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I. DESCRIPTION OF PROBLEM AND RESEARCH OBJECTIVES

The ability of atomic gases, or polar molecular gases oriented by
electric fields, to double and triple the frequency of laser radiation is
determined by the hyperpolarizability tensors 8 and‘X of the gaseous mole-
cu]es.(]) Thus, these tensors are becoming increasingly important in a wide
(2-4)

variety of real and potential laser applications. Such applications in-

clude the possibility of producing high frequency, high power laser radiation,
utilizing various up-conversion techniques.(z's)
For example, it has been proposed to use selenium vapor to fre-
quency triple C02 laser radiation to enable atmospheric transmission(a), and
it has been shown that up-conversion of infra-red laser radiation utilizing
two-photon pumped alkali-metal vapor is possib]e.(z) Since the crucial piece
of information in each case is the hyperpolarizability of the vapor, the prac-
tical development of such techniques is jeopardized by a lack of knowledge of

the hyperpolarizabilities of atoms and molecules. Experimental determination

of these quantities are difficult, and the few theoretical calculations which




had been made prior to the current project, were not able to even provide
order of magnitude estimates of these properties.
Hyperpolarizabilities may be deduced experimentally by direct

(1.6:7) 4nd from measurements of

observation of harmonic generation in gases
the Kerr effect.(8’9) The experiments are complicated and the range of un-
certainty is sometimes large. Since hyperpolarizability is an atomic or
molecular property, it may also be predicted from quantum mechanical considera-
tions. Thus, it is quite important to have reliable theoretical predictions of
hyperpolarizabilities to complement the experimental effort, and to provide
results, particularly for hyperpolarizability as a function of frequency, for
experimentaily inaccessible problems.
(//////’”””’1¥he objectives of this effort ﬁéf~ﬁF0$R/are threefold:
} 'I) Develop state-of-the-art quantum mechanical methods to predict,
| from first principles, hyperpolarizabilities of atoms and
molecu]es}
fII) Determine why previous theoretical calculations have not been
able to even provide order of magnitude estimates of experi-
- mental hyperpo]arizabi]ities} Ovnd
t (Ilf) Apply the quantum mechanical techniques developed in this work
’ to predict hyperpolarizabilities and non-linear susceptibilities
for a number of atoms and molecules of interest,
This effort will provide complementary information to on-going experimental
efforts directed toward obtaining hyperpolarizabilities.
To improve the theoretical predictions, four.p:jgominant areas have
been identified. These are: (1) the basis set problem; (2) the effect of

| correlation; (3) the sensitivity of the hyperpolarizabilities to geometric

T ~—eypo - -




changes due to vibration; and (4) the frequency dependence. In this study we
have mostly concentrated on investigating (1), (2), and (3) with the question
of frequency dependence to follow once the initial three questions have been
cesolved. Once an understanding of the elements needed to make accurate
calculations is achieved, then a series of large-scale computational studies
of several atoms and molecules of special interest could be undertaken.

In our initial study, we have developed computer programs needed to

(10,11)

obtain correlated hyperpolarizabilities. We have used these programs to

provide the first correlated calculations of hyperpolarizabilities for molecu]esgm'nj
we have made the first study of the dependence of the hyperpolarizability on
molecular geometryslz) and we have determined the type of basis sets that are
needed to provide reliable resu]ts.(]o’]])
Armed with these components, our initial calculations for the ReX

(10-13) provide significantly better agreement

hyperpolarizabilities for molecules
with the observed experimental valuequhanany other theoretical work has been

able to achieve. It has been clearly demonstrated that correlation effects are

of enormous importance in ab initio theoretical predictions of hyperpolarizabilities.
For example, even in the comparatively simple case of NH3 correlation changes

8 by a factor of four, and doubles the sum g=(g In more

z22 Zzz+8xxz+8yyy)'
polarmolecules such as Be0, the correlation effect can be even more dramatic.
Equally large effects are found in X - Also, the extreme geometry dependence

of g and X has been elucidated for the first time. These results, plus a number
of additional accomplishments in the program, have set the stage for a rigorous,
predictive theoretical approach for hyperpolarizabilities, that should serve

to assist in the understanding, and in the experimental interpretations of

nonlinear optical processes 1n gases.
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II. HYPERPOLARIZABILITIES AND NONLINEAR OPTICS

The treatment of optical effects in a molecule is based upon
the dipole moment induced in the medium when perturbed by monochromatic

15
radiation{ %he appropriate harmonic perturbation operator is

N
H(I)(r)t) = - e_[l gl-E(w)cos ot (1)

i=
= kh(l)(g)(eiwt+e-iwt) , (2)

subject to the definitions

x = e (3)

N
h ) = e v 2 . (4)

i=1

In Equations (1) and (4) N is the number of electrons, Efw)the field

strength vector for frequency w, ry the position vector for each electron i,

and, a, a unit vector in the polarization direction.

The induced dipole moment is defined as ‘
u(t) = e<y|r|y> (5)

where ¥(r,t) are the eigenfunctions of the time-dependent Schradinger eguation. 5
Normal considerations of time-dependent perturbation theor'y(]5 provide the 1

expansion

':‘ o(rt) = vt ¢ VD) By v . L (6 |
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By separating the spatial and time dependent parts of the perturbed ]

wavefunctions, we may obtain from Equation (5),(15) 1

<WIIJW>=EéO)+E£1)E(w)COS mt+féz)(E(w))2‘Eéi)(E(“))z cos 2 wt

sy IR GRS TGN R TP e

+ Ei3)(5(“))3cos et + Pfé)(E(w))a cos 3wt

g d

The coefficients in Eqn. (7) are electric susceptibilities. The
j terms that are quadratic and higher in the field strength, are responsible
for the non-linear optical effects of a medium, as indicated by the freguency
doubling and tripling terms, cos 2 wt and cos 3 wt. The main objective of
g the present study is to investigate the capability of first-principle quantum

mechanical predictions of these susceptibilities for molecular gases.

i The definitions of the susceptibilities, ;in), in terms of the spatial
} functions {¢( )} are
|
i p{" = <ol (8) 1
| REPROTRR +<¢(1>r|¢(°) . () 3
| o8 = 1/a0es{ 21085 + <ol et 4 <ol Dintol)> (10)
+<¢fi)Izl¢fl)>-<¢(°)lrl¢(°)>(<¢+l)l¢+ >+<¢E?I¢S)’)]
é:h 1/2[<¢°(°)!:I¢ >"‘<¢(2)|"|¢(0)>+<¢(1)Ir|¢(1) (11) |
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These terms have convenient physical interpretationé.5)Equation (3)
is the static dipole moment while Equation (9) is the frequency dependent

dipole polarizability, which, of course, is also related to the index of re-

fraction, The remaining terms are generaily referred to as hyperpolarizabilities,

2
or nonlinear susceptibilities. Eé ), the first nonlinear term in the expansion S

2
of the induced dipole moment, determines optical rectification. Eéw) defined

in Equation (11), leads to second-harmonic generation. The two third-order




terms are respectively responsible for the intensity dependent refractive
index and third-harmonic generation. By generalizing the perturbation to
jnclude a combination of ac and dc electric fields, additional phenomena
like the linear electro-optical effect, dc-induced second-harmonic generation,

and the Kerr effect may also be described.

Equations (8-12) are the most appropriate expressions to employ
in actual calculations of the coefficients in Equation (7), since the
wavefunctions ¢i;) are defined by variational equations obtained from time-
dependent pertu;Bation theory. However, for additional insight, particularly
with regard to static (w=0) hyperpolarizabilities, it is often easier to
think in terms of sum over states perturbation formu]ae(ls’ls)With the definition

1
of h( )(£)=h(£) in Equation (4), and wy, Deing the excitation energy to state k,

Equations (9-11) become,

(Y . §

p h, / (w m)+(m -w)] . (14)

)} k;o Lokio! ko

EéZ) = -1/4 Z{Z—Ok ko oo/“ko[(”ko+w)] o gmo) I+ roghg i/ Taye* w) 4 (uy gme) 212
+1/4k’2; (20 Mo/ ok (wpgte) Hlwpy-w)] (15)

+hok£k£hgo/[(wko+w)(w£0+w)+(wko-w)(wzo-w)]}

p®) = 172 ): 0o Mol (g 20) (g o)+ iy -2 ()]
(16)

*TooMokMko! [logo*e) (uggme) 13
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The expressions for the third-order coefficients are very long and will not be
reproduced here [see Reference (15) for these].
Another notation is frequently used for the susceptibilities in
Eqn. (7), particularly for the static (w=0) case.(ln The defining expression
is a Taylor's series expansion of the energy in the presence of an external
field,
W(E)

W(0) - wiEy - (21)7 ay5E4E; (17)

-1
(31)7" 845% Ej Ej Ex

-1
(8107 Yijke E5 &5 E¢ Ep

The summation over repeated indices is assumed. The quantitives uj, a5
Bijks and Yijkz are respectively components of the permanent dipole moment,
polarizability, and the hyperpolarizabilities. A derivative of Eqn. (17)
with respect to a component of E defines the expansion of the induced dipole
moment which may be compared to Eqn. (7). Some consideraticn of Egn. (8)

and Egns. (14-16) shows that in terms of sum-over-state expressions,

u = p{%) (18)
Jlim () U, 5

&% o By T T2 L Lok Mo/ (19)

1725 = 1M p(2) o g4y pf2) . (20)

B e
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Eqn. (20) and similar expressions for vjji, are used to make some comrarisons

with the frequency dependent results for Béi) and Eéj). Since tre exciting

frequency « is expected to be comparatively low, often in the infra-red, or visible
static predictions for 8 and Y are not expected to differ substantially from

the frequency dependent experimental results. However, by considering an

expansion about w in Eqn. (16) a more formal expression for the frequency
dependence can be obtained.

