AD=A086 711 DELAWARE UNIV NEWARK APPLIED MATHEMATICS INST F/6 1271
ALGORITHMIC ANALYSIS OF A MARKOVIAN MODEL FOR A SYSTEM WITH BAT=-ETC(U)
MAR 80 J P COLARDs, G LATOUCHE AFOSR=-T7=3236
UNCLASSIFIED TR-528 AFOSR-TR=-80-0500

......... :




—— Y]

“Wo%@@ .

L
Pl

- | e
oL =
. oo

——
—
]
]

. ——

li2s s wie

M{CROCOPY RESOLUTION TEST CHART 1
NATIONAL BUREAU OF STANDARDS 1963 A

e




g - B .
/ AFOSR-TR- 80-0500
T
L
=
e
O
v o)
<
Y
a
<C
:
VAT T

0‘1

Nygnmam®

“ APPLIED
MATHEMATICS INSTITUTE

University of Delaware
Newark, Delaware

roved £cT publie release
gy : nlimited.




- - -q‘ xw:w%’;r' i
[OFC7S VI . RS S .

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

I REPORT DOCUMENTATION PAGE
S ORT NUMBER i 2. GOVT ACHESSIONNG.

READ INSTRUCTIONS
BEFORE COMPLETING FORM

3. RECIPIENT'S CATALOG NUMBER

1

y

OSR %8497 -0 5 8 QD426 77

aedd. TITLE (and Subtitle)
., | ALGORITHMIC SNALYSIS OF A MARKOVIAN MODEL FOR A |
"= {| SYSTEM WITH BATCH AND_INTERACTIVE JOBS, ——
F 4

S..-TYPE OF REPORT & PERIOD COVERED

Jean Paul /Colard/

Guy/Latouche

UL A ——
9. PERFORMING ORGANIZATION NAME AND ADDRESS

University of Delaware

8. CONTRACT OR GRANT NUMBER(s)

/

g_f,’?’AFJSR-??—SZSG/V NEF-EnGT

10. PROGRAM ELEMENT PROJECT, TAS
EA & WORK UNIT NUMBERS

70,

» Applied Mathematics Institute Sy
Newark, DE 19711 7;32’4[5: l
1Y, CONTROLLING OFFICE NAME AND ADDRESS T DA -~ o
Air Force Office of Scientific Research/NM @ Marapmmsg ) 1/)
Bolling AFB, Washington, DC 20332 = Ry AGES ~——

14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Otlice) 1S. SECURITY CLASS. (of this report)

/ - ; UNCLASSIFIED
Jé -y - :
J}/ }‘ 7/(_‘ _;:.'_"“: Ve ; TSa  DECL ASSIFICATION/ DOWNGRADING

—

16 DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered 'n Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. XEY WORDS (Continue on reverse side if necessary and identify by block number)

Queueing system, finite priority source, batch and interactive computer model,
computational probability

20. ABSTRACT (Continue on reverae side if necessary and identify by block number)

T-A computer system serving both batch and interactive jobs is modeled as a
single server queue, with an infinite source of ordinary customers and a finite
source of priority customers.

The stability condition and the stationary probability distribution are deter-
mined. For a stable system, it is shown how the distribution and moments, of
the waiting time, the sojourn time, the completion time, and the busy period,
may be efficiently computed. v

FORM
JAN 73

DD ,

-,

P
UNCLASSIFIED o~ /{_\ y

1473, . €0ITION OF | NOV 85 1S OBSOLETE
' SECURITY CLASIIFICATION OF THIS PAGE (When Dets Entered)

7% 2

i
¢

/




e

-

B 2L

e

R RN < St AV A Wt 4 e - e 4
. .

o )

Algorithmic Analysis of a Markovian Model

for a System with Batch and Interactive Jobs

by

Jean Paul Colard and Guy Latouche

Laboratoire d'Informatique Theorique
Universite Libre de Bruxelles
1050 Bruxelles BELGIUM

Applied Mathematics Institute
Technical Report Nr 528
March 1980

This research was supported in part by the National Science
Foundation under Grant Nr ENG-7908351 and by the Air Force
Office of Scientific Research under Grant Nr AFOSR-77-3236.

