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Abstract

A computer system serving both batch and interactive jobs is modeled

as a single server queue, with an infinite source of ordinary customers and

a finite source of priority customers.

The stability condition and the stationary probability distribution

are determined. For a stable system, it is shown how the distribution and

moments, of the waiting time, the sojourn time, the completion time, and

the busy period, may be efficiently computed.
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Introduction

The purpose of this paper is to present the algorithmic analysis of

a single model for a computer system, serving batch and interactive jobs.

The methodology used here has been introduced in recent years by Neuts [8-12].

The computer system under study is represented by a single server

queue with infinite waiting room (see Figure 1). Batch jobs arrive according

to a Poisson process with parameter X1 . The time needed to process a batch

job is exponential with parameter ul. Once a batch job is terminated, it

leaves the system. Interactive jobs are submitted by a finite number, N,

of interactive terminals. The time needed by a terminal to submit a job

is exponential with parameter X2 ' Once the job is submitted, the terminal

must wait until the job is processed, at which time the terminal initiates

the submission of a new job. The time needed by the server to process an

interactive job is exponential with parameter P2. The interactive jobs

have preemptive priority over the batch jobs. It will readily be observed

that such a system is a special case of the priority queueing model, with

infinite ordinary source and finite priority source, which has already been

studied by Avi-Itzhak and Naor [1], Jaiswal and Thiruvengadam [3],

Thiruvengadam [13,14], and most comprehensively by Jaiswal [4]. The

results in [4] are obtained via the analysis of the renewal process formed

by successive busy periods of the queueing system. The results mainly

consist of Laplace-Stieltjes transforms of distributions or of generating

functions. These do not simplify very much in the single case considered

here, where the service time distributions are exponential.

In contrast, the method used here will yield computationally efficient

expressions. We shall determine the stability condition for the system and

prove that the stationary probability vector has a matrix-geometric form.

. .. .. .. ..
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Appropriately partitioning that vector x as (i,xl,...), it is shown that

i= i(I-R)R', for 1:0,

where the positive vector r, and the positive matrix R are explicitly

determined. We show in Sections 2 to 4 how the distribution and moments

of the waiting time, the sojourn time, the completion time, and the busy

period are determined. A comprehensive discussion of stochastic models

with embedded Markov chains having a matrix-geometric invariant probability

vector may be found in Neuts [12).

To conclude this introduction, we remark that the simple network

described in Figure 1 is not amenable to the approach of Baskett et.al. [2],

since the two priority classes of jobs have different service rates.

1. The Stationary Distribution

Under the assumptions of Poisson arrivals and exponential services,

the model may be described as a continuous-parameter Markov chain on the

state space {(i,j), i O, OjLN}, where i and j respectively denote the

number of batch and interactive jobs in the queueing system.

The infinitesimal generator Q of the Markov chain is a block-tridiagonal

matrix of the form

A1+A2  A0  0 0 ...

A2  Al  A0  0 ...

Q= 0 A2  A1  A0  ... (1)

0 0 A2  A1  ...

where AO, A1 and A2 are square matrices of order N+l, defined as follows.

The matrix A0 corresponds to transitions from states (i,j) to (i+l,j'),

0~
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for iO, and is equal to XlI. The matrix A2 corresponds to transitions

from states (ij) to (i-l,j'), for i l; (A2 )0,0 is equal to Pl, all the

other elements of A2 are equal to zero. The matrix A1 corresponds to

transitions from states (ij) to ('), for itl, and is given by

-,-NX2-ol NA,2  0 ... 0

P2 ""1 -(N-1) 2-"2  (N-1)X 2  ... 0

A - 0 'j2 "Xl-(N-2)X2 -112  0

0 0 20

Let x denote the vector of stationary probabilities. It is the unique

solution to the system xQ=O, x e=l, where e represents a vector with every

component equal to 1. Let us partition x as (N,x 1 ,...), where xi is an

N+l-vector, and corresponds to the states {(ij), Osj<_N). Furthermore, we

define the matrix A by A=A 0+AI+A 2. It is the infinitesimal generator of a

finite, irreducible, continuous-parameter Markov chain. By w we denote

its vector of stationary probabilities, i.e. 0AO, el.

Lemma 1

The vector i_ is given by

=N! N p  for 0,N,

where p2=X2b.

Proof. The proof is elementary.