Using the relationship that

: (a5p) ' = a7t £ aTba! +aTha b t L L . (21)
i
to terms quadratic in w/wko,
P2 L 2s s 2 T h e b e e (e e/ ) (22)
2w S “ok—ks 0 Pko¥ro W W/ \W/ g

k,s

o —

v kzy LokMke Mo/ Ukotso (/o) (/uy o)}

Eqn. (22) demonstrates that all terms linear in (u/wko) vanish, For a
frequency w, chosen in the visible, the ratio of lw/wkol, when w, - in an
optical transition, is usually small. Hence, the quadratic dependence also

attests to the comparatively small difference that would be expected between

(2)
P,  and 1/28.

e e s R el i 1 et - T -
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Defining & as the lowest optical excitation energy in the molecule,
then ]w/E]zlw/wkol for any k, and |w/w|? can be factored from Eqn. (22). If
the two contributions to g have the same or different signs, then it also
follows that !78(w/w)|2 > the second term in Eqn. (22). Hence, some estimate
of the frequency dependence in g can be made using this expression. This gives
a percent error in the static g values to be ~ 7{w/w)? x 100.

The main thrust of this research program is directed at ab initio
quantum mechanical predictions of hyperpolarizabilities. These quantities
are difficult to obtain experimentally, and equally difficult to compute from
first principle quantum mechanics. The next section discusses the quantum

mechanical approach.

i
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I11. QUANTUM MECHANICAL PREDICTIONS OF HYPERPOLARIZABILITIES

A. Computational Approach

The quantum mechanical approach to calculating static hyperpolariz-
abilities is built upon Eq. (17). Either of two rutes to the evaluation of
the coefficients, Mis aij’sijk’ oryijk2 could be taken. Cne approach is to
evaluate W(E) at a series of small values of the field strength (i.e., the
finite-field method), from which a series of finite difference equations can
be used to obtain the dipole moment and polarizabilities. The other approach
would directly calculate the coefficients by considering expressions obtained from
the appropriate order of perturbation theory. Although the second route does not
require taking small differences among large numbers, it is more difficult to
implement at a high level of sophistication since separate sets of involved
computer programs must be developed for each order of perturbation theory.
The finite-field method instead supplies all the coefficients from a single
computer program by simply evaluating W(E) at encugh field strengths. This
also offers the bonus that a much higher degree of electron correlation can
be incorporated into the computer programs that evaluate W(E) than would be
convenient to develop if each quantity, Us @5 Bs and Y were to be evaluated
separately.

In the finite-field approach, there is also a possibility that a
Tower order coefficient can be contaminated to some degree by the higher
coefficients. To reduce this possibility, one can choose the finite-field
strengths symmetrically, such as +0.01so that odd and even combinations of
W(+0.01) can be made to eliminate the next term in the expansion from the

finite difference equations. This eliminates most of the possible contamination.

———_——
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The finite-difference equations derived for Ea2sfs and y are reported in
Reference (10), included as Appendix A tn this report.
The energies W(E) can be obtained from the linked diagram theorem

of MePT. (18-22) 1nis is

M(ED = gy (E)14] <o () VBN 04, (E)-F(E)) V(E) 1) 0, (E) (23)
k=1

when the subscript, L, indicates exclusion to linked-diagrams. The terms
in this expression are NCHF(E), which is the coupled Hartree-Fock finite-field
value, ¢ (E), the CHF wavefunction, and F(E) the sum of one-electron Fock
hamiltonians including the external one-electron perturbation of Eq. (1).
NO(E) is the sum of the field dependent one-electron energies associated with
the orbitals composing ¢°(E). It is apparent from Eq. (23) that the zeroth-
order energy in this expression is the CHF result. In previous work on
hyperpolarizabilities of molecules, seldom has even the CHF model been used£23’24)
instead various uncoupled approaches (UHF) have usually been applied(zs) due
to the computational difficulties encountered. The present predictions start
with CHF and include the predominant correlation corrections arising from the
linked-diagram expansion in Eq. (23). In this respect, this work is unique
in studies of molecular hyperpolarizabilities.

In addition to ignoring electron correlation effects in previous
predictions of hyperpolarizabilities, the basis set problem has also received
inadequate attention. In a molecular calculation, the basis set is usually {

chosen to be composed of functions (called Slater orbitals) that are similar ]

avacn




n-] e'ary
L,
the usual spherical coordinates, and n, 2, and m are the normal quantum numbers.

to atomic orbitals of the general form r lée, ¢), where r, 3, and 3 are

] 13
? The exponential scale factor, o, referred to as the orbital exponent, reflects
the screening of an electron in a given orbital by the interior electrons in
the atom or molecule. In practice, when studying polyatomic molecules, an

gr2

{ exponential dependence of the form e~ is usually preferred because of

dramatic simplifications in the computation of molecular integrals. When such
functions are used to represent a Slater type function, they are referred to as
a contracted Gaussian type orbital (CGTO). In this work, the latter functions

are used, with a designation for NH, perhaps of Gs4p3d|4s2p)meaning 5s, 4p, and

3
3d type orbitals are used on the heavy, nitrogen, center, and 4s and 2p functions

on each hydrogen atom. A1l components of a p-function (i.e., Py py, pz) or

) a d-function (d d d ,d_, dxy) are included when a single p or d

vy’ dzz’ Xy’ “yz
is listed in the designation. Hence, 6s4p3d|4s2p)corresponds to 65 CGTO

xx?

functions for NHi.
Basis sets have evolved over the years in molecular quantum mechanics

until sets of orbital exponents for the different atoms composing the molecule
5 have become established (26) for ordinary energy related properties. That is,
the principal term in a field-free hamiltonian is proportional to 1/r, so these
basis sets reflect that dependence. When dipole moments, polarizabilities and
5 hyperpolarizabilities are wanted, the operator dependence is instead rn, where
) n=1,2, or 3. This places a stringent requirement on the basis sets to be used.
Since the molecule itself must be adequately described, a normal (1/r) type
energy basis is needed, while, in addition, a description of the long-range

dependence of the charge density is crucial to accurately represent an " operator.
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Since quantum mechanical applications have, until recently, been rather
1imited in the number of basis functions that could be used (typically
< 50 CGTO's at the CHF level, and less if correlation is needed), the size
of basis which would have the combination of properties required to adequately
describe hyperpolarizabilities has been difficult to achieve.

In order to have reasonable confidence in the capability of a
basis set to simultaneously describe the electron density in the energy
rich (i.e., 1/y) region of the molecule, and in the tail (i.e., ") region,
our initial molecular calculations studied the prediction of hyperpolari-
zabilities with a series of basis sets for HF by comparing with numerical
Hartree-Fock ca]cu]ations.(27) The latter calculations, which are only
, and vy

possible for the s @ components, avoids any basis set

z2’ Bzzz 2222

error since the differential equations of Hartree-Fock theory are solved
numerically. Besides being limited to the z-components of the various
quantities, this technique is applicable to atoms or diatomic molecules, so
its value Ties in selected comparisons rather than general use. In this
manner, we are able to show that a type of selection scheme for CGTQ basis

sets(10,27)

appears to be capable of reducing the basis set error for CHF
hyperpolarizability predictions to ~10 percent. Basis sets so chosen, however,
require typically 65-80 functions even for the small molecule isoelectronic
sequence HF, Hzo, and NH3. Such large numbers of basis functions, still

sorely test quantum mechanical methods and the efficiency of computer programs,

so it is absolutely necessary that the more sophisticated and computer

intensive correlated calculations benefit from the most advanced methods possible.

- e e ..
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(18-22) 10,28-30)

The development of MBPT under AFCSR\qunsorship,( has made
such correlated calculations possible. (The reader is referred to Appendices A
and B, for more detailed information about basis set selection and MBPT
methods for evaluating correlation corrections for hyperpolarizabilities.)

