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I. Introduction.

In this paper we shall indicate some of the current direc-

tions in the study of the analytic continuation of solutions to

partial differential equations. Our intended audience is not

only those mathematicians working in the area of partial

differential equations, but also complex analysists interested

in seeing how a major topic in the theory of analytic functions

can be extended to include certain classes of linear partial

differential equations. In order for such a generalization to

be worthwhile it seems to us that ideally two conditions should

be met: The extension should disclose new phenomena that are

peculiar to partial differential equations and not characteristic

of analytic functions, and the investigation of such new pheno-

mena should illuminate areas of physical application having as

their mathematical model the partial differential equations being

studied. Our specific aim in this paper is to therefore provide

a survey of the general area of the analytic continuation of

solutions to partial differential equations and to show how such

a study elegantly unites both analytic function theory and the

theory of partial differential equations and their applications.

For the sake of brevity we shall concentrate on three main

topics: the unique continuation of solutions to partial differen-

tial equations, reflection principles for equations of elliptic

and parabolic type, and, as an example of an area of application,

the inverse scattering problem for acoustic waves.
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Ii. Unique Continuation.

We first recall that a family of functions is said to have

the unique continuation property with respect to a surface S if

any two functions of this family which are defined in a neighbor-

hood containing a portion of S in its interior, and agree on one

side of the surface S, are in fact equal to each other in the

entire neighborhood. Of particular interest in the theory of

partial differential equations is the case when the family of

functions is the class of all solutions to a given partial

differential equation defined in a domain containing the surface

S. The unique continuation property in this case clearly depends

on both the equation and the surface, and for a linear homogeneous

partial differential equation is equivalent to the uniqueness of

the solution to Cauchy's problem with data prescribed on S. The

classical result in this direction is Holmgren's uniqueness

theorem which states that classical solutions of linear partial

differential equations with analytic coefficients possess the

unique continuation property with respect ot any smooth non-

characteristic surface (c.f. (21). The case of partial differen-

tial equations with non-analytic coefficients is only partly

solved (c.f. [4] and the references contained in [2]).

Now assume that the linear partial differential equation

under consideration is uniformly elliptic with smooth coefficients,

and write it as

L(u] 0. (2.1)
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A remarkable result established by Lax ((14]), Malgrange ([171)

and Browder ([31) is that the unique continuation property for

solutions of L~u] = 0 is equivalent to a Runge approximation

property for the adjoint equation:

Runge Approximation Property: Solutions of L[u] - 0 are said to

have the Runge approximation property if, whenever D1 and D2 are

two bounded simply connected domains, D1 a subset of D2, any

solution in D1 can be approximated uniformly on compact subsets

of D1 by a sequence of solutions which can be extended as

solutions to D2.

The theorem of Lax, Malgrange and Browder can now be formu-

lated as follows: solutions of L(u] = 0 have the Runge approxi-

mation property if and only if solutions of the adjoint equation

have the unique continuation property with respect to any smooth

surface S. As a simple consequence of this result we have,

using Holmgren's uniqueness theorem, that the harmonic polyno-

mials are complete (with respect to the maximum norm over compact

subsets) in the space of solutions of Laplace's equation defined

in a bounded simply connected domain. This follows by choosing

D2 to be a sphere in the definition of the Runge approximation

property.

It would be desirable to extend the result of Lax, Malrange

and Browder to the case of parabolic equations defined in domains

with moving boundaries. Some partial results in this direction
~can be found in [5]. For example, let D - {(xlt): sl(t)<x<s2(t),

0t<to where to is a positive constant and st(t), s2 (t) are

IA
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analytic functions of t for O<t<to. Then it can be shown that

the polynomials

[] x n-2kt k
hn(xpt) - k t (2.2)

k-O (n-2k) 1k!

are complete in the space of solutions to the heat equation

Uxx M ut  (2.3)

defined in D.