Theorem 1

The system is stable if and only if
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= lkONJp2]/. 1 < 1. (2)

If the system is stable, the stationary probability vector x is given by

where

ji = (I-R)R i  for iO. (3)

The matrix R is the unique nonnegative solution with maximal eigenvalue

strictly less than one of the matrix quadratic equation

R2A2+RAI+A 0 = 0. (4)

The matrix R is equal to lim Rn' where the matrices Rn are defined as

follows,

R0 = 0,
Rn~ 1 - 2A A1-

R2n+ l = -AoAI- -RnA2AI-  for n O. (5)

Moreover, the matrix R is strictly positive, and its first column is equal

to Ple, where pI=Xl/pl .

Proof. This theorem is proved by repeating arguments given in [8-11]. We

refer the reader to those papers for details and only indicate the main

steps of the proof here.

Firstly, it results from [11], Theorem 1, that if the system is stable,

then xi=oRi, for iO, where the matrix R satisfies the equation (4), the

maximal eigenvalue of R is strictly less than one, the matrix R is the

minimal nonnegative solution of (4).

Secondly, we show that the sequence of matrices Rn defined in (5),

converges monotonically to the minimal nonnegative solution of (4). Also,

we show that Rn is strictly positive, for n~l.

IA~:K
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Thirdly, we prove that the matrix quadratic equation (4) has a

unique solution with maximal eigenvalue strictly less than one if and only

if jA2.t>!Ao. It results from Lemma 1 that the stability condition

WA2e>IAe is equivalent to the inequality (2). It is easy to verify that

if the system is stable, then 4=1_(I-R), which completes the proof of (3).

Finally, we show that RA2e-A, , which proves that the first column of R is

equal to Ple.

In general, for systems which may be analyzed by the approach followed

here, the matrix R must be numerically computed by using the recurrence

relation (5). In our case however, it is possible to go further in the

determination of the matrix R, as we show in the next theorem.

Theorem 2

The matrix R is explicitly given by

R = -XlA + 1 A1 IM, (6)

-
where m denotes the first row of the matrix A1 -, and the matrix M is equal

to e-m, i.e. each row of the matrix M is equal to m.

Proof. The matrix R satisfies the equation

R = -A A I -R2AA IA I"  (7)
0 1 2 1(7

From the structure of A0 and A2, it results that (7) may be written as

R = -X lAI"I -Il R2M*, (8)

where the first row of M* is equal to m, the remaining rows are equal to 0.

Clearly, (8) is equivalent to

- = -iA 1 "1lr*.m, (9)

R = -XiA I.-... *..._.
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where r* denotes the first column of R2 , the first column of R* is equal

to r*, the remaining columns are equal to 0. Since the first column of R

is equal to ple (by Theorem 1), then r*=PRe, and (9) becomes

R A -XA -l-IRe (10)

Postmultiplying both sides of (10) by e, and replacing the obtained value

for Re in (10), completes the proof of the theorem.

It is now a simple matter to determine special probabilities of

interest. Let p and p respectively represent the marginal distribution of

the number of interactive and batch jobs. Clearly, one has that
Co

p = : xi = i_. The vector _ is explicitly given in Lemma 1, and there is
i=O

no difficulty in computing the moments for the marginal distribution of

the interactive jobs. To determine the distribution and moments for the

batch jobs is only slightly more difficult. We shall only state the

following result. The proof is identical to that of [5], Lemma 1, and is

not presented here.

Lemma 2

The marginal distribution of the number of batch jobs is given by

pi = f-(I-R)Rie, for i>O.

The vth moment av, about the origin, is equal to Ov=1Xve, for w l, where

the matrices X of order N+l are recursively defined as follows.

= I X = R(I-R) 1  E (nl)X for n O.
j=0 i

In particular, one has that

, , .*...,. --.
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1= LR(I-R)- e,

2 :R(I+R)(I-R)-2 e,

and a= 3 R(I+t'R+R 2)(I-R)'3e.

Finally, we determine easily the following probabilities for the state

of the server. The probability that the server is idle is equal to x0 ,0 =nO-Pl.

The probability that the server is busy and processing a batch job is equal

to E xi'o=Pl. The probability that the server is busy and processing an
i=l

interactive job is equal to l-po=l-w O.

2. The Waiting Time and the Sojourn Time for a Batch Job

It is obvious that the interactive jobs actually form an M/M/l queue

with finite source. This type of queue has been widely studied and therefore,

we will only examine the batch jobs. This can be done by any of two

methods. Firstly, by using the concept of phase type distributions - Neuts

[6,7] - we obtain an explicit form for the probability distributions.

