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superior Surface Acoustic Wave (SAW) properties for applications involving environmentally hardened
devices. The key properties examined and optimized both theoretically and experimentally are: first, second
and third order Temperature Coefficients of Delay (TCD), piezoelectric coupling factor, power fiow angle,
Bulk Acoustic Wave (BAW) inverse velocity surfaces, degeneracies and leaky waves, and sensitivities of the
above quantities to misorientations and manufacturing tolerances. )
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approach. Task | involves the numerical computation of the key SAW properties for doubly rotated quartz
substrates for the purpose of locating promising angular ranges with properties superior to the singly
rotated cuts now in existence. More detailed calculations follow to refine the angular coordinates in order to
specify cuts for experimental verificationin Task Il. In Task Ii, sets of substrates with promising orientations
identified in Task | will be prepared and SAW device patterns will be fabricated for evaluation of the key SAW
properties. The experimental results of this task will be correlated with the theoretical predictions and an
iterative process develops for refinement of both theoreticat and experimental parameters. As the program
proceeds, working SAW device models will be delivered as a demonstration of progress and an indication of
the future potential of the doubly rotated cuts. Depending upon the progress made and time and budget
limitations, additional properties in the area of monlinear elasticity will be investigated. This report contains
the result of Task | and part of Task Ii. ‘l
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SECTION 1
INTRODUCTION

1. PROGRAM OBJECTIVE

The objective of this program is the exploratory development of doubly rotated cuts of quartz
possessing superior Surface Acoustic Wave (SAW) properties for applications involving environmentally
hardened devices. The key properties examined and optimized both theoretically and experimentally are:
first, second and third order Temperature Coefficients of Delay (TCD), piezoelectric coupling factor, power
flow angle, Bulk Acoustic Wave (BAW) inverse velocity surfaces, leaky waves, and sensitivities of the above

- quantities to misorientations and manufacturing tolerances.

2. PROGRAM SCOPE

“E ‘ The program consists of two major task areas comprising an interactive numerical/experimental
approach. Task | involves the numerical computation of the key SAW properties for doubly rotated quartz
v_ substrates for the purpose of locating promising angular ranges with properties superior to the singly
E ' rotated cuts now in existence. More detailed calculations follow to refine the angular coordinates in order to
' specify cuts for experimental verification in Task lI. In Task Il, sets of substrates with promising orientations
' identified in Task | are prepared and SAW device patterns fabricated for evaluation of the key SAW
properties. The experimental results of this task are correlated with the theoretical predictions and an
iterative process develops for refinement of both theoretical and experimental parameters. As the program
proceeds, working SAW device models will be delivered as a demonstration of progress and an indication of ,
the future potential of the doubly rotated cuts. Depending upon the progress made and time and budget g |
limitations, additional properties in the area of nonlinear elasticity will be investigated. ] '

3 TECHNICAL APPROACH SUMMARY

To accurately characterize the properties of doubly rotated quartz, three basic capabilities are
essential:

a. Theoretical approach and associated computer software which will accurately and quickly
locate promising zero TCD cut angles and characterize the other key SAW parameters

b. Source of rotated quartz substrates of superior quality which can be quickly fabricated and
the angular orientation which can be determined with a high degree of precision

¢.  Required fabrication facilities and measurement tools to accurately determine the key SAW |
device parameters.




In the theoretical area, this program has charaterized two basic theoretical approaches for the
identification of zero TCDs on rotated cuts of quartz. For this study, two computer programs available at
Motorola are used. The first program calculates the first, second and third order TCOs of rotated cuts using a
finite difference method. This technique is simple, well established, and has been used for analyticaity
determining the temperature coefficient curves for singly and doubly rotated cuts of quartz. To more
accurately refine the temperature coefficient properties, a second program which encompasses lattice
skewing effects is used. This more complete theoretical approach is based on the work of Sinha and
Tiersten'; its utility has been verified.

The final theoretical work is the characterization of the other key parameters with standard SAW
programs used routinely for material characterization and device development.

Accurately oriented quartz bars, supplied by Motorola, Carlisle, are cut, lapped and finely polished
at Motorola. A mechanical polishing procedure is used. During this program, several substrates from a
single bar with incremental angular deviations about a promising angular position are fabricated. By careful
organization of the angle selection and cut procedures, a substantial savings in time and money is achieved.

The angular orientation of the doubly rotated substrates are defined to an accuracy of within +5
minutes using X-ray diffractometry. Equipment used includes Laue pattern X-ray equipment, X-ray
diffractometers, and precision wafer cut and polishing equipment.

A complete SAW test area and optical laboratory form the basis for evaluating the key SAW
parameters of the doubly rotated quartz delay lines, oscillators and resonators. The equipment will be setup
for rapid display and recording of the SAW parameters.

'“On The Temperature Dependence of the Velocity of Surface Waves in Quartz”, B.K. Sinha and H.F. Tiersten,
Proceedings of the 32nd Annual Symposium on Frequency Control, 1978, pp. 150 - 153.

2

i
1
]
!
!
i

L SIS N e s e e e w7




U

SECTION it
TECHNICAL DISCUSSION

The following section discusses the technical approaches used in this program. A comparison of
numerical approaches is made and the numerical approach used is described in paragraph 1 (Task ).
Experimental techniques (Task 1l) will be outlined in paragraph 2.

1. INTRODUCTION

Quartz is the most commonly used substrate for fabricating Surface Acoustic Wave (SAW) devices.
In SAW narrowband filter, oscillator, and resonator applications, the temperature stability of the device is
an important design parameter. Currently, almost all SAW devices fabricated on quartz use the ST-Cut,
which exhibits a parabolic frequency dependence in temperature. For many applications, the temperature
dependence of devices fabricated on ST quartz is too large. Thus it is desirable to find crystal cuts with
superior temperature performance. Of course, many other design parameters must be considered when
choosing a crystal cut. Some of the more important ones are the piezoelectric coupling coefficient, acoustic
losses, dependence of device performance on cut misorientation, excitation of bulk modes, and beam
steering angle. These parameters are ail easily determined for a given cut.

The objectives of this program are to find crystal cuts which exhibit zero temperature coefficients of
delay so that there will be no frequency-temperature dependence observed in temperature stable
oscillators, resonators and filters. We have used computer models to investigate the temperature
dependence of different cuts of crystal for SAW devices.

Defining r as the delay time for an acoustic wave to propagate between two points on the surface of
the crystal, we wish to find orientations for which 7 is constant in temperature, or more formally (1/7)
(dT/dT) ' 1 = 28 degrees € = 0.

If F is the frequency of a SAW resonator, we have (1/F) (dF/dT) = —(1/7) (d+/dT). Of course, we
would alsa like the higher order derivatives 1o be as close to zero as possible, or (1/27) (d°7/dT?)] 1. 5 aegrees
=0, etc.

Letting 9 be the length between two points, () is simply given by r = (2/V,), (1/2)(dr/dT) =
(1/2(d?/dT) — (1/V)(dV./dT).

We have computer programs for calculating = as a function of the stress, the dielectric and
piezoelectric constants of a substrate material. Furthermore, we have at our disposal the temperature
variation of those constants for quartz allowing one to calculate (1/V.(dV./dT) by a finite difference method
(note that higher order terms can be calculated the same way). If the crystal expansion coefficients are
known, it is then a simple matter to calculate (1/r)(d+/dT) for any particular orientation. Perturbation

3
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programs developed by Sinha and Tiersten to calculate (1/7)(d~/dT) are also available. Combined with a
search method, we are able to find cuts for which first order temperature coefficient of frequency vanishes.

a. Calculation of Temperature Coefficients

It has been shown that determining the temperature dependence of  (time delay) is equivalent
to determining the temperature dependence of F (frequency) via the relation F o< 1/7.

Since our experimental data is derived from frequency measurements, we determine the
frequency characteristics of the devices. The relation between the temperature coefficient of frequency
(TCF) and temperature coefficient of delay (TCD) are related as follows (See Appendix E):

a'p':' = _arm (1)
até) =-q 1!2) + (ar(l))z (2)
o 1:) = -a (;l + 2a (1I_) a(_;) _(a (;_))J (3)

where o, is the ith order TCF, o . “ is the ith order TCD.

Using the relations above, one can always relate one set of the temperature coefficients to the
other.

The various procedures outlined in the following sections will yield the quantities ., i=1,2,
3, with V(1) = V(T + & 0T + & 0T + & dT’) and dT =T - To.

The problem of interest is not only, however, in finding the o.'”’s butin finding the delay time r
and the frequency dependence F of a device. The frequency dependence F(T) = F(To)(1 + as" dT + s dT? +
o dT?) is a function of not only V, but of 2(To) = 2(Te)(1 + &' dT + &' dT? + &*’ dT°), the spacing between
reflectors in a resonator (or the length of the delay line in an oscillator)

From the above relations and (1 + X)-' =1 — X + X* = X* if X <<1, we see that:
F=Vg={V.(1+ o' dT + v dT? + av'? T2 (1 + ™ AT + a® dT? + ™ dT?) (4
=F(T) {1+a" dT + av® dT + av® dT (5)
— " dT — o' av'" dT? — & 2 dT° '
— o dT* — 0 /" dT* — & dT°

+ (") AT + (a")? o 4T’

+ 20" o dT° — (' 4T)) (6)

or




a'lh:a‘(li_a'lll (7)

m,l.‘) = a\l.‘l _ a‘m ou“' + (mm)z - mm (8)
alm = nn”' _ muln a\l:l + a‘lll (m(l»)l (9)
__(“"I-)'- + 2(“|I| a,(.'n — D’y‘l' a'(.‘b _ a'l‘l

giving the frequency dependence directly. The calculation of the temperature coefficients of velocity, a.'", is
achieved by calculating the phase velocity with the Finite Difference Technique or other techniques
discussed below for a variety of temperatures. As the velocity is a function of temperature, a linear
regression program is used in the finite difference technique to curve fit the data to a third order
polynominal. The constants a.'", .”’ and o."” are thus obtained by optimum curve fitting of the data points
to the polynominal. The temperature coefficients of length, a,"', are found in standard references. It should be
noted that the &'s also depend on the direction of propagation, and must be calculated for each direction of
propagation considered by a simple geometrical transformation analogous to that used to rotate all of the
other physical constants.

b. Rayleigh Wave

We will briefly discuss the Rayleigh wave soiutions in their general form in this section. The
coordinate system is defined with the Z or 1 axis being the direction of propagation and the —Y or 3 axis
normal to the crystal surface. V, will denote the Rayleigh wave velocity, 8z = w/V., the wave number, u; (i=1,
2, 3), the particle displacements along the 1, 2, or 3 axis, u. = ¢, the electric potential. Also, T; denotes the
stress tensor.

