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SUMMARY
>  Measurements of fatigue-crack growth in D6AC steel, heat-treated to various
Sracture-toughness levels, show that, under conditions where the growth mechanism pro-
duces striation markings and the crack extension per cycle is alinear function of a power
of the stress intensity range, the rate of fatigue-crack growth lis independent of fracture-
toughness. At peak stress intensity values greater than 0-7 Kic,Yhe rate of growth
accelerates as the critical stress intensity is approached and Tensile modes of crack
extension occur. At peak stress intensity values less than 18 MPa @mcl raphic exam-
ination indicates a change in mechanism as the crack extension pe¥F cycle decreases more
rapidly with decreasing peak stress intensity, approaching a threshold value of stress
intensity dependent upon heat-treatment.
The implications of these results for the choice of materials for service applications
are discussed.
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1. INTRODUCTION

Linear-elastic fracture mechanics, with its concept of a stress-intensity factor Kaxosat
(where a = length of a pre-existing crack and oy = the stress applied remote from the crack),
provides a basis for the quantitative analysis of various crack-growth and fracture processes.
The maximum, or critical, stress intensity factor, K¢ of a material relates to the onset of unsrable
crack growth to fracture and thus measures *fracture toughness™. Sub-critical values of the
stress intensity provide a measure of the mechanical ‘driving force’ for stable (sub-critical)
crack-growth processes.

Fatigue cracking is a stable crack-growth process whose rate, according to Paris and
Erdogan!, can be represented by the relationship

da/dN = CAK™
where
daldN is the crack extension per cycle
4K = the cyclic amplitude of stress intensity, Kmax — Kmin
C a material constant and m an exponent ~ 4.

Experimentally determined values of m commonly lie between 2 and 4 although values up to
8 have often been noted; wide variations in C are also obtained?-8. Factors influencing the
values of C and m have received considerable attention over the past decade in the hope of
formulating laws for predicting rates of fatigue-crack growth. The physical processes contri-
buting to fatigue-crack extension are, however, not clearly understood and a number of
theoretical expressions for fatigue-crack growth have been derived from bulk physical and
mechanical properties, e.g. elastic modulus E, proof or yield stress oy, ultimate strength oy,
fracture toughness Kic and/or fracture strain er. Good reviews of the various fatigue crack-
growth laws have been given by Pelloux? and Schwalbe8. Theoretical studies, in general, have
concentrated on producing expressions to fit simple growth-rate relationships of the Paris-
Erdogan form. Meanwhile, more careful experimental studies have shown that the relationship
between fatigue crack-growth rate and 4K cannot be attributed to one single mechanism. Depar-
ture from a simple power law was noted by Liu? in 1964. Current analyses show that the relation
between log da/dN and log 4K is a sigmoidal curve with three characteristic regions10:11.12;
(i) a region, corresponding to low growth rates and low 4K, where a ‘fatigue-threshold’
cyclic stress intensity factor (Ki,) is approached below which cracks might be
considered as non-propagating,
(ii) a central region where the linear relationship between log da/dN and log 4K is main-
tained, and
(iii) a region where the rate of growth accelerates as the 4K or Kmax value approaches Kic.
In the work described here, the fatigue-crack growth rates in D6AC steel, heat-treated to
produce a variety of mechanical properties have been examined. Particular attention was given
to the influence of fracture toughness, since recent studies!3:14 have shown that the fracture
toughness could be varied (by different heat-treatment schedules), from 40 to 105 MPa.m*
without significantly changing the tensile properties.

2. EXPERIMENTAL
2.1 Steel Composition

D6AC steel manufactured to specification AMS6438 had the following chemical com-
position.




C Mn Si P S Cr Ni Mo \Y Fe

0-44 0-75 0-22 0004 0002 1-08 0-7 1-0 0-1 rem. wt?,

2.2 Test Specimens and Heat Treatment

Standard tensile and ASTM. T2, 19 mm thick, compact-tension, fracture-toughness speci-
mens were machined from a single batch of 32 mm thick bar and heat-treated to four different
schedules:

A. Austenitize 930°C
Intermediate ‘Ausbay’ quench 520°C
Oil Quench
Double temper at 550°C

B. Austenitize 930°C 1
Intermediate ‘Ausbay’ quench 520°C J
Salt Quench 210°C |
Double temper at 550°C

C. Austenitize 930°C
Intermediate ‘Ausbay’ quench 520°C
Air cool
Double temper at 550°C ‘

D. Austenitize 930°C
Intermediate ‘Ausbay’ quench 520°C
Oil Quench
Double temper at 290°C.

2.3 Mechanical Properties

The mechanical properties, resulting from the above heat-treatments, are given in Table 1.