AIR FORCE QFFICT OF SCIENTIFPIC RESKARCH (AFSC)

NOTICE OF T/ A\NEMITTAL TO DDC

This te:l: @ pouoct has besn reviewed and 1s
approved o Liblie snicase IAW AVR 190-18 {7b).

Distributicn is unlimited.
A, D. BLusE
lfechnical Information Offiger

R R BN o v A et S s e e

o e -

e




Abstract

A computer system serving both batch and interactive jobs is modeled
as a single server queue, with an infinite source of ordinary customers and
a finite source of priority customers.

The stability condition and the statfonary probability distribution
are determined. For a stable system, it is shown how the distribution and
moments, of the waiting time, the sojourn time, the completion time, and

the busy period, may be efficiently computed.

Keywords

Queueing system, finite priority source, batch and interactive
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Introduction

The purpose of this paper is to present the algorithmic analysis of
a single model for a computer system, serving batch and interactive jobs.
The methodology used here has been introduced in recent years by Neuts [8-12].
The computer system under study is répresented by a single server
queue with infinite waiting roam (see Figure 1). Batch jobs arrive according
to a Poisson process with parameter A]. The time needed to process a batch
job is exponential with parameter ye Once a batch job is terminated, it

leaves the system. Interactive jobs are submitted by a finite number, N,

of interactive terminals. The time needed by a terminal to submit a job
is exponential with parameter AZ' Once the job is submitted, the terminal
must wait until the job is processed, at which time the terminal initiates
the submission of a new job. The time needed by the server to process an
interactive job is exponential with parameter Ha- The interacfive Jobs
have preemptive priority over the batch jobs. It will readily be observed
that such a system is a special case of the priority queueing model, with
infinite ordinary source and finite priority source, which has already been
studied by Avi-Itzhak and Naor [1], Jaiswal and Thiruvengadam [3],
Thiruvengadam [13,14], and most comprehensively by Jaiswal [4]. The
results in [4] are obtained via the analysis of the renewal process formed
by successive busy periods of the queueing system. The results mainly
consist of Laplace-Stieltjes transforms of distributions or of generating
functions. These do not simplify very much in the single case considered
here, where the service time distributions are exponential.

In contrast, the method used here will yield computationally efficient

expressions. We shall determine the stability condition for the system and

prove that the stationary probability vector has a matrix-geometric form.
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Appropriately partitioning that vector x as (50,54....), it is shown that
X = w(I-R)R, for i20,

where the positive vector 7, and the positive matrix R are explicitly
determined. We show in Sections 2 to 4 how the distribution and moments
of the waiting time, the sojourn time, the completion time, and the busy
period are determined. A comprehensive discussion of stochastic models
with embedded Markov chains having a matrix-geometric invariant probability
vector may be found in Neuts [12].

To conclude this introduction, we remark that the simple network
described in Figure 1 is not amenable to the approach of Baskett et.al. [2],

since the two priority classes of jobs have different service rates.

1. The Stationary Distribution

Under the assumptions of Poisson arrivals and exponential services,
the model may be described as a continuous-parameter Markov chain on the
state space {(i,j), 120, 0<jsN}, where i and j respectively denote the
number of batch and interactive jobs in the queueing system.

The infinitesimal generator Q of the Markov chain is a block-tridiagonal
matrix of the form

—~

Ath, Ay 0 0 )
Ay Ay Ay O

0= |0 A A Ay o f ()

0 0 A, A

L:

-

where Ao, A] and A2 are square matrices of order N+1, defined as follows.