S, = (1/2)(du,/dx; + du;/dx;), the strain tensor, ¢, the elastic tensor, p the density of the
substrate, D, the electric displacement, E; the electric field, ¢; the dielectric constant, e the piezoelectric
constant. We also use A for the difference, where, for example,

Ap = p(T) — p(To) = p(Tol{a p‘”dT + a p‘“dT2 +a p"‘ dT?), and let P = power/unit width in the
x direction.

We assume relations such as

T=—e-E+c®SorS=eE+S"T (10)

D=fE+eS D=¢E+dT
pd’ U,-/atz = Ciia aZUk/an OX; — By olox. ax. =0 (1)
€ O2UL/IX; DX, — € O o/ I, =0




The general solution for a wave traveling on the surface can be written

T

g u.=[ 3. C.. o™ exp(—(iw/V) 3, b x.)] explict) for j=110 4 (12)

4
For the Rayleigh wave, this reduces to U, = 3}’ ¢, ™ exp (~iBab™y) exp(iBrz — iwt) (13)
m=|
where the coefficient c., o™ (weighting factors), gx(wave number), and b'™(complex decay constants) are
to be calculated by the standard iterative procedure on a computer.

The tields are calculated as E = Vu, with E, =0, E, = (—igzb"™)u, and E, = (iBr)u..
c.  Methods for Calcu‘ating the Temperature Dependence of the Rayleigh Velocity

In the following sections, four methods for calculating the temperature characteristics of the
Rayleigh wave are discussed.

(1) Finite Ditfercnce Technique of Calculating Temperature Dependence of the Rayleigh

Velocity
Before TCD'" = (1/7)(d+/dT) can be calculated, one must first calculate the dependence
of the Rayleigh wave velocity on temperature. The most straightforward method for doing this is the finite
difference method. The Rayleigh wave velocities are calculated for different temperatures, yielding the
4 values V(T),i=1,2, ..., n. This is done by first caiculating the fundamental constants at the temperature T; of
| interest. The fundamental constants are then rotated into the coordinate system of interest. An iterative
procedure is used to calculate a velocity V, for which Christoffel's equation and the boundary conditions
are satisfied simultaneously (see Appendix D). Simple finite difference techniques can be used to calculate
(1/VHAV./AT), (1/2V.)(d*V./dT?), etc. For example, after calculating Vi(T) for T, =To, T, =To+ AT, Ty = T —
AT, we can use (1/V)(dV./dT) at To = (1/Vo(To))(Vi(To + AT) — V(To — AT))/24. Alternately, standard linear
regression of pelynominals may be employed to yield those coefficients. Another approach consists of
calculating directly the frequency-temperature characteristics of the orientation for several widely differing
temperatures. A measure of the temperature stability is then used. Letting F(T) be the frequency of the §
device, the measure of deviation is calculated as J

PG . X Sakis ki

RMS frequency deviation =

3 [(iZ_,(Fm-Fm»z)/n- F(T.)']"” with 14)

i FM = V. (M/%0 + o(AT) + a®(AT)" + a.(AT)), f
although o+, a+'*', and o+ are calculated for purposes of comparison.
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‘In much of the earlier work, the SAW velocities were calculated at three temperature
points, T, =-50°C, T,=25°C, and T, =100°C, to save on computer time. The following formulas were used for
the calculations of first and second order temperature coefficients of velocity.

n

ay = V(Ty) - VT [V(T) (T - To)] (15) §

= [V(100) - V(-50)]/[V(25) - 150]
a‘i} = [V(T\) + V(T3) - 2 - V(T)J/[V(T2) - 2 (Ts - )T, - Ty)) (16)

= [V(100 + V(-50) - 2 - V(25)]/[V(25) - 2 (75)(75)]

In the more recent works, six temperature points were calculated for each orientation to provide data for the
linear regression analysis. The six temperature points were 100°C, 85°C, 75°C, —25°C, —10°C, and ~50°C. The
results were used to calculate TCF", TCF* and TCF™.

(2) Perturbation Technique of Calculating Temperature Dependence of the Rayleigh Velocity

Pertubation theory may be applied to the problem of calculating the first, second and
third order dependence of the Rayleigh velocity V. of a piezoelectric substrate, once the solution to the
Rayleigh wave propagation at a temperature reference T, is known.

; Pertubation techniques allow calculations of small changes in the solutions to a problem
caused by small changes in the physical parameters of the problem, once the solution to the unperturbed
; problem is known. One can apply perturbation techniques either to boundary perturbation such as mass
2 loading on the surface or to volume perturbations such as adding a thin conducting layer to the interior of
: piezoelectric substrates. As the boundary conditions are unaffected by changes in temperature while
3 l material constants such as c, are temperature dependent, one can apply the volume perturbation theory to
' the problem.

Br il

The general approach to the problem of determining the temperature deperderice of V,
will be as follows. First, the Rayleigh wave propagation problem will be solved in the standard way in its
entirety at room temperature, To. Given the solution of the probiem at T, and the dependence of the physical
constants (such as c,) on temperature at T,, one will apply the volume perturbation formula, calculating the
temperature dependence of V.. The dependence of V. on T is then used to caiculate the frequency
characteristics of the actual device given the thermal expansion coefficients as a function of temperature. At
this point, the frequency temperature dependence of the substrate as a function of the crystal cut and
direction can be thoroughly explored. See Appendix A for a complete discussion of this method.
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(3) Approach of Sinha and Tiersten

The primary difficulty with the perturbation technique is that it does not take into
account the change of coordinate systems induced by the thermal expansion in the material. This comes
about because the material distorts as temperature changes. Thus, the set of axis is to which the
fundamental elastic constants refer, which is fixed to the crystal, is no longer equivalent to the axis used to
calculate V.. This problem is elegantly solved by Sinha and Tiersten'~. The first simplification which occurs
is that the density of the material remains constant with temperature. Furthermore, the a:"' simply become
o = o.", as the length in this coordinate system does not change. The only difficulty is that the elastic
constants previously used no longer refer to the proper coordinate system and must be rederived from the
original experimental data. This procedure has already been carried out for the first order temperature
derivation of quartz’ but has not deen done for the second and third order coefficients. Nonetheless, the
procedure yields more accurate results for the first order dependence. See Appendix B for a mathematical
description of the salient features of this technique.

(4) Differentiation Method

A method for determining the theoretical temperature dependence of Rayleigh Surface
Waves consists of formally differentiating the wave equation and boundary conditions. The boundary
conditions and wave equation must be true at all temperatures, placing constraints on how the parameters
of the wave equation may vary. In this technique, the derivatives of these equations with respect to
temperature are set to zero and solved for the velocity-temperature dependence. This method follows the
methods used by Bechmann, Bailato, and Lukaszek to compute the temperature dependence of the
fundamental elastic constants from frequency data, except that the simplifying assumptions of assuming
bulk wave solutions cannot be made. This method was later used by Hauden’ to search for temperature
stable cuts of quartz. See Appendix C for a discussion of this method.

(5) Summary of Approaches

0f all the techniques presented, the finite difference technique satisfies all of the basic
requirements for calculating temperature coefficients of delay. Arbitrary crystal structures may be

"“On the Temperature Dependence of the Velocity of Surface Waves in Quartz,” Sinha and Tiersten, 1978
Ultrasonics Symposium Proceedings, pp. 662-665.

“Temperature Dependence of the Fundamental Elastic Constants of Quartz,” Sinha and Tiersten,
Proceedings of the 32nd Annual Symposium on Frequency Control, 1978, pp. 150-153.

“Higher Order Temperature Coefficients of Quartz SAW Oscillators,” D. Hauden, M. Michael, J. J. Gagnepain,
Frequency Control Symposium (1978), pp. 77-86.
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investigated once the density, piezoelectric, elastic, and dielectric constants and their temperature
variation are known. When double precision on the computer is used and when the velocity over a large
temperature range is calculated, it becomes a very accurate numerical approach. The computational
efficiency of the finite difference method is not as high as some of the other techniques, owing to the need for
repeated calculation of the surface wave velocity.

A comparison between the experimental results of Schulz' and Motorola's finite
difference program adapted from Jones et al.” as shown in Figure 1. The results for this cut and many other
orientations studied have been found to be very good. The slight shift of the analytical curve versus
experimental curve can be explained by a crystal misorientation.

X
]
o = FINITE DIFFERENCE
METHOD CALCULATION
200 (SINGLE PRECISION)
X = DOUBLE PRECISION
—= LEAST SQUARES
FIT TO EXPERIMENTAL
g POINTS OF SCHULZ
&
>
o
810
]
P~ 4
F-d
0
-50
-50 -30 -10 10 0 50 70 %0 110
TEMP °C P

Figure 1. Finite Difference Method Versus Experiment ST-Cut (Quartz)

“Surface Acoustic Wave Delay Lines with Small Temperature Coefficient,” Schulz, Manfred B., Proc. IEEE,
Sept. 1970, pp. 1361-1362.

