RESEARCH INSTITUTE</td>
<td>90 WEST END AVENUE</td>
</tr>
<tr>
<td></td>
<td>NEW YORK, NY 10023</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>SCIENCE APPLICATIONS, INC.</td>
<td>P. O. BOX 2351</td>
</tr>
<tr>
<td></td>
<td>LA JOLLA, CA 92938</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>PHOTOETRICS, INC.</td>
<td>442 MARBETT ROAD</td>
</tr>
<tr>
<td></td>
<td>LEXINGTON, MA 02173</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYSICAL DYNAMICS INC.</td>
<td>P. O. BOX 927</td>
</tr>
<tr>
<td></td>
<td>BELLEVUE, WA 98009</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYSICAL DYNAMICS INC.</td>
<td>P. O. BOX 1065</td>
</tr>
<tr>
<td></td>
<td>BERKELEY, CA 94701</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IONOSPHERIC MODELING DISTRIBUTION LIST
UNCLASSIFIED ONLY

PLEASE DISTRIBUTE ONE COPY TO EACH OF THE FOLLOWING PEOPLE:

ADVANCED RESEARCH PROJECTS AGENCY (ARPA)
STRATEGIC TECHNOLOGY OFFICE
ARLINGTON, VIRGINIA

CAPT. DONALD M. LEVINE

NAVAL RESEARCH LABORATORY
WASHINGTON, D.C. 20375

DR. P. R. HANJ
DR. R. MEIER
DR. E. SZUSZCZEWICZ - CODE 4127

DR. J. GOODMAN - CODE 7950

SCIENCE APPLICATIONS, INC.
1250 PROSPECT PLAZA
LA JOLLA, CALIFORNIA 92037

DR. D. A. HAMLIN
DR. L. LINSON
DR. D. SAHIS

DIRECTOR OF SPACE AND ENVIRONMENTAL LABORATORY
NOAA
BOULDER, COLORADO 80302

DR. A. GLENN JEAN
DR. G. W. ADAMS
DR. D. N. ANDERSON
DR. K. DAVIES
DR. R. F. DONNELLY

A. F. GEOPHYSICS LABORATORY
L. G. HANGAN FIELD
BEDFORD, MASS. 01730

DR. T. ELKINS
DR. W. SNIDER
MRS. R. SAGALYN
DR. J. M. FORBES
DR. T. J. KENESHEA
DR. J. AARON

OFFICE OF NAVAL RESEARCH
800 NORTH QUINCY STREET
ARLINGTON, VIRGINIA 22217

DR. H. MULLANEY

COMMANDER
NAVAL ELECTRONICS LABORATORY CENTER
SAN DIEGO, CALIFORNIA 92152

DR. M. BLEIMEL
DR. I. ROTHKILLER
DR. V. HILDEBRAND
DR. K. ROSE

U. S. ARMY ABERDEEN RESEARCH AND DEVELOPMENT CENTER
BALLISTIC RESEARCH LABORATORY
ABERDEEN, MARYLAND

DR. J. HEIMERL

COMMANDER
NAVAL AIR SYSTEMS COMMAND
DEPARTMENT OF THE NAVY
WASHINGTON, D.C. 20360

DR. T. CZUBA

HARVARD UNIVERSITY
HARVARD SQUARE
CAMBRIDGE, MASS. 02138

DR. N. B. MOELGROY
DR. R. LINZEN

PENNSYLVANIA STATE UNIVERSITY
UNIVERSITY PARK, PENNSYLVANIA 16802

DR. J. S. NISBET
DR. P. R. ROHRBAUGH
DR. D. E. BARRAN
DR. L. A. CARPENTER
DR. M. LEE
DR. R. DIHAN
DR. P. BENNETT
DR. E. KLEIV

UNIVERSITY OF CALIFORNIA, LOS ANGELES
4545 HILLGARD AVENUE
LOS ANGELES, CALIFORNIA 90089

DR. F. V. CORONITI
DR. C. KENNEL

UNIVERSITY OF CALIFORNIA, BERKELEY
BERKELEY, CALIFORNIA 94720

DR. M. HUDSON

UTAH STATE UNIVERSITY
4TH N. AND 8TH STREETS
LOGAN, UTAH 84322

DR. P. M. BANKS
DR. R. HARRIS
DR. V. PETERSON
DR. R. MEGILL
DR. K. BAKER

CORNELL UNIVERSITY
ITHACA, NEW YORK 14850

DR. W. E. SMARTZ
DR. R. SUDDEN
DR. D. FARLEY
DR. M. KELLEY

NASA
GOODLORD SPACE FLIGHT CENTER
GREENBELT, MARYLAND 20771

DR. S. CHANDRA
DR. K. MAEDO
PRINCETON UNIVERSITY
PLASMA PHYSICS LABORATORY
PRINCETON, NEW JERSEY 08540

DR. F. PERKINS
DR. E. FRIEMAN

INSTITUTE FOR DEFENSE ANALYSIS
480 ARMY/NAVY DRIVE
ARLINGTON, VIRGINIA 22202

DR. E. BAJER

UNIVERSITY OF MARYLAND
COLLEGE PARK, MD 20742

DR. K. PAPPADOPOLLOS
DR. E. OTT

UNIVERSITY OF PITTSBURGH
PITTSBURGH, PA. 15213

DR. M. ZABUSKY
DR. M. BIONDI

UNIVERSITY OF CALIFORNIA
LOS ALAMOS SCIENTIFIC LABORATORY
J-10, MS-664
LOS ALAMOS, NEW MEXICO 87545

H. POMERATZ
D. SIMMONS
G. BARASCH
L. DUNCAN