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FINITE ELEMENT MODELING FOR
CONVECTION-DIFFUSION PROBLEMS

INTRODUCTION

The simulation of thermally induced waves requires the solution of the convection-
diffusion equation. Analytical and numerical solutions of this equation have attracted consider-

able attention in a variety of engineering fields due to its wide applicability.

The theory for convective or diffusive dominated flows has been well-established and a
variety of classical approaches exist in the literature for the solution of problems in this area.
One such solution is given by Price, Cavendish and Varga {1]. Analytical solutions are valid
primarily for linear equations and their application to problems of practical interest presents
difficulties due to the limitations of such solutions. It is because of the restrictive nature of the
analytical solutions that research efforts have been focused on approximate or numerical solu-
tions of the convection-diffusion equation. A review and comparison of available numerical
methods can be found in Lee et al (1976), Ehlig (1977), and Genuchten (1977). Numerical
methods discussed in these papers include finite differences and some finite element approxima-
tions {5]. Most of the numerical schemes produce results of acceptable accuracy either for con-
vection dominated flows, or for diffusion dominated flows, but they lack uniformity in perfor-
mance. Finite difference schemes are the least attractive ones due to their instability, large
oscillations, and, for some of them inherent artificial diffusion. On the other hand finite ele-
ment schemes have produced more reliable numerical solutions but their application is limited

to certain types of dispersion while performing poorly for other types. Another disadvantage of

Manuscript submitted March 14, 1980.
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existing finite element solutions is that they are based on formulations restricted by the condi-

tions of a particular problem and they are limited in applications to other types of problems.

In view of the limitations and lack of uniformity of existing approaches, it is desirable to
develop a unified formulation which is capable of treating not only pure convection-through-
dispersion to pure diffusion problems, but also other types of problems governed by similar
equations. In order to achieve this, a unified variational formulation is introduced for the
convection-diffusion equation; this equation is written in terms of a generalized quantity,
defined as heat displacement [6,7], which is similar 10 a mechanical displacement and has units
of length. As of this definition, changes in temperature are treated as thermal deformations

which are similar to mechanical strains.

In the first part of this study, the basic definitions are introduced and the convection-
diffusion equation is expressed in terms of the heat displacement. A variational formulation is
then derived, based on the principle of virtual work in mechanics, and by using generalized
coordinates the variational equation is written in a form equivalent to that of the Lagrangian
equation in mechanics. Since the derived equation is expressed in terms of generalized coordi-
naltes, it is applicable to a wide variety of physical problems and can be solved by any numerical

method.

The variational form of the derived equation is most suitable for applying the finite ele-
ment method for its numerical solution. This is done in the second part of this study, where
the basic finite element method is used to derive two finite element models for solving initial or
boundary value problems. The first model is based on a linear approximation of the displace-
ment and the second on a third order approximation. The matrix equation for the linear model
1 expressed in terms of nodal displacements and for the higher order model, in terms of nodal

displacements and nodal temperatures.
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Each element model can be used for: a) pure convection, b) pure diffusion, and ¢) mixed
convection-diffusion problems with the appropriate boundary conditions. Also, dynamic or

quasi-static solutions can be obtained respectively by retaining or neglecting the inertia term.

Numerical results are given in the third part of this study where a third-order, backward
finite difference scheme is employed for the solution of the system of differential equations
(8,9]. For the combined finite element-finite difference scheme the stability, convergence, and
accuracy are investigated and some uniform convergence criteria are discussed. Numerical
results are also given for a number of convection through diffusion cases and for three types of
boundary conditions. The present results are compared to existing analyical solutions and the

accuracies of the two finite element models are discussed.

1. BASIC EQUATIONS
Consider an incompressible medium in a flow field subjected to external heating. Intially
the medium is at a uniform temperature T,, which will be referred to as the reference tempera-

ture, and the state at this temperature will be referred 1o as the reference state.

The instantaneous absolute temperature is denoted by T, and the difference T— T, defines
the instantaneous relative temperature A@, which is a function of the space coordinates and
time. Let

T-T, A®
T T )

be defined as the temperature change per unit temperatue T,, or the instantaneous relative

0=
temperature per unit temperature. In the following it will be referred to as the temperature ¢
or the dimensionless temperature.

Assuming cartesian coordinates (x,, /= 1,2,3), the temperature field @ satisfies the

convection-diffusion equation
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90 (x,.,1) 9 kB 90 (x,.1)
ry +6x, (V, 0 (x,,t) 3x k”—_ax, 2)

where V is the velocity vector and &, ; the thermal diffusivity (k,; = k).

We now define a vector field H; (x;,1) as the heat displacement vector such that

0= 9H, (x;,1)
dx,

The summation convention is assumed for repeated indices throughout this study.

= ”,’_, (Xj,f) (3)

In the above definition, Eq. (3), @ represents a thermal strain analogous to mechanical
strain. Note that H,(x;,1) has the dimension of displacement, which makes it analogous to a
mechanical displacement. Thus there is a one-to-one correspondence between heat

displacement-mechanical displacement and temperature strain.

Using the definition from Eq. (3), we now write Eq. (2) as follows

dH, 89
7 + Ve — k; axj 0 4)
or
OH, oH, 1 dc
L — Y, —t - 27 _
SO TR AL Ty S v )
where the thermal stress o is defined by
o=cT,0 6)

with ¢ the heat capacity per unit volume, and A;; = (k).

In the above analysis the thermal flow field is governed by the three Egs. (3), (5) and (6)
which, together with the appropriate boundary conditions, provide a complete formulation for
convective heat transfer. They are analogous to the kinematic relations, stress-strain relations

and momentum equations in mechanics.

The advantage of introducing the heat displacement vector are more apparent when the
concept of virtual work is used to derive the variational formulation. Furthermore, the above

4
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analysis is more suitable for applying the finite element method which is based on displacement

approximations.

2. VARIATIONAL FORMULATION

Following the usual procedures of the principle of virtual work in mechanics, we consider
that the medium is subjected to an arbitrary infinitesimal virtual displacement § H, from the
equilibrium configuration. The corresponding variations 80 are given by Eq. (3). Muitiplica-

tion of Eq. (4) by 8 H, and integation over a volume » of the medium yields

.I-r p ,0 kU ) Sl‘l,dv 0

Integrating by parts and applying the divergence theorem, one obtains

aH, 9
[ 5 sHav+ [ vestav + [ kg x GHI = S k,06Hm,ds

where n, is the unit normal vector pointing outward at the boundary surface S. From Eq. (3)

one derives

d

Iz By GH)D - f5,k,080dv = kSE )

where 8,; is the Kronecker’s delta and the scalar E is defined as

1
E=5fv02dv (8)

and plays the role of a potential function. Equation (6) is now written as follows

dH,
sE+ [ a, 5. SHav + S nyviosHdv = S, 08 Hn,as. 9)
Eq. (9) may be considered as a variational principle in a broad sense and a more compact form
of this equation can be derived by introducing generalized coordinates defined as

’{,'(Xj,f) - ’li(q,,,XJ,f) (10)
where the generalized coordinates ¢, are functions of time. The advantage of using generalized

coordinated is that H; may be expressed in different functional forms. Care should be taken

when the time derivative of H; is considered, and it should be expressed as

5

%
v , C T SRR T
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. 0H oH,
, i . an
H = 6q, %+ ar

In terms of arbitary variations of the generalized coordinates, the corresponding displace-

ment field variations are

8H = —" 8q (12)

and the variation of the potential E becomes

9F
SE=-—""-58 (13
aqj' 9
In view of Egs. (12) and (13), Eq. (9) may be written for each arbitrary variation 8.5, as follows
£Ya dH, dH, aH, aH
il RV ol el fx,,, s ds. (14)
From Eq. (11) one derives
9H, _ aH,
Bék aqk

and the second term in Eq. (14) is then expressed

OH, 9H, OH, oK, o |1 o oD
fv)\ — —q—’dv - fvx,-, — —Ldv=—— [3]1 A,jHiH,dV] =

Y91 ag 3 94 Od 34
where
1 .o
D= x; H H d (15)
Eq. (14) then takes the form
aD dE
aqk aqk k Qk
where
H
Lk-f)\,jV,(f—a—’dv an
v dqx
and
OH,
=)oy —L dS
Qk J“ N . aq
6

PR o v =
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The quantity O, can be regarded as the thermal force applied on the boundary S of the
medium of volume v. The quantity L, represents the convection term and for the case of a
solid medium (¥, = 0) it is equal zero and Eq. (16) reduces to a form similar to Lagrange’s
equation in mechanics. Eq. (16) as it was derived is quite general in the sense that it can be

applied to different types of media with different material properties.

Consider now a special case where the displacement field can be approximated by a linear

combination of the generalized coordinates as follows

H (x,.1) = ¢ (1) fi, (x) k=1,n j=12.3 (18)
In Eq. (18) the coefficients g, (1) represent a degree of freedom and the functionf,(x,)
specifies the extent to which g, (r) participates in the function H,(x,t). In finite element
analysis, for example, Eq. (18) may be considered as the distribution function of the displace-
ment field, where g, can then be taken as nodal displacement or nodal deformations depending

on the type of element selected.