>“Numerical Computation of Acoustic Surface Waves in Layered Piezoelectric Media - Computer Program
Descriptions”, Jones, Smith, and Perry, Hughes Aircraft Company, Final Report, Air Force Cambridge
Research Laboratories, Contract No. F19628-70-C-0027.
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Figure 2 displays a phase delay versus temperature plot for the orientation (YXwit)
56/40/27 in quartz obtained from Hauden's graphs’. Using the differentiation approach, he calculated a4'"' =
0. oy = —0.04 X 10" ppm/°C’, ' = -22.7 x 10 ppm/°C’ for a cut close to (YXwIt) 56/40/27. The Finite
Difference approach was used to verify his first order calculation but is in disagreement on the second and
third order calculations. This can be resolved by experiment.

2 m
]
g
= ANALYTICAL PREDICTION BY
£ FINITE DIFFERENCE TECH.
2 v
»
o]
a
9 ANALYTICAL PREDICTION BY
3 DIFFERENTIATION TECHNIQUE BY HAUDEN
0
-50
-50 -30 -10 10 2 50 70 90 110
TEMP °C [ X

Figure 2. Finite Difference Method Calculation for Hauden's Cut (YXwit) 56°/40°/27°

Tiersten's Perturbation program, while very difficult to extend to higher orders, is
available for calculating the first order TCD.

Figure 3 shows the results of Tiersten’s calculation' and compares those results with
the Finite Difference method as well as experiment. The cut used for comparison is the AT-Cut. The
improvement in accuracy is substantial. It offers the significant advantages of being quite cost efficient, as
well as being more accurate in the first order on off-axis cuts, our primary area of interest. In the task of
making quartz cuts along the surface of zero TCD, accurate values for the first order TCD prove more usetul
than the less exact values for the first, second, and third order TCD's provided by other methods, because it
is a necessary (but not sufficient) condition for zero TCD cut to get a zero first order. Since it is the
dominating term, it is important to first get an accurate first order zero TCD locus. Then one may search for
the intersection of this locus with the zero second and third order terms with the finite difference technique.
"“Temperature Dependence of the Fundamental Elastic Constants of Quartz,” B. K. Sinha and H. F. Tiersten,
Proceedings of the 32nd Annual Symposium on Frequency Control, 1978, pp. 150-153.

*Higher Order Temperature Coefficients of Quartz SAW Oscillators,” D. Hauden, M. Mickael, J. J. Gagnepain,
Frequency Control Symposium (1978), pp. 77-86.
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Figure 3. Tiersten's Method Versus Finite Difference and Experiment
(6) Investigative Approach

A necessary but not sufficient condition to find a temperature stable cut of quartz is that
o' = 0. In practice, a sufficient condition for finding a zero temperature cut is that a¢'"’ = ar® = ar'* = 0.
Thus every zero temperature cut must be on the locus of angles which satisty the condition ar'" =0. Thus the
first problem is to locate accurately such cuts. Both the finite difference approach and Tiersten's method are
being used now to calculate the TCF.

The approach used in this program is to identify the areas (angles) where TCF", TCF* and TCF" are
! relatively low by using the Finite Difference Approach and then define the exact orientation that has zero
TCF'" in those areas by the Sinha and Tiersten approach.

in case the condition TCF'"'= TCF* = TCF"' = 0 cannot be met, a compromise approach
would be to find an orientation where the first and third order effects tend to cancel out in the temperature
range of interest and to find the minimum second order effect orientation amount for those cuts. This
approach would provide an effective low TCF cut of quartz for SAW application.

"
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(7) Analytical Resuits on Zero TCF on Quartz

IRE standard angle definitions (YX wit) PHI/THETA/PSI for quartz were used throughout

the investigation'. Considar the TCFs to be functians of these angles, which define an angular volume 0 < PHI

. < 30°, -90° < THETA < 90°, 0 < PSI < 180°,which spans the space of possible cuts and propagation
3 directions. The sat of points a® which TCF"' (PH!, THETA, PSI) = 0 forms a surtface in this angular volume.
1 Likewise, the set of points at which TCF? (PHI, THETA, PSI) = 0 also form surfaces in this anguiar volume.

-

Our object is to find a point where TCF'" = TCF**' = TCF*” = 0. If the surface of zero TCF'"'
intersected with the surface of zero TCF*', the result would be a line (or a point if the two surfaces are targent
to each other) of angular points on which TCF'"' = TCF** == 0. The intersection of this line with the surface on
which TCF” = 0 would yield a single point at which TCF'"’ = TCF**' = TCF*' =0. Neglecting higher order terms,
we would have found a temperature stable cut.

The calculated values of TCF"' versus propagation angles are shown in Figure 4. The
zero TCF'' is identified by the areas where TCF'"’ changes sign.

-~

Using the Finite Difference approach with the available crystal constants, the calculated
results show that the zero TCF'" surfaces do not intersect with the zero TCF* surfaces, based on the
interpolated results of the 10° x 10° x 10° resolution. It is not likely that a finer resolution wi!l provide
contrary information because TCF'"' and TCF'* are relatively slow varying functions as shown in Figure 4.

"“Standards on Piezcelectric Crystals 1949, Proc. IRE 14, Dec. 1949, pp. 1378-1395.
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Calculations were performed on a 10° x 10° x 10° grid over the angular ranges 0 < PHI <
30°. 0 < PSI < 180°. and —90° < THETA < 90°. These angular ranges, due to the symmetry of quartz, include
all possible angular orientations. These initial calculations defined the “angular volumes™ of low TCF
orientations. Calculations were then performed on a 2.5° x 2.5° x 2.5° grid near promising orientations. In
this way, the entire angular range was explored and a large computer-based data file built. Maps of first and
second order TCF's are shown in Figure 5. Zero first order TCF contours are drawn. In addition, contours of
the second order TCF are drawn. In addition, contours of the second order TCF are drawn and shaded in
areas where the second order TCF is less than 0.01 PPM/°C’. This represents a substantial improvement over
ST quartz, for which the second order for TCF is approximately 0.03 PPM/°C*. Where data points were
missing, lines were connected by interpolation.

y 90
%0 "7GF MAP FOR PRI = 7 TCF MAP FOR PHI = 20° N
7 70 -
50 -50
® . Ir N
= -10 =10
ud '}
T 10 ]
» »
" o 74 % 7 \\
ol N p ol
180 160 140 120 100 8% & 4 2 0 WB W @ W w0 0 2 o
PSI

TCF MAP FOR PHI = ¢° TCF MAP FOR PHI = 20°
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Figure 5. TCF Map of SAW Device on Quartz

Despite the number and density of points at which the first and second order TCFs were
calculated, wherever TCF'" was found to be less than or equal to zero, we found TCF**' to be less than 0. The
reason for this probably lies in the lack of independence of the crystal constants themselves. Using the
volume perturbation approach of Auld', one obtains equation A-8 of Appendix A.

"“Acoustic Fields and Waves in Solids,” Auld, B. A., Vol. [l, John Wiley & Sons, 1973, N. Y., p. 297.
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TABLE 1.

For small changes in p and ¢, one might expect that the TCFs are well correlated with the temperature
derivatives of the fundamental constants for Rayleigh waves in quartz. A list of some of the crystal elastic
constants’' temperature derivatives is in Table 1.

CRYSTAL ELASTIC CONSTANTS' TEMPERATURE DERIVATIVES

Tctl)

-48.5x10°

-3000
~550
101
-160
177
178
-34.92
13.7
7.5

TC(!]

-107x10"
-3050
-1150

-48
275
-216

18

-159
6.5
29

T

-70x10™"

-1260
—~750
-590
=250
-216
21

53

-19

-15

>

1L m
—— | A Ci: |
1

Figure 6 shows a plot of these values. The correlation is quite high, except for the case of
C.. and suggests that the TCFs should be correlated also. Plots of TCF'" and TCF* versus angles shown in
Figure 4A through 4NN reflect this correlation.

Of course, if the two TCF surfaces do not intersect to form a line of zero TCF" and TCF**',
we must use a slightly different approach to finding temperature stable cuts. The largest variation in
constants occurs for C,-. As we are interested in the temperature range from —50°C to 100°C, the maximum
deviation of T from T, =25°C is| T —To| =75°C. Calculating the changes in the constant C., for this maximum
temperature change gives:

I

225x 10

172x10°

532x10"

""Higher Order Temperature Coefficients of the Elastic Stiffnesses and Compliances of Alpha-Quartz”,
Bechmann, Ballato, Lukaszek, Proc. IRE, Aug 1962, pp. 1812-1922.




1c@ | 7c@®
x10'9 | x10-12

=~ -1000— -500p

- -2000f~ -1000 |-

e
c2)

e i

2510-1

Figure 6. Temperature Coefficients of the Fundamental Constants of Quartz
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Thus the most significant term is the first order term. The second order term is still quite significant but one
order of magnitude below the first, while the third order term is almost three orders of magnitude below the
first. Since the delay time r is dependent on the crystal constants, the most significant term should be TCF""'.
The least significant term should be TCF'". After numerous calculations of the TCFs for many orientations,
this appears to be the case.

The investigative approach used has been to first locate the surfaces of zero TCF'"! (the
most significant term) with the finite difference program. Near these surfaces of zero TCF'"', low values of
TCF' are sought, using already calculated results of the finite difference programs. Where low values of
TCF"' have been found, the perturbation approach was used to more accurately locate the zero TCF™"
surface. this being the most significant term in the total temperature dependence. TCF"”"s are then

calculated to assure that their effect on the total temperature dependence is small. To date, this has always
been found to be the case.

(8) Results of the Investigative Approach

Table 2 consists of a summary of the results of using the investigative approach
described in paragraph (7) above. There are three areas where low TCF cuts have been located. These areas
are centered near (YX wlit) 0/27/138, (YX wlit) 7/27/135.5, and (YX wit) 15/40/40. These orientations have
zero TCF'", calculated by the Sinha and Tiersten approach, with TCF* and TCF* calculated with Finite
Ditference approach. These areas were chosen because of zero TCF'", low TCF, and alow TCF** which can
be mostly cancelied out by the first order TCF if the propagation direction is slightly rotated away from the
zero TCF'" direction. Then the TCF'* term will dominate the performance characteristics. The angular
resolution in these areas is 1° x 1° x 1°. The cuts potentially have one half to one third the temperature
coefficients of ST-Cut quartz.