Two other theoretical developments in this research should also be
mentioned. These developments pertain to infinite-order correlated calcula-
tions and the frequency-dependent problem.

Most of our computations in the two years of this program were
limited to SDQ-MBPT(4). The acronym means the inclusion of all correlation
effects due to single-, double-, and quadruple-excitation diagrams that arise
through fourth-order in the linked-diagram expansion. This model is described
in detail in Appendix A, and we have established this model to be a highly

(13) The sensitivity

accurate approach for ab initio correlated calculations.

of hyperpolarizabilities to correlation effects, however, suggested that

terms higher than fourth-order might be important for such sensitive properties.
To address this question, a substantial development in the past

year has been to generalize the theory and computer programs to carry out

CCSD calculations (i.e., coupled-cluster singles and doubles). This model

is an infinite order generalization of SDQ-MBPT(4), to which CCSD reduces

in fourth-order, permits a consideration of possible contributions of higher

order terms. The computer codes are functioning and we have been making

applications at this level for the H20 molecule, but the excessive computer

time requirements have prohibited us from obtaining a complete picture at

this time. Our current indication is that little change will occur due to

these higher-order corrections, but we will reserve judgement until our

study is completed.
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The other theoretical development we have been pursuing pertains
to determining hyperpolarizabilities as a function of frequency. This is
being accomplished by employing time-dependent Hartree-Fock theory (also
known as the Random Phase Approximation) and calculating the 8 hyperpolari-
zabilities at a range of frequencies. This approach has the bonus that a
great deal of information about the excited state of atoms and molecules is
also obtained from inspecting the resonant frequencies. So far, we have
assumed that the correlation corrections to the frequency dependent polari-
zabilities will be essentially the same as in the static case. Otherwise,
the computations would become intractable. We have made some preliminary
applications at this level which so far support the assertion that the
frequency dependent hyperpolarizability is not too different from the static
value unless one is near a reconance when more accurate computational approaches
would be required. Like the infinite-order CCSD approach discussed above,
this project has necessarily been aborted by AFOSR's untimely failure to

continue this research project.
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B. Applications

The molecules studied in the two years of this project include Be,
HF, H20, NH3, Be0, LiF, and N2. In Appendices A and B, HF and H20 are considered
in depth. N2 and Be are discussed in previous reports, so the present discus-
sion will primarily focus on NH3 with a few additional comments about comparisons
among different molecules.

From the viewpoint of a comparison between experiment and theory,
NH3 is a very interesting system. From dc-induced second-harmonic generation
experiments, Miller and Ward find the electric susceptibility x#f)= 10/3(8ZZZ

(14)

+ 8, '+Bzxx) to be -209+5 x10° 33 esu/molecule. The previous theoretical

vy
calculations at the CHE Tevel, predict -44.4(24)_65.1(24) 19 o{24) 15 6(23) g

-40.8523) all is very poor agreement with the experimental result. Besides
the poor agreement with experiment, as a basis set improved, the theoretical
calculations show a tendency to be in progressivelyworse agreement with
experimént. This is indicated by the fact that the CHF calculations of
Lazzaretti and Zanasi obtained -65.1 with a simple double-zeta basis of just
16 CGTO's, while getting -19.0 when they include polarization functions on all
atoms which provides a 30 CGTO basis set.(24) This behavior is a common trait
among hyperpolarizability calculations, reflecting the fact that a small basis
set has a sufficiently poor description of the electron density, that gross
error cancellation can occur, with the errors in CHF theory partially epposing

the errors in the basis set. Once the basis set is somewhat improved, so that

a better discription of the density is possible, the deficiencies in the CHF
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model become more apparent, resulting in even poorer agreement with experiment.
However, a 30 CGTO basis is still in no sense adequate for the calculations

of properties as sensitive as hyperpolarizabilities. In our work, much better
basis sets are used while electron correlation is also properly included.

(10) which enabled us to

Using the procedure described elsewhere
define basis sets that provide good agreement with numerical Hartree-Fock
calculations, we have generated a (5s4p1d|4s2p) basis set for NH4 (basis A;

53 CGTO) and a (6s4p3d|4s3p) basis set 75 CGTO. The results obtained with
these basis sets are shown in Table 1. A susceptibility x%%) of -209 x10733
esu/molecule corresponds to a 8 = -72 in atomic units.

It is apparent from Table 1 and II that the much superior basis sets of
the present work are capable of quite accurate predictions of the dipole
moment and polarizability. However, even for these properties, which are not
as sensitive to correlation as are the hyperpolarizabilities, there is a
significant change between the noncorrelated (CHF) results and the correlated
SDQ-MBPT(4) predictions. The dipole moment changes about 6 percent, just as
in HF and H,0, while the polarizability changes by 9 percent. For these
two properties, there is far less difference between the two basis sets than
there is due to correlation effects. Notice in particular in Table II the dramatic
change in the anisotropy. ayq-o, due to correlation.

The most dramatic eff;Et of basis set and correlation is reserved
for the more sensitive hyperpolarizabilities. For example, the change to a
more complete, diffuse basis set, causes a factor of two reduction in Byrz
which is responsible for basis g predicting a |g| that is smaller than in the

somewhat poorer basis A, but still the agreement between the CHF results and
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TABLE I. COMPARISON OF CHF AND SDQ-MBPT(4) DIPOLE MOMENTS
AND POLARIZABILITIES FOR MOLECULES (ATOMIC UNITS)

Tt s NS Gnms Geme S GEES NN B

Molecule CHF SDQ-MBPT(4) Experiment
HF " 0.758 0.709 0.707
& 4.89 5.58 5.52
j H,0 " 0.784 0.735 0.724
‘ T 8.53 9.54 9.64
_ NH, " 0.614 0.578 0.579
] T 1.1 14.2 14.8
LiF " 2.56 2.49 2.49
T 7.48 9.83
BeO u 2.96 2.52
® 20.9 29.73
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experiment is poor. In terms of x{%): our best CHF calculation predicts
-70.8, while for basis A, we obtain -85.8. These are improvements over other
CHF calculations, but obviously, even with superior basis sets, there are
large effects that contribute to the hyperpolarizabilities that are not yet
included.

The largest single effect, we believe, is the effect of electron
correlation. This is demonstrated in Table II. In our best basis set, B,
correlation causes a factor of four increase in 8 with a more modest

222
increase in Boyy The increase in basis A is not as great, but still amounts

Yy
to a factor of more than two in 8, .. It is not entirely clear why such large
effects are observed due to correlation, but it apparently pertains to a much
more accurate description of the long-range part of the charge density that
is being preferentially sampled by properties like hyperpolarizabilities.
Also, the lone pair of electrons on the z-axis is expected to be quite
sensitive to correlation effects.

In Table III a comparison of NH3 with HF and H20 is presented.
Correlation changes 8 by almost 100 percent of the CHF result for NH3, while
being respectively 28 percent and 50 percent for HF and H20. This may be
due to the single lone pair in NH3 contributing its entire effect in one
direction while the two pairs in HZO and three in HF have somewhat opposing
effects. Whatever the reason, with correlation our prediction for x{%) for
NH, is -138.7 X107 33 esu/molecule in much better agreement with the dc-induces

second harmonic prediction of -209 +5x10733 esu/molecule than all previous

[P

calculations as shown in Table III. It is apparent that the agreement can
still be improved, but it is certainly evident that only a correlated approach
has any hope of successfully predicting hyperpolarizabilities.

N m aw
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The components of the X hypernolarizability are similarly observed
to be greatly affected by basis set and by correlation. The behavior is
rather more predictable than in the case of 8 however, since improving the
basis set increases the size of 1 and correlation further increases it.

The correlation effect on v is 72 percent of the CHF result, but even

2222
the more diffuse basis contributes this large a percentage change. 8 on
the other hand, tends to become smaller with improvements in basis sets,
while becoming larger due to correlation effects. Since the correlation
effect is usually larger in a better basis, though, the basis set effect
is partially offset when fully correlated calculations are made.

The number in parenthesis in Table 1 show the change incurred when
a smaller field strength of 0.005 instead of 0.01 is used. This. indicates
the degree of contamination remaining in the finite field method. Although

there is almost a one unit change in 8,72 it is clear that contamination will

have 1ittle net effect on the observed results.

e AR e
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27

V. REVIEW OF RESEARCH ACCOMPLISHMENTS

Under Air Force Office of Scientific Research sponsorship, a number
of accomplishments have been made in this study that we believe make a signifi-
cant contribution to the problem of atomic and molecular hyperpolarizabilities,

and the related nonlinear optical effects of gases.

A. This project provides the first studies of molecular
hyperpolarizabilities ever attempted which include
electron correlation. Molecules studied include, N2,

HF, “20’ NH3, BO» and LiF.