Differentiating Eq. (18) with respect to time and space we obtain

H = gt (19)
aH,
= ‘5;," = Qi Suii-

The scalar E, the vector L, and the invariant D from Egs. (8), (15), and (17) are expressed in

terms of Egs. (19) as follows
E= -;— €nnm3n
D =+ dyind
2 mnHm4n

Ly = &mm (20)
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where

emn = S Siifuy v
don = [ NSty v

tim = J A,V S Srmnd? Q@
Substituting the specific forms of E, D, and L, from Egs. (20) into Eq. (16) one obtains

d,q, + (g; + ¢,)q, = Q (22)
with

0= f ons,as (23)
Equations (22) constitute a system of n ordinary differential equations for the unknown field
parameters g, (k=1,n), and i1 may represent the heat displacement field H,. This system of n
equations can be solved together with the appropriate boundary condition by any numerical
technique. Thus this variational formulation is not restricted to applications of the finite ele-

ment method but is appropriate for applying other numerical schemes as well.

Another advantage of the derived equations is that they are not restricted o solving
convection-diffusion problems. By appropriate choice of the variables g, to represent other
physical quantities, the derived equations can be used to solve problems involving such quanti-

ties as concentration or velocity fields.
3. FINITE ELEMENT ANALYSIS

In order to demonstrate the application of the finite element method to the previously
derived variational formulation, two element models are chosen to approximate the heat dis-
placement. The first model is a linear element with minimum degrees of freedom (LE) and
the second is a higher order element with four degrees of freedom (CE), known as first order
cubic Hermitian. Although both elements are one dimensional approximations, they provide a

good test case for the performance of any variational formulations. An extension into the two
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dimensional space is easily obtained since the derived equations are of general form. If the
heat displacement is approximated by a third order polynomial

Hxt) = a, + a\,x + a,x? + a;x°, (24)
then the temperature 8 is given by

8(x,t) = a, + 2a,x + 3a;x? (25)

where g, are time dependent coefficients to be determined for each of the element models.

a. Linear element (LE)

For the linear element of length / the conditions at the nodal points are:

atx=0— H=H,

and

atx=/—H=H,

where H, and H, are the nodal values of the heat displacement and the coefficients a, are given

by
a,= H\(D), a,= -ll-(Hz — H)), ay= a3 = 0. (26)

Substituting these coefficients in Egs. (24) and (25) yields

Hxt) = [1 - i’l H () + 3[511,(:) Qn

and

8(x1) = l, (Hy(1) ~ H, (D).

Note that within each element # varies only with time for the (LE) approximations.

The matrix coefficients of Eq. (22) are evaluated in terms of Egs. (27) as follows

_4 1 -1
€mn = 711 1
Al

2 1
dmn - '@ [1 2 (28)

4av (-1 1
gmn-_z_k' -1 1

e ————— s - Tt e . of
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and

0l _,=0=~46. 0 =0,- 40
x=0 x={
where A4 is the cross sectional area of the element, & is the diffusivity and ¥ is the fluid velo-

city.

In terms of Egs. (28), Eq. (22) yields

/ 21'1'11 ly[~| 1] i —l] m) o,
6k12‘H2+2k‘11+l“‘11H2 0, 29)
b. Cubic element (CE)
For the cubic Hermitian element the coefficients a,

are evaluated from the nodal values of

H(x.1) and their spatial derivatives at the nodes, which are the nodal values of the temperature
8(x,1).

The conditions at the nodes are

atx==0—~H=H|,0-=0|;
and

arx = [ — H = H, 0=29,,
where (H\,H,) and (6,,6,) are the nodal values of the heat displacement and temperature
respectively. Thus, the coefficients of Eq. (24) can be found as

a4~ H, ay=9,

a) = — "’l7 [(92 + 201)1 - 3(”2 - H])]

ay = Il,[(a, +8)1 = 2(H, ~ H,)) (30)
and the expressions for H(x,r) and 0(x,1) are given by
Hxt) = flq, + f129; + S8 + S1494

&}))
0(x.1) = hy1q, + hyyq; + hi3q3 + hyq,.

10
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The shape function f}, and h; (i = 1,2, 3) are given by

3x2 A3 3x2 2

Su=1=g+ T Su= g~

2 3 2 3
fu"x-z—);—‘*"’;—,.fu-"xT"'% (32

and

b= S = 2 1),

and the generalized coordinates ¢; are

g1=H), g2=86), g3~ H,, q4=0,.

The corresponding ¢;, d;;, and g; are given by

3% 30-36 3
4| 3 ar =3 -p

€= 307 |-36 =31 36 —3i 33)
3 -1 =31 4P

156 221 54 —13/
Ak | 220 4R 131 =3P
=20 s4 131 156 —221 (34)

~131 =32 =221 4P

dy

-210 42/ 210 -42/
AV |42 0 42 -1 %)

& = 3710 |-210 —421 210 42
421 12 -421 0

and the components of the generalized force are

Q1 =~A40,, Q3= A46,, 0, = Qy=0. (36)
In terms of Egs. (27)-(30), Eq. (22) yields

ill Hl

. -0,
{71+ el + lenfghi~1 3
P 9] |o
11

e e oo oot e A B i



G KERAMIDAS
or
[d) 14} + fig) + leNlg) = 10}

For the solution of a particular problem, the finite element models derived above are
assembled according 1o the direct stiffness method 1o obtain the global equations. The formula-
tion of the overall problem is not compiete uniess boundary conditions are taken into con-
sideration. The system of n equations together with the appropriate boundary conditions can be
solved by any numerical technique used for solving ordinary differential equations. In the fol-

lowing section, the above system of equations is solved for two types of boundary conditions by

using a backward differences in time integration technique.

4. BOUNDARY VALUE PROBLEM
The one dimensional case of the convention-diffusion equation is considered here to
evaluate the two finite element models introduced previously with the following initial and

boundary conditions.

a. Convection dominated flow

The equation to be solved is

—+ V- —=—=0 (38)
where V is the flow velocity of constant value.

The initial conditions are

0(x,00=0 0L x<L 39)
and the boundary conditions are

T~T,
Lo =——=2 >0 (40)
T,
T|"’To
_—2 <
.00 ={ T, 0<r<s
0 , <t
12
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b. Combined convection snd diffusion

The equation to be solved is

w0, 8, 09,

+ 41
o ax ax?
where & is the diffusion coefficient.
The initial conditions are
8(x,0) =0, 0<x<L (42)
and the boundary conditions are
rl - To
a.0(0,)) = —r—— >0
a ! T !
8(L.1) =0, t >0 43)
I-T
- 9 <
b 9(0.1) = 7;‘ , 0<I\IO
0, 1< 1
8(Lt) =0, t>90

At this stage it is expedient 10 relate the dimensionless variables to the physical variables

as follows:
- X - k
- - — 44)
X= ! L’l' (44
= T-T, 5 T, 1
b=v-—7 M7=t "
- k
V,,--;V. t,,-—L—l-r,,

Here L is the characteristic length, T, is a constant temperature applied at the boundary and 7,,

the length of time during which T, is applied at the boundary.

The equations for the two finite element models are now written in terms of the above
defined dimensionless quantities as follows,

13
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1. Linear element:

(d.) (H} + llg] + leJ] {H] = {Q)

with

21 -11
[d.] = [l 2]' lgl=3V.W, [_] |]

-1

1
[Pf] - 6W02K0 ["l ‘

-6
and {Q) = 6W,K, { 0 ] (45)

I11. Cubic element:

4

H
+ llg+ le,] {',,,,'] - (o)

with

165 54 YW, —\3W,
54156 1YW, -2 W,
i=oyw, 13w, ywi -yw;
13/ W, 2/ W, -YW; W§

=210 210 4YW, —42 W,
210 210 -4 W, 4YW,
led=2VoWo |4y W, &YW, 0 -UYW;§ “o
QW, —aYW, UWg 0
36 =3 YW, Iw,

~8;
-36 36 -~3W, -yYw,
le,] = |4W&K,,

0,
YW, -3W, YW} YW {Q) = 420 WK,

YWy =YW, ~1/WE 4W} 0

where W, = L/I, and V¥, and K, are the dimensionless constant velocity and diffusivity respec-

tively. The bar over the variables has been eliminated for simplicity. The boundary conditions

are transformed due to the dimensionless quantities as follows

14
|
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a. Convection —dominated fiow

1.6(0,1) = 1.0, t>0

10, 0<r1<gy,

80D =1o 5, (47)

b. Convection-diffusion

1.6(0,1) = 1.0, t>0
a(L,1) = Q, t20 (48)

10, 0<r<y

Le0.N=To0 > to.

8(L,1) = 0.0, 120

The assembly of the above equations for the overall problem and their modification due
to the boundary conditions is coded in a compuier program given in Appendix C. After solving
for the displacements of the (LE) model, the temperture for the i " element can be obtained

through the relation

0, = Wa (,’i+i—’li) i=1l,n (49)
For the (CE) model, the solution of the system of equations will directly give nodal displace-

ments as well as nodal temperatures.
5. NUMERICAL SOLUTION

The one-dimensional convection-diffusion problem has been formulated by the finite ele-
ment method and its solution can be obtained from the system of ordinary differential equa-
tions in matrix form presented in the previous section. For the boundary value problem, with
given boundary conditions, numerical solutions are obtained by applying suitable numerical

integration techniques.

15




G KERAMIDAS

In this secuion. the numerical errors induced by the tme integration scheme and by the
finite element method are evaludted av are the convergences of the solution. Furthermore,
resulty are given for the different types ot boundary conditions considered in the previous sec-

ton.
a. Time integration technique

The systems of ordinary differential equations obtained for the two element models are
solved by using a third-order, backward finite difference approximation. The general formula

for the first derivative can be written in the following form.

dy(r)

- l , n-1
el S ay )+ 0 (50)

=0
where 4 is the size of the time discretization and a, are constant coefficients. [If only third order

and lower Lerms are retained (n = 4), then the coefficients are given by

11.0 18.0 9.0 2.0
a, = 6O,a|- 6.0.03-“63. 03-‘-6'0. 04‘0.0 (sh

for the third-order approximation.