TABLE 2. PROPAGATION CHARACTERISTICS OF SELECTED ORIENTATIONS

Angles of ZTCF*", TCF*/°C? (x107) TCF?'/°C* (x107')
Degrees Finite Difference Finite Difference
(S & T's Program) Program Program
] Phi  Theta Psi
6 26 136.31 -14
; 6 | 27 135.93 -13 0.67
6 28 135.59 -1.3 0.57
7 26 135.99 -1.5
7 27 135.64 -14
1 7 28 135.27 -1.3 0.65
3 8 26 135.74 -14 0.65
.' 8 27 135.36 -14
8 28 134.97 -1.3
1 26 137.78 -1.2 0.68
1 27 137.48 -1.2 0.65
1 28 137.17 -1.1 0.67
0 26 138.07 -1.2 0.67
0 27 137.78 -1.1 0.68
0 28 137.49 -11 0.62
-1 26 138.37 -1.2 0.60
-1 27 138.09 -1.2 0.62
-1 28 137.80 -1.1 0.73
14 39 40.195 -1.0 0.64
14 40 40.415 -1.0 0.66
14 4 40.64 -1.0 0.75
15 39 39.79 -1.0 0.63
15 40 40 -1.0 0.74
| 15 41 40.23 -1.0 0.73
16 39 39.4 -1.0 0.68
16 40 39.605 -1.0 0.66
3 16 4 39.825 -11 0.60
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d.  Piezoelectric Coupling Factor

The piezoelectric coupling factor, denoted by k’, is a measure of the coupling efficiency for an
interdigitated electrode.

We can express k* in terms of the interdigital transducer's input conductance' as

Go (wn) = —7" wn M"We,'" GP,-7 (cos 5 m)/K* (cOS 7 7/2) (18)

where w, = 27 (2n — 1)/As., M is the number of electrode pairs, w is the length of the electrodes, A is the
spatial periodicity of the array, the width of each electrode is nA/2, ' is the value of the effective
permittivity at zero velocity, K is the complete elliptic integral of the first kind, and P.. are the Legendre
polynomials. G. is the residue of 1/(|s |e,).

ki is defined by
ki = —2¢'°G, (19)

Thus (18) becomes
G (wn) = (1/2) 7* wn M W' K. P,-i? (COS 1 m)/K? (COS 7 #/2) (20)
and we see that k: is related to the input conductance and hence to the coupling efficiency. A good
approximation to k°. is given by

where V. is the shorted Rayleigh wave velocity and V. is the free Rayleigh wave velocity.

It is seen that the quantity AV/V is an important parameter as it is a direct measure of the
coupling efficiency and conductance of an interdigitated electrode pair on a piezoelectric substrate.
Furthermore, AV/V is easily determined once the shorted and free surface problems have been solved.
Programs are available for calculating the Rayleigh wave velocity with either shorted or free boundary
conditions.

The shorted velocity calculations assumes a massless, perfectly conducting layer on the
surface of the crystal. The boundary condition which must be satisfied is that ¢ =0 at x;=0. The free surface
boundary conditions are such that the potential ¢ and the normal component of the displacement, D., are
continuous at the surface. Furthermore,  must satisfy Laplace's equation above the surface, resulting in

¢ = ¢ exp(~kx;) exp (—ik(x, — V1)), (x,=0) (22)

'“Surface Wave Filters,” Matthews, Herbert, John Wiley & Sons, New York (1977).
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In both caiculations the mechanical boundary conditions are the same, that there be no torce
component in the x. direction, or

(23)
Tw = T = Tn = 0atx, = 0

AV/V for different crystal types with various orientations were calculated. Results have been
found to be in good agreement with experiments.

For example, on ST-quartz,

V. =3.1586 x 10’ m/s
V. =3.1569 x 10" m/s (24)

AV/IV =54 %107
To insure the suitability of the cuts described in paragraph (8) above for SAW applications, the

coupling coetficients have been calculated for these cuts and are summarized in Table 3.

TABLE 3. PROPAGATION CHARACTERISTICS OF SELECTED ORIENTATIONS

Angles of ZTCF'", degrees Velocity K? Power Flow
{S & T's program) (msec) (x10™) Angle (Degrees)
Phi Theta Psi
6 26 136.31 3296.84 1.12 03
6 27 135.93 3293.60 1.12 0.2
6 28 135.59 3290.63 1.12 01
7 26 135.99 3303.33 1.12 —05
7 27 135.64 3299.70 1.12 04
7 28 135.27 3296.33 1.12 —03
8 26 135.74 3310.15 1.12 07
8 27 135.36 3306.11 1.12 —0.6
8 28 134.97 3302.32 1.10 05
1 26 137.78 3268.80 1.10 +0.7
1 27 137.48 3267.44 1.10 +0.9
1 28 137.17 3266.36 110 +1.0
0 26 138.07 3264.09 1.12 +09
0 27 137.78 3263.09 1.10 +1.1 !
0 28 137.49 3262.35 110 +1.2
t -1 26 138.37 3259.65 1.10 +1.1
: -1 27 138.09 3259.01 1.10 -13
-1 28 137.80 3258.64 1.08 +15
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TABLE 3. PROPAGATION CHARACTERISTICS OF SELECTED ORIENTATIONS (CONT)

Angles of ZTCF'", degrees Velocity K: Power Flow
(S & T's program) (msec) (x10 ) Angle (Degrees)
Phi Theta Psi
14 39 40.195 3298.60 0.96 -7.7
14 40 40.415 3306.67 0.96 -81
14 41 40.64 3315.19 0.94 -86
15 39 39.79 3301.82 0.96 -7.8
15 40 40.00 3310.14 0.94 -8.3
15 41 40.23 3319.09 0.98 -86
16 39 394 3305.38 0.96 -8.0
16 40 39.605 3314.03 0.98 -84
16 41 39.825 3323.15 092 -90

e. Power Flow Angle

The power flow angle for a particular direction of propagation is an important design
parameter. While the phase fronts always remain paraliel to the source transducer, the wave, as a whole,
does not propagate perpendicular to the wave fronts (see Figure 7). This is a characteristic of anisotropic
substrates where the phase velocity is asymmetric about the propagation direction; i.e., V(y + Ay) = V(g —
Ay). The major problem which arises is that the acoustic beam may steer off of the desired propagation
track. missing the output trandsucer unless it is properly designed.

The power per unit width carried in a surface wave is found by integrating the mechanical and
electrical Poynting vectors to obtain

0 o0 ,
P, = _% Re f T.J #J. dXJ - iw f ¢D| dX3 . i = 1- 2 (25)
—00 —00

P, gives the power flow perpendicular to the wave front and P gives the power flow paraliel to
the wave front. P. = 0 for the Rayleigh wave which is confined to the surface. The power flow angle may be
defined as

6 = arctan(P.,/P,) = P,/P, for P, <P, (26)

The power flow angles are calculated using either the perturbation programs or the finite
difference routine. Table 4 gives results of calculations for the ST-Cut quartz. Note that for ¢ =0, the power
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flow angle is zero, within the single precision accuracy used, as a resuit of the crystal symmetry. Power flow
angles as high as 20 degrees are not uncommaon on guartz.

——

TABLE 4. POWER FLOW ANGLES ST-CUT

U Transverse/incident Power Power Flow Angle ¢
0° 6.159 x 10°° 0
10° 6.145 < 10 - 3.5 degrees
20° 9.502 x 10~ 5.4 degrees

The beam steering angle will be calculated for the selected cut of quartz with TCF = 0. The
analytical results will be compared with experimental measurements. Table 3 contains the resuits of
calculations for the selected orientations described in paragraph (8) above.

Py
qnp
) 2
I 8387-30
1 Figure 7. Nonzero Power Flow Angle

f.  Proximity and Excitation Strength of Bulk Acoustic Waves (BAW) Spectrum

The purpose of this task is to analytically determine the strength of spurious signals caused by
BAW. With this knowledge, one can predict the quality of the SAW device which has been selected for its zero
TCD cut.

Interdigital transducers do not couple all of their field energy into surface waves. Bulk waves
are also generated at various frequencies in the piezoelectric medium. These bulk waves can bounce off of
the bottom surface, undergoing mode conversions in the process, and be received by the output transducer.
resulting in unacceptable spurious signals. In most cases, this problem can be virtually eliminated by proper
preparation of the bottom surface.

A transducer with periodicity A excites surface waves at center frequencies

foaw = (2“ + 1)V5Aw/)\ (27)

.
1
. et v
b

BT
IR " #- " AU v s




where V..w is the surface wave velocity and nisaninteger,n=0,1,2,. . .. The coupling to higher harmonics
depends on transducer design. Bulk waves are radiated into the medium at an angle 6 at a center
fundamental frequency

fn = Vu(8)/[A cOS(6)] (28)

where V(6) is the velocity of the bulk wave in that particular direction. Equation 28 is a statement of the
Bragg condition (see Figure 8). If the medium is isotropic for each mode, V. is a constant. In the general
case, V. depends on the direction of propagation and hence on 6. To calculate V.(6), the matrix of elastic
constants are rotated through the angle 6 in the standard way. The quasi-longitudinal velocity and quasi-
shear velocities are calculated as':

Vi = {{Ci(8) + e\ (8)/ en(d))/ p}'*

Ve = {[Chh(o)+e“":(0)/6|1(0)]/p}l’1 (29)
Voo = {{Cx(8) + &:(8)/ en(B)]/ o}
- A —-
C M M cC
//
/
/
/
/
/
/
/

fp = vp (8)/(x COS (6))

ACOS (9) IS THE EFFECTIVE
WAVELENGTH OF THE IDT SEEN
BY THE BAW PROPAGATING IN
THE INDICATED DIRECTION

8387-31

Figure 8. Bragg Condition for Excitation of BAW
The inverse values of these velocities, plotted as a function of 6, form the inverse velocity curves.