The matrix AO corresponds to transitions from states (i,j) to (i+1,j'),




for 120, and is equal to A]I. The matrix A2 corresponds to transitions

from states (i,j) to (i-1,j'), for ix1; (AZ)O 0 is equal to s all the

other elements of A2 are equal to zero. The matrix A] corresponds to

transitions from states (i,j) to (i,j'), for i21, and is given by

r—

0 -
-X]-NXZ-N] NXZ . 0 e
by A y-(N-1)2 50, (N-12, ces 0
A = 0 ™ A y=(N-2)2 y-u, 0
o
0 0
g I P!
P

Let x denote the vector of stationary probabilities. It is the unique
solution to the system xQ=0, x e=1, where e represents a vector with every
component equal to 1. Let us partition x as (50,51,...), where x, is an
N+1-vector, and corresponds to the states {(i,j), O<j<N}. Furthermore, we
define the matrix A by A=A0+A]+A2. It is the infinitesimal generator of a
finite, irreducible, continuous-parameter Markov chain. By * we denote

its vector of stationary probabilities, i.e. nA=0, n e=1.
Lemma 1
The vector m is given by
[ N -1
- __N! J N! k
TIJ. W 02 [kf_o -(m‘ P ] N for 0<jsN,
where 02=A2/u.

Proof. The proof is elementary.

Theorem 1

The system is stable if and only if

i
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A TR
p=k.| kiorn—_mpz /ll]<]. - (2)

If the system is stable, the stationary probability vector x is given by

5;(50,54,...), where

x; = 2(I-RR’, for i20. (3)

The matrix R is the unique nonnegative solution with maximal eigenvalue

strictly less than one of the matrix quadratic equation

2 =
R A2+RA.|+A0 = 0.

The matrix R is equal to lim Rn’ where the matrices Rn are defined as
Now
follows,

1 2

n

1

R = -A A-'- -R AZA]- 'Y fOr‘ nZO. (5)

n+1 0

Moreover, the matrix R is strictly positive, and its first column is equal

to p,e, where p]=k]/u].

Proof. This theorem is proved by repeating arguments given in [8-11]. We
refer the reader to those papers for details and only indicate the main
steps of the proof here.

Firstly, it results from [11], Theorem 1, that if the system is stable,
then §4=50Ri, for 120, where the matrix R satisfies the equation (4), the
maximal eigenvalue of R is strictly less than one, the matrix R is the
minimal nonnegative solution of (4).

Secondly, we show that the sequence of matrices Rn defined in (5),
converges monotonically to the minimal nonnegative solution of (4). Also,

we show that Rn is strictly positive, for n21.




Thirdly, we prove that the matrix quadratic equation (4) has a

unique solution with maximal eigenvalue strictly less than one if and only
if TAe>TAge. It results from Lemma 1 that the stability condition
TA.e>TAqse is equivalent to the inequality (2). It is easy to verify that
if the system is stable, then 50=311-R), which completes the proof of (3).
Finally, we show that RAzngog, which proVes that the first column of R is
equal to p,e.

In general, for systems which may be analyzed by the approach followed
here, the matrix R must be numerically computed by using the recurrence
relation (5). In our case however, it is possible to go further in the

determination of the matrix R, as we show in the next theorem.
Theorem 2

The matrix R is explicitly given by

-1 M -1
R=Mh tmeh ™ (6)

1

where m denotes the first row of the matrix A1' , and the matrix M is equal

tc e'm, i.e. each row of the matrix M is equal to m.
Proof. The matrix R satisfies the equation

R

1]

-1 42 -1
'A0A1 -R AZA] . (7)
From the structure of A0 and A2, it results that (7) may be written as

R = -X]A]']-u1R2M*, (8)

where the first row of M* is equal to m, the remaining rows are equal to 0.

Clearly, (8) is equivalent to

R = ‘A]A]-‘I-M]R*M* = ‘X]A]‘]‘u]_c*’_“_l, (9)

AT |




where r* denotes the first column of R2, the first column of R* is equal
~ to r*, the remaining columns are equal to 0. Since the first column of R

is equal to p,e (by Theorem 1), then r*=p,Re, and (9) becomes
& L L

R=-0A - Rem. (10)

Postmultiplying both sides of (10) by e, and replacing the obtained value
for Re in (10), completes the proof of the theorem.