In order to evaluate the stability and convergence of the above numerical scheme, results
were obtained for a number of different time-step sizes. A stability analysis given in Appendix
A shows that the scheme is unconditionally stable. This stability is not related to error esti-

mates or rate of convergence,

Consider the case of pure diffusion (K, = 1, ¥, = 0} as a test case for illustrating some
numerical results. A characteristic length L = S js chosen to represent the semi-infinite space.
which is divided into 10 elements (TNE = 10). Results with respect to time are given for the
point x = 1.0 and for the following boundary conditions

00t)=10, ¢ 20
(Lt)=00, 120

16
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This choice of boundary conditions is appropriate for evaluating numerical solution errors and
convergence. Numerical results for different time step sizes are presented in Figs. 1.2 and

Table 1 for the two element models. The optimum time step was found to be within the range

of 0.01 to 0.2. For smaller or larger time steps the error of the numerical solution increases.
Referring to Fig. 1, it is apparent that as the time step becomes smaller, the solution does not
converge monotonically. Comparing the results for the two models, the (CE) as expected, is
much more accurate than the (LE). An optimum time step size, approximately in the range of

0.01 to 0.025, yields the most accurate results.

The non-monotonic convergence is due to the fact that the numerical solution depends
not only on the time step size but also on the spatial discretization as well. This is demon-
strated in the following, where numerical experiments provide a criterion for uniform conver-

gence.

b. Convergence of the Finite Element Solution [

In order to investigate the convergence of the two finite element models, the previously
discussed problem is considered and with the same constants. The total number of elements by
which the characteristic length L is represented is designated as TNE and the numbers of ele-
ments from x = 0 to x = 1.0 is denoted by NE. The results of this part are given for two
cases, one where the time step size Ar is kept constant for different TNE, and the other case ‘

where the ratio Ar/Ax? is kept constant, where Ax is the dimensionless length of an element.
Convergence For Constant A

Results for this case are given for the time step size At = 0.025 for both element models.

For the (LE) model TNE is 5, 10, 20, 30 with the NE being 1,2,4 and 6 respectively. For the

17 |
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Time

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
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24
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Table 1. Numerical results for the temperature at x =
the (CE) model with constant TNE = 10.

Ar=1005 Ar=0025 | Exact

Ar=0.2 Ar= 01
0.050761 0.061340
0.167021 0.226432
0.305074 0.345081
0.405435 0.414393
0.464985 0.468150
0.503298 0.509717
0.535127 0.542831
0.563341 0.570084
0.587542 0.592999
0.608034 0.612611
0.625647 0.629639
0.641050 0.644596

0 082475

02459.0

0.350841

0.421731

0.473867

0.514170

0.546491

0.573147

0.595609

0.614868

0.631614

0.646344

1.0 for

0.099961
0254928
0355827
0.425394
0.476695
0.516448
0.548389
0.57478

0.597047
0.616085
0.632687

0.647267

0.113846

0.263552

0.361310

0.429195

0.479500

0.518605

0.550090

0.576149

0.598161

0.617074

0.633553

0.648076

(CE) model TNE is 5, 10, 20, 25 with NE being 1,2.4,5 respectively. In Fig. 3 results for the

(LE) model are presented for the temperature at x = 1.0 with respect to time for the four

different values of TNE. As one may see from this figure, the results of the finite element

solution do not converge monotonically to the exact solution as TNE increases.

For the CE, the results are given in Table 2 for the time history of the temperature of x =

1.0 and for different values of TNE (i.e. §,10,20,25). By increasing the TNE the results show

improvement. However, increasing the number of elements does not necessarily imply uni-

form convergence.

To obtain a better view of the convergence of a typical data point, Fig. 4 shows the errors

for the temperature with respect to TNE for constant At and with respect to At for constant

20
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Table 2. Numerical results for the temperature at x = 1.0 for
the (CE) model with constant Ar = 0.025.

Time | TNE =5 | TNE =10 | TNE = 20 | TNE = 25 | Exact
0.2 0.072260 0.099961 0.102454 0.102548 0.113846
0.4 0.242260 0.254928 0.256015 0.256053 0.263552
0.6 0.350094 0.355827 0.356245 0.356256 0.361310
0.8 0.422881 0.425394 0.425537 0.425540 0.429195
1.0 0.475747 0.476695 0.476705 0.476708 0.479500
1.2 0.516323 0.516448 0.516484 0.516389 0.518605
1.4 0.548726 0.548389 0.548282 0.548282 0.55090
1.6 0.57535S 0.574780 0.574628 0.574627 0.576149
1.8 0.597759 0.597047 0.596864 0.596864 0.598161
2.0 0.616944 0.616085 0.615944 0.615948 0.617074
2.2 0.633653 0.632697 0.632549 0.632551 0.633553
24 0.648339 0.647267 0.647159 0.647161 0.648076

TNE, for botk element models. The errors are evaluated at point x = 1.0 and time ¢ = 1.0.

Figure 4 clearly shows that convergence cannot be achieved by increasing the number of ele-

ments alone or by decreasing the step size alone.

Convergence For Constant Ar/Ax?

In the previous analyses of the time integration technique and the finite element method,

the results demonstrated that an increase of the time step size or the number of elements alone

does not guarantee uniform convergence. This phenomenon is similar to the numerical insta-

bility of the direct finite difference analysis (e.g. [10]1).

A modulus M is proposed here, defined as

At
Ax?’

22
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where Ar is the dimensionless time step size and Ax the dimensionless element length. This
modulus M is of similar form to the stability parameter of the finites difference method. By
maintaining M constant for different values of TNE, the corresponding values of A¢ are calcu-

lated from the above definition as follows

Relation between Ax and Arfor M = (.2

TNE NE Ax7!  Ax7? At M
S 1 1.0 1.0 0.2 0.2
10 2 20 4.0 0.05 0.2
20 4 4.0 6.0 1./80. 0.2

30 6 6.0 36.0 1.7180. 0.2

Results for constant M are given in Fig. 5 for the (LE) and Fig. 6 and Table 3 for the

(CE).

Both sets of results represent temperture time histories for different values of TNE at
x = 1.0. As one may see from these numerical results, the convergence of the finite element

solution is uniform and approaches the exact solution as the value of TNE increases.

The error percentage is show in Fig. 7 for the particular point at x = 1.0 and r = 1.0 for
both element models. This figure clearly demonstrates the uniform convergence of the numeri-

cal solution for both element models and the decrease of numerical error as TNE increases.

Comparing the results obtained for the two parts of this section it is concluded that the
modulus M is an appropriate parameter for error control of the combined numerical scheme of

finite element and finite difference methods.

25
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Table 3. Numerical results for the temperature at x = 1.0 for
the (CE) mode! with constant M = 0.2.

Time | Mr=02 | ar= 0028 | ar= c002s | ar= cooss | E
0.2 0.069741 0.082475 0.107999 111522 113846
04 0.144791 0.248910 0.259719 .261983 0.263552
0.6 0.297175 0.350841 0.358799 .360226 0.361310
0.8 0.406438 0.421731 0.427436 428403 429195
1.0 0.464971 0.473867 0.478166 478931 .479500
1.2 0.502502 0.514170 0.517715 518280 .518605
1.4 0.534534 0.543491 0.549360 .549906 .550090
1.6 0.563076 0.573147 0.575505 .576005 576144
1.8 0.587472 0.595604 0.597619 .598086 .598161
2.0 0.608067 0.614868 0.616490 617113 617074
2.2 0.625727 0.631614 0.632925 633571 633553
2.4 0.641165 0.646344 0.647125 .648091 .648076

A comparison of the two element models shows the superiority of the cubic one over the
linear. This higher order element not only produces a more stable solution but also a much
more accurate one than does the linear element. Even though the number of equations to be
solved for (CE) is twice the number for (LE), and the computer time required for the solution
is about two 1o one, the (CE) is preferred due to better accuracy even for small TNE. Another
advantage of (CE) is that any type of boundary condition may be imposed accurately to the
boundary nodal points since the generalized coordinates represent both heat displacements and

temperatures.

Similar error and convergence criteria can be derived for the dimensionless ratio At/Ax

when the convection-diffusion equation is solved (V,, K, # 0) or when the pure convection

28
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equation (K, =0, ¥V, = 1) is solved. Using the latter as a test case we choose the same
characteristic length L as in previous examples and the same constants. The boundary condi-
tion is assumed to be a half-sine wave with period 2m and the initial conditions dre zero, 1e
0(x,0) = 0. This type of boundary condition is suitable for investigating solution convergence
since it has a continuous form. Results for the convergence of the numerical solution are
presented in Figs. 8-11. The first two figures (8 and 9) show temperature time histories at v =
1.0 for the two models (LE) and (CE) respectively. The time step size is kept constant and
TNE is given four different values 1o show convergence of the solution with respect to Ax.
Figure 10 shows temperature time histories for the (CE) model with a constant value for TNE
and four different values for Ar. It is apparent from these figures that uniform convergence is
not obtained by changing only Ar or Ax. Numerical experimentation showed that when the
value of the ratio Ar/Ax is maintained constant uniform convergence of the solution is
obtained. Results for this case are given in Fig. 11 for the (LE) model with four values of
TNE and corresponding values of Ar. Similar results were obtained for the (CE) model. The

value for the ratio Ar/Ax was equal to 0.05.