Inverse velocity plots as a function of propagation are particularly useful, for as long as
Vi/cos o, the effective velocity of the bulk wave on the surface, is greater than Vsaw. the effects of bulk
mode generation may be suppressed by appropriate design and by proper conditioning of the bottom
surface. Should V./cos 6 be less than Vs,w for any bulk mode, the SAW may couple to the BAW. resultingina

""Physical Acoustics,” Mason, Academic Press, NY, Vol. 1, Part A, 1964
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leaky surface wave. Inverse velocity plots have been made for orientations with promising SAW
temperature characteristics to check for the possibility of leaky surface waves and minimum vatues of f.

calculated and compared with fsaw.
The polar plots of the inverse velocities for a (YX wit)0/27/137.8 and 7/27/135.59 are shown in

Figure 9 and Figure 10, respectively. The values of (1/v..u) for the two shear modes and one longitudinal
mode for different propagation directions (6) into the crystal are also shown in Figures 9 and 10. The
inverse surface wave velocity for 0/27/137.8is3.06 x 107, that for 7/27/137 8is 3.03 x 107*. These values are
targer than the maximum (1/v.w.) €0s 8(<2.9x 107), therefore, the analysis indicates that a leaky mode does

not exist (see Table 3 for the SAW velocities).

BULK WAVE INVERSE VELOCITIES

X10-3 FOR (YXWLT) 007 27.00/137.80
03
02
/ N
/] NG
0.1
k i ( ‘ \j)
0'0 ((\ \ 4
-0.1 > /
N /
-0.2
\\ /
-03
-03 -02 -0.1 0.0 0.1 0.2 03
X103 (1 rsecy?
Figure 9. Polar Plots of Inverse Velocities for a (YXwlt) 0/27/137.8 2102
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BULK WAVE INVERSE VELOCITIES

x10-3 FOR (YXWLT) 7.00/ 27.00/135.59

i / \
02 / \\ :

01 / /] \

0.0 \
-0 < _/ /

\
-02 \ /
\ /

03

03 02 01 00 01 02 03

x10-3
Figure 10. Polar Plots of Inverse Velocities for a (YXwit) 7/27/135.59 25103

g. Degeneracies
Degenerate waves occur when the physical constants are such that equations (30) and (32)

1 decouple.
) rl‘n - pv'z
I 'z
T
i | Y

I'a i
- Vi | )
| ¥ Ty~ pV,?
| PP %

FI:
I
| 7

Fu |

a1

ay

as

ba‘J

(30)




i ' R r 1

where

; ' My =Css P +2Csb+cCn

? [ = Cas b? + 2Cs b + Coo

[y =Cu b’ +2C b+ Css

T2 = Cos b? + (Cie + Cs6) D + Cie

iy =Cis b’ + (Ciy + Css) b+ Cis

] T2 = €34 D* + (C36 * Cas) b+ Cs6

T =—(es 0’ + 2613 b + 1) 31)
Fu=¢esb +(es+eu)b+en

{ T2 = €3 b? + (814 + 836) b + €16

Fie=¢€5b*+ (e +€)b+es

The boundary conditions become, in matrix form,

P---(C;Jn + €330 b™ '™ + (8133 + €333 b'™) axs'™ ...- ! PC: (32)
(Gt + C3a D™) ™ + (131 + €331 B™) ™ ... C:

G2t Cazis ™) @™ + (8132 + €3020™) ™ ... C:] =0

L...(e,.. + @313 0™) '™~ (€31 + €33 b*™ — ) aa("".: i C:j

The definition of the constants and derivation of the equations are given in Appendix C. The
| condition for decoupling requires that the matrix in equation 30 has zero elements such that independent,
3 non-Raleigh wave solutions may exist. Equation 30 may decouple in many ways. If, forexample, I', =T =

I''s =0, u, and us are found to be coupled and u. and ¢ are found to be coupled, however u, and u, are

decoupied from u. and ¢. If the physical constants are such that these two solutions are not coupled through

the boundary conditions (equation 32) then we find the Rayleigh like wave (u, and us) is not coupled to ¢, the
) potential term, and cannot be excited by electrodes in this cut.

k| The displacement u, which is coupled to ¢ is called the Bleustein — Gulyaev wave and is
excited by interdigital transducers. These two waves (us, u, and u;, ¢) are degenerate as they propagate with
the same velocity. The simplest method to determine whether equation 30 has decoupled for a particular
orientation is to calculate the matrix of equation 30. This is presently accomplished using the Rayleigh wave
velocity calculation program, which calculates and prints the matrix in equation 30. Because of the variety
of special cases' which may arise, some of which may ultimately prove useful, each case in which we find
the wave equation decouples will be considered on an individual basis.

Fes

Propagation of Piezoelectric Surface Waves on Cubic and Hexagonal Crystals,” Cambell & Jones, J.A.P.,
Vol. 41:2796-2801 (1970).
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The analytical results of this section aliow us to determine which modes can be generated on
the selected zero TCD cut of quartz. At the three areas tabulated in Table 2, only Rayleigh wave modes were

found.
h.  Sensitivities Due to Crystal Misorientation

In cutting quartz and aligning masks on it, there is always some maximum achievable
accuracy. Thus itis useful to know how all of the acoustic quantities considered vary with angle. Quantities
such as TCD, phase velocity, power flow angle, AV/V, bulk wave spectrums, and bulk wave velocity
surfaces, are of interest to this program. These quantities can be accurately determined by directly
calculating the quantities at ¢ = (¢. + Ag), 6= (6, + A6), and y = (y, + Ay) with the same computer program
discussed in paragraph 1, where ¢., 6. and . are the desired angles, A¢, A8 and A ¢ are the actual
directional deviation from the desired direction due to the fabrication tolerance. It is important to calculate
the sensitivity of the parameters to the crystal misorientation; i.e., amount of change of a function as a result
of small angular misorientation.

For case of the power flow angle (PFA)

d[PFA (¢ =0, 6 = 42.75, y = 10°)}/dy (33)
= (PFA (¢ = 20°) — PFA (v = 0°))/20°
= (.27°/degree.

The quantities d[PFA (¢ =0°, 6=42.75, »=10°)]/d¢ and d{PFA(¢=0°, 6=42.75°, = 10°)]/d6 are computed in
an equivalent manner.

In the case of TCD:
. (34)
_ .o(TCD) 2(TCD) 2(TCD)
d(TCD) 29 de + % de + % dy

a(;g_LD = [TCO(¢« 6o, o) — TCD(¢s, 6.+ A6, o))/ A6 35
(35

= Ei—“’ = [TCD(&s, 8, ¥e) ~ TCD(6:+ A, 6., Y}/ A0

aggs’ol = [TCD(¢°' 80' wo) - TCD(¢0. 80. wo + AW)]IAW

All the TCD (¢. 6. w) and TCD (¢, 8, w + Ay) etc., are calculated with the computer programs discussed in
paragraph 1. Therefore, all the 3(TCD)/26, a(TCD)/2y, a(TCD)/2¢ can be accurately calculated. Hence the
sensitivities due to crystal misorientation are determined.

Calculation of the angular dependence on the first, second, and third order TCDs is, of course,
our primary task. Of these three quantities, the first order TCF is most sensitive to angular variation. The
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angular dependence on these parameters will be calculated in the same way as all of the other quantities but
on a much smaller angular grid (A6, A¢ and aw) about the zero TCD locus. The size of this grid will vary,
depending on the magnitude and smoothness of the variation about each point on the locus of zero first
order TCD orientations as verified by experiment and calculation. In case the function is smooth or linearly
varying with angles, large A angles may be used.

By performing the above mentioned calculations, we have precise information on the
sensitivities due to crystal misorientation. This information will alow us to impose a practical tolerance
limit on fabrication and still be able to achieve the required superior performance specification.

Quantities such as velocity (Table 3}, power flow angles (Table 3), BAW spectrum (Figures 50
and 51), coupling coefficients (Table 3), and second and third order TCFs (Table 2) do not vary quickly with
angle. This is not the case for TCF". Table 5 contains a summary of 9TCF""/ay. The large values of
aTCF'"'/ay impose strict fabrication tolerances on the SAW cuts and mask alignment. Fabrication accuracy
to within 6 minutes is required to keep the total temperature variation due to TCF" within 45 ppm for
ATCF'"/ay = 3(PPM/°C)/degree over the temperature range —50°C to 100°C. Table 6 contains summaries of
aTCF*"'/a¢ and 2TCF'"/26. These values impose fabrication tolerances on the rotated quartz plate angles ¢
and 6 of 12 minutes to keep the total temperature variation due to TCF*"'(15/40/40)/2¢ within 45 ppm over
the temperature range —50°C to 100°C. This linear temperature variation may be compensated for by varying
¥ on any particular cut if all other cut parameters vary slowly with angle.

TABLE 5. 3TCF'"/2y FOR SELECTED CUTS

Angles of ZTCF", degrees
(S & T's program) aTCF" /oy
Phi Theta Psi
6 26 136.31 +2.7 (ppm/C°)/degree
6 27 135.93 +2.7
6 28 135.59 +2.7
7 26 135.99 +2.7
7 27 135.64 +2.7
7 28 135.27 +2.7
8 26 135.74 +2.7
8 2 135.36 +2.7
8 28 134.97 +2.7
1 26 137.78 +2.8
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TABLE 5. 3TCF"'/ay FOR SELECTED CUTS (CONT)

Angles of ZTCF'", degrees
(S & T's program) - oTCF"/ay
Phi Theta Psi
1 27 137 .48 +2.8
1 28 137.17 +2.8
0 26 138.07 +3.0
0 2 137.78 +3.0
0 28 137.49 +3.0
-1 26 138.37 +3.0
-1 27 138.09 +3.0
-1 28 137.80 +3.0
14 39 40.195 -35
14 40 40.415 =35
14 41 40.64 -35
15 39 39.79 -35 ;
15 40 40 -3.5 !
15 a 0.2 35 !
16 39 394 -37 ,
16 40 39.605 -37 |
16 41 39.825 -37 3
TABLE 6. 2TCF"/2¢ AND 2TCF'"'/26 FOR SELECTED CUTS ;
Angles of ZTCF"
(S&T's Program), Degrees aTCF"/9¢ oTCF" /20
Phi Theta Psi
7 27 135.64 —0.7(ppm/C°)/degree -0.5(ppm/C°)/degree
0 27 137.78 -0.8 0.8
15 40 40.00 +15 07

2. WAFER FABRICATION

During the developmental phase of the doubly rotated cut SAW Devices program, a large number of
wafers with 30 different crystal orientations will be fabricated and evaluated. To perform this task with good
quality contrel, minimum cost and in a short time, Motorola has developed the technigues and processes to
fabricate the doubly rotated cut of quartz wafers internally. The crystal boules are supplied by Motorola,
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Carlisle, Pennsylvania; the X-ray wafer cutting is performed at Motorola’s Semiconductor Group; polishing,
fabrication and testing are performed at the Motorola Government Electronics Division. The methods used to
fabricate the quartz wafers are described in the following sections.