III. RefZetion PrincipZes.

Given the possibility of unique continuation, the problem

which naturally arises is how to carry out this continuation

in specific cases. Occasionally one has an explicit integral

representation of a solution in terms of analytic functions with

known singularity manifolds, and in this case the continuation

can often be preformed by using classical results from analytic

function theory (c.f. [101, [18]). However in general one is

given a solution of a partial differential equation defined in

a domain D and satisfying known boundary data f on a portion a

of the boundary of D, and from a knowledge only of D and f it

is desired to continue the solution across a. In order to solve

this problem it is necessary to develop reflection principles

for partial differential equations. In particular assume that

a preliminary change of variables has been made such that a is

a portion of a hyperplane. Then the partial differential equation

lo
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is said to have a reflection principle with respect to a if,

under suitable conditions on the boundary data f, it is possible

to continue the solution u across a into the domain D*, where D*

is the mirror image of D with respect to a. The classical

example of such behavior is the Schwarz reflection principle for

solutions of Laplace's equation that vanish on a portion of a

hyperplane, and in this case an explicit reflection rule is

provided by the formula

u(-xl,x2,...,Xn) = -U(xlx2,...xn) (3.1)

where we have taken a to be x1=0. For example of other classes

of partial differential equations with constant coefficients

admitting an explicit reflection rule for solutions having

vanishing Dirichlet data on a hyperplane see [131.

The case of partial differential equations with constant

coefficients and solutions having vanishing Dirichlet data on a

portion of the boundary is rather limited and hence efforts have

been made to extend such results to linear equations with

analytic coefficients and nonhomogeneous boundary data. The some-

what surprising result is that in general this is only possible

for partial differential equations in two independent variables.
*

To state the results in the case of two independent variables we

i assume, according to our convention, that a is a portion of one

of the coordinate axis. For second order elliptic equations in

two independent variables with analytic coefficients a reflection

principle was established by Lewy ((16)] under the condition that

I . .- .. -
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the boundary data f prescribed on a is the restriction to a

of an analytic function f(z) for zcDuauD*. The case for second

order parabolic equations in two independent variables with

analytic coefficients has been studied by Colton ([5]) with the

result that a reflection principle is valid provided f is analytic

on a, where now we must insist that a is the t axis so that it is

not characteristic. Both of these results have been extended to

the case where the solution satisfies a first order linear boundary

condition on a (5], [16]).

The problem of when a reflection principle is valid for

partial differential equations in more than two independent

variables is considerably more complicated than the case of

equations in two independent variables. In the case of equations

with constant coefficients and a a hyperplane we refer the reader

to the previously cited work of John. Reflection principles are

also possible for solutions of the Laplace or Helmholtz equation

defined in a ball and vanishing on a portion of the spherical

boundary (The case of Laplace's equation is due to Schwarz and

is classical, whereas the reflection principle for the Helmholtz

equation has only recently been obtained by Colton ([51)). On

the other hand, Lewy has given an example of a solution of

Laplace's equation satisfying a first order linear homogeneous

boundary condition with constant coefficients along a hyperplane

such that the solution cannot be continued across this hyperplane

into the mirror image of its original domain of definition ([16]).

The problem of when solutions of higher dimensional elliptic

equations can be reflected across analytic boundaries was taken
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up by Garabedian ([91) who showed that the domain of dependence

associated with a solution of a n-dimensional elliptic equation

at a point on one side of an analytic surface is in general

a whole n-dimensional ball on the other side. Only in exceptional

circumstances does some kind of degeneracy occur which causes

the domain of dependence to collapse onto a lower dimensional

subset, thus allowing a continuation into a larger region than

that afforded in general. Such is the situation for example in

the case of the Schwarz reflection principle for harmonic functions

defined in a ball or half space (where the domain of dependence is

a point) and Colton's reflection principle for solutions of the

Helmholtz equation defined in a ball (where the domain of

dependence is a one dimensional line segnent). Such a collapsing

of the domain of dependence can be viewed as a Huvrten's principle

for reflection, analoous to the classical Huygen's principle for

hyperbolic equations.

The analysis discussed above still leaves open the possibility

of obtaining a reflection principle for parabolic equations in

two space variables with analytic coefficients. In the case of

analytic solutions of such equations having analytic Dirichlet

data on a portion of a plane boundary, a reflection principle has

been established by Colton ([7]) and the possibility of obtaining

explicit reflection formulas has been investigated by Hill([ll]).

In this case the domain of dependence is a one dimensional line

segment, in conformity with Huygen's principle for reflection.