Comparing the above results for the case of pure convection it is apparent that the ratio

At/Ax is the appropriate parameter for error control of the numerical solution.

As a last test for the stability of the solution experimentations were performed with
different values for the characteristic length L ranging from 1 to 5 and constant TNE. Since for
every different value of L the values of Ax will change, the ratio Ar/Ax and the modulus M
were kept constant by adjusting the value of Ar accordingly. It was observed that changes in
the values of L had no effect on the solution and on the propagation of the wave. For smail
values of TNE as L becomes smaller, for example TNE = § and L = 1, the numerical solution
becomes more accurate. This is expected since Ax is five times smaller for L = 1 than for
L=5(ie. Ax=0.2for L = 1and TNE = 5 while Ax = 1.0for L = § and TNE = §).
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¢. Numerical Results For Boundary Value Problems.

In applying the derived finite element formulation to diffusion-convection problems, the
semi-infinite space is approximated by the characteristic length L with a time-dependent tem-
perature applied on its boundary. Three different cases of boundary conditions are considered
and results are obtained for both element models.

Boundary conditions:

Casel 6(0.r) =1, > 0

=1, 0<r<gt
Case Il 8(0,1) =
= (, 1>,

or

sin (nr) 01,
Case III 6(0,1) =
=0 t >t

o -

The boundary condition at infinity (x = L) is the same for all cases

(L) =0

and the initial condition for all cases is
8(x,00 =0
Numerical solutions of the governing equation

39 39 9%
ar T Voax Mg

are obtained by solving the system of n equations represented by

=0 (53)

AI/Q] + B:jQi - Qj' (54)
where A,, and B, are the global matrices, given in terms of Eq. (45) for the (LE) model and

Eq. (46) for the (CE) model.

Numerical results for the above boundary value problems were obtained for the charac-
teristic length L = §, divided into TNE = 30 for the (LE) model and TNE = 20 for the (CE)
35
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one. The corresponding element lengths and time step sizes used in the numerical solution are

given in Table 4.

Table 4. Time step sizes for the numerical solution.

TNE  Ax At Ar/Ax  At/Ax?
LE 30 176 0.0075 0.045 0.27

CE 20 1/4 0.0125 0.05 0.2

Temperature time histories are given in Figs. (12-19) for the point at x = 1.0 and tem-
perature distributions as a function of x are given in Figs. (20-27) at time ( = 2.0. Tempera-
ture time histories presented in Figs. (12-15) are for the (LE) model and in Figs. (16-19) for
the (CE) model. Similarly, temperature distributions for the (LE) model are given in Figs.
{20-23) and in Figs. (24-28) for the (CE) model. In each figuie results are given for pure con-
vection (K, = 0.0, V, = 1.0), pure diffusion (K, = 1.0, ¥, = 0.0) and for two cases of
diffusion-convection, (K, = 0.1, V, = 1.0) and (K, = 1.0, ¥, = 1.0). The analytical solution

for pure convection is presented by a solid line in all figures.

For the first case of boundary conditions, Figs. (12), (16), (20) and (24), the numerical
solution shows good agreement with the analytical one. The oscillations around the discon-
tinuity damp out as the wave front progresses. The error can be controlled by the TNE used.
A finer discretization reduces the error of the numerical solution around the discontinuity.
This finer discretization can be either uniform or localized around the dicontinuity. Although

the TNE used for both models is rather small, the results obtained depict only small errors.

For the second case of boundary conditions, Figs. (13), (17), (21) and (25), r, = 1.0 was
used which corresponds 1o a square wave propagating through the half-space. For pure convec-

tion, the (LE) model propagates the square wave but its shape is distorted due to numerical
36
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Fig. 12—Temperature time history at x = 1.0, (LE) model, TNE = 30.

A o




G. KERAMIDAS

01 = 1 '0f = INL ‘lopPow (37) '0°'1 = x & L10181Yy awn ainjeradway —¢ |

By

INIL

L

k1]

-




NRL MEMORANDUM REPORT 422§

‘01 = % '0f = ANL ‘[opow (1) ‘0°1 = X 18 K10)SIY own asmesadwof —p| 814

3HIL

NNLEAIGWIL

39




G. KERAMIDAS

0¢ = ANL ‘1PPOW (IT) *0'1 = ¥ 18 Asoisiy awn aimesadwoy —g| 314

3NIL

JoNLUY3IdW3L

40

S

——
25 DR




NRL MEMORANDUM REPORT 422§

TIME

Fig. 16— Temperature time history at x = 1.0, (CE) model, TNE = 20.
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TIME
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43

Fig. 18 —Temperature time history at x = 1.0, (CE) modei, TNE = 20, ¢, = 1.0.
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dispersion. On the other hand, the (CE) model gives a much better approximation of the wave
but the oscillations of the numerical solution around the discontinuity are still present. These
oscillations are inherent in any numerical solutions as is shown by a Fourier analysis in Appen-
dix B. The oscillations and the error can be minimized by a finer discretization or by introduc-
ing some artificial diffusion into the numerical solution. However, such an artificially intro-
duced diffusion will not allow a realistic evaluation of the developed finite element models. and
will introduce artificial errors when true diffusion is present. From the obtained results it can
be seen that there is no phase lag between the exact and numerical wave forms, and, even for

the rather coarse discretization used the shape is well approximated.

The last set of boundary conditions represents the propagation of a sine wave through the
half-space. In Figs. (14), (18), (22) and (26) results are given for 1, = 1.0 and in Figs. (15),
(19), (23) and (27) the sine wave is continuously applied at the boundary. For the (LE) model
results show some small error but the shape of the wave is not distorted. The higher order ele-
ment model (CE) shows an excellent agreement with the exact wave even for the small
number of elements used (TNE = 20). For these boundary conditions, an increase in the TNE
will improve the results for the (LE) model but it will have a very small effect to the alreadly
very accurate results of the (CE) model. For all the cases of boundary conditions and all
choices of the constants K, and ¥,, the numerical solutions produced accurate results and the

thermally induced waves propagate through the half-space in a very satisfactory manner.

SUMMARY AND CONCLUSIONS

A variational formulation for the convection-diffusion equation has been presented in this
report, and, based in this formulation, two finite element models have been developed for the

purpose of solving problems on propagation of thermally-induced induced waves.
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The introduction of a new quantity, defined as heat displacement, is the basis for a gen-
eralized development of the convection-diffusion equation. The advantage of such a formula-
tion is that it can be used to develop a displacement formulation for the finite element method.

Furthermore, due to the generalized nature of the heat displacement, the formulation may be

extended to other types of equations. Another advantage of the formulation is the introduced

thermal force, for which one should point out its significance as a boundary force.

The physical conditions for the semi-infinite space require that 8 — 0 as x — oo since the
last nodal point of the finite element approximation of the half space represents infinity one
should impose the above condition at this point. The thermal force is then zero due to zero
temperature. This assumption is not the correct one since the temperature at the last nodal
point changes as the thermal wave propagates. If we consider the last nodal point as a boundary
point and the thermai force as a boundary force, which is equal to the temperature at that
point, then the conditions at the boundary point are properly adjusted. The presence of this
boundary force into the formulation produces a much more accurate temperature distribution

close to the boundary, since it represents the effect of the neglected portion of the medium.

For the solution of the matrix differential equation, a third order backward finite
difference scheme was used which is proved to be unconditionally stable. Further, the conver-
gence of the two element models was investigated and some convergence criteria were dis-

cussed.

The two finite element models developed in this study were used successfully to solve
problems involving both convection and diffusion with prescribed boundary conditions for the
temperature. Comparison of present results with analytical solutions show the performance of
the cubic element model to be superior to the linear one. However, the performance of the
(LE) model should not be underestimated, especially when one considers the crude approxima-
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tion and the coarse space discretization involved. The choice between the two models for

specific applications should depend on the particular needs of the problem under consideration.

In conclusion, the generalized form of the derived formulation, its efficiency in handling
various types of boundary conditions, and its efficiency in solving not only diffusion-dominated
flows but also convection-dominated flows deserve special emphasis. The superiority of the
cubic element model over the linear one, especially for simulating sharp wave fronts, is also
noted. An extension of the present formulation to two dimensional problems and its applica-

tion to other types of equations are planned as future work.
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APPENDIX A

The variational formulation in this study and the application of the finite element method
produced a system of simultaneous ordinary differential equations which may be represented by
D,g+C,q=0, (A.D)

For the solution of (A.1), the first derivative is approximated by a third-order Newton back-

ward difference scheme and at time step n has the form

é](n) - FIA_; (llqj"" - lsqj(n—l) + 94,("_2) - ij(n—J))_ (A.Z)

In terms of (A.2) the system (A.1) yields

11D, + 6A:C lq/™ = 6A:Q" ~ D,[—18¢,"" + 9¢,"~? — 24"~

or

(115, + 6AtD;'Cylq ™ = 6AtD;'Q, + 8,[18¢, "~V — 9¢ /(-2 (A.3)
+ 2‘1,'("—3)].

Let the errors associated with each time step be given by

E("R, k =0,1,2,3.