It is now a simple matter to determine special probabilities of
interest. Let p and é_respective]y represent the marginal distribution of

the number of interactive and batch jobs. Clearly, one has that

p= I Xx;=m. The vector 7 is explicitly given in Lemma 1, and there is
i=0

no difficulty in computing the moments for the marginal distribution of

the interactive jobs. To determine the distribution and moments for the

batch jobs is only slightly more difficult. We shall only state the

following result. The proof is identical to that of [5], Lemma 1, and is

not presented here.

Lemma 2

The marginal distribution of the number of batch jobs is given by

51 = E(I-R)Rig, for i20.

h

The vt moment 8 , about the origin, is equal to Bv=1xvg, for v>1, where

the matrices xv of order N+1 are recursively defined as follows.

n
- +
Xo = I» Xp4q = R(I-R)! 5 "hxg,  for na0.

In particular, one has that




Ut O O

L

7
- -1
B] = ER(I'R) €,
B, = TR(I+R)(1-R) e,
and 83 = ER(I+AR+R2)(I-R)-%§-

Finally, we determine easily the following probabilities for the state

of the server. The probability that the server is idle is equal to X0 O=ﬂ0-p].

The probability that the server is busy and processing a batch job is equal

to I X5 0=P1- The probability that the server is busy and processing an
i=1 >
interactive job is equal to 1~p0=1-ﬂ0.

Z. The Waiting Time and the Sojourn Time for a Batch Job

It is obvious that the interactive jobs actually form an M/M/1 queue

with finite source. This type of queue has been widely studied and therefore,

we will only examine the batch jobs. This can be done by any of two
methods. Firstly, by using the concept of phase type distribufions - Neuts
[6,7] - we obtain an explicit form for the probability distributions.

The second approach provides expressions which are better suited to
numerical computations.

We consider the gqueues in steady-state and we denote by w the time
spent by a batch job in the incoming queue, by wq(x,i), the conditional
distribution of w, given that upon arrival of the job, the system contained
i batch jobs already and by wq(x) the distribution of w.

We will need the following matrices and vectors: S0 is the square
matrix of order N obtained by deleting the first row and the first column

of A1+AO’ Si (i>0) is the square matrix of order i(N+1) given by:

":‘,FS: ','”
PR

T




D '1
Co. Cy .
L © "G

where C]=A]+A0 and CO=A2; % is the N-vector obtained by deleting the
first component of Xg» and o (i>0) is the i(N+1)-vector (Q)Q}...,Qﬁgi).
Theorem 3

The distribution of w is given by:

wq(x) =1 - . exp(Six)g, for x=0.

1

I~ 8
o

1

The moments are given by:

BT = (-1)Vevt zoasy™
i=0

e, for vz20.

Proof. Given that the system contains i batch jobs already, w is equal to
the time until absorption in a continuous parameter Markov chain, with
transitions among transient states governed by Si’ and initial probability

vector (549)—124' Therefore

o -1
wq(x,1) = 1-(x;e) ‘o,

; exp(Six)g, for x=0,

and E[wvli] (-1)" v!(éjg)"]gisi'vg.

The proof is now immediate.

Remark. Although this theorem provides us with an explicit expression for

wq(x), jt is difficult to use in order to get numerical results, because it

nn
® © 55X
contains a double series I a. I —n,——>g.
i=0 n=0 °°

These series are convergent, but involve large matrices. Nevertheless,




the distribution of w may numerically be obtained by another method.
Clearly, w is the time until absorption in the Markov chain with
infinitesimal generator Qw and initial probability vector

X=(XgsXys- e+ sXys--+ ), where

(¢ 0 0 o 1
e g 00
Qw" [y
0 Cy C O
. 0 G ¢ O
U ]

and C is the matrix C] with a first row identically zero.