B. This work has demonstrated that correlation effects
are tremendously important in a predictive theory of
hyperpolarizabilities. In the case of NH3, BeO. and LiF,
correlation can change the hyperpolarizability by more than

a factor of two.

j C. To make state-of-the-art quantum mechanical calculations

of hyperpolarizabilities, the theory of many-body perturbation
} theory (MBPT) has been extended to permit the inclusion of
all important correlation effects in hyperpolarizability

calculations.

D. A group of highly efficient ab initio computer programs based
upon MBPT, and that can use quite large basis sets, have
been developed to make possible reliable calculations of

hyperpolarizabilities.
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We have also generalized the calculation to include
frequency-dependence and to treat the important correlation
effects in an infinite-order correlated treatment based

upon the coupled-cluster formulation.

For the first time, reasonable agreement between theoretical
calculations and second-harmonic generation experiments

for g= (8

8 ) has been achieved. For Hy0, Ward

+ +3
22z “xxz “yyz
and Miller report x%%) to be - 94+4 x 10 3%esu/molecule,

while our predictions give -72 and ~80 x 1033 esu/molecule

for the static hyperpolarizability.For NH, experiment reports

-209 x 10" *3esu/molecule while, our calculations give at

w=0, 138.7 x 10733 esu/molecule. A1l previous studies of NH; were

in much poorer agreement with experiment, often even getting

an incorrect sign.

In another investigation, which is also the first of its kind,
we have studied the 5 hyperpolarizability tensor as a function
of geometry for HZO' It is found that E is extremely sensitive
to molecular vibrations, with its value changing by nearly

50 percent just from equilibrium to the maximum extent of the
zero point vibration, for the symmetric stretch mode (See

Appendix B).

From {G), it is apparent that proper account of the sensi-
tivity of hyperpolarizabilities with vibration is important

if theoretical and experimental numbers are to coincide.

33
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Additional studies have been made to determine the types of
basis sets required to obtain reliable higher polarizabilities.
This is extremely critical to the theoretical predictions.

A ¢omparison with completely numerical coupled Hartree-Fock
studies of the HF molecule were undertaken, since these

results should entail essenfia11y no basis set error. The
types of basis sets used are found to agree with the fully

numerical CHF calculations to within ~10 percent (See Appendix A).
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Molecular hyperpolarizabilities. I. Theoretical calculations including correlation

Rodney J. Bartlett and George D. Purvis Iil
Battelle, Columbus Laboratories, 505 King Avenue. Columbus. Ohio 43201
(Received 7 June 1979)

Static polarizabilities and hyperpolarizabilities for molecules are investigated at the correlated level. The
finite-field, coupled Hartree-Fock theory is used as a zeroth-order approximation, with correlation included
by using the linked-diagram expansion and many-body perturbation theory, that includes single, double, and
quadruple excitation diagrams. The theory is illustrated by studying the hydrogen fluoride molecule. It is
demonstrated that the correlation effect for the hyperpolarizabilities B and ¥ can be quite large. The
average polarizability and dipole moment of HF are in excellent agreement with experiment. The retative
importance of the various types of diagrams contributing to electric field properties are discussed. The
dependence of the computed hyperpolarizability on basis sets is also investigated.

I. INTRODUCTION

The nonlinear optical properties of gases have
been of experimental interest for several years.'-’
Recently, a number of real and potential laser
applications utilizing the frequency-tripling pro-
perties of metal vapors and other atomic gases have
been suggested.®'° Similar devices employing
polar molecules oriented in an electric field can
be envisioned for frequency-doubling applications.
The utility of such novel devices will be ultimately
determined by properties of the atomic and mole-
cular higher polarizability tensors, but little in-
formation on these quantities currently exists.

Hyperpolarizabilities may be deduced experi-
mentally from direct observations of harmonic
generation in gases®-® and from measurements of
the Kerr effect.®” However, the experiments are
difficult and the range of uncertainty is often large.
Since hyperpolarizability is a property of a single
atom or molecule, it may also be predicted from
quantum-mechanical calculations. Hence it is
important to have reliable theoretical predictions
for higher polarizabilities to complement the
experimental efforts.

While some coupled Hartree-Fock (CHF)! level
calculations of atomic hyperpolarizabilities are
available, mostly for inert gases, '? very few ab
initio calculations of molecular hyperpolarizabili-
ties have been attempted, !*-'* and none of these
has yet shown any kind of agreement with experi-
ment.* The molecular calculations which have
been made frequently employ inadequate basis sets
or are carried out at the level of uncoupled Har-
tree-Fock perturbation theory.'>*'” Only a few
previous studies have even used the full CHF
method, '*-'* with no work, at all, on molecular
hyperpolarizabilities at the correlated level. Re-
cent papers have addressed the question of picking
adequate basis sets for polarizabilities, ' but
the accurate inclusion of correlation effects is

18

still expected to be a necessity if a reliable pre-
dictive theory of hyperpolarizabilities is to be
developed. Some recent communications have
demonstrated the importance of correlation for
the dipole polarizability,'®?? and one would anti-
cipate an equally large, or even larger, correla-
tion effect for the hyperpolarizabilities.

Recent developments in many-body perturbation
theory (MBPT)*-?" and the coupled-cluster ap-
proaches (CCA), 2%?%% have made it possible to
include correlation in a sufficiently tractable
manner to include a very large part of the net
correlation effect in molecular calculations®*
even though comparatively large basis sets are
required in hyperpolarizability determinations.

In the following, we report a study of the hyper-
polarizabilities of the HF molecule, considering
correlation effects due to single, double, and
quadruple excitations.?® HF provides a convenient
example for this initial study since a numerical
CHF result has been obtained for the parallel com-
ponents of the second- and third-order polariza-
bility by Christiansen and McCullough, '*'® and
this result may be used to eliminate some uncer-
tainty in chosing a reliable basis set.

1l. HIGHER DIPOLE POLARIZABILITIES

The energy of a molecule in an external field
& may be written in a power series as

WE) = W)~ u 8, -2 a8 8,
-@B1r'8,88,8,~ @l

Xyl 888, ()

where the summation over repeated indices is
assumed. &, is a component of the external field,
1, i8 a component of the permanent dipole, a, a
polarizability, and 3,,, and v,,,, are, respectively,
the second and third polarizabilities.'** A com-
ponent of the total dipole moment, p,, is obtained

1313 © 1979 The American Physical Society
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from the derivative 3W,38,, which is composed
of the permanent moment and an induced moment
due to the higher-order terms,

aw
-(m) ==pi= @ 8,4 210'3,,6 6,

By 8,88, @)

The production of second and third harmonic
generation follows from the fact that the 8 and 3
in term in Eq. (2) involve products of electric
field components. Hence for §,=§,, sinwt, we
have

8%=8% sin*wt = 1831 - cos2uwt),

and the cos2wt term gives rise to frequency doub-
ling.! Similarly, the third power in 8 is responsi-
ble for frequency tripling.;

The polarizabilities &, B, ¥ are said to be se-
cond-, third-, and fourth-order properties,
respectively, based on the order of the external
field in the energy expansion of Eq. (1), while the
permanent dipole moment is {irst order. It may
be shown that a Hartree-Fock wave function will
predict a first-order property, like the per-
manent dipole moment, to a comparatively good
accuracy because the first correlation corrections
vanish, 332 but there is no similar reason to ex-
pect the CHF theory'"? to be adequate {or the
higher-order properties.'®?+?? Furthermore, for
even highly accurate first-order properties and
especially higher-order properties, correlation
must be considered.

IIl. MANY-BODY PERTURBATION THEORY

The coefficients in Eq. (1) can be obtained direct-
ly from perturbation theory or by using finite-
field methods. Choosing the latter, temporarily,
we may write the Hamiltonian for the perturbed
molecule as

3%@)=3+228)=F,+V+12@) 3)
and
F&)=F,+2a@), @

m(é'm}f; w(i)=-2:‘r3 (i), (5)
V@)=Y ri-3 u,8). ()

<4 f

F, is the usual independent particle self-consistent-
field (SCF) effective Hamiltonian; hence

F&) =X (ht) +u6,8) -8 7)) ™
i

u(1, 3)=Z’: [ x@: 2, & 2m1,, ®)

and in the general case the molecular orbitals
{X,} are field dependent.

If we are only interested in the SCF solution 1n
the presence of the field, then V" in Eq. (3) may be
neglected. This defines the CHF model, with the
field-dependent solutions

FEIC,E)=2¢,8108). 9

The molecular orbitals x,(&) are defined as an
expansion in terms of an atomic orbital basis set

o)
x,@&)=15C,@). (10)
From Eqs. (6)-(9) it follows that
F&)e,6)=w,8)0,8), (11)
where
3,8 = alx, (1) - - x,)], (12)
Weip8) = W, (8)+ (0,1 viE) |y (13)

In the CHF case. the SCF equations are solved
for fixed (finite field) values of the field strength
§. From these solutions, the CHF energy may be
obtained as a function of & as

Wy @) = ﬁ ¢, &)

-gZ:<x,(§)x,(§)nx,(a')x,(3>>. (14)
LY

The double-bar notation designates the two-elec-
tron integral,

(X'X." X'X.)