A computer program was developed to calculate the incident angles and reflected angles for any
given cut of crystal. The basic mathematical relations were derived in R.A. Heising's “Quartz Crystals for
Electrical Circuits.” The relations were formulated to computer programs. The flow diagram is shown in
Figure 11. The results are shown in the printout (see Appendix F). The incident angle G, exit angle (G + G'), are
defined for each plate position. The plate positions are determined by the direction of the rotated axis. (+1,
+2, +3), relative to the measuring stage. Once the angles of (YX wit) ¢/8/y are defined, all of the reflection
angles will be calculated for the different reflection planes, defined by Miller indicies. The useful reflection
planes that provide intense reflection with low skewed angles (<5 degrees) are selected for printout. These
results, after modification due to change in standards, are used to check the accuracy of the cuts.

a.  Face Definitions

The following is an outline of the procedure to be used in this program to make a doubly
rotated cut (YX wit) ¢/6/0. The quartz bars have four lumbered faces with the minus X axis marked. The
opposite face is marked by coloring it with a magic marker (blue). One other face not opposite the —X face is
colored also with 2 magic marker (red). The red face is now defined to be the +Z axis as in Figure 12. The
direction of the +Y axis may be found by using the right-hand rule (+X crossed into +Y gives +2). The +Y axis
will lie along the length of the crystal. Note that there are two ways to set up the axes on the crystal
corresponding to choice of the red face (see Figure 12).

b.  Running the X-Ray Program

The X-ray orientation program XRAY is run with the angles #/6/0. The sequence of
instructions on the Honeywell 560 under the CP-V operating system is as foliows:

ISET F:103 DC/MILDAT .538; IN
(This instruction assigns to unit 103 the file containing all of the Miller indicies to be searched.)

ISET F:104 DC/ERRDAT .538;IN
(This instruction assigns to unit 104 the file containing all of the angle perturbations defined in
Heising for use with the Laue photographs.)

IXRAYL M.538
(This instruction loads and begins execution of the program.)

The program will ask for the angles ¢/6/0. These angles are entered in 3G format{i.e., 10.0,3.0,
0.0 (carriage return)] and the results of the X-ray analysis printed.
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START

CALCULATE ROTATION
MATRIX FOF (YXWLT /0 /¢

READ MILLER INDICIES HK.L

PRINT QUT LAUE PATTERN

r

1

CALCULATE NORMAL VECTOR TO
PLANE H.K.L IN UNROTATED
COORDINATE SYSTEM

.

CALCULATE NORMAL VECTOR IN
ROTATED COORDINATE SYSTEM
USING ROTATION MATRIX

.

CALCULATE REFLECTION ANGLES
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DETERMINE
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SITY AND SKEWED
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NO

READ IN
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1

PRINT QUT
CORRECTED ANGLES

‘ sToP ’

PRINT QUT REFLECTION ANGLES

&

A4

CALCULATE LAUE SPOT FOR THIS PLANE

STORE H.K.L AND SPOT POSITION

2510-4

wa
)

Figure 11. Flow Diagram of Calculation for Reflected Angles in Doubly Rotated Cut of Quartz
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{ BLUE FACE ON FRONT SURFACE
iz RED FACE ON TOP SURFACE
RED " e—— SEED
BLUE /
’/.x BLUE FACE ON FRONT SURFACE
RED FACE ON BOTTOM SURFACE
¥

. 510-5

Figure 12. Two Possible Ways of Defining the Crystal Axes on a Lumbered Bar

¢.  Analysis of X-Ray Program

The X-ray program used follows the development of Heising's which uses a book written
before the 1949 IRE Standard we use now. His X, Y, and Z axes will be denoted as X, Y, and Z. The relation to
our standard is as follows:

Heising 1949 IRE Standard
X X
N -y
+Z +Z

Furthermore, Heising’s incident beam comes from the left, while our incident beam comes from the right.
When these ditferences are accounted for, the “position chart” shown in Figure 13 must be used instead of
} the charts Heising uses in order that our X-ray machine and the 1949 standard may be used. P,, P,, and P, in
the “position chart” are the +X, +Y, and +Z axes of the rotated plate. An important note of caution: the ¢
crystal face off of which we reflect the X-ray beam has Y or -Y asits normal. Since we may not assume that
the crystal faces are parallel, we must propagate the surface wave on this face. This is important, because to
achieve the same crystal properties, we must rotate by ¢ about the +Y axis, resulting in a change of the sign
of the third rotation (see Figure 14).
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) P4 { -P3
POSITION 1 POSITION 2
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-P2 -P
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POSITION 3 POSITION 4 210.7

P, P., and P. are the rotated plate axes X, Y, and Z.

Figure 13.  X-ray Position Chart
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———==— T T Y ¥ THIRD ANGLE ROTATION

MASK

4—— CRYSTAL

©

DIRECTION OF MASK ALIGNMENT
ANGLE ROTATION 1

2510-6

Figure 14 Oirection of Mask Alignment Angle Rotation ¢

d.  Determination of the Actual ¢ Angle

The third angle of rotation must be measured from a reference. The reference used is the tace
opposite the red face of the crystal (—Z face). To determine the actual orientation of the finished crystal edge.
we must know the orientation of this plane exactly (see Figure 15).

4

) 7

EDGE USED TO DENOTE ¢ - 0

LIES IN

X-Y PLANE

X VECTOR P> IS NORMAL TQ PLATE %108

Figure 15. Cryst

al Rotation (YX wit) #/6/0




If the angles « and Bin Figure 16 are measured using the (003) plane, which is parallel to the Xand Y axes, Ay
is given by:

¢ = —tan '[(—cos ¢ Sin a — Sin ¢ sin B)/(Sin 6 Sin & Sin o — Sin 6. €OS ¢ SiN B + €0S 6 /1 ~sin‘a - Sin°B)]
(36)

p

ACTUAL -Z FACE

Figure 16. Actual ~Z Face, Crystalline Axes, o, B8, and Ay

Thus. given a ¢ desired which we wish to obtain, we must actually rotate the mask by g.cwa = ae: — Atk S
shown in Figure 17.
e. Determination of « and 8

The most appropriate crystal plane to use for determining « and g is the 003 plane. This plane
has all of its atoms lying in planes perpendicular to the Z axis, and for a perfect Z face the X-ray deflection
angles will be:

G = Angle of incidence = 25 degrees 19 minutes
G + G' = Exit angle = 50 degrees 38 minutes

For all positions on the X-ray machine with the +Z or —Z face being X-rayed. To determine o and g for the —Z
face, we use the following relationships.

o= 1/2 (G\( TOWARD INCIDENT T GOX TOWARD ]N(‘H)F,NT) (37)

B = 1/2 (GO\' FOWARD INCIDENT ™ G»Y TOWARD IN('H)!'N\') (38)
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TRUE INTERSECTION

—_— — —-}"‘“’ —  CRYSTAL
——————— X Rav  —

W DES ¥ ACTUAL 1BLUE) X -x
Z (RED)
MASK
Figure 17. Mask Rotation to Obtain Desired
2 To determine « and B for the +Z face we use
a =1/2 (G\ 10 INCIDENT — G-x TO INCII)I-NT) (39)
< B' =1/2 (GA\ 1O INCIDENT — Gy 10 lNl'll)hNT) (40)
F

g o' and g are the o and 8 we would have measured for a —Z face that is parallel to the +Z face measured.
which means that equation (36) is still valid for «' and g8'.

The quartz crystal will now have the orientation (YX wlit) o/ 6/ — Ay(a, B) if we use the —Z edge
as a reference and (YX wlt) #/6/ — Ay(a’, B) if we use the +Z edge as a reference. The computer
X-ray program for these angular orientations must be used if we are to get an accurate measurement. The
integrity of these measurements of o and 8 is checked by comparing 1/2 (G-x + G.x) and 1/2 (G- + G.,) with
the theoretical result, Gave = 25 degrees 19 minutes.

f.  Procedure Used to Zero X-Ray Machine:

l (1) Use reference quartz plate marked 10.1
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(2) Set X-ray exit angle to 26.5 degrees (marked AT cut on machine)

MRS o e o

(3) Set plate in X-ray machine with marking toward you (X-ray bounces off unmarked
1 surface) and blue line up (width direction vertical). (See Figure 18).

(4) Adjust with clutch till X-ray reading occurs at incident angle 13 degrees 18 minutes

(5) Set plate in X-ray machine with marking toward you (X-ray bounces off unmarked
surface) and blue line down (width direction vertical). (See Figure 19).

1 (6) Angle of incidence should occur at 13 degrees 18 minutes + A angle.
{7)  Adjust clutch until angle of incidence is at 13 degrees 18 minutes + 1/2 A angle.

| (8) Check alignment by measuring in positions of steps 3 and 5. The average of the two
. readings should be 13 degrees 18 minutes. Any discrepancy represents error in zeroing the machine and may
' be made less than less than 1 minute.

(9) I the 10.1 cut is not available, the same procedure may be used if, for the cut to be used,
the theoretical angles of incidence are equal for the particular crystal plane used in both positions.