TABLE 1
Heat Yield Ultimate Reduction | Elongation | Fracture
Treatment Strength Tensile in Toughness
Schedule | 0-19, Proof | Strength Area K¢
MPa MPa % % MPa. m? d

A 1434-1454 | 1600-1620 47-51 14-17 98-105
B 1440-1460 | 1600-1630 48-51 14-17 78-86
C 1450-1470 | 1630-1650 4448 13-15 4248
D 1510-1518 | 1850-1910 32-35 11-12 54-60

Heat-treatments A, B and C gave essentially the same tensile strength properties but different
toughness values, while heat-treatment D gave higher tensile properties and a medium fracture
toughness level.




2.4 Fatigue Tests
2.4.1 Pre-cracking

Initial pre-cracks, about 3 mm long, were introduced into the compact-tension specimens
prior to tests to determine toughness and fatigue crack-growth rates. The final extension of
these pre-cracks was made with a cyclic Kmax of ~ 15 MPa.m? applied for 5 to 10 x 104 cycles.

2.4.2 Test Atmosphere

A constant environment was preserved by maintaining a flow of medically dry air
(- 05 mg/litre H20) through a Perspex box surrounding the test specimens.

2.4.3 Testing Procedures

With the exception of a few tests at amplitudes of stress intensity less than 15 MPa.m?*,
all fatigue tests were carried out at approximately 3 Hz using a variable-speed, eccentric-driven,
fatigue machine which applied sine wave tension-tension loading. Tests at values of Kyax less
than 15 MPa.m* were carried out in an Amsler ‘Vibrophore’ machine at approximately 100 Hz.
The applied cyclic amplitudes of stress intensity, 4K, were essentially equal to Kmax as only
a low Kmin was used (simply to maintain specimen alignment). Little, if any, mean load effects
were introduced as the stress ratio (R = Kmin/Kmax) Was always much less than 0-1.

2.4.4 Crack-Growth Measurements

Fatigue-crack extension was monitored during tests by observing the polished specimen
surface through a microscope with a ~ 20 graduated eyepiece. Crack-growth rates determined
in this manner were later checked against other values determined fractographically. These
quantitative fractographic measurements were facilitated by producing periodic “markers”™ on
the fracture surface by changing the load level. Markers produced by decreasing the load level,
by as much as 50 percent, and increasing the cyclic frequency from 3 to 20 Hz for 10,000 cycles,
produced distinct bands (up to 0-3 mm wide) on the fracture surface. When the load levels
were increased, by more than 20 percent, characteristic ‘tide’ markings were apparent on the
fracture surfaces. Measurements of these progression marking were made using a profile-pro-
jecting, tool-makers microscope, or from enlarged photographs of the fracture surfaces.

2.5 Fractography by Electron Microscopy

In addition to the optical fractography, detailed scanning and transmission electron micro-
scopy of the various fracture surfaces was undertaken. Two-stage carbon replication was used
for the transmission work. Fracture surfaces corresponding to crack growth at particular stress-
intensity levels were selected for examination so as to obtain evidence of changes in the mechanism
of fatigue crack growth.

3. EXPERIMENTAL OBSERVATIONS
3.1 Rate of Growth of Fatigue Cracks

Crack-growth rates, determined from at least three specimens from each heat-treatment
batch, are shown in Figure I. The characteristic sigmoidal form of the log da/dN versus log 4K
curve is exhibited for each toughness level or toughness/strength condition.

A notable feature of the curves is that the rate of fatigue-crack growth in the linear region
is not significantly influenced by toughness or strength level. The growth rate accelerates as
the maximum cyclic stress intensity increases beyond about 0-7 times the respective Kic values;
as stress intensity amplitudes decrease below 18 MPa.m?, the curves diverge and the proportion-
ality between log da/dN and log 4K breaks down. At growth rates less than S x 10-5 mm per
cycle, a threshold stress-intensity amplitude is approached. Fatigue-cycling was not carried out
at growth rates of less than 10-5 mm per cycle but extrapolation suggests that the microstructural
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changes which result in differences in toughness, and/or strength, also influence the value of
the threshold stress intensity.

3.2 Fractographic Examination

Detailed fractographic examinations were made of fracture surfaces of specimens given
heat-treatments A (high toughness), C (low toughness but the same strength properties as A)
and D (intermediate toughness and higher strength). Specimens given heat-treatment B (i.e.
different in toughness but similar in strength to A and C) did not show sufficient differences
in fracture topography from those exhibited for heat-treatment A to warrant the same degree
of attention.