= f dr, fd“'zx,‘(l)x:(mr;;(l -P,)

X x,(1)x,(2). (15) 1
The CHF polarizabilities and hyperpolarizabilities
may be derived from second and higher derivatives j
of Weyp(8) with respect to the field strength.

Alternatively, the induced dipole moment can be
calculated from the wave function, Eq. (12), with
the polarizability and hyperpolarizabilities ob-
tained as first, second, and higher derivatives
of the induced dipole moment. The rigorous
equivalence between the dipole procedure and the
energy-based procedure depends upon the satis-
faction of the Hellman-Feynman theorem for the
approximate wave functions.??

As an alternative to the CHF model, a perturba-
tion expansion of F(g) and u(3) in powers of & may
be made. This procedure, subject to orthonorma-
lity of the molecular orbitals, leads to the coupled
perturbed Hartree-Fock (CPHF) method.>** The ]
results of CPHF and CHF are formally the same.! 1
. In order to go beyond the CHF level and include
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FIG. 1. Single-particle corrections to the energy dia-
grams. (---X) is the negative of the Fock potential. U
occupied and excited one-particle orbitals are deter-
mined as SCF solutions at any field strength, then these
diagrams component mutually cancel.

effects of correlation, the perturbation V(g) of
Eq. (6) needs to be considered in more detail. In-
cluding this perturbation, the energy for the per-
turbed molecule can be obtained from the linked-
diagram expansion®! as

W(g) =Weur (E)

*{‘: (6, | VENW,E) - FE N VB |69, -

(16)

The terms defined by the summation in Eq. (16)
are said to be the correlation corrections to the
energy for a given field strength. Just as in the
zero-field case, by solving the SCF equations in
the presence of the field as in Eqs. (8)~(10), the
SCF cancellations shown in Goidstone-diagram
form in Fig. 1 (--~ X is the negative of the Fock

1

L J C

1A} B e
o i) s a

FIG. 2. Zeroth- and first-order relaxation diagrams
for a second-order property. These terms are all in-
cluded in 2 CHF calculation for a second-order propertyv.

potential) are still maintained, so that no diagrams
containing these parts are required.

The coefficients in Eq. (1} are given as deriva-
tives of W{Z) with respect to field strength. [n
the finite-field approach, W(g) must be computed
for several field strengths to allow the determina-
tion of the polarizabilities, which requires taking
small differences between large terms. If the
differentiation is made tnitially, separate linked-
diagram expansions for g, a, 3, ¥. etc., in terms
of the zero-field SCF orbitals [x,10) = x,. €,(0)
=¢,], can be used to evaluate the small polariza-
bilities directly.

In the latter case. ordinary double perturbation
theory gives

W=w, e @, (Ver)

N0
xX[(W, = F ) 'P(V +2Q - AW)]'[%) an
and. for some component §_,
W(E,) =Wy (W o e W, oW e )6,
Wy g Wy W, e 0820 -, (18)
WE =W, -W 8 W, 8.w 8+ .
(19)
Considering a second-order property for illus-
tration, with the definition
R,= P(W,-F)'P, (20)

where P is the projector for the orthogonal com-
plement to ¢,,

WoalB) = 30, = (@, |xRox [@5) + (Bo | xRy (x = W, R,V |® o) + (&g VRo(x = W )Rx | &)

+{ @ | xRV = Wy JRyx [@e)+ " * .

The first term on right in Eq. (21), W, ,, is given
by the uncoupled Hartree-Fock (UCHF)'? approxi-
mation [Fig. 2(A)], which is

- s 10
wz'o—u;;)u;e) - ' @2

while the higher terms involve the field-indepen-
dent perturbation V(0). The Goldstone diagrams

(21)

r

for second order in an external field and for zeroth
and first order in the two-electron perturbation
V(0) are shown in Fig. 2. The symbol (---e) indi-
cates interaction with the external field.

It is important to recognize that even though
diagrams (B)=(G) of Fig. 2 involve a two-electron
vertex, these diagrams and selection of others
in all higher orders in V(0) are included*™* in the
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CHF results or in the perturbation-thenry-equiva-
tent CPHF.'™'® At least in the static case these
terms should not! be considered as correlation
corrections. These terms arise, instead. {rom
the effective Fock potential #(i), now written in
terms of perturbed orbitals, which reflects the
relaxation of the orbitals to the external perturba-
tion.'* Beyond first order in V(0), additional
diagrams arise which are no! included in

CPHF, ™" and these terms constitute true corre-
lation corrections. In the finite-field approach.
all terms which arise from derivatives of the
summation in Eq. (16) are actual correlation cor-
rections, while the initial CHF calculation pro-
vides the zeroth- and first-order energy correc-
tions, subject to the field-dependent orbitals.
(CPHF is the static equivalent of time-dependent
Hartree-Fock theory or the random-phase approxi-
mation, which is similarly recognized to sum
selections of many-body propagator diagrams to
all orders.*®»% In the time-dependent context, the
terms so summed are frequently referred to as
“dynamic” correlation.’®)

Even though the direct determination of the
polarizabilities is a distinct advantage. it offers
the disadvantage that separate sets of programs
must be written to evaluate the diagrams for each
order in the external perturbation, while the
finite-field method allows all polarizabilities to
be obtained from simply executing “enough” energy
calculations at a series of field strengths. This
also permits one to exploit the theories and pro-
grams that have been developed for the usual
correlation problem?® which typically offer a much
more sophisticated level of treatment for the
correlation than would be convenient to develop
for each individual order in an external perturba-
tion. Also, the dichotomy into correlation and

PURNVIS. T 20

relaxation effects 1s transparent {Hr the finite-{icld
methnd.

IV NUMERICAL RESULTS

In the finite-!ield methnds. 1t 1s necessary ty
nbtain the various polarizability components from
formuias for the energy or dipole moment. In the
present work, either procedure may be used at the
CHF level, since ¢,(8) satisfies the Hellman-
Feynman theorem. but derivatives of 13 will be
used for the correlation corrections. By consider-
ing Eq. (1), it may be shown that the finite-diffe-
rence formulas listed in Table [ hold for the various
polarizabilities. Each of these formulas is obtain-
ed by excluding all even or odd terms in Eq. (1) by
using positive and negative field strengths of the
same magnitude. This ensures that the contamina-
tion from the next higher term in the power series
is completely removed, leaving only the next high-
er term of the same type (i.e., even or odd), which
is about four orders of magnitude smaller (at the
field strengths used herej than any polarizability
being determined. Hence, essentially no error is
anticipated from higher polarizability contamina-
tion. At the same time, however, field strengths
of adequate size must be used to ensure that
significant energy differences are obtained. In
this work field strengths of 0.0, 0.01, and 0.02 a.u.
are found to be suitable.

The formulas in Table I are general. but if some
symmetry is present. formulas 1.3 and 1.6 be-
come much simpler. If the molecule has a rotation
axis, with { representing the direction of this axis,
and j is perpendicular to f, group-theoretical con-
siderations show that the components. 5. @,
Yujs and ¥, are vanishing at zero field strength.
This results in particularly simple formulas for

TABLE I. Energy formulas for finite-field calculations of dipole moments, polarizabilities, and hyperpolariz-

abilities.?
Odd order
U8 = = (W) = W8 )]+ f | W2E )= W(=28 )|+ O a
8148 =4 (W28 - W(=28)]+ (WE)-W(=8))]+0) @)
8,838 81,8812 [ W(E; =8 )=W(=8 + 8§ )j+ [WEN=W(-E )|~ (WS ) = W(=§ ]+ O16) 3)
Even order
@ 8= +E W0 =4 (W8 )+ Wi= 8]+ (w8 )+ W(=28 )]+ OtO) T
VSl +4 (W) + W(=8 )] = (W2E)+ W(=28,)] = 6W(0)+ Ole) (3)
F71015183 =20, 8,8, =4 7,11 818 1+ v, B8 )= = (W8, =8 )+ W(=8+ 8 )|+ (WS )+ W(-8)) (6)

+ [Wi8,)+ W(~8,)] ~2W(0)+Ote)

* For a molecule with a rotation axis in the direction i, a;, 8;, ¥;si» and ¥;;;; will be zero by symmetry.
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FIG. 3. All second- and third-order correlation dia-
grams provided that SCF (CHF) orbitals are used for
the occupied and excited one-particle states. Anti-
symmetrized vertices are assumed in these diagrams.

the nonvanishing components.