An open problem is to consider the case of first order boundary

Vconditions and to remove the assumption of analyticity of the
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solutions. This last problem is intimately connected with the

regularity of solutions to initial value problems for equations

having the operator

L[u] = Uxy - ut  (3.2)

as principal part ([7]).

IV. The Inverse Scattering Problem.

In recent years there has been a rapidly growing interest

in various classes of inverse problems, in particular those

in which from measured data it is desired to either determine

the domain of definition of the solution or, given the domain,

to determine the boundary conditions satisfied by the solution.

Typical examples of this type of problem are the backwards

heat equation, the inverse Stefan problem, and the inverse

scattering problem (c.f. [5]). A broad class of these problems

(in particular the ones just listed) can be characterized as

problems in the analytic continuation of solutions to partial

differential equations, but where now the solutions are not

known exactly but only in some approximate sense. An interesting

characteristic of such problems is that they are in general

improperly posed, i.e. the solution either does not exist, is

not unique, or does not depend continuously on the initial data.

Due to what now appears to be an inexplicable bias, the area

of improperly posed problems in applied mathematics was left

almost untouched by mathematicians until the late 1950's when

the beginning of a theory was initiated. Thus in 1961 Courant
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wrote ([8]): "The stipulations about existence, uniqueness and

stability of solutions dominate classical mathematical physics.

They are deeply inherent in the ideal of a unique, complete

and stable determination of physical events by appropriate

conditions at the boundaries, at infinity, at time t=0, or in

the past. Laplace's vision of the possibility of calculating

the whole future of the physical world from complete data of

the present state is an extreme expression of this attitude.

However, this rational ideal of casual-mathematical determination

was gradually eroded by confrontation with physical reality.

Nonlinear phenomena, quantum theory, and the advent of powerful

numerical methods have shown that "properly posed" problems

are by far not the only ones which appropriately reflect real

phenomena. So far, unfortunately, little mathematical progress

has been made in the important task of solving or even identifying

and formulating such problems which are not "properly posed"

but still are important and motivated by realistic situations".

Since the time of these observations by Courant, there has been

a virtual explosion of interest in improperly posed problems, and

we refer the reader to the recent conferences by Anger ([1])

and Nashed ([201) for current developments in this area. However,

as the interest has risen, the problems have multiplied, and

many of the most important improperly posed problems arising

in applications are still waiting for a solution that is suitable

for practitioners.
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In order to investigate a problem that is improperly posed,

we must answer two basic questions: (1) What do we mean by a

solution? and (2) How do we construct this solution? The

answers to these questions are by no means trivial. For example,

as initially posed a solution may not even exist in the classical

sense, or if it does exist, may not be defined in a large enough

domain to be of practical use (This is the place where analytic

continuation often comes into play). A classic example of such

a situation arises in the study of the inverse scattering problem,

a subject which has already been the topic of numerous research

papers and monographs. Here we restrict ourselves to the inverse

scattering problem for acoustic waves, i.e. we consider the

scattering of a time harmonic plane wave by a rigid bounded

obstacle, and from a knowledge of the asymptotic behavior of

the scattered wave we want to determine either the location of

the so-called "equivalent sources" generating the field, or

the shape of the scattering obstacle.

We first consider the problem of the location of the equi-

valent sources, i.e. we regard the scattered field u as being

generated by a set of sources all of which are contained within

the true scattering obstacle. These sources are not in general

unique, although they are confined to some finite region of

space, and one of the fundamental problems in scattering theory

is to determine the extent and location of this region (c.f. [5],

[19], [22]). The sharpest results in this direction to date are

due to Colton ([5]) and are concerned with the case when the

scattered field is axially symmetric. To describe these results,
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assume the wave number is normalized to be one and that the

scattered field is axially symmetric, i.e. in cylindrical

coordinates (r,z,O), u is independent of *. Then we have that

u behaves asymptotically like

iR
- f(cosO); R-- (4.1)
R

where z-R cosS, r=R sinO, the time dependency has been factored

out, and f is the far field pattern. Given f, our problem is to

determine the location of the sources which generate u. To this

end we note that f is an entire function of cos8 and expand f

in a Legendre series

f(cos) = Z a nn (COSO). (4.2)
n=0

If we now define the analytic function h by

h() = E a n(2i)n (4.3)
n=0

it can be shown that h is an entire function of order one and

type C where C is the radius of the smallest ball containing

the scattering obstacle (and hence the equivalent sources). Now

let G be the indicator diagram of h and G* its conjugate (For

information on the indicator diagram and its role in the theory

of entire functions, see Levin ([15])). Consider the complex

plane as superimposed on the (R,e) plane. The theorem of Colton

states that the equivalent sources are contained in the rotation

of GuG* about the axis of symmetry. The proof of this result
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is based on using the reflection principle for the Helmholtz

equation to analytically continue u across the sphere of radius

C; for details see (5].