Inspections of fracture surfaces were made within zones of the following crack growth rates:

(a) da/dN < 2 x 105 mm/cycle; Kmax/Kic ~0-15
(b) da/dN of 7to 9 x 10-5 mm/cycle; Kmax/Kic ~ 0-25
(c) da/dN of 2 to 3 x 10-4 mm/cycle; Kmax/Kic ~0-3 —0-4
(d) da/dN of 5to 8 x 104 mm/cycle: Kmax/Kic ~0-5 —0-6
(e) da/dN of 2 to 4 > 10-3 mm/cycle: Kmax/Kic ~0-7 -0-8

(f) Region of unstable over-load fracture; Kmax > Kic

Typical scanning and transmission electron micrographs of the fracture surfaces at the
above rates of crack propagation are shown with the relevant da/dN/4K curve for heat-treatments
A, C and D in Figures 2, 3 and 4, respectively.

3.2.1 High-Toughness Steel (Heat Treatment A)

In zone (a) of the high-toughness steel (Kic ~ 100 MPa.m?), where a threshold 4K is
approached, a highly reflective fracture surface was obtained. Scanning microscopy, Figure 2,
revealed shallow ‘feathery’ features similar in appearance to the underlying martensitic structure
of the steel. Transmission electron microscopy failed to provide any evidence of fatigue ‘striation’
markings. The apparent relationship between the fracture surface topography and the under-
lying microstructure could not be substantiated even with replicas taken from lightly etched
fractures.

In zone (b), at the commencement of the linear region of the log da/dN — log 4K curve,
the feathery appearance persisted but the surface was more rumpled with patches of shallow
secondary cracking clustered in rows across the direction of crack growth (Fig. 2).

In zone (c), in the centre of the linear region, a ‘lumpy’ fracture surface was obtained and
further indications of parallel rows of shallow secondary cracks, transverse to the growth
direction, were noted. Transmission electron microscopy of replicas from this zone revealed
clear evidence of striation markings whose spacing approximated to the growth rate of
2-3 x 10-4 mm per cycle.

In zone (d), the ‘lumpy’ fracture surface persisted and the secondary cracks became more
widely spaced. Replica studies again revealed the presence of the characteristic fatigue striations.
In D6AC martensitic steel, the fatigue striations are discontinuously distributed and are not
as clearly defined as those in aluminium alloys.

For zone (¢), where the growth rate accelerates as the cyclic stress-intensity amplitude
approaches Kic, the fracture mode changes, giving rise to the appearance of ductile ‘dimples’,
indicative of void formation and coalescence. These ‘dimples’ were especially obvious in the
transmission electron microscopy of carbon replicas of the fracture surface, Figure 2. Locally,
these features were similar to the markings in the unstable, or overload, zone (f) of the fracture
surface.

3.2.2 Low-Toughness Steel (Heat Treatment C)

In zone (a), the fracture surface of the low-toughness material (K,c = 46 MPa.m?), was
indistinguishable from that of the high-toughness material for the same zone, (see Fig. 3). In
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the linear region, where da'dN ranged from | to 2 < 10 * mm per cycle, striations were pre-
valent. Above Kmax == 30 MPa.m?, i.e. for Knax/Kic > 0-66, the striations were supplanted
by regions having the appearance of cleavage fracture. The relative proportion of this ‘cleavage-
like’ fracture increased as Kic was approached. The overload region exhibited a totally
‘cleavage-like’ fracture surface, characteristic of this low-toughness D6AC steel!3.

3.2.3 High Strength, Medium Toughness Steel (Heat Treatment D)

Examination of the fracture surfaces of high-strength, medium-toughness (UTS = 1900
MPa, Kic = 56 MPa m?) steel again revealed a highly reflective fracture surface in zone (a),
i.e. for slow crack-propagation (see Fig. 4). Features on the fracture surface, both in scanning
electron micrographs and at magnifications up to x2500in carbon replicas, appeared to be
associated with the ‘feathery’ martensitic structure. However, examination of replicas from
etched fracture surfaces at high magnification did not show this relationship.

In the linear zone (c), the ‘striation’ mechanism predominated and as the Knax/Kic ratio
exceeded 0-7, evidence of ductile dimpling or void formation increased, interspersed with
patches of striation markings. The fracture surface in the overload region consisted entirely
of ductile dimples varying from 0:2 to 5-0 um in diameter.

4. DISCUSSION

The rates of fatigue-crack propagation in D6AC steel, heat-treated to different strength
and toughness levels, are almost identical for amplitudes of stress intensity between 18 MPa m?
and 70 to 80 percent of the plane-strain fracture toughness. Within this range, the rate of fatigue-
crack growth per cycle, da/dN, is proportional to 4K2'3t° 25, This observation agrees with
similar work reported by Fedderson et al.l> for D6AC steel with oy = 1455 to 1500 MPa,
UTS = 1600 — 1650 MPa, and K¢ varying between 55 and 105 MPa m*. They stated that
the “toughness level, K¢, is not a variable in fatigue-crack propagation provided Kmax is
substantially (as much as 20 ksi.in* [22 MPa m*]) below K)c for the material.”” These results,
therefore, do not support theories!6:17 that the rate of fatigue-crack growth is inversely pro-
portional to fracture toughness, Kic.