The second approach provides expressions which are better suited to

numerical computations.

We consider the queues in steady-state and we denote by w the time

spent by a batch job in the incoming queue, by W q(x,i), the conditional

distribution of w, given that upon arrival of the job, the system contained

i batch jobs already and by Wq (x) the distribution of w.

We will need the following matrices and vectors: S is the square

matrix of order N obtained by deleting the first row and the first column

of A1+AO, Si (>O) is the square matrix of order i(N+l) given by:

I".
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Cl

C0  Cl  0

CO. Cl

where CI=AI+A0 and Co=A 2 ; 0 is the N-vector obtained by deleting the

first component of 4, and (i>0) is the i(N+l)-vector (0,0,... ,0,xi).

Theorem 3

The distribution of w is given by:

Wq (x) =  - E a. exp(Six)e, for x O.
i=O

The moments are given by:

E[wV] = (-l)V.v! E ai.Si ye, for v O.

i=O

Proof. Given that the system contains i batch jobs already, w is equal to

the time until absorption in a continuous parameter Markov chain, with

transitions among transient states governed by Si, and initial probability

vector (xie)-l i.  Therefore

W q(x,i) = l-(xe)-li exp(Six)e, for x O,

and E[wVli] = (-l)v v!(xi)'taiSi-Ve.

The proof is now immediate.

Remark. Although this theorem provides us with an explicit expression for

W q(x), it is difficult to use in order to get numerical results, because it
q nn

contains a double series E C I , nE )e.
i=O n= !

These series are convergent, but involve large matrices. Nevertheless,
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the distribution of w may numerically be obtained by another method.

Clearly, w is the time until absorption in the Markov chain with

infinitesimal generator Qw and initial probability vector

x " k'"' where

C 0 0 0....

IC o Cl 0 0..
Qw =0 CO Cl 0 .

0 0 :1 :0

and C is the matrix Cl with a first row identically zero.

Let yij(x) be the probability that this Markov chain is in the state

(i,j) at time x. We have that Wq(x)=yoo(x). The Kolmogorov equations for

this chain are

4 (x) = yo(X)C+yl(x)Co ,

Y1 (x) = Yi(X)Cl+Yi+l(X)CO, for i;l,

with the initial conditions xi(O)=x..

The Markov chain Qw can only move towards lower states. It is there-

fore obvious how to truncate the infinite system of differential equations

(11). In order to lose a probability mass of at most e in the tail of the

distribution function Wq (x), one truncates at the index K such that

q

Z n(I-R)RVe = R K+Ie < c
v=K+l

This approach does not lead to an explicit form for W (x), but is
q

easily implemented.

We define the sojourn time of a batch job in the system as the time

between the moment the job enters the system and the moment it leaves the

system. The sojourn time can be analyzed exactly like the waiting time.

.. .
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3. The Completion Time of a Batch Job

Let w c(x) denote the distribution function of the completion time wc

of a batch job, i.e. the time between the moment when the processing of

the job begins, and the moment when the job leaves the system. wc is also

the time until absorption into the absorbing state of the Markov chain

with (N+2) states and infinitesimal generator Qc given by

0- 0 ... 0

Pi
Qc 0 Cl

L0

and with the initial probability vector v=(O,eo)=(0,l,0,...,O). Clearly

now,

Wc (X) = l-e exp(C X)e, for x O,

(12)
and E[w ] = (-I) V v!eCl-Ve, for v2l.

Remarks.

a. E[w] is equal to p - l (13)c

Indeed, E[w ] is equal to minus the sum of the elements of the firstc
-1

row of C1  ; these elements are easily computed, since they are the solution

of a system that differs only from the system for n in the first equation.

It is now easy to prove (13).

b. Equation (12) may be written as

kW (x) = - c (14)c kl k (

.. '.
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where ck is the sum of the elements of the first row of -. C . It is not

necessary however to compute all the components of Ck in order to obtain ck.

If we denote by L(k) the first row of 1 Ck, one has that

c(k) = c(k-l)Ck -

and c _c(k) i _1 (k-l)e

adck=c e - c 20

c. The series (14) is unfortunately difficult to use for numerical

purposes because its terms alternate in sign and have large absolute

values (greater than 10 in some cases). Since this series has a sum in

the interval (0,1), it is clear that it is computationally unstable.