Let yij(x) be the probability that this Markov chain is in the state
(i,j) at time x. We have that wq(x)=y00(x). The Koimogorov equations for
this chain are

Yo(x) = yo(x)Chy; (x)Cys an
Yi(x) =y ()Y (0)Cy,  for iz,
with the initial conditions y.(0)=x,.

The Markov chain Qw can only move towards lower states. It is there-
fore obvious how to truncate the infinite system of differential equations
(11). In order to lose a probability mass of at most € in the tail of the

distribution function wq(x), one truncates at the index K such that

r w(I-R)R'e = 1RK+]E <€

v=K+1]
This approach does not lead to an explicit form for wq(x), but is
easily implemented.
We define the sojourn time of a batch job in the system as the time
between the moment the job enters the system and the moment it leaves the

system. The sojourn time can be analyzed exactly like the waiting time.
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3. The Completion Time of a Batch Job

Let wc(x) denote the distribution function of the completion time W

of a batch job, i.e. the time between the moment when the processing of
the job begins, and the moment when the job leaves the system. We is also
the time until absorption into the absorbing state of the Markov chain

with (N+2) states and infinitesimal generator Qc given by

Sl_l . 07
l
u1|
QC =1 0 I C'] ’
-
LO ! 3
and with the initial probability vector !?(0,g0)=(0,1,0,...,0). Clearly
now,
W.(x) = 1-e, exp(C]x)g, for x>0,
! (12)
and E[wc] (-1)" v'e C for v21,
Remarks.
. P _
a. E[wc] is equal to X;" g (13)

Indeed, E[wc] is equal to minus the sum of the elements of the first
row of C]']; these elements are easily computed, since they are the solution
of a system that differs only from the system for 7 in the first equation.
It is now easy to prove (13).

b. Equation (12) may be written as

W.(x) = - § C X (14)
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1~k

where Cy is the sum of the elements of the first row of kT C]. It i{s not

necessary however to compute all the components of C% in order to obtain Cp+

If we denote by gﬂk) the first row of %T-Cf, one has that

K)o 1kl

= Ko = = 11 (k1)
and C =c e K& &y

c. The series (14) is unfortunately difficult to use for numerical
purposes because its terms alternate in sign and have large absolute
values (greater than 1030 in some cases). Since this series has a sum in
the interval (0,1), it is clear that it is computationally unstable.
Nevertheless, one easily obtains the distribution of W. as the solution
of a finite system of differential equations by using the same approach as

for the waiting time.

4. The Busy Period of the System

The busy period is defined as the interval of time between the moment
when the CPU becomes active (by the arrival of either an interactive or a
batch job) and the first moment when the CPU becomes again inactive. We
will have to distinguish two different types of busy periods, according as
it begins with the arrival of an interactive (type 1) or a batch job (type 0).

We denote by ho(k,z,x), k=0, 220, the probability that starting in the
state (i+1,0), 120, at time 0, in the Markov chain with infinitesimal
generator Q, the first visit to the state (i,0) occurs no later than time x,
and that exactly k batch and ¢ interactive jobs are processed during that
first passage time. Similarly, we define hj(k,z,x), Jj=1,2,...,N, for the
Further-

first passage time from the state (i,j), i>0, to the state (i,0).

more, we introduce the transforms
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h¥(z,y,s) = T = Xyt e's"dhj(k.z.x).

0 2=0 0

H*(z,y,s) is a square matrix of order (N+1) such that Hgo(z,y,s)=h§(z,y,s)
for j=0,1,...,N, the remaining elements are all zero and H=H*(1,1,0).
Finally, Aé is a square matrix of order (N+1) with only one non-zero element:
(A3)10 = ¥2r

By following the argument in [9], we prove that the matrix f is
stochastic if the system is stable. Then each row of H is equal to &y-

Let us denote by m, Ngs N the following vectors

—

m= -L%S- H*(z,y,S)g]

(5

Laz
P

= a_ *
n & H*(z,y,s)e

(z=1,y=1,s=0) ’

H*(z,y,s)e

&:

(z=1,y=1,5=0) ’

(z=1,y=1,s=0).