The finite-field correlation corrections included
are shown as antisymmetrized diagrams in Figs.
3-6, where it is understood that the hole and
particle lines are field dependent (or “dressed”)
and that finite differences of these quantities must
be taken before the polarizabilities are obtained.
(See Refs. 27 and 40 for the rules and algebraic
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FIG. 4. All single~excitation fourth-order diagrams
provided that SCF (CHF) orbitals are used for the
occupied and excited one-particle states. Antisymme-
trized vertices are assumed.,
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formulas corresponding to these antisymmetrized
diagrams.)

These diagrams consist of all terms that occur
through fourth-order in the correlation, subject
to field-dependent SCF orbitals that would arise
due to configuration-interaction (Cl) single, double,
and quadruple excitations.”® Triple excitations
also contribute in the fourth-order energy, tut
these are excluded.

It is well known that CI-type single excitations
are quite important in determining properties other
than the energy, since operators such as & *F. will
mix single excitations directly with an SCF unper-
turbed wave function. In the present work, the
predominant effect of single excitations is intro-
duced by means of the initial CHF calculations,
which, as described in Sec. III, is responsible for
summing a series of diagrams involving such
single-excitation vertices as occur in Fig. 2 (i.e.,
A7) to all orders. This “dresses” the hole and
particle lines involved in Figs. 3-6. The remain-
ing single excitations accounted for by Fig. 4 in-
volve the smaller effect of single excitations of

Y

FIG. 5. All double-ex-
citation fourth-order dia-
grams provided that SCF
(CHF) orbitals are used
for the occupied and ex-
cited one-particle states.
Antisymmetrized vertices
H) are assumed.
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hrs fashion. The smallest exponent for each ! quantum

- '\Q“J number per atom 15 multiplied by 0.4 to vbtain a

by new, diffuse function to assist in describing the
polarizability. The resulting basis 6s4p2d 4s2p
is expected to be adequate to describe the dipole
polarizability. To also attempt to account {yr the
higher polarizabilities, the new exponent 1s again
multiplied by 0.4 to add another p and 4 function on
F. and an s and p function on H. Finally, the most
diffuse d exponent on F was again multiplied by
0.4 and this function added to the basis set. We
also consider the addition of an extra diffuse s
function on F and the exclusion of the most diffuse
s and p on H and the d function on fluorine. This
provides four different basis sets.

A GTO basis set similar to these has been shown
FIG. 6. All quadruple-excitation fo'urth-order dia- to account for the numerical CHF results for .,.
grams_. provided.that SCF (CP?F) orbitals a.:-e .used fo.r &, Sere and to within a few percent.'” How-

occupied and excited one-particle states. Unlinked dia- b e bl
grams (H) and (I) do not contribute to the correlation ever. those authors were unable to reduce the er-
ror in the CGTO value for g,,, below 7% When we

energy. Antisymmetrized vertices are assumed.
attempted to use their basis set, with all six possi-
ble Cartesian components of the d functions, xx,

dressed lines that enter into the fourth-order ¥y, 22,x2,v2,xy (CM use only the five normal d-
energy only by interacting through dressed double function components), we found an approximate
excitations. The very high-order coupling of the linear dependency which made our correlated cal-
first category of single-excitation effects with culations unstable. We were able to resolve this
correlation due to double and quadruple diagrams problem and also substantially reduce the error
by using “dressed” hole and particle lines is one in the SCF j3,,, component by choosing a tighter
of the additional advantages of the finite-field- d-polarization function on F (STO £ =3.358 com-
based methods. pared to £ =2.25 for CM) and then adding an addi-
The basis set for the present study of HF is tional diffuse d function to the F atom. Both the
chosen essentially following the prescription of tight and diffuse d functions seem to be important
Christiansen and McCullough (CM).'* We start as illustrated in Table II. Using a tight d function
from Dunning’s*! 5s3p contraction of Huzinaga's*? while excluding the most diffuse d-function (bases
9s5p basis set for flourine, and Dunning’s 3s con- A and B) results in a 3,,, that differs from the
traction for hydrogen Slater exponent 1.2. These numerical result by 11%. In the CM basis, which
functions are augmented by a two-Gaussian fit to has a verydiffuse d functionbut excludes atight po-
a d-STO for F with exponent 3.358, and a two- larizationd function, a similarerroring,,, occurs.
Gaussian fit to a p-STO, exponent 2.082 for H.*? Bycombiningboth, asinbasesC andD, thiserroris
This results in a 5s3p1d/3s1p initial basis set. greatly reduced.
This basis is then augmented in a “well-tempered” The difference between bases C and D is the

TABLE 1I. Comparison of CHF results for HF in various basis sets with numerical CHF.
(R=1.7328 bohrs; values in a.u.)

Basis set (GTO) wi0) ut Qe Beee Yorse
CM (655p3d/4s3p)° -100.0535 0.759 5.80 -9.0 310
A (6s5p3d/5s3p)° ~100.0563 0.757 5.72 -9.3 250
B (7s5p3d/5s3p)¢ ~100.0563 0.757 5.72 -9.2 260
C  (8s5p4d/4s2p)° ~100.0563 0.759 5.73 -8.4 250
D (Bs5p4d/5s3p)° ~100.0565 0.758 5.76 -8.5 280
Numerical CHF® ~100.0706 0.756 5.76 -8.3 320

4 Coordinate system {s chosen such that dipole moment (F"H") is positive.

® Results of Ref, 16,
° Basis sets A, B, C, and D use all six Cartesian Gaussian d-orbital functions xx, vv, 2z,

xy, vz, and xz,
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-9.7

+0,70
-1.2

-0.6

+0.206
-0.97
-0.47
-1.90

+60

-0.014
+0.13

+0.080
0.4

+0.145
~0.7

-0.332
+0.49

+0.51

+0.826

-0.72

-0.64

-2.0
110

4.48
-8.48
-0.03
~8.54

280

a,=a,
Blﬂ

-0.6
-10.9
390
140

+0.03
+0,20

-0.2
-10

-0.3

3”:=ﬂ:u

2.4

0.8
20

~1.3
50
20

B = (Boea+ByyetBrxa)

Y sanz

-60
=30

60

30

10

60

80

3 Correlation involving the core is not included.
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exclusion of the most diffuse s and p functions on
H. This is seen to have almost no effect on 3 while
having a somewhat larger effect on v,,,,. The
observation that the diffuse H s and p functions
have only a small effect i1s partially due to the fact
that the diffuse region of the charge cloud is al-
ready accounted for by the other highly diffuse
functions on F. However. 7,,,, is usually larger
the more diffuse functions that are included in the
basis, as supported by the results of bases sets

C and D.

It is clear from Table I that good agreement
with the numerical results for u,, a,,. J,,. and
Yeeae Can be achieved with the present basis sets.
It does not necessarily follow that the other com-
ponents of @, 3. and 7 are as well described or
that this basis is entirely adequate for the cor-
relation corrections to the polarizabilities, but the
good agreement with the numerical results for
the parallel components at least provides an indi-
cation that the final correlation corrections to the
different polarizabilities should be indicative of
the size of the true correlation corrections, which
is the primary objective of this study.

In the present correlated calculations, alt the
single, double, and quadruple excitation diagrams
that arise through fourth order in the V(&) per-
turbation are included. This model will be referred
toas SDQ-MBPT(4). Thesediagrams are evaluated
at various field strengths, from which the equa-
tions of Table I are used to provide the different
polarizabilities.

To carry out such finite-field calculations suc-
cessfully, it is necessary to ensure about e:ght-
decimal-place accuracy in all computations, from
the initial molecular integrals to the actual dia-
gram evaluation. The current computations em-
ploy the MBPT program system developed at
Battelle.** Results for the effect of correlations
on various properties are shown in Table IIL

The 6s5p4d/5s3p basis set is seen to be capable
of providing about 78% of the observed field-free
valence-shell correlation energy. This is con-
sistent with other calculations, where we have
shown that a 5s3p1d/3s1p basis typically accounts
for three~quarters of the valence-shell correlation
energy.?>*® since the remaining functions in the
current bases are generally too diffuse to contri-
bute much to the field-free correlation effect. On
the other hand, correlation involving the normal
and diffuse functions is important in the presence
of the field, so some balance between a reasonable
description of the valence-shell correlation and
the long-range tails of orbitals is still expected to
be significant in obtaining good correlated results
for polarizabilities.