Nevertheless, one easily obtains the distribution of wc as the solution

of a finite system of differential equations by using the same approach as

for the waiting time.

4. The Busy Period of the System

The busy period is defined as the interval of time between the moment

when the CPU becomes active (by the arrival of either an interactive or a

batch job) and the first moment when the CPU becomes again inactive. We

will have to distinguish two different types of busy periods, according as

it begins with the arrival of an interactive (type 1) or a batch job (type 0).

We denote by h0(kk,x), k4O, n 0, the probability that starting in the

state (i+l,0), i O, at time 0, in the Markov chain with infinitesimal

generator Q, the first visit to the state (i,O) occurs no later than time x,

and that exactly k batch and z interactive jobs are processed during that

first passage time. Similarly, we define h.(k,t,x), j=1,2,...,N, for the

first passage time from the state (i,j), iO, to the state (i,O). Further-

more, we introduce the transforms



12

ht(z,y,s) = z . y e-Xdhj(k,t,x).
k=O z=0 0

H*(z,y,s) is a square matrix of order (N+I) such that H~0(z,y,s)=h*(z,ys)

for j=O,l,...,N, the remaining elements are all zero and R=H*(1,1,0).

Finally, A is a square matrix of order (N+I) with only one non-zero element:

(A )10 :

By following the argument in [9], we prove that the matrix R is

stochastic if the system is stable. Then each row of H is equal to

Let us denote by m_, , n, the following vectors

M = -4 H*(z,y,s) ](z=ly=ls=O)

p, [~ H*(z~ys)t](zlylsO

PB = H*(z,y,s)_ 1

-i = 2y H y (z=ly=l ,s=O)

Their components mp, nBp, nips for p=O,l, are respectively equal to the

mean busy period and the mean numbers of batch and interactive jobs

processed during a busy period of type p.

Theorem 4

If the queueing system is stable (P<l), the vectors m, and nI

are the solutions of

Mm = -e (15)

M- = -I (16)

Mn = (17)

where M is a non-singular matrix given by

7 t**g
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NA
M= AI +AO+AOH-A +- A2

and P,= t(pO'O9..,O)

-2 t t(0o12'O"'"O,)

One obtains the following explicit forms:

m1 m1 (18)
0 loo(l-p) 1 r0 NX2 (1-p)

nBO = 1 nBl oN2(l-) ,(19)

N12  1 -P 0

Proof. The proof of this theorem is purely technical and may be found in

the appendix.

5. Other Models

In this section we shall briefly examine three queueing systems

closely related to the system defined in the introduction.

Firstly, we shall consider the case where interactive jobs have

non-preemptive priority over the batch jobs. If an interactive job is

submitted while a batch job is being processed, the interactive jobs in the

queue must wait until that job leaves the system. In this case, the state

space may be represented by {(i,j), i=O, OjsN; i>O, -N:jsN), where j>O

indicates that a batch job is being processed, while j<O indicates that a

batch job is being processed, and Jil interactive jobs are waiting. The

infinitesimal generator Q is now given by

ai A
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B1  B0 0 . -

B2 A1 A0  (21)

0 A2 AI A0

where the square matrices A0, Al, and A2 are of order 2N+l, the square

matrix Bl1 is of order N+l, the matrices B0 and B2 are rectangular, with

the appropriate dimensions. Each of these matrices is very sparse, we

do not indicate their structure, since it is cumbersome and would serve no

purpose here. It is clear that this model may be solved by using exactly

the same approach as in Sections 1 through 4.

Secondly, we may consider the preemptive-delayed priority discipline.

If an interactive job is submitted while a batch job is being processed, the

latter is allocated a quantum of time, say D, during which it may terminate

its processing. If it does not leave the system before D, it is sent back

in the waiting queue and the interactive jobs are processed. If we assume

that D has an exponential distribution, then the system is very similar to

the non-preemptive priority models. Only the matrix A1 in (21) is modified.

Thirdly, let us assume that the system contains c~l servers. Then

some modifications occur, and we briefly present the most important ones.