Their components mp, "gp> Mip? for p=0,1, are respectively equal to the
mean busy period and the mean numbers of batch and interactive jobs
processed during a busy period of type p.

Theorem 4

If the queueing system is stable (P<1), the vectors m, Nps and ny

are the solutions of

Mn = -e (15)
Mng = -u, (16)
Mn; = -y, (17)

where M is a non-singular matrix given by




13
oo Wy
M= A]+A0+A0H-A2 + -i;-AZ
_t
and E_] = (u1’0’0,---’0)
t
P—Z = (0,u230s---:0)
One obtains the following explicit forms:
Ten
m, = _—(T_T] s m = ——n——)—o (18)
0 Ll]'"o -p ] WONAZ -0 !
A{1=m0)
SIS Ny = —) 0 (19)
BO ~ (T-0) ° B1 ﬂONA2(1-p$ !
NA 1-pm
_ 2 N 0
"o = 5167 ° "Mt T (20)

Proof. The proof of this theorem is purely technical and may be found in

the appendix.

5. Other Models

In this section we shall briefly examine three queueing systems
closely related to the system defined in the introduction.
Firstly, we shall consider the case where interactive jobs have

non-preemptive priority over the batch jobs. If an interactive job is

submitted while a batch job is being processed, the interactive jobs in the
queue must wait until that job leaves the system. In this case, the state
space may be represented by {{i,j), 1=0, O<jsN; i>0, -N<j<N}, where j>O0
indicates that a batch job is being processed, while j<0 indicates that a

batch job is being processed, and |j| interactive jobs are waiting. The

infinitesimal generator Q is now given by
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-
B, By O vee )
B, A, A. ...
q={ 2 1 O . (21)
0 A, A A,

S Y
where the square matrices AO’ A], and A2 are of order 2N+1, the square
matrix B] is of order N+1, the matrices BO and B2 are rectangular, with
the appropriate dimensions. Each of these matrices is very sparse, we
do not indicate their structure, since it is cumbersome and would serve no 1
purpose here. It is clear that this model may be solved by using exactly
the same approach as in Sections 1 through 4.

Secondly, we may consider the preemptive-delayed priority discipline.

If an interactive job is submitted while a batch job is being processed, the
latter is allocated a quantum of time, say D, during which it may terminate
its processing. If it does not leave the system before D, it is sent back
in the waiting queue and the interactive jobs are processed. If we assume
that D has an exponential distribution, then the system is very similar to
the non-preemptive priority models. Only the matrix A] in (21) is modified.
Thirdly, let us assume that the system contains c21 servers. Then
some modifications occur, and we briefly present the most important ones.
For each of the three queueing disciplines, the structure of the matrix Q
is slightly modified. In addition, for the preemptive-delayed and the
non-preemptive disciplines, a new variable must be introduced to describe
the mixture of batch and interactive jobs being processed. This adds to

the dimensionality of the problem since the elements themselves of the

matrices A and B in (21) become matrices. For the preemptive discipline,
no new variable is necessary and the stationary distribution, the waiting
time, and the busy period may be analyzed in much the same way as in

Sections 1, 2, and 4. However, the analysis of the completion time of a
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batch job will be different. It will be necessary to introduce a rule
for selecting which batch job is to be interrupted. Different rules will
yield different distributions for the completion time. It is our intention

to discuss this point elsewhere.

6. Numerical Results

The parameters used in this section have been obtained after the +
analysis of some statistics from the Computer Center at our University;

we obtained the following values:

1

A = 0.030 sec”
A, = 0.056 sec”!
uy = 0.5 sec']
- -1
My = 2.4 sec
N = 43 (mean number of active terminals).

We used four of these values and let the fifth one vary. HWe will
show here some results obtained by varying the number of terminals or the
interactive service rate.