The effects of correlation on the other properties

K
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listed in Table I vary from about 77 for the dipole
moment to 127 for the polarizability, and a rather
dramatic change of about 227 for the ¢ hyperpolar-
izability. A similarly large change is observed
for the v,,,, component of the hyperpolarizability
of 30%. The correlated dipole moment and polari-
zability are found to be in excellent agreement with
experiment, although the anisotropy is somewhat
farther away. The hyperpolarizabilities seem to
be significantly affected by correlation, and al-
though this is only a single molecule out of many,
it suggests that a theoretical approach that at-
tempts to predict and explain the experimental
values for hyperpolarizabilities must definitely
take into account the effects of correlation.

In Table IV are listed the individual correlation
corrections for HF which are of some interest in
answering questions about the order of perturba-
tion theory needed to get converged correlated
answers as well as the effect of the different types
of diagrams. It is apparent that most of the cor-
relation correction is obtained from just the
second-order energy diagrams. [n fact, a com-
parison of the second-order results with the SDQ-
MBPT(4) values demonstrates that there is not
too much change due to the third- and fourth-order
diagrams, which are of opposite sign. I[n general,
the fourth-order terms have a somewhat larger
magnitude than third order. further augmenting
the second-order result. This is particularly true
Of B;ee- This behavior has also been observed in
studies of molecular correlation energies, ?* as
illustrated currently by W(0) for the HF molecule.
At first sight. this may cause some reservations,
but comparison® between the DQ-MBPT (4) modet
for the correlation energy with the infinite-order
sum of double and quadruple excitation diagrams
normally known as the coupled-ciuster-doubles
(CCD)?*® model shows agreement to within a milli-
hartree for a large group of atoms and molecules.
Hence even though fourth order is larger than
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third order for this example, 1t does not necessa~
rily follow that higher<order terms will be 1m-
portant. However. the very small differences
involved in finite~field caleulations might be more
likely to be affected by higher-order terms: hence
this question should be borne 1n mind. We will
resolve this point in future work.

For each property except the energy. the single-
excitation diagrams provide a larger fourth-order
contribution than the double-excitations. while the
quadruple excitations are typicallv a factor of 2
to 3 smaller than the fourth-order double-excita-
tion contribution. This reflects the residual un-
portance of single-excitation terms for praperties
dependent upon one-electron operators. even though
this type of single-excitation contribution only
appears ibecause of Brillouin's theorem) in the
fourth-order energy via their coupling through
double excitations. The predominant single-excita-
tion effect, as discussed previously. is included
at the CHF level. Triple-excitation diagrams
also occur in fourth order and are likely to be
somewhat more important than the quadruple ex-
citations. These probably provide a correction
with the same sign as the fourth-order single- and
double-excitation diagrams. The relative unim-
portance of the quadruple excitations plus the
fact that tue quadruple and triple excitations should
have an opposite effect on a polarizability suggest
that a limitation to single- and double-excitation
diagrams possibly summed to all orders should
provide reliable results for these properties. if a
well-chosen, well-balanced basis set is used.
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ABSTRACT

Correlated calculations using many-body perturbation theory and
good basis sets for the dipole moment, polarizability, and hyperpolarizabilities
of H20 are reported. The finite field, coupled Hartree-Fock theory is used
as a zeroth-order approximation, with electron correlation included via the
linked-diagram theorem. Single-, double-, and quadruple-excitations contribu-
tion are included. It is found that correlation changes |g8{(w=0)| by about
50 percent compared to the CHF result. Even larger changes are found among
the componts of X The dependence of the E hyperpolarizability on geometric
displacements is investigated, finding that s can be highly sensitive to slight

changes in bond lengths.




I. INTRODUCTION

In previous work,(]) hereafter called I, a correlated study of
the HF molecule employing many-body perturbation theory (MBPT) of the dipole
moment, u, and the polarizability and hyperpolarizability tensors a, 8, and Y
was reported. The objective of that study was to investigate the dependence
of hyperpolarizabilities on normal basis sets of contracted gaussian type
(CGTO) and to assess the effect of correlation on the predictions of these
quantities. Basis sets were chosen by using the criteria that good agreement
should be achieved between the predictions of the finite basis sets and numeri-
cal Hartree-Fock calculations of the z-components of the higher polarizabili-
ties.(]’2>A1though other components are not sampled, this procedure hopefully
provides some reason to believe that the basis sets used would at least be
adequate to provide a reasonable estimate of the correlation effects in hyper-
polarizabilities. In I, correlation was found to change u,, a, B = (B

+
227

8 +8.._.)and Y by 6.5%, 14%, 28% and 39% respectively, which suggests

yyz XXZ’s zz222°
that non-correlated predictions of hyperpolarizabilities are unlikely to pro-
vide reliable agreement with experiment.

In the case of HF, no experimental values are available, hence it
is of interest to apply the techniques developed in 1 to make predictions of
the hyperpolarizabilities of H20. Experimental values obtained by dc -induced
second harmonic generation experiments(3) are available for H20(4) yet
previous(5'7Lon-corre1ated theoretical calculations have not been able to
provide reasonable agreement.

In this paper we report a series of computations in different basis

sets for the HZO molecule ranging in size from 50 to 75 GCTO's. In addition,

we study the dependence of hyperpolarizabilities on vibrational stretching and




bending motions, and find a surprising degree of dependence of 2 on the

symmetric stretching mode of H20.

——
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I, SYNOPSIS OF THEORETICAL CALCULATIONS

The notation and details of the theory are reported in I. Briefly,

we consider the energy in the presence of an electric field E,

-1 -1,
W(E) = W(o) - uyEy = (21)7Tay5B4E5 - (31) 73454 E4E 8

-1 ,

where summation over repeated indices is assumed. The induced dipole moment
is obtained as the derivative, -(%%i).
In this work finite field techniques are used, where W(E) is com-
puted at a series of field strengths from which the various components in
the expansion in Eqn. (1) can be obtained. The finite field strengths are
chosen symmetrically (e.g. ¥ 0.01) which enables one to eliminate the next
higher term in the series, and thereby the principal contaminating effect, by
taking odd and even combinations of the finite-field energies.(])
The energies are obtained from the 1inked-diagrams theorem of MBPT(8-10)

to be -

W(E) = Wy (E) + 2] < BV (E) - FENVEHS, (D5, ()
K=

F(E), the Fock hamiltonian plus the one-electron perturbation due to the
electric field, serves as the unperturbed problem, while V(g) is the correlation
perturbation. V(E) is also field dependent due to its including the effective
SCF potential, wo(g) is the sum of the field dependent orbital energies
associated with the one-electron SCF hamiltonians that compose F(E). ¢ (E)

is the finite-field SCF solution. The unperturbed result in this scheme is

G T
T ~—™ = — -

—




the coupled Hartree-Fock (CHF) solution, Notice, in a double perturbation
approach relative to the field-free SCF solution, the CHF result corresponds

0

to the sum of an infinite series of MBPT diagrams Hence, the present
approach deals with "dressed" diagrams relative to the double perturbation
approach. In this work, all possible diagrams that arise through fourth-order
that involves single, double, or quadruple (i.e. fourfold) excitations are
included in the calculation of w(g), while those fourth-order diagrams that

have threefgld excitations are neglected. This model is referred to as

snQ-mpT(a).(1,10,12)




I11. RESULTS AND DISCUSSION

A. Previous Results

The electric susceptibility x(z) for H20 has been determined from
11
dc-induced second-harmonic generation experiments by Ward and Miller to be

-94+4 esu/mo]ecu]e.(4) This value is frequency dependent, but it is expected

that this result should be within about 10 percent of the static value. Hence,

«(2)
1

opposite in direction to the permanent dipole moment of H20, assumed to be 1in

N 10/3 gw=0) = 10/3(3ZZ +8 ). The minus sign signifies that g is

+8

zZ "xxz "yyz
. . -+

the direction 0 H2 .

Several previous calculations of g at the uncoupled Hartree-Fock (UCHF)

5-7) Liebman and Moskovitz

and coupled Hartree-Fock (CHF) level have been reported.(
obtain +90.6 in a UCHF calculation for x]%)(w=o)( 5), where the sign seems to

be in error.( 4) Arrighini, et. a].( 6) report CHF values of -51.6 and -48.0

in (2s1p|1s) and (5s3pld|2sip) Slater (STO) basis sets, respectively. In the
larger STO basis, the hydrogen components perpendicular to the plane are omitted.
It is a common result that |g| is smaller when a better basis set is used, although

(1,7

the reduction in | is usually more dramatic than is this example.

Lazzaretti and Zanasi report CHF calculations of g for H20 for three

(7)

contracted gaussian orbital (CGTO) basis sets, ranging from minimum (2s1p]|ls),
to double zeta (4s 2p|2s), to a polarized double zeta (4s12pld|2slp)basis set.
The values for x%%)(w=o)are respectively, -52.5, -79.2, and -21.9. Again the
general trend that a better basis reduces CHF values of |g| is evident, emphasiz-
ing the accidental agreement between experiment and the double-zeta basis.