For each of the three queueing disciplines, the structure of the matrix Q

is slightly modified. In addition, for the preemptive-delayed and the

non-preemptive disciplines, a new variable must be introduced to describe

the mixture of batch and interactive jobs being processed. This adds to

the dimensionality of the problem since the elements themselves of the

matrices A and B in (21) become matrices. For the preemptive discipline,

no new variable is necessary and the stationary distribution, the waiting

time, and the busy period may be analyzed in much the same way as in

Sections 1, 2, and 4. However, the analysis of the completion time of a
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batch job will be different. It will be necessary to introduce a rule

for selecting which batch job is to be interrupted. Different rules will

yield different distributions for the completion time. It is our intention

to discuss this point elsewhere.

6. Numerical Results

The parameters used in this section have been obtained after the

analysis of some statistics from the Computer Center at our University;

we obtained the following values:

1 = 0.030 sec
-1

x2 = 0.056 sec
-1

I = 0.5 sec 1

P2 = 2.4 
sec

1

N = 43 (mean number of active terminals).

We used four of these values and let the fifth one vary. We will

show here some results obtained by varying the number of terminals or the

interactive service rate.

We show in Figure 2 how the traffic coefficient p(n) depends on the

number of terminals. It may be observed that 43 active terminals is a

number near the critical region; a few supplementary terminals will bring

the system to saturation.

Table I gives, for different values of N, the following information:

- the traffic coefficient p defined in Theorem 1;

- the mean number E[j] of interactive jobs and the percentiles.5, .9, .99, and .999, of the distribution ;

- the mean number E[i] of batch jobs and the same percentiles
of the distribution p;

- " ~ , w., --T. --T- "
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- the mean value E[w I] and the percentiles .5, .9, .99 and .999,

for the waiting time distribution of interactive jobs;

- the expected waiting time E[w] and completion time E[w c for

batch jobs, the mean number mic of interactive jobs processed

during the completion time of a batch job;

- the expected length m0 and m1 of a busy period of type 0 and
type 1.

On Figures 3 and 4 are represented the waiting time and completion

time distributions for batch jobs for the same values of N as in Table I.

It appears clearly that increasing the number of terminals does not

influence much the purely interactive components of the system, but

disturbs much more the batch components, especially in the critical region

N=35 to 47 (note that the system is unstable for N 48).

Remark. To produce the curves of Figure 3, we have solved the system (11)

for each value of N. The system was truncated at the percentile .999 in

order to lose at most a probability mass .001 in the tail of Wq(x). We

have not computed Wq(x) for N=47, because the resulting finite system of

differential equations would have been of order 48x125 which was too large

for our program to handle.

In Table II and Figures 5 and 6, we represent essentially the same

information as in Table I and Figures 3 and 4 for different values of V2"

The last row of Table II indicates the maximum number Nmax of terminals that

may be active without causing the system to become unstable.

It appears that improving the performances of the interactive components

of the system has a profound effect on the whole system, especially on the

batch activity. This is reflected on each characteristic, whether they be

moments or percentiles of queue length or waiting time distributions (see

also Table Ill).

th I
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Firstly, we prove that matrix H*(z,y,s) is a solution of the following

matrix equation:

(A 0+A 2)H* 2 ( -s-iA2H+A2+~ = 0 (A.1)

where A2is a square matrix of order (N+l) with the unique non-zero element

Proof. One easily proves the following equationis:

dh (k,e,x) A Ah *h0(kL~x)dx 01
+ NX 2h 1*h0(kjt,x)

h (k,9,X) Xh*0kx

+ (N-1)X 2 h 2(k,t,x)

+ J2 60 6 k0

+ (1-) 2 ' 2 ,, x

+ (Nj) hj1 (k,~,x)

-[X 1+(N-j))x24v2]h. (k,I,x), for 2sjst4.

Remark. We define h N+1(k~t,x) 0 for all (k,t,x).

Taking the generating functions of the Laplace-Stielties transforms,

we get (writing ht for ht(z,y,s)):
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X h*2 +NX h*h*-[X N v h*s*pz=0

11 0 2 1 2 1 N 2]ih~-h+uzhhl X+(N-)X 2 h-4v2)hj'+(N-I))X+P -sh*1+.2y =0,

0~~h- [ 1 (~~ 2 i 2]ht+(N-J)X2II 1 1h*_ 1-sht 0.

This last system becomes in matrix notation:

A *2+"*2+ *A"*AH-H+A+A = 0.

One now easily obtained Formulas (15) to (17) by deriving formula

(A.1) respectively with respect to s, z, or y, by right multiplying by e,

and by taking the result for z=l, y=l, and s=O.