If these errors are added to (A.3), one obtains

Au[q_,'(") + Ej(n)] - 6A‘Dy—:loj(n) + slj[ls(qj(n—l) + Ej("—”)
- 9(qj(n-2) + Ej(n—z)) + z(qj(n--l) + Ej(n—J))] (A.4)

where

AU - 115,1 + 6AtDIk—lej. (A.S)
Subtraction of (A.4) from (A.3) yields

AUEj(u) - bunsEj(n-l) - 9Ej<n—2) + Ej(n-))]
or

El(n) - Au—lllan(n-l) - 95[(»-2) + ZE,("-”].
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For solution stability the errors at various time steps should be related as follows

Ej(n) < EJ("-” < EJ("-D < gjkEk(n—J) |

with the amplification matrix g, given by
& = A:;‘Bik (A6) |

where

Bl(j - 8*1[18 W(Z) - 9w(l) + 2] (A7)

and

w < W(I) <1

If one assumes that W@ = W' = [ then (A.7) becomes

B,, = 115,,

and (A.6) yields

g, = 114, (A.8)
for stable solution g, < 8, then Eq. (A.8) yields

-1
S
11

For the last relation to be valid the following should hold 1

5, + AtD;'C,| <8

Y

5, + iAtD,.;'C,‘,

= 5,21 (A.9)

which is true for all values of A as long as the product D;' C,; is positive definite. Thus, the

numerical integration scheme is unconditionally stable.

As an example, consider the case of the linear element model to approximate the solution
given by (A.1). Assuming that the characteristic length L, is divided in three equal elements,

the matrices D;; and C, are given by |

Ax

DU- —6'

OO =N
I
— - O
N -0 O
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1-1 0 0 -1 1 00
K|-1 2-1 0o v |-1 0 10
01
11

Ax| 0-1 2 -1 3| 0 -1
0 0 -1 1 0 0 -

For a two-point boundary value problem with

C,=

q(ot) = g(Lt) =0
the above matrices reduce to

Ax |4 l) Ax Ax 2
D,, - ‘6_ l 4 I, , - ~ ._Kl B £ 2K0 (A.lo)
Ax 2 Ax

VD
-0 6 Ax 2 Ax 2
D= Toax| 6k, v, 9k, (>0
Ax 2 Ax 2
or
18K 2
l%] [fﬁl l*ﬁ 20 (A1)

which is true for all values of Arand Ax. Therefore, the numerical scheme is unconditionally

stable.
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APPENDIX B

The presence of oscillation in a numerical solution for the propagation of discontinuities is
known as Gibbs phenomenon. To better understand this pheomenon, assume that a rectangu-

lar wave H (1) of perod 27 (Figure B.1) is propagating with a certain velocity.

Het)l

Figure B.1

An approximation of this wave can be obtained by a Fourier series for which the partial

sum of the first 2n terms is given by

1 2 ¢ 1 .
H,y, (1) 5+ - /E Ti—1 sin(Qk—1)¢ (B.1)

with the cosine terms all zero. This partial sum H,, overshoots the function H(1), as Gibbs

pointed out, by the amount

H,, ’;’—"l — 1.0895 as n — o

In fact, not only does this overshoot of H,, exist, Figure B.2, but the sum also oscillaies about

H (1) with these oscillations decreasing only away from the discontinuity.
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Hyrft)

Figure B.2

The phenomenon can be explained by rewriting Eq. (B.1) as follows

1 2
H, (1) = It ? _I:} cos(2k—1)x dx
1 2 c
2 - f ; cos(2k—Nx dx
1 1 sm2nx
2 2 J:) sinx (B.2)

The maxima and minima of H,, are obtained from Eq. (B.2) by requiring that

dH,, (1)
=20, w<t< 2
dt
This requirement is satisfied when
sin2nt -
sin/
which is true for
t=2" m=1,2,...,, 2n-1.
2n

The maxima and minima alternate and their values have been calculated by Carslow [11]. Itis
apparert that the oscillations of the approximation of the rectangular wave can be only reduced
by including additional terms into the partial sum H,,(r). Damping of the oscillations and

reduction of the overshoot can be achieved by introducing certain artificial factors into the

terms of the summation.
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APPENDIX C

COCCCCrCCrCOCrC Ol i CitoCrCCCCrCCiCirCCCOoCCOCoCCCCrCCrCoCCCCCCCCCCCCiiccre
¢ C
c -
C 64 36 35 3 3 36 3t 35 4 34 36 38 W 4 A0 3 3 35 3 36 3 3 3 B I I B2 3L W W I 36 I I 3t I 3 2363 W I3 H IS IS5 IR N C
C #* I
C # THERMAL WAVE PROPAGATION c
I * C
C 22T ST XIS L S SRS RS222222R2XSXTRLERESRSE S SRS SRS R 2 X 3 C
[ C
C THIS PROGRAM SOLVES THE DIFFUSTON-CONVECTION EGUATION C
[ C
C DH/0OT + V#OH/DX - O(K#DH/DX) /DX = O C
(o C
C FOR V=1 & K=0 : ADVECTICON C
C FOR V=0 & K=1 1 DIFFUSICN C
C C
[ C
o o i o o o o 1 0 O O O O O O 0 0 6 O O S R o
c

FROGRAM WAVE (N2, NE)
-
C#*
46 9 36 3 36 9% 35 4 36 3 3 3¢ 38 36 38 35 36 36 36 36 3 3 96 38 36 3 36 36 36 36 6 3 35 3 56 36 36 4 6 96 36 3 46 36 96 I 2 3 46 3 36 3 3 3 9 36 3 25 3 3 U A 3 3F 3 96 I 9 SF 5 9 5
Cx
C# PROGRAM CONSTANTS
Cx
C#* N = NUMBER OF ELEMENTS = NUMEL
C N+1 = NUMBER OF NODOES = NNODE
Cx WO = INVERSE OF ELEMENT LENGTH
Cw VO = DIMENSIONLESS VELOCITY
C# Tk = DIMENSICONLESS DIFFUSIVITY
C# DT = DIMENSIONLESS TIME STEP SI12E
C# TO = DIMENSIONLESS TIME CONST. FOR BOUNDARY CONDITIGNS
C*  TMAX = MAXTIMUM TIME LIMIT FOR INTEGRATION
C# IFREQ = CONSTANT FOR PRINTING RESILTS
C* LCASE = ORDER OF F.E.M.
Cx = § ,FIRST ORDER ELEMENT
Cx = 2 , CURIC HERMITIAN ELEMENT
C# NE = NUMEBER OF ROUNDARY CONDITIONS
C# IBC = INITIAL CONDITINS CON3T.
C# =0, I.C. SET TO ZERC
C» =1, 1.C. SPECIFIED AT NODES
C# AN = INTEGRATION CONSTANTS, N = 0,1,2,3,4,%
C# R1 = BOUNDARY CONDITION CONST.
C» RN = BOUNDARY CONDITION CONST.
C# Rt = 1.0, RN = 0.0 SQARE WAVE
C# Rt = 0.0, RN = 1.0 SINE WAVE
C» AT = GLOBAL MASS MATRIX
Ca BT = GLOBAL STIFFNESS MATRIX
Cx TE = TEMPERATURE VECTOR
(o] H = DISPLACEMENT VECTOR
C# C = PARTITIONED GLOEAL MATRIX
C»

(T 0696 36 36 36 36 36 36 36 36 38 35 38 I 36 9 9 3696 3 3 0 I 35 36 I 36 I W 396 36 96 3636 36 4 31 36 96 35 36 6 I 36 - 3¢ 6 96 I 36 36 6 6 6 I I6 6 3 3666 K I A AW WX X

i
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COMMON/BLOCHEL/ NaWO, VO, TH,TO, DT, TMAX, IFREC, LCAZE. NE, 1BC
COMMON/BLOCEZ/ X1 (200),XZ(200), X3(200), X4 (Z00),¥YX{Z00)
COMMON/E! QCKZ/ X (200),W(Z00), TE(Z00) ,H(2Z00),FQ(Zu0)
COMMON/ B .QCE4/ NNTE, NNUES, NTS100) , NRS(200)
COMMON/BLOCKES/ AO,AL,AZ,AZ, A4,AS,N1,RL,.RN

OIMENSION  ATI(NZ,NZ),BTINZ,N2), CONE S NED , TP (NE)
DIMENSION TIME(ZOO0), TT(Z00)

DIMENZION ID1<¢(20), ID02Z(20)

DATA STOF / STOF-/
[
CALL R$ZTOPF
[
C.....READ AND PRINT TITLE....-
C
100 READ(S, 120, END=29%7) 1D1
READ 120, I0Z
PRINT 12%, ID1,ID2
[
C.....READ ANDI FRINT LDATA.....
C
READ 00, LCAZE,.R1,RN
IF(LCASE.ED. 1) GO TO S
WRITE(L, 2015)
GO TO A
S WRITE (&, 2020)
3 CONT INUE
REAL(S, SO%) N, WO,VO,TE, TO,OT, TMAX, IFREX, IRC, NE
WRITE (&, 6400) Ny,WO,VO,TE.TO, DT, TMAX, IFRER, IRC
C
Connns ELEMENT CONZTANTEZ
C
NLMEL = N
NNODE = N +
NO = LCASE#(N - 1)
N1 = LCASE#RNIMEL + 1
NZ = LCASE#(NLMEL + )
MK = NK - 1
[
T = 0.0
IT = 0O
C
Coeoew . INTEGRATION CONSTANTS FOR ZRD ORDER BACKWARD DIFF....
C
AG = 11./¢6,
Al = 2.0
2= -1.5
AZ = 1./3.
A4 = 0.0
I
ICUNTE = O
C
Cea...READ INITIAL CONDITIONZ
[

CALL INCON(NZ, NE, NUMEL » NNODE )
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Cownn ZET BOUNDARY CONDITIONS FOR TEMPERATURE. . ...