BLUE LINE

MARKED FACE

UNMARKED
FACE

REFLECTED BEAM

INCIDENT BEAM 2510-11

Figure 18. Position of Step 3, 10.1 Alignment Wafer

I
v
L D
!

Prd

% BLUE LINE MARKED FACE
‘ REFLECTED BEAM UNMARKED

‘ INCIDENT BEAM FACE 2510-12

Figure 19. Position of Step 5, 10.1 Alignment Wafer Rotated by 180 Degrees About —Y Axis
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g. Cutting Techniques for Doubly Rotated Orientations

A slicing machine built by Meyer and Burger Company, model TS3, was used to slice the quartz
boule. The 6 inch diamond impregnated blade is supplied by Maurice Dessau, New York. The drift accuracy
of the 2 inch cut is approximately 3 mils (~5 minutes).

The stage of the saw has the capability to rotate in two dimensions; it is designed to make the
doubly rotated cut. The adjustment accuracies are graded to 0.5 minute. The X-ray beam resolution is about
2 minutes.

The combined accuracy of the wafers obtained experimentally has been better than 15
minutes. Iterative adjustment of the cutting stage can bring the cutting accuracy to within 10 minutes. The
cutting procedures are the following:

(1) Heat brass plate, glass plate and quartz boule.

(2) Melt wax on brass plate and mount glass plate.

(3) Melt wax on glass and mount quartz boule on glass.
(4) Let cool to room temperature.

(5) Screw mount brass plate to slice machine.

(6) Initial cut of boule along the XZ plane (or directly to the desired angle if the boule was
lumbered).

(7) Determine true atomic plane using diffractometer and X-ray computer program.

Adjust stage to correct for true atomic planes, and obtain the desired rotation.

—_—
(=]
—-—

(9) Perform doubly rotated cut of quartz.

y ! (10) Measure the reflection angle and check against the calculated result of tlie X-ray
; program. lterative adjustment of stage can be done if cut accuracy is critical.

These procedures are presently used to cut the wafers with low TCF orientation required for
this program.

h.  Wafer Polishing

The polishing process for the quartz wafers was established during this period. The procedure
includes the following:

' (1) The crystal axis orientation is marked on the back surface of the wafers with marking ink
i and baked dry. The markings have been demonstrated to stay on the crystal throughout the
photolithographic process for easy identification.
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(2) The corners of the wafers are ground prior to lapping and polishing to prevent corner
breakage.

{3) The polishing is a two step process. The first step is a 15 um lapping to obtain surface
flatness with Microgrit, type WCA, Size 15, on a LAPMASTER, Model 24. The second step is to polish the
b surface with Cerium oxide on a LogiTech, Ltd. Model PM2 polisher. The polish wheel is made of pitch wax
supplied by Hacker Instruments, Inc. The polished wafers have a surface finish with no observable grains or
pits under a 50X microscope. The wafers are suitable for surface wave application. X-ray orientation was
performed before and after the lapping and polishing processes. The change is normally less than 6 minutes.
At the present time, wafers of the following cuts are polished; these are ¢/6/y 0of 6/27/135.9, 6/28/135.6,
7/27/135.6, 7/28/135.3, 8/26/135.7, 8/27/135.4, and 8/28/134.9.

In the coming period, SAW devices will be fabricated on these wafers. Experimental
results will be obtained and compared with the theoretical caiculations.
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SECTION i
CONCLUSION

The temperature coefficients of frequency (TCF) have been analyzed for doubly rotated cuts of
quartz for surface acoustic wave devices. The analysis procedure is shown below:

(1)  Using Finite Difference program, identify angular areas with zero TCF'" and low TCF* on
10° x 10° x 10° grid.

(2) Calculate in these areas with 2.5° x 2.5° x 2.5° grid to locate the rotation with minimum
TCF* which has TCF'" = 0.

(3) Identify the accurate zero TCF" with Sinha and Tiersten's program in areas obtained
in (2).

(4) Calculate TCF'", TCF* and TCF"' in selected areas obtained in (3) with 1° x 1° x 1° span.

(6) Calculate the coupling coefficients, propagation velocities, power flow angles and
inverse bulk wave velocities for these angles.

The conclusions of the initial study are:

(@) The zero TCF'" surface and zero TCF* surface data does not show an intersection
in the 10° x 10° x 10° grid. However, orientations with frequency variation = 100 ppm from —50°C to 100°C,
better than ST Cut by a factor of two, have been found in severa) areas where TCF'=0and TCF*' is less than
1.5 x 107*/C° °.

(b) The ATCF/A angle is normally very large in the areas with zero TCF"" and low
TCF, therefore accurate crystal orientation is critical. 1t is estimated that the orientation accuracy of 6
minutes is required to obtain a TCF""' of ~ 50 ppm in the —50°C to 100°C temperature range in the three areas
investigated. These are ¢/6/y0f6/27/135.93 (4.45 x 107 ppm/°C - minute), 14/40/40.415(5.83 x 10~ ppm/°C
- minute) and 0/27/137.78 (5.00 x 10* ppm/C° - minute). Orientations with less sensitivity to orientation
accuracy have been evaluated. These are the cuts that have a[TCF'")/ay = 0 when TCF"" = 0. The cuts
evaluated were ¢/6/v = 20/30/155, 20/20/150, 10/40/168. The TCF” of these cuts are approximately
4 x 107"/C®, comparable or higher than ST cut.

(c) Coupling coefficients, velocities and beam steering angles were defined for the
selected areas, no leaky modes were found in these areas.

(d) Methods to X-ray orient the quartz crystals, cut the doubly rotated wafers and -

polish such crystal wafers were developed. The wafers are ready for SAW device fabrication. The effortin
the coming period is to design and fabricate single mode oscillators and to experimentally measure the
TCF's of these selected orientations.
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APPENDIX A
VOLUME PERTURBATION OF AULD

Perturbation techniques, as used here, allow calculations of small changes in the solutions to a
problem caused by small changes in the physical parameters of the problem, once the solution to the
unperturbed problem is known,

Our general approach to the problem of determining the temperature dependence of V, will be as
follows. First, the Rayleigh wave propagation problem will be solved in the standard way in its entirety at
room temperature, T.. Given the solution of problem at T, and the dependence of the physical constants
(such as c.) on temperature at T,, we will apply the volume perturbation formula, calculating the
temperature dependence of V.. The dependence of V. on T is then used to calculate the frequency
characteristics of the actual device given the thermal expansion coefficients as a function of temperature. At
this point, the frequency temperature dependence of the substrate as a function of crystal cut and direction
can be thoroughly explored.

The Volume Perturbed Formula.

Denoting u, (To) by u, etc., the volume perturbation formula is given by":

pa=wf [(Aldy " o -uTe

+ ¢* (iwD) + ¢ (iwD)*) - zdy (A-1)
[A]=[apu* - U+ T (asE: T + Ad - E)
+E* - (A - E + Ad:T))

This equation is exact, but involves knowing the solution u’. However, we can set u = u' if the temperature

dependence of the solution is small and use P = (1/2) Re { (~u*-T + E-H*) dy to obtain the approximate
solution

ABr = (w/4P) J::[Ap | ul?+8:AcS (A-2)

+E*- A" - E+E*- Ae:S + S:Ae - E) dy

The u’'s and E's, and p come directly from the computer solution at T,

'Auld, B.A., “Acoustic Fields and Waves in Solids,” Vol. I,
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, ‘
The A terms can be written as expansions of the form:
ABr = Br (To)(aﬂm dT + aBm ar + aBm dar) (A-3)
Ap = p(To)(a‘;)) dT + a‘;; dT + a';; a7 (A-4)
] =p" dT + o' dT? + oV dT° (A-5)
: ACiwi = C.mm a7 + C.,um dT + Cuum dT’, etc. (A-G)
to obtain
ABr = Br (To) (ag" AT + Br (To) ag™ dT* + Ba (To) ag™ dT’)
= (wdT/4P) j’: (o (T) ) {u] 4SS +E* - V- E
+E*-e"-S+8Se"-E)dy (A-7)
+@dT/4P)  (oTga 2 | u | 2 +Se™S + ) dy
o
+dT4P) § (plT) o, | u | 2+ S:c™S +..) dy
(o]
or
7 | |
;, ag = (/B 1) J (19 o 1] "+ S0 +..) dy (A9)
3
i
3 For the problem of quartz, the electrostatic coupling is small and the electric terms can be ignored.

Thus Ad and Ae in (A-8) may be set to zero resulting in the simplified equation.

ag” = (wl4PBy) f . (o(T) o | u|?+§: ¢ §) dy (A-9) ;
The integrals are calculable, for instance, from (14), ?
00 3
S paaly lultdy
= oMoy 3§ [3 Coa™ expl-i g b y)] (A-10)
[z c: a'w- exp (iﬂubm y)t dy 4
t 82 1]
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The problem can easily be extended to multi-layered media by simply performing the integral over
each layer separately. For the double layer (A-9) becomes:

(i 4 o
S o tulioy+ f nra® lujtoy+- (A-11)
o a

Because the dependence of u, is given explicitly by (13), it is not necessary to use numerical
integration procedures, as demonstrated in (A-10).

Once the aBU’ have been calculated from (A-9) the av" are simply determined. Using 8 = »/V., and
(A-9) we determine a:".
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APPENDIX B
VOLUME PERTURBATION FORMULA OF SINHA AND TIERSTEN

The approach used by Sinha and Tiersten includes the effects of distortion caused by heating a
substrate of quartz and is based in the coordinate system to which the fundamental elastic constants refer.
In this reference system, the density is constant and the o' are equivalent to the av".