The increase in yield strength from 1440 to 1510 MPa (4-7 percent) between heat-treatment
A and heat-treatment D material is, in the present work, not sufficiently large to enable any
conclusions to be drawn regarding the influence of yield strength upon rates of fatigue-crack
growth in martensitic steels. However, more comprehensive studies by Richards and Lindley!2,
Hahn et al.18, Clark and Bates!? and Barsom er /.20 all indicate that substantial changes in
yield strength are not reflected by corresponding variations in rates of fatigue cracking.

Analysis of the fracture surfaces reveals that the crack-growth mechanism which produces
striation markings persists over the region where da/dN «4K™ and growth is virtually inde-
pendent of Kic. Moreover, this mechanism is apparently insensitive to the microstructural
changes accompanying variations in Kic.13 Below about 18 MPa m?, a fatigue threshold is
approached and a change in the appearance of the fracture surface is seen. Crack growth in
this region has been described by Cooke et al.2! as structure-sensitive. However, no direct
relationship between the surface topography and the underlying microstructure could be found
in the present study.

Above 0:7 K¢, tensile fracture modes (void formation and coalescence or micro-cleavage)
are associated with accelerated rates of fatigue-crack growth. Micro-void coalescence was
observed in the steel of higher strength and medium toughness (1860-1910 MPa, 58 MPa m?)
and in the steel of high-toughness (100 MPa m?), 1600-1650 MPa strength level. Facets indicative
of micro-cleavage were found in the steel of low-toughness (46 MPa m?), 1600-1650 MPa strength
level. Observations of this kind have also been reported by Donahue er al.!! and Richards
and Lindley!2,

When the volume of material ahead of a crack is exposed to cyclic-strain ‘conditioning’
{which for martensitic steels leads to cyclic ‘softening’ and local flow stresses very much less
than the tensile yield values2?), it is clearly inappropriate to apply monotonic tensile properties
to theoretical predictions for fatigue-crack growth. Furthermore, the expression devised by
Donahue et alll, viz da/dN = 4A[mayE [K2— Ku.), is applicable, as stated, to a wide range of
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materials in which the constant 4 approximates to 2oy/E. The dominant material parameter
affecting crack growth is then Young's modulus (£), consistent with the observations reported
by Hahn et al.'® and Barsom er al.¢ Thus yield strength, like toughness, bears no clear correlation
with fatigue-crack growth, at least not in the central region of the crack growth relationship,
i.e. where striation formation and crack extension are not influenced by tensile cracking modes.
The practical significance of the present results and considerations is that, although the
resistance to fatigue-crack propagation is unlikely to be improved significantly by optimizing
mechanical properties, high toughness materials are to be preferred for service under fatigue
conditions. This is not because of any inherent resistance to fatigue-cracking but rather because
of the extended range of cyclic stress amplitudes over which da/dN is approximately proportional
to 4K? before tensile cracking processes (dependent upon K\ c) increase crack growth rates.

5. CONCLUSIONS

1. Fatigue testing, under constant amplitude load cycling, of D6AC steel, having various
strength and toughness parameters, yields curves having a three-stage, sigmoidal shape when
log da/dN is plotted against log 4K.

2. In the central region of these curves, the rate of fatigue crack-growth da/dN is propor-
tional to 4K24 and independent of fracture toughness, for toughness values ranging from 46
to 100 MPa.m?* at essentially the same tensile strength.

3. Variations of yield and ultimate strength do not produce any significant change in the
rate of fatigue-crack growth in the range where da/dN is proportional to 4K%4.

4. In the linear region of the curves, cracking proceeds by a mechanism which gives rise to
striation marking upon the fracture surface.

5. At amplitudes above 0-7 K¢, tensile modes of cracking (void coalescence and micro-
cleavage) cause progressively accelerated crack growth as Kic is approached.

6. At amplitudes of stress intensity less than 18 MPa m?, threshold values of K are
approached. Rates of growth in this region are sensitive to changes in material properties and
a different mechanism of growth is indicated by a change in fracture surface topography.
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Fig. 3. Fractographic features exhibited on the fatigue-fracture surface of DGAC steel, heat
treated to U.T.S. 1630 — 1650 MPa and K, = 46 MPam’% (heat treatment C)

Hexagonal photographs are SEM fractographs and circular photographs are TEM
fractographs using.germanium — shadowed carbon replicas.
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