The non-singularity of the matrix M follows from the fact that

det M=-lJ1(-pJ2) N(l-P) ' 0 for P<l.

In order to obtain Formulas (18) to (20), it is not necessary to

inverse the whole matrix M, it is sufficient to determine the first two

rows~n and r1 of M-1. They can be obtained by solving two linear systems

very similar to the system providing the vector n. Now Formulas (18) to

(20) iniieidately result from

0 = - rot, m1  -re

MBO = -!V-1 mB YlL
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Table I

Characteristics of the system behaviour
for different values of N.

i-=.030, x2=.056, p =.5, P2=2.4)

N 20 25 30 35 40 45 47

.108 .134 .174 .243 .375 .677 .909

E[j] .75 1.13 1.67 2.47 3.71 5.63 6.65
.5 0 1 1 2 3 5 6
.9 2 3 4 6 8 12 13
.99 5 6 8 10 13 17 19
.999 7 8 11 14 17 21 23

Ei] .14 .19 .28 .46 .94 3.59 17.60
.5 0 0 0 0 0 2 12
.9 1 1 1 1 3 9 41
.99 2 2 3 4 6 18 83
.999 3 3 4 6 9 28 125

E[w I] .31 .47 .69 1.03 1.55 2.35 2.77

.5 .00 .09 .31 .62 1.12 1.93 2.38

.9 1.06 1.47 1.99 2.73 3.76 5.17 5.84

.99 2.63 3.29 4.13 5.23 6.65 8.42 9.22

.999 4.13 5.00 6.08 7.43 9.09 11.06 11.93

E[w] 1.04 1.81 3.38 7.14 18.91 97.08 556.44

E[w ] 3.61 4.47 5.81 8.10 12.50 22.55 30.30

m 3.86 5.93 9.15 14.63 25.21 49.33 67.93

m0  4.04 5.16 7.04 10.69 20.01 69.74 333.40

m .81 1.03 1.38 2.07 3.78 12.71 59.63

i,
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Table II

Characteristics of the system behaviour
for different values of 112.

(x1=.030, X2=.056, wl=.5, N=43)

112 2.55 2.50 2.45 2.40 2.35 2.30 2.25 2.20 2.15

p .401 .435 .475 .522 .579 .649 .734 .840 .974

E[j] 3.96 4.21 4.47 4.76 5.08 5.43 5.81 6.23 6.68
.5 3 3 4 4 4 5 5 6 6
.9 9 9 10 10 11 11 12 12 13
.99 14 15 15 16 16 17 17 18 18
.999 18 19 19 20 20 21 21 22 22

E[i] 1.05 1.23 1.47 1.82 2.33 3.18 4.84 9.38 69.03
.5 1 . 1 1. 2 3 6 48
.9 3 3 4 5 6 8 12 22 160

699 7 7 9 7 13 17 24 45 320
.999 89 11 13 16 19 25 37 68 480

E[w] 1.55 1.68 1.83 1.98 2.16 2.36 2.58 2.83 3.11

.5 1.14 1.26 1.40 1.55 1.73 1.93 2.16 2.41 2.70

.9 3.74 3.99 4.26 4.55 4.88 5.23 5.61 6.02 6.47

.99 6.56 6.91 7.28 7.67 8.10 8.55 9.04 9.56 10.12

.999 8.92 9.33 9.77 10.24 10.73 11.26 11.82 12.42 13.06

E[w] 21.63 26.50 33.26 43.10 58.38 84.48 136.88 284.58 2268.57

E[Wc] 13.37 14.50 15.83 17.41 19.3-1 21.62 24.46 28.00 32.48

mlc 29.00 31.25 33.88 36.98 40.68 45.12 50.54 57.21 65.53

m0  22.34 25.66 30.14 36.44 45.89 61.52 91.89 175.10 1269.67

m 3.98 4.63 5.51 6.75 8.61 11.68 17.66 34.03 249.38

Nmax 50 49 48 47 46 45 44 44 43

. ~~~i. j-
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Table III

Percentage in reduction of the mean interactive processing time,
the mean interactive sojourn time, and the mean batch sojourn
time, for increasing P2 "

12 2.40 - 2.55 2.15 - 2.30 2.15 - 2.55

mean int. proc. time - 6% -6,5% -16%

mean int. soj. time -19% -22% -46%

mean batch soj. time -42% -95% -98.5%

- - t~.
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The completion time distribution for batch jobs.
Different values of N.
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