In this new reference system, the perturbation formula becomes'

(avidv) = (1/28:°v%) (HINY), (B-1)

N = (°nilB) 2 2 (C€™ o™ ¢™ o™*)/(Ba — BeY) (8-2)

@ 1I’/B|\
H=-f b f . 02 (Ker Unie + Koy Upoe + Kos Une + K Uy + Kpy Uy + K Un)  (B-3)
ol B

Kiy = (Coyma + ACyya) Ug, o (B-4)
For the first order perturbation in T we have:

CLyma = (?L'YMVAB ot EL'YKM apy + S'LKMV a‘yx) dt7 (B-5)
AEL-yMa = (d cz:L,,M.,IdT) dr (B-6)
Where ¢, yma are the second order elastic constants previously denoted simply as Ccyma and

Ciywasare the third order elastic constants. The terms Ac. ywa as calculated by Tiersten? is available only
to first order in T, and the higher order elastic constants cLymvasco have never been determineq.
4

"0n The Temperature Dependence Of The Velocity 0f Surface Waves On Quartz,” B.K. Sinha and H.F.
Tiersten, 1978 Ultrasoncs Symposium Proceeding, IEEE, pp. 662-665.

“Temperature dependence of the Fundamental Elastic Constants of Quartz,” B.K. Sinha and H.F. Tiersten,
Proceedings of the 32nd Annua! Symposium on Frequency Control, 1978, pp. 150-153.
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APPENDIX C
THE DIFFERENTIATION METHOD

A method for determining the theoretical temperature dependence of Rayleigh Surtace Waves
consists of formally differentiating the wave equation and boundary conditions. The boundary conditions
ﬁ and wave equation must be true at all temperatures, placing restraints on how the parameters of the wave
: equation may vary. In this technique, the derivatives of these equations with respect to temperature are set
to zero and solved for the velocity temperature dependence. This method follows the methods used by
Bechmann, Ballato, and Lukaszek' to compute the temperature dependence of the fundamental elastic
{ constants from frequency data, except that the simplifying assumptions of assuming bulk wave solutions
' cannot be made. This method was later used by Hauden’ to search for temperature stable cuts of quartz.

j Christotffel's wave equation can be written in matrix form as

[T — oV, T I " )
T2 I = V.2 Iz T2 az =0 (C-1)
: Ty T2 Ty — pVo 14 a
' | T Iz T Lu] | o
where

Tu=0Css b* +2cis b+ cnr Tur = o b + (C3s + Cus) D+ Cs6

T2 = Caa b + 2Cis b + Cos Tu=—(ex b + 263 b + €1))

T3 = C3 b? + 2¢35 b + Css Fs=¢esb +(es+en)b+en

Ti: = Ces b+ (Cia + Cs6) b + Ci6 F2e = €30 b? + (€10 + €35) b + 816 (C-2)

Tis=Css b* + (Cis + Cs5) b + Cis T =€ b2 + (13 + €x) b + €5

"“Higher Order Temperature Coefficients of the Elastic Stiffnesses and Compliances of Alpha Quartz,”
Bechmann, Ballato, and Lukaszek, Proc. IRE, Aug 1962, pp. 1812-1822.

-. “Higher Order Temperature Coefficients of Quartz SAW Ocsillators,” D. Handen, M. Michael, J.J. Gagnepain,
4 Proc. Frequency Control Symposium (1978), pp. 77-86.




following the notation used in the previous section and in Matthews'. This equation holds for each of the four
modes, hereafter designated by a superscript m.

The boundary conditions become, in matrix form,

r -

€t F €33 D'™) '™ + (8133 + €355 D'™) '™ ...
Con + Cars ™) '™ + (8131 + €331 b'™) ad™ ...
G20 + €23 D'™) @™ + (8132 + €3320'™) @™ ...

wo(@31 + €33 B'™) af™— (e31 + €3 D'™ — lieo) ™.

assumes a normalization of the «'s

(a|(m;)2 + (azlm))z + (03""))2 + (a‘(m))z = 1

equation vanishes for all temperature, or

Fn—pVd T s
) P Tn-pV: T
d/d7
T I Iy — pVs
T | P I

]
C:
s
C.

db o

| %

(C-3)

where only the m’th column is shown and the C.’s are the amplitudes of each mode. This formulation

(C-4)

The first condition we can place on the wave equation is that the determinant of Christoffel’s

(C-5)

For each of the four modes, this equation is valid, resulting in four equations in five unknowns, dV./dT, and

db'™/dT of the form F,'™ (dV./dT, db™/dT) =0, m=1,2, 3, 4.

For each mode, Christoffel’s matrix equation (C-1) must vanish, yielding the set of equations

"“Surface Wave Filters,” H. Matthews, John Wiley and Sons, New York (1977).
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(d/dT) (al(m) (F“(M) . pv.Z) + az(m) Fn(m) + a;(m) Pn(m) + a‘(m) P(Il:)) - 0

(d/dT) (@™ T+ o™ (T35 V) + ™ To'™ + 2™ T8 ) = 0

Fa'™ (dV./dT, db™/dT, d o,"™/dT, d a:™/dT, d &:'™/dT, d a.™/dT) =0

"1 (d/dT) ('™ Fis™ + @™ T'n'™ + a'™ ('™ - oV) + 2™ Te ) = 0 (C-6)
(d/d'l’) (al(m) l-“(ml + az(m) ruiml + a](m) Pu"'" + a‘(m] r.“(m)) = 0
‘. This results in 16 equations (four per mode) and an additional 16 unknowns (the o,"™'s) of the form




i

% Using (C-3) we obtain the single equation

........ (€33 + C3aD'™) '™+ (@133 + €3330"™) @™ .........

........ (€31 + Cnb™) '™ + (e1ss + €30'™) al™ ...
(d/dt) =0 (C-7)

of the form F.™ (db"'/dT, db**/dT...., da,"™/dT) = 0

and four equations of the form

E (@/4T) 2. Ca [(eonn + C210™) 0™ + (8135 + e1b™) @l ] =0
] m (0'8)
g (d/dT) Z Cw [(Cam + Coab™) a™ + (@131 + €32:0™) a ™ ] =0
3 of the form F./™ (db"/dT, de'™/dT, dC../dT) = 0 (C-9)
From (5) o™ (dan™/dT) + oo™ (da™/T) + 2™ (do™/dT) (10
+ a™ (da/dT) =0
ar
Fém (d a™/dT) = 0 1

Combining the above results gives 25 equations in the 25 unknowns.
dVv./dT, db'"™/dT, da'™/dT, dCn/dT

which are solved simultaneously. Once the temperature dependence of the Rayleigh wave velocity is found,
the frequency dependence is found in the usual ‘way.

To obtain the second order dependence of V,, the 25 equations are ditferentiated again. The values of
dVv./dT, db*™/dT, de.'™/dT and dC../dT previously obtained are used to obtain dV./dT? etc.
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APPENDIX D
SOLUTION METHOD

Caiculating the velocity of a Rayleigh wave requires a complete solution of the problem to be
performed. All of the constants in equation (13) must be evaluated. The standard used at Motorola as
developed by Campbell and Jones is outlined below.

First the fundamental constants are rotated into the coardinate system of interest.

Nexta value of V. is picked. The coefficients r, of equation (C-2) are evaluated and the determinant of
the matrix in equation (C-1) is set to zero, as it must be if a solution of (C-1) is to be found. This results inan
eighth order equation in b. This equation is solved for the eight complex roots. The four roots b*™ in the lower
complex plane are retained, the four discarded roots not satisfying the boundary conditions at infinity.
Equation (C-1) is then solved for the four eigenvectors o'™. The b,™ and the corresponding eigenvector a.™
are substituted into equation (C-3) and the determinant of the matrix in equation (C-3) is evaluated. This
determinant must be zero for a solution to (C-3) exist. If it is not zero, V, is varied, and the whole procedure
repeated, until it is. Once a value of V, is found such that the determinant in equation (C-3) vanishes, the
solution to (C-3) is found, giving the values for C.. These constants completely describe the solution of
equation {13), as well as providing the exact velocity.
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APPENDIX E
EQUIVALENCE OF TEMPERATURE COEFFICIENTS OF FREQUENCY AND DELAY

In the following section, the relations relating the first, second, and third order temperature
coeffieients of defay and frequency will be derived. These relations show implicitly the equivalence of each
representation of the device temperature characteristics, and justify their interchangeable usage.

In the text, we have used the following notation:

r = delay time of delay line oscillator (E-1)
ith order temperature coefficient of delay = TCD" = o’ (E-2)
F = frequency of delay line oscillator (E-3)
ith order temperature coefficient of frequency = ar" (E-4)
1 o= (el (T-T)+al(T-Tf +a VL(T-T) ' +..) (E-5)
F =F(1+af"(T-T)+ar? (T-T)f+ar” (T-To)’ +..) (E-6)

where T is temperature and T. is a reference temperature, 25°C in our case. For a SAW oscillator, Fr =
constant or

rlro = FolF
= 1/(1 + aF”’ (T - To) + aF(Z) (T . To)2 + arm (T . T.,)’ + ) (E~7)

Using the relation

YA +X) =1-X+X-X for X<<t (E-8)

we can write

tlro=1-[ae (T-T) + ar' (T-T)? + as™ (T - T))
+ [(ae (T-To) + 226 (T - To) ae? (T - T))
- [ae™ (T - To))® + higher order terms (E-9)
=1 (T- T+ (o + (a')) (T - T) + (o + 206" ar'? - (™)) (T - To) (E-10)
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Equating powers of T - T, in (E-5) and (E-10). we obtain

o =-a'” (E-11)
arm =_aF(3l + (aF(lb)l (E-12)
arun =‘ﬂrm + 2(1;“) aFm - (aFlll)! (E,13)

As the only assumption on F and r used is that of equation (E-7) which is symmetric in F and -, we
immediately obtain

ar' = - arm (E-14)
o = _arm + (ar(n)z (E-15)
a}m = _afm + 207“) a'(l) - (arn))s (E-16)

Using (E-11) through (E-16), we can always relate one set of temperature coefficients to the other.
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APPENDIX F ;
: X-RAY RUN
The following is an example of the computer results from the FORTRAN X-ray orientation computer ;
3 program for the doubly rotated cut 7/27/0. File MILDAT contains only the two Miller indices shown on the
i printout on this run.
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APPENDIX 6
X-RAY PROGRAM

The following is the FORTRAN computer program used to calculate X-ray diffraction angles for a
doubly rotated cut of quartz.
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