0D 110 I=1,NNODE
INX =1
READ(S, 1015) WORD, NT, TNT
IF(WOROL.EG, STOR) GO TO 115
NTS (1) = NT
TE(NTZ(T)) = TNT
110 CONTINLUE

[

...... COUNT NODES WITH SFPECIFIED TEMPERATUREZ.....
i
115 NNTS = INX - 1
NN = NZ - NNIS

NX = NNTZ

NY = NNGZ
C
C.....SPECIFY THERMAL FORCEZ= AT NODES.....
[

O 120 I=1,NY
NE=(T)
TE(NG=Z(1))

120 CONTINUE

I + 1
0,0

WRITE (£, 1 0OA0)

00 140 I=1,NNTS

WRITE (L, 10465) T.NTS(I), TE(NTS(I))
140 CONT INUE

oo 1S I=1,NZ2

DO 1S J=1,NI

AT(I, ) = 0,0
15 BT(I,.) = Q.0
[
feeeeFORM THE MATRIX COEFFICIENT BT(I,J)
C
C FROM THE MASS & STIFFNEZS GLOBAL MATRICES.....
o

CALL ELMAT(NZ,NK,NUMEL,AT,ET)

[
C
Coeeee.PARTITION THE SINGULAR MATRIX BT(I..)
C ACCORDING TO BOUNDARY CONDITIONS TO C(I,.0)
C

0o S0 I=1,NNQS
DO SO J=1,NNQ%

C(I,J) = BT(NQS(I) ,NES(.I))
DO 45 K=1,NNTS

4% C{I,Jd) = C(I,) -
1 BTINGE(I) NTS(K) ) /BT INTSCE) > NTS () ) #BT (NTZ (K) » NQS(J))
S0 CONT INUE
C
CALL DECOMP(NY.NY.C,IP, 1ER)
C
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. FRINT INITIAL CONDITIONZ & AFTER FIRZT TIME STEF

THE RESULTS AT SFECIFIED TIME INTERVALLT.....

o]

CALL OUTPUT(NZ, NE, T, NUMEL » NNCDE )

o O Y

... ZTART TIME INTEGRATION
C

fO T=T+ 0T
iz
Ceees FLOT RESIITS WITH RESFECT TO TIME.....
[
1T IT + 1
TWO INT(WO)
N4 IWO + 1
IF(MQDCIT, IFREQ) .NE.O) GO TO 25
I1TR IT/1IFREQ
TTCITRY TE(N4)
TIME(ITR) T
25 CONTINUE
[
CueoesFORM THE RIGHT HAND ZIDE VECTOR G(.) OF THE MATRIX EGUATION

%%

g CeI, H#X(I) = QD)

g AND SOLVE FOR X(I).....

© CALL GQVECT (N2,NX,NY,T.NUMEL.AT,RT.C, IP)
E.....IF T EXCEEDS TMAX, TERMINATE INDEGRATION ... .

IFCT.LE. TMAX) GO TO 20
CALL ONPLOT(TIME,TT,.1TR)
GO TO 100

o} ICLINTE = ICLNTE + 1

ki
[
Ce....PRINT RESULTS OR CONTINUE THE SOLUTION.....
C
IF(ICUNTE.NE. IFREQ) GO TO 20

ICLINTE = Q
GO TO 10
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. .FORMAT ZTATEMENTS.....

FORMAT (20A4)

FORMAT CIHT, 14X 5 84133 3% 303 3 396 3 25 36 3 3 36 3 3 36 3 36 96 36 36 95 36 36 6 3 36 36 3 3 36 3 36 36 3F 3 3 9 36 3 38 3 %

ISOHE SRR RRERE R RB R R BB RERRREXRRLRERRRARERERRRRRERRR, /15),
bt PR EI TS 2L SIS LRSS SIS RTISLIEL SRR R Y Y 2N

ZAOH#H AR H R F AR LR F R AR RER A RRRRDURHRE, /15X, CHERR R,
822X, bH*nRRR, /1EX, LHEwune,

S20X-.42H DIFFUSTION-CONVECTION IN ONE DIMENSION » 20X,
ClHnseRt, /15X, GHE#ER®S,

76X SO0H~ -~ e ’
R2O0H~— - —m— s E X LHRERRER, /1TX, LHER SRR, T2X,

FeHERRRRR, /10X, SHERRRRR, 1X, 2008, 1X, CHewRt%%, /15X, bHER R 2SR,
11X, 20A4, 1X,LHe#%ER%%, /1SX, GHERERER,
2EZX s LHEREREE, /1G5, ZEHE RS2 4800330 N NN,
BEEH RN IR I AN IR IR,
AEH#ER®®R, SI1TK, GAHB R H R H SRR R RN R RN R RN RN RN N,
SEOOHB AR ERRE R AR ERF XL RRRREREERRR R RRERY, ////)
FORMAT(I10,2F10.4)
FORMAT (IS, F&.2,2F3,.4,3F6.4,215)
FORMAT(&F10. 8)

FORMAT(“17,2X, "N=",12,5X, "WO=",F5.2,5%X, "VO=",F&,&,5X, "TK=",F&, £, 5X
1,°TO=",F4.2,5X, "IT=",F&. 4,5X, “TMAX=",F&. 3, 5%, "IFREQ=, 13, 5X, "B.CON

2L.=,12:,/77)

FORMAT (40X, “CUBIC-HERMITIAN FINITE ELEMENT APPROXIMATION',//)
FORMAT( 40X, "LINEAR FINITE ELEMENT APPROXIMATION,//)
FORMAT(&X,A4, T110,F10.4)

FORMAT (10X, "BOLUNDARY CONDITIONS FOR TEMPERATUE -,
1/7,2X,°17,4X, “NOLOE " ,SX, "TEMPERATURE",//)

FORMAT (22X, 2¢(4X, I12),2X,F12.2)

STOP

END
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SUBROUTINE CUBEL (NZ-FL . NUMEL, AT, BT

Cas
(296 3806 38 46 46 36 3 6 I 46 3 96 46 3 3 B 3% 5 0 25 50 0 T 0030 0 0 0 3 IO AF I8 3 U BB J B B JE I B T E B I 3 0 3 I I AP
Casn
% CUBREL CALCULATES THE ELLEMENT MARTICES FOR THE
s 24 CURIC HERMITIAN ELEMENT MODEL
Can
[ ETZTITTEIILTERELTILILIZILSRL LSS SIS SRS SRS LS T LT LY
Cws
COMMON/BLOCE L1/ N2 WO VO, TR TG, 0T, TMAX» IFREG, LCASE . NE, IEC
COMMON/BLOCK3/ X(200),W(200}, TE(200),,H(200) ,FRI200)
DIMENSION A(4,4),B(4,48),ATINZ2'N2) BT (NZ2,N2)
C
TKO = TK
[

DO 20 L=1,NUMEL
KL1 = LCASE®(L~-1)
iz

C.....ELEMENT MASS MATRIX A(l.d).u...
c

All,1) = A, #WiL)*"Y
AC1,2) = 22.+W(L)
A(1+3) = ~Z. xW(L )%y
A(1.4) = 13,8W(L)
A(Z, 1) = 22.=W(L)
AlZ,2) = 1%96.0
A(Z,3) = ~13,#WI(L)
AlZ,4) = 54,0
AlZ1) = =2.#W(L)#%2
A(R,2) = =13, %W(L)
A(Z,2) = 4, %wW(L)*x2
A(Z,4) = -22.#W(L)
Al4,1) = 13.2W(L)
A(4,2) = 54,0
A(4,3) = ~22,#UW(L)
A(4,4) = 156,00

c

Cova. ELEMENT STIFFNEZS MATRIX B(I.J)u....

C

C.....CONVECTIVE TERMZ.....

[
Vit = 0.0
VizZz = -42,#/0
VIZ = ~7. #V0OxW(L)
Vig = 42.%V0
vzl = 42,.#V0
vz = -210.8V0/W L)
V23 = -42.%V0
V24 = 210, #V0/WIL)
VIl = 7 #V0ORWIL)
vae = 42, #V0
V33 = 0.0
V34 =  ~42,#V0
V4l = -42,%Y0
V4z = ~210.#V0/W(L)
V43 = 42, #V0
V4q = Z10.#VO/W(L)
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kel

vens JdOIFFUSION TERMS.....

[w]

CE1l = S&,#THO
CE1I2 = 42, #THO/W(L)
CE1Z2 = ~14, #TEO
CH14 = —42 , #TEO/W(L)
CK21 = 42.%TKO/W(L)
CR2Z22 = S04, #TEO/W(L) ##2
CK23 = 42.#TKO/W(L)
CK24 =-504, #TKQ/W(L )#*2
CK31 = —-14,.#TKQ
CE22 = 42,#TEO/W((L)
CE22 = S6.%TKO
CK24 = —-42,#TKO/W(L)
CK41 = —-42.%TEO/W(L)
CK42 =-504.#TKO/W(L) %2
CKA3 = —-42.#TKO/W(L)
CK44 = T04.#TKO/W(L) %2
c
R(1,1) = Vi1 + CK11
R(1,2) = V12 + CK1Z
B(1,2) = VI3 + CKI3Z
B(1,4) = V14 + CK14
B(2,1) = V21 + CK21
B(2Z,2) = V22 + CK22
B(2,3) = V23 + CK2Z
B(2,4) = V24 + CK24
B(Z,1) = V21 + CK21
B(3,2) = V32 + CK32
B(32,3) = V22 + CKIZ
B(3,4) = V34 + CKZ4
B(4.1) = V41 + CKA41
B(4,2) = V42 + (K42
B(4,3) = V42 + CK4Z
B(4,4) = V44 + (K44
c
Do 25 I=1,KL
DO 25 Jd=1,KL
[
Covee . FORMATION OF THE GLOBAL MASS MATRIX AT(I .M .....
[
ATO(I+KLL) » (J+KL1)) = AT((I+KLL) » (J+KLL1D)Y) + ACL. D)
[
Ceeen o FORMATION OF THE GLORAL STIFFNESS MATRIX BT(I,.M).....
C
25 BYC(I+KL1)» (J+KL1)) = BT((I+KLL1), (J+KL1)) + B(I, W)
30 CONTINUE
RETLRN
END
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SUBROUTINE DECOMF (NN, NDIM,. C, IF, IER)
173
[ ZETTETTETE LT ELLLRTRY SRS LRSI ER R Y RN
C# LINEAR SYSTEM SUBRCOUTINE

o

C#  DECOMPOSE THE NN X NN MATRIX € INTO TRIANGULAR L AND b 20 THAT
Cx L # Ut =F & C FOR SOME PERMUTATION MATRIX F.