We show in Figure 2 how the traffic coefficient p(n) depends on the
number of terminals. It may be observed that 43 active termminals is a
number near the critical region; a few supplementary terminals will bring
the system to saturation.

Table I gives, for different values of N, the following information:

- the traffic coefficient p defined in Theorem 1;

- the mean number E[j] of interactive jobs and the percentiles
.5, .9, .99, and .999, of the distribution p;

- the mean number E[i] of batch jobs and the same percentiles
of the distribution p;
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- the mean value E[wl] and the percentiles .5, .9, .99 and .999,
for the waiting time distribution of interactive jobs;

- the expected waiting time E[w] and completion time E[wc] for
batch jobs, the mean number mre of interactive jobs processed
during the completion time of a batch job;

- the expected length my and m, of a busy peridd of type 0 and
type 1.

On Figures 3 and 4 are represented the waiting time and completion
time distributions for batch jobs for the same values of N as in Table I.

It appears clearly that increasing the number of terminals does not
influence much the purely interactive components of the system, but
disturbs much more the batch components, especially in the critical region

N=35 to 47 (note that the system is unstable for N248).

Remark. To produce the curves of Figure 3, we have solved the system (11)
for each value of N. The system was truncated at the percentile .999 in
order to lose at most a probability mass .001 in the tail of wq(x). We
have not computed wq(x) for N=47, because the resulting finite system of
differential equations would have been of order 48x125 which was too large

for our program to handle.

In Table II and Figures 5 and 6, we represent essentially the same
information as in Table I and Figures 3 and 4 for different values of Hoe
The last row of Table II indicates the maximum number Npax ©Of terminals that
may be active without causing the system to become unstable.

It appears that improving the performances of the interactive components
of the system has a profound effect on the whole system, especially on the
batch activity. This is reflected on each characteristic, whether they be

moments or percentiles of queue length or waiting time distributions (see

also Table III).
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Appendix

Firstly, we prove that matrix H*(z,y,s) is a solution of the following {

matrix equation:
(Ag*tA5 JHe2+ (A, -ST-As-A3 JH¥+zR,4yAy = O (A.1)

where A% is a square matrix of order (N+1) with the unique non-zero element

(A3)gy = NA,.

Proof. One easily proves the following equations:

d -

S holkst,x) = A hg*ho(k,2,x)
+ Nkzh]*ho(k,l,x)
t8ady

d -

+ (N-1)Aphy(Ky2,x)

* ua801%0
S Ny (katax) = Aqhy*hg(k,e,x)

+ (N-j)Azhj+](k,l,X)

+ uzhj-](k,ﬂ‘] ,X)

Remark. We define hN+](k,2,x) =0 for all (k,e,x).

Taking the generating functions of the Laplace-Stieltjes transforms, |

we get (writing h} for hg(z,y,s)):




A hxl

]0+N)¢

AqPEE- D+ (=140, ThE+H(R-1)A,h5-shihu,y = 0,

x]hghﬁ—[k1+(u-j)x2+u2]h§+(N-j)x2h§+1+u2ht -shy = 0.

J-1
This last system becomes in matrix notation:

2 " 2 AN <A! - =
AOH* +A2H* +A]H* AZH* AZH* SH*+zA2+yAé 0.

One now easily obtained Formulas (15) to (17) by deriving formula
(A.1) respectively with respect to s, z, or y, by right multiplying by e,

and by taking the result for z=1, y=1, and s=0.

The non-singularity of the matrix M follows from the fact that
det M=-u (-u,)V(1-p) 7 0 for o<l.

In order to obtain Formulas (18) to (20), it is not necessary to
inverse the whole matrix M, it is sufficient to determine the first two
rows rq and iq of M']. They can be obtained by solving two Tinear systems
very similar to the system providing the vector n. Now Formulas (18) to

(20) immeidately result from

Mo = ~Lo& S IS L
Mgo = ~Toty» Mg1 = iy

1o * "Yotpr i T "hipe
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Table I

Characteristics of the system behaviour
for different values of N.