Unfortunately, the very accurate, large basis results of Werner and Meyer(73)




for the dipole moment and polarizability are not extended to predictions of
hyperpolarizabilities, since these authors correctly question whether even
basis sets much larger than those used in the previous studies can be expected

to have any validity for properties as sensitive as hyperpo1arizabi]ities.(]3 )

In I we showed that correlation and basis sets can have a very
large effect on ab initio predictions of hyperpolarizabilities, so it is
of interest to use the same techniques to attempt to make some assessment
of the capability of theory to accurately predict hyperpolarizabilities.
The present study will focus on three elements: correlation, basis sets,

and the dependence of 8 on changes in molecular geometry.

B. Basis Sets

In this work, four different basis sets are considered, all larger
than those previously used in studies of HZO hyperpolarizabilities. The

(2)

prescription used is essentially that of Christiansen and McCullough.

The first three basis sets, A, B, and C are built from Dunning's 5s3p contraction(14)

of Huzinaga's primitive 9s5p basis set for the oxygen atomsls)and Dunning's 3s
contraction for hydrogen. These functions are augmented by a 3d gaussian
polarization function on oxygen (all six components) (exponent - 1.211) and

a p gaussian polarization function (exponert - 0.761) on hydrogen. This
(5s3p1d{3slp) basis is considered to be generally adequate to describe the basic
molecular charge density, but insufficient for predictions of polarizabilities.

To assist in describing such additional properties, the basis is augmented by

adding an extra set of s, p, and d functions to oxygen with the




exponents chosen to have the same ratio as the last two functions of each

type, generally a factor of about 0.3 times the previous exponent. Similarly,
hydrogen is augmented by an s and a p function whose exponents are chosen in
the same manner. This results in basis A, a (6s4p2d|4s2p) basis of 50 CGTO.

It is expected that this basis should be generally reliable for polarizabilities,
buy not hyperpolarizabilities where at least another shell of functions with
increasingly diffuse exponents is recommended. By proceeding in this manner,

an additional set of s,p, and d functions are added to oxygen, and an additional
s and p function to hydrogen. This constitutes basis B, a (7s5p3d|5s3p) basis
of 68 CGTO. To add additional diffuseness to the charge cloud, a third basis,
basis C, includes an additional s (exponent 0.0079) and p function {exponent
0.0057) Tocated at the center-of-mass of the molecule. This (7s5p3d|5s3p;1sip)
basis requires 72 CGTO.

The construction of the basis sets A, B, and C emphasizes the long-
range, tail region of the molecule where more and more diffuse functions are
employed to try to describe this part of the charge density. In I we found
that by comparison with numerical Hartree-Fock calculations of the on-axis
components of the polarizability and hyperpolarizabilities, it is also important
to have a basis that is capable of describing the small differences in the
charge density in regions moderately near the nuclei. Since our basis in I
is successful in obtaining quite good agreement with the numerical Hartree-Fock
results, we also have used this procedure to construct a fourth-basis set, D,
that we hope will retain some of the apparent reliability of the previous work.

This basis starts with Dunning's (4s3p|2s) contraction, then uses a

d-polarization function defined as a two gaussian fit(]4) to a Slater exponent of




-

3.0175. The smaller exponent is then multiplied by 0.4 to generate a new
d-orbital exponent. Two successive sets of d-functions are obtained by a
repetition of this scheme. Similarly, a fourth p-function (exponent 0.2137)
is added to oxygen, and two more p-functions with exponents chosen to be

0.4 times and then (0.4)2 times this value. Also, two s-functions are added
by taking 0.4 and (0.4)2 times the smallest s-exponent (i.e., 0.2846). Two
additional s-functions are added to hydrogen (exponents 0.1776 and 0.04932)

and a 2p polarization function two gaussian fit(]4)

to an STO exponent of 2 pa7,
and an additional p-function with exponent (0.2174). The resulting basis of

65 CGTO is of the form (6s5p4d{4s2p). The differences in the construction of
this basis compared to A, B, and C should not be major, but are of interest in
assessing the sensitivity of the predictions to modest changes in basis set,

and for comparisons with the previous results for HF.(1)




C. Results

In Table I are listed CHF results for u, s 8, and y for the basis
o f
sets A-D. Since bases B and C are constructed from basis A by simply

adding additional diffuse functions without any other change, it is possiblie
to form some assessment of the effect this augmentation has on the predicted
results.
The largest change is found in the components of}sl,reducing their
size as has been observed to usually be the case when a better basis set is
employed. Also, since the second-harmonic generation experiment gives a
|g] larger than the theoretical predictions, improving the basis set further :
destroys any fortuitous agreement between the CHF results and experiment.
The highly diffuse functions included in basis C, but not B, are observed to
have only a small effect on B -
A significant, but smaller change occurs in the values of e between
basis A and B, although the dipole moment is little modified. Again, the
extra diffuse functions in C have little effect on o and none on u. The
change in o between A and B is consistent with the :bservation of Werner and
Meyer(13)(wM) that at least a 3d basis set is necessary to simultaneously describe
the energy, dipole moment, and polarizability. In fact, for HZO.NM recommend
the d-orbital exponents 0.10, 0.30, and 1.20, while our basis B uses the
quite similar though independently arrived at values of 0.11, 0.37, and 1.211.
The main problem in basis sets A, B, and C is found in the dipole
moment. Although there is 1ittle change when more diffuse functions are

added, its value is still rather far from the WM CHF result of My = 0.782.
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Consequently, the failure of bases A-C to account for this resc1t, appears
to 1ie among the interior basis functions rather than the more diffuze
functions. Since E tends to be sensitive to both interior and tail regions
of the charge density, in hopes of obtaining more reljable results for 8
we focus on a slightly modified aporoach to generating a basis set for

(1)

hyperpolarizabilities that we found to be successful for HF, which
gives basis set D. This basis uses a two gaussian fit for the tight
d-function, and an additional diffuse d-orbital, as well as some other,
presumably less significant changes. In Table I it may be seen that for
basis D, B and o are in excellent agreement with the WM results of

N

v = 0.782, and a, = 8.47, °yy = 9.04, and ay = 7.99. As observed by WM
the polarizability is less sensitive to such a change than is the dipole moment.
Again, as in the transition from A to B and C, basis D further
reduces the components of 5 . It is not appropriate to claim any basis set
convergence from these four sets of CHF calculations, but experience strongly
indicates that some basis set 1imit convergence would tend to predict even
smaller |g| at the CHF level, further destroying any agreement between the
CHF predictions and experiment. To rectify this dilemma, three features can
be addressed that can increase |g]. These are correlation, geometric displace-
ment as might become important in higher temperature experiments, and the
frequency dependence. In this paper we will consider the first two possibilities
with frequency dependence to be studied in future work.
Considering the second possibility, first, Figures 1 and 2 illustrate
the dependence of two components of 5 on the symmetric stretch and bending

mode in HZO' These CHF calculations use basis C. The values <AR$>]/2 = 0.128b




s B R o

1

1/2
<80%> = 8.72 are the experimental root-mean-square amplitudes for HZO

(16:17) The values of <4Ry> = 0.0266 and

displacement coordinates, at 0.
<A0> = 0.183 degrees. It is apparent that there is a very steep dependence
of Byyz and Bzzz on the stretch, although not the bending mode. In the case
of Byxz’® its value is comparatively unaffected, changing from +0.26 at
ro +0.128 a.u. to -0.68 at o and +1.15 at ro -0.128 a.u.

Judging from Figures 1 and 2, the zero-point correction of g =

B )} amounts to about 1.7 units. The sensitivity of 8,,, and

(Bzzz+ xxx+8yyz
8 to displacements, however, suggests that experiments conducted at

yz
e:eve]ated temperatures involving higher rotational states, should be
correlated for excited state populations and centrifugal distortion of

bond lengths.

The change in E with displacement is more extremem than is the
change in a. The mean polarizability assumes the values 8.54 at r,, and 7.76
at Re-aR, and 9.47 at Re+5R-. In the case of the bending mode, a = 8.52 at
ee-se and 8.60 at Qe+69.

The other element that is important in making accurate predictions
of static hyperpolarizabilities is electron correlation. In Table II are
listed the CHF and correlated SDQ-MBPT(4) results for basis sets. A and D,
with experimental values where available.

The effect of correlation changes the CHF dipole moment in basis D
by ~6 percent, a by 9 percent and 8 by ~50 percent. Similarly large changes
in the various components of X of ~36 to 85 percent are observed. In the
case of HF, similar values of ~6 percent, ~14 percent, 28 percent, and 39-to-

75 percent are found.(]) In y '35 B, and X the effect of correlation is
v




12

approximately the same as the basis set effect between bases A and D. In the
case of u, % and Y the basis set effect and the effect of correlation are
additive, but for 8 this is not at all the case.

The delicate balance between basis set and