C# MATRIX TRIANGULARIZATION BY GALZSIAN ELTMINATION,

o

C*  INFLUT..

C#* NN = ORDER OF MATRIX.

i NDIM = DECLARED DIMENSION OF ARRAY C
C# C = MATRIX TO BE TRIANGULARIZEL.

C#  CUTPUT. .

[t C(l,d)s 1.LE.J
C C(I»)> I.GT.U

UFPER TRIANGULAR FACTOR, U .
MULTIPLIERS = LOWER TRIANGULAR FACTOR, I - L.

[ IPCED) S K.LT. NN = INDEX OF K-TH FIVOT ROW.

C# IP(NN) = (-1)%#(NUMBER OF INTERCHANGES) OR O ,

C# IER = O IF MATRIX C IZ NONSINGULAR, OR ¢ IF FOUND TGO BE
Cx SINGULAR AT STAGE K.

C# USE SOLVE TO ORTAIN SOLUTION OF LINEAR SYSTEM.
Cs DETERM(C) = IP(NI®C(1,1)#C(2,2)%. .. %C(N,N).
C* IF IFP(NN)=0, A IS SINGULAR, SOLVE WILL DIVIDE BY ZERC.
Gt 6062036303696 36 36 06 00 30 30 3048 96 309046 96 36 2696 46 36 36 96 06 25 96 3136 26 3 9 0 2 4 JE QMR AR R ERE R FE R B H RS
C#
es FORMAT (55X, “SINGULAR MATRIX C AT STAGE kK =",13)
DIMENSION C(NDIM,NN), IFP(NN)

feeessrsees INITIALIZE IER, IF(NN) .....
. IER = 0
IP(NN) = 1
IF (NN EG®. 1) GO 70O 70
NMi = NN - 1
DO &40 K = 1,NM1
KP1 = K + 1
M=K
00 10 I = KF1,NN
10 IF (ABS(C(I.K)) .GT, ABS(C(MyK))) M =1
IP{K) = M
T = CiM,K)

IF (M .EQ. K) GO TO 20
IP(NN) = ~IP(NN)
C(MK) C(K,K)
C(K.E) T

IF (T EG. 0.0) GO TO
T =1.0/T

0O 20 1 = KP1,NN
ClILK) = —C(T,K)*T

DG S0 J = KP1,NN

! T =C(M D

C(M, ) = CU(K, )
C(K.Jd) = 7T
IF (T .EG&. 0.0) GO TO SO
DO 40 1 = KP1.NN
40 CCIvJ) = C(I.d) + CUL, KT
S0 CONT INUE

CIOnN

N
2
i
3

0w
=
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£0 CONT INUE

70 K = NN
IF (C(NN,NN) .ER., 0.0) GO TO 20
RETURN
&0 IER = K
IP(NN) = O
WRITE(4,85) 1ER
RETURN
END
[
SUBROUTINE ELMAT (NZ,NK, NUMEL.AT,ET)
Cx
12036 36 36 9 36 36 3 3 3 3 U 36 U 3 U 3 34 3 3 I 36 36 6 36 36 3 34 36 4 I I I I U I U I U NI B 33 I 3364 3R
Cxs
Cxn ELMAT FORMS THE OVERALL GLOBAL MATRIX BT(I,J)
C#» IF LCASE = 1, BT(I.J) IS FOR THE LINEAR MCDEL.
Cax IF LCASE = 2, BT(1.4) IS FOR THE CUERIC MODEL
Cas
L3090 0096 36 36 96 3 38 36 36 3¢ 36 96 36 36 6 36 3 3 96 36 6 36 3 366 36 96 I I 2696 46 9 U 36 6 3 3 06 346 46 3 J 6 A6 3F 3 I FE 3 4 96 2 36 9 3 46 46 9 3 3 4 96 3 2 % 4
C#»
COMMON/BLOCK1/ N, W0,V0, TK, TO, DT, TMAX, IFRE®, LCASE, NE, IRC
COMMON/BLOCKS/ AO,A1.A2,AZ,A4,AS,N1,R1,.RN
DIIMENSION  AT(NZ,N2),BT(N2,N2)
C
KL = Z#LCAS
[
IF(LCASE.EQ.1) CALL LINEL (NZ,KL,NUMEL.AT,RT)
IF(LCASE.E®.2) CALL CUBEL(NZ,KL.NUMEL,AT.ET)
C
ODG 10 I=1,N2
DO 10 J=1,NZ
10 EBT(I,Jd) = AO*AT(I,.)) + OT*BT(I.,.!
RETURN
END
a 0
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SUBROUTINE INCON(NZ, NE, NUMEL . NNODE)

C#n
CHUFRERRBEREER NG RERERSRERRRARBEERER SRR ERER R RRBRER P RRRRRRERERRBERR RN NS
Cen
Cesw INCON SETS THE INITIAL CONDITIONS FOR THE SYSTEM
Cax VARIABLES EGQUAL ZERO IF NB = O, OR TO SPECIFIED
Cus VALUES IF NB = .
Cun
090 36 00 3000 3646 96 3436 34 30 06 3 3 36 36 98 3 36 96 9 3 3696 3 3 36 0 46 0 0 0 40 06 06 U0 AE 30 U A NN
Can
COMMON/BLOCKL1/ N,WQG, VO, TK,TO, DT, TMAX, IFREQ, LCASE,NRE, IRC
COMMON/BLOCK2/ X1(200),X2(200),X3(200),X4(200),YX(200)
COMMGN/EBLOCKR/ X(200) . W(200) . TE(200),H(200),FR(200)
COMMON/EBLOCKS/ AC,AL1,AZ2,AZ,A4,A5,N1,R1,RN
c
Fl = 3.148159/2.0
C
DO 10 I=1,N2
Xt1) = 0,0
YX(I1) = 0,0
X1¢1) = 0,0
X2¢(1) = 0.0
X3¢(1) = 0.0
10 X4(I1) = 0.0
DO 15 1=1,NNGDE
H(I) = 0,0

1S5 CONTINUE

[

Coever.CALCULATE THE LENGTH FOR EACH ELEMENT.....

C

[
0o 295 I=1,NUMEL

20 W(l) = 1./WO

IF(NB.EG,0) GO TO 100

c
CuoveesIF NB = 1 SET INITIAL CONDITIONS.....
C
LO = N/10 + 1
L1 = N/S + 1
H(LO=1) = -W(LO)
DO 25 1=L0.L1
TECI) = 1.0
25 H(I) = H(I-1) + W(I)
H(LO~-1) = 0.0
Do 30 I=L1,N
20 H(I+1) = H(L1)
c
IF(LCASE.E®.2) GO TO 40
DO 35 I=1,NNODE
35 X¢(I) = H(I)

GO TO SO
40 DO 4% 1=1,NNCDE
X(2#1-1) = TE(I)
45 X(2%I) = H(I)
50 DO 55 I=1,N2
X1¢1) = X(D)
X2(I) = X1(I)
X3(1) = X2(1)
] X4¢1) = X3(1)
<
100 RETURN
END

n
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SUBROUTINE LINEL (NZ,FL,NUMEL.AT,.BT)

[ 2 3
e R Yy I R TR T T LR T LR TR RS R g
Cas
Cas LINEL CALCULATES THE ELEMENT MATRICES
Cae s FOR THE LINEAR ELEMENT MCODEL
[ng X3
(R L R Y R N R Ny Y I T Ty
g X
COMMON/BLOCE L/ NLWO,VO, TE,TO, 0T, TMAX, IFRES, LCASE, NE, IRC
COMMON/BLOCKE Z/ X (2Z00),WIZ00) , TE(ZOO) ,H(Z00) , FR(Z00)
OIMENSION A(Z,2),B(2,2),ATI(NZ,N2)>BT(NZ,N2)
C
00 1S L=1,.NUMEL
KL1 = LCASE#(L-1)
[
C.....ELEMENT MAZS MATRIX A(I,.D.....
C
A(l,1) = 2,0
A(l,2) = 1,0
A(Z,1) = 1.0
A(Z2,2) = 2.0
C
C.....ELEMENT STIFFNESS MATRIX B(I,.d).....
C
TEO = Tk
WO = 1,/7W(L)
C

Cesaoe dCONVECTIVE TERMES.....
=

Vil = =3, #WO#V0
Viz = 2, #4ORvo
V21 = =2, #WO#V0O
Vz2z = 32, #W0*V0
C
C.o...DIFFUSION TERMS.. ...
c
CK1l = &, #TKORWO#%2
CK12 = =4, #TKO®WO* %2
CK21 = -4, #THEO¥WO®#2
CK22 = &, #4TKO#RWORSRZ
[
B(1,1) = Vi1 + CK11
B(1,2) = V12 + CK1Z
E(Z,1) = V21 + CK21
B(2,2) = V22 + CK22
Do 10 I=1,KL
DO 10 J=1,KL
[
C.....FORMATION OF THE GLOBAL MASS MATRIX AT(I M .....
[
AT((I+KL1)Y, (J+KL1)) = AT((T+KLL), (+KLL1)) + ACI, DD
C
Cesss .FORMATION OF THE GLOBAL STIFFNESS MATRIX BT(I,Jd).e...
c
10 BTC((I+KL1)» (J+KL1)) = BT((I+KL1), (J+KL1)) + B(I,.)
i 15 CONTINUE
RETURN
END
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SUBROUT INE CUTFUT (N2, NE S, T, NUMEL » NNOLDIE)
C#
e T T R R R N sttty
e 33

g 2 OUTPUT PRINTS REZILTE AT SFECIFIED TIME
Cwn INTERVALZ BY IFREQ.