(2,=.030, r,=.056, u]=.5, u2=2.4)

1 2
N 20 25 30 35 40 45 47
p .108 .134 174 .243 .375 677 .909
i .75 1.13 1.67 2.47 3.71 5.63 6.65
: 0 1 1 2 3 5 6
] 2 3 4 6 8 12 13
, . 5 6 8 10 13 17 19
{ 999 | 7 8 n 14 17 21 23
i .14 .19 .28 .46 .94 3.59 17.60 3
} 0 0 0 0 0 2 12 |
3 1 1 1 1 3 9 4
. 2 2 3 4 6 18 83
i 1999 | 3 3 4 6 9 28 125 |
f
| Elw,] .31 .47 .69 1.03 1.55 2.35 2.77 ?
.00 .09 .31 .62 1.12 1.93 2.38
1.06 1.47 1.99 2.73 3.76 5.17 - 5.84 |
: 2.63 | 3.29 4.13 5.23 6.65 8.42 9.22
999 | 4.13 | 5.00 6.08 7.43 9.09 | 11.06 11.93
1.04 | 1.81 3.38 7.14 1 18.91 97.08 | 556.44
Elw.] | 3.61 4.47 5.81 8.10 | 12.50 | 22.55 30.30
3.86 | 5.93 9.15 | 14.63 | 25.21 49.33 67.93
4.04 | 5.16 7.0 | 10.69 | 20.01 69.74 | 333.40
.81 1.03 1.38 2.07 3.78 | 12.71 59.63




Table 11

Characteristics of the system behaviour
for different values of Ho.
(x]=.030, A2=.056, u]=.5, N=43)

2.55 2.50 2.45 2.40 2.35 2.30 | ‘2.25
401 .435 .475 .522 .579 .649 .734
3.96 4.2 4,47 4.76 5.08 5.43 5.81
3 3 4 4 4 5 5
9 9 10 10 11 1 12
14 15 15 16 16 17 17
18 19 19 20 20 21 21
1.05 1.23 1.47 1.82 2.33 3.18 4.84
1 1 1 1 1 2 3
3 3 4 5 6 8 12
7 7 9 10 13 17 24
10 N 13 16 19 25 37
1.55 1.68 1.83 1.98 2.16 2.36 2.58
1.14 1.26 1.40 1.55 1.73 1.93 2.16
3.74 3.99 4.26 4.55 4.88 5.23 5.61
6.56 6.91 7.28 7.67 8.10 8.55 9.04
8.92 9.33 9.77 | 10.24 [10.73 ] 11.26 ) 11.82
21.63 | 26.50 | 33.26 | 43.10 | 58.38 | 84.48 [136.88
13.37 | 14.50 | 15.83 | 17.41 |[19.21 | 21.62 | 24.46
29.00 { 31.25 | 33.88 | 36.98 | 40.68 | 45.12 | 50.54
22.34 | 25.66 | 30.14 | 36.44 |45.89 | 61.52 | 91.89
3.98 4.63 5.51 6.75 8.61 | 11.68 | 17.66
50 49 48 47 46 45 44

44

284.
28.
57.
175.
34.

20| 2
.840
23] s
| s
13
18
22
.38 | 69.
48
160
320
480
.83 3
A 2
.02
.56 | 10.
42| 13.
58 [2268.
oo| 32.
21| 65.
10[1269.
03| 249.
43

.15
.974
.68

03

1
.70

12
06

57
48
53
67
38




Table II1

Percentage in reduction of the mean interactive processing time,
the mean interactive sojourn time, and the mean batch sojourn
time, for increasing Py

o 2.40 » 2,55 | 2.15 » 2.30 | 2.15 + 2.55
mean int. proc. time - 6% -6,5% -16%
mean int. soj. time -19% -22% -46%
mean batch soj. time -42% -959% -98.5%
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Figure 6

The completion time distribution for batch jobs.
Different values of Py
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