We now consider the problem of determining the shape of

the scattering obstacle from measurements of the far field

pattern. We note that the analysis above is not applicable

to this problem since it is not possible to detect from

experimental data whether or not the function being measured is

entire. Furthermore, the problem is clearly improperly posed

since if the function chosen to approximate the far field

pattern is not entire of a certain order and type, no solution

to the problem can exist. Our problem is basically one of

analytic continuation from infinity where the data at infinity

is only known in an approximate sense. Hence we can only hope

to reconstruct the shape of the scattering obstacle in some

approximate manner. It is worthwhile to note this point that

the word "approximation" has little meaning unless some acknow-

ledgment is given to the concept of error estimates.

To fix our ideas, we consider the case when the scattering

obstacle is an infinite cylinder having a bounded simply connected

cross section D with smooth boundary 9D. In this case the problem

is two dimensional and it can be shown that the scattered field

u behaves asymptotically like

ikRu e-- F (e k) R-- (4.4)
/W

o!>
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where (R,e) are polar coordinates, k is the wave number, and F

is the far field pattern (We have again factored out the time

dependency). Given F for -w<_<_n and small values of the wave

number k, our problem is to determine aD, i.e. the shape of D.

To this end we expand F in a Fourier series

F(e,k) = Z a n(k)ein (4.5)
-a n

and let f be the (unique) conformal mapping taking the exterior

of the unit disk in the w plane onto the exterior of D in the

z plane such that for lw!>l, f has the Laurent expansion

f(w) - H + b + b1 + + a> (4.6)
a o w aO 46w

where a-l is the mapping radius of D. Then it can be shown

(M5]) that form a knowledge of the behavior of the Fourier

coefficients an (k), n=O, l,2,...,N, for k small, it is possible

to determine the area of D and the Laurent coefficients b0 ,bI,

.... bn of the conformal mapping f, module the mapping radius a-

To determine the mapping radius it is necessary to move the

transmitter and measure the far field pattern a second time.

Having done this we can now construct an approximation to f

defined by

w bl bn
f(w) = + b 0

+ + + b-- n (4.7)
w
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and by evaluating fn on Iwl-l we have an approximation to 3D.

We now need to estimate the error made in approximating f by

fn on jwi-l. To this end we define the mean square error by

E(f-fN) f Jif(ei8)'fN(ei)12d8
-1!
OD 2(4.8)

n-N+l

Then from the Area Theorem in univalent function theory ([211)

we have

E(f-fN) < 1 a A (49)

where A is the (measured) area of D. It is of course desirable

to improve this error estimate, and one approach for doing this

is to utilize "a priori" information one has on the shape of D.

The problem of course is how to incorporate this a priori

information into the mathematical model. As an example of how

this can be done consider the case when it is known a priori that

D is convex. Then from known coefficient estimates for univalent

functions ([21J, p. 50) we have that

b < 2
n an(n+7) (4.10)

and hence from (4.8) and a short calculation using the integral

test for infinite series we have

44

** -i
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E(f-f <4 (N+2) 2  (4.11)N 3a (N+l) 5

We note that (4.11) is a considerable improvement on (4.9),

except in the case when D is a small perturbation of a disk and

we have ma-20A.

A complete and satisfactory treatment of the inverse scattering

problem for acoustic waves still lies in the (hopefully not too

distant!) future. As steps in this direction it would be worth-

while to investigate the inverse scattering problem for intermediate

values of the wave number (i.e. away from the low frequency and

high frequency limits) as well as the full three dimensional

inverse scattering problem. Partial progress in these directions

can be found in [121 and [61 respectively.

$ O1
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