Caes OUTPUT CALLT EXTERNAL SUBRDOUTINE ONPLOTC )
[ 2 FOR PLOTING REZILTE.

Cws

CZ##*#*****#&#%**#**}ﬂ»#%*#i&*%{##*#*{#*é%#!#i*#{i#**#}#i#***#&#*il*}ﬁi**{
17 %3
COMMON/BLOCE L/ N, WO, VO, TE, TO, OT, TMAX, IFREQ®, LCASE ., NE, IRC
COMMON/BLOCKZ/ X1 (200), X2(200), X3(200),X4(200),YX{200)
COMMON/BLOCEZ/ X (2Z00)»W(Z00), TE(Z00) ,H(Z00) ,FR(200)
COMMON/EBLOCES/ AOLAL.AZ,AZ,A4,AS,N1,R1,RN
DIMENSION  DH(ZO00) , IX (Z00) , RNODE (200)

C
C
C.....COMPUTE THE DISPLACEMENT & TEMPERATURE FOR THE LINEAR ELEMENT.....
[
THO = TK
SUMI = 0.0
SUMZ = 0.0
IF (LCASE.ECL2) GO TO 100
DO 10 I= 1,NNODE
10 H(I) = X(I)
DO 15 I=1,NUMEL
15 TE(I) = (H(I+1) - H(I))/W(I)
DO 20 I=1,NUMEL
DH(I) = AGX(H(I) + H(I+1)) = (YX(I) + YX(I+1))
DX(I) = 2,%C(H(I) = H(I+1))#VO*DT/W(D)
SUMI = SUM1 + DH(I)
zo SUMZ = SUMZ + DX(I)
SUMZ = ABS(SLMI) - ABS(SUM2)
GO T 150
[
C.....COMPUTE THE DISPLACEMENT & TEMPERATURE FOR THE CUBIC ELEMENT.....
C
100 D0 110 I=1,NNODE
TECI) = X(2Z#I-1)
110 HOI) = X(2#1)
DO 115 I=1,NUMEL
DH(I) = (TE(I+1) - TECI))#A0 ~ YX(2%I+1) + YX(2#I-1)
1 — £ %C(H(I+1) + H(I)I*A0 = YX(Z¥I+2) = YX(2%1))/W(I)
DX(I) = 12, #DT#(VO#(H(I+1)=H(I)) + TKO®(TEC(I+1)=TE(I)))/W(I)#x2
SUMI = SUML + DH(I)
115 SUMZ = SUMZ2 + DX(I)
SUMZ = ABS(SUM1) - ABS(SUM2)
c
Cuv.. . PRINT THE RESULTS.....
c
150 WRITE(L,610) T
WRITE(&,£20)  SUM1,SUMZ, SUMZ

WRITE(6, 605)
DH(NNODE) =
DX(NNODE) = 0.0

WRITE (L, £1%) (IL,H(D)L,TE(I),DX(1),DH(I), I=1,NNODE)
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e FLOT RESIRTZ.. ...

DD 20 I=1,NNODE
20 RNCDECI) = FLOAT(D)

CALL ONFLOT(RNODE, TE , NNCDE )

l

£.0C) FORMAT(SX,E14.4)

L0 FORMAT (/77,7 NODAL FOINT H-N1ZFLACEMENT TE-TEMFPERATLIRE
1 OH/70Y OR/DT /7))

L1O FORMAT (1HL,,SX, 'TIME ="LFA.5,//)

15 FORMAT(1I12.4X,4F15.4)

L20 FORMAT (20X, "DH/OT =", F10.6,%X, "OH/DX =", F10,L,%X,F13.6./77)
RE TUIRN
ENT

SURROUTINE OVECTINZ, NX, NY, T, NUMEL, AT, BT, C, IF)
e
L L T T Ty Sy g gy 2 s Ry R 2
[T

{

[t 2 4 DVECT =ETS THE RIGHT HAND SIDE VECTOR £:(.1)

T AND FORMZT THE SYSTEM OF EGQUATIONG

et C(I,.D#X(I) = &¢d) , I..l = 1,NY
Cas GVECT CALLS SUBROUTINE SOLVE FOR THE

e SOLUTION OoF THE =YSTEM OF EQS.

Caese

(T34 33 A4 6 2 B B 3 33 S B SEBEESEHH RRB R R BB BB S S S 4 3 BB S S R R
Ca
COMMON/BLOCE 1/ N> WO, VO, TH, TO, DT, TMAX, IFRE®, L CAZE, NE, TR
COMMON/BLOCEZ/ X1 (Z00), XZ(200), XZ(200), X4(200), YX(Z00)
COMMON/RBLIOCKZ/ X (200),W(Z00), TEC(Z00) , H(Z00) , FEC200)
COMMON/BLOCKE4/ NNTS, NNQS, NTS(100), NGS(200)
COMMON/BLOCES/ AO,AL,AZ,AZ,A4,A%,N1,R1, RN
DIMENSION AT(NZ,N2) BT (NI, NZ)» CINYSNY), TRINY)
DIMENSION F(200),00200),LISTX(100),LISZTY(200)

Ll

FI = Z. 14159

e

e s e« o BOUNDARY CONDITIONS.....

h

IF(T.LE.TO) GO TO 10
TE(1) = 0,0
GO TO 1S
10 TE(1) = R1 + RN#SIN(T#FI)
15 CONT INLUE
IF(NE.EQ. 1) TE(1) = 0,0
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[ FORM THE RIGHT HAND =IDE VECTOR OC(]).....
[
0o 20 I=1,.NZ
FOCI) = Q.0
20 YX(I) = A1#X1(]) + AI#XZ(I) + AZ#XZ(1) + A4&xd(1)

IF(LCASE.ER.2) GC TO 25
Frr(1) 4, #TE#DTH*TE (1) /7W(1)
FLHOND) L, #TERDTHTE(N) ZW(N)
GO TGO 20
25 CONT INUE
Fa2)
FRI(N2)
CONT INLUE

W

=420, #TE#OT#TEC(L1) /W(1)
420, #TH#OT#TE(N+1) /W(N)

(]

i) DX

Do 40 I=1,N2
F(I) = FRI)

Do 40 J=1,N2
40 F(I) = F(I) + AT(I, . D#YX(D)
00 SO I=1,.NY

(I) = F(NQS(I))
00 45 K=1,NX

G(I) = (1) = BTINQSCI)NTS(ED) ) /BTENTS (KD W NTS(K) Y #F (NTZ (1))
CONT INUE

2 n

ce.-.SO0LVE THE SYSTEM OF EQUATIUNZ.....

R RS

CALL SOLVE(NY,NY,C, 0, IF)

(]

DO 100 I=1,.NY
100 XINQIC(I)) = @(I)
IF(LCASE.EQ.2) GO TO 120
X(1) = X(2) - TE(1)#W(1)
IF(IBC.NE. 1)
# X{N+1) = X{N) + TE(N)#W(N)
GO TO 130
120 CONTINUE
DO 125 I=1,NX
12% X(2#NTS(I)-1) = TE(NTZ(1))
130 CONT INUE
DO 180 I=1,N2

X4(1) = X3(D)
X3(1) = X2
X2(1) = Xt(D)
X1(I) = X(1)
150  CONTINUE
RETURN
END
75
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10
20

=20
40
S0

SLIBROLT INE

INFUT. .
NN
NI'IM
Co=

R =

IF

auTRUT., .
8

DIMENSION C(NDIM.NN),

iF

NM1
oo
KP1
M
T
(M)
CIED)
10 1
QeI
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SO0LVE (NN, NDI

SYSTEM,

OROER COF MATRIX.

M, O,

CX

IF)

DECLARED DIMENZION OF ARRAY C

20 K

TRIANGULARIZED
RIGHT HAND

FIVOT VECTOR OETAINED FROM DECOMP,
DO NOT USE IF DECOMF HAS

SOLUTION VECTOR,
B R R I R R R R RN S NS RHEEH B R PR R R R R R

(NN . EG.,

SIDE VECTO

X .

G{(N

1) GO 70 SO

NN - 1

1,NM1

K o+ 1

IF (KD
(M)

CONT INUE

0Da 40
kM1
b o=
QK
T

20 1

QeI

Do

[T |

KB =

Q)

T
KF1,NN
Q(I) + C(I,K)#T

1,NM1

= NN - KB
KM1 + 1

CHED) /CIK,K)

=KD

CONTINUE

Q@C1)
RETURN
END

1, KM
GCI) + CCI.K)*T

Q1) /C(1,1)

MATRIX CETAINED

R.

SET IER .NE.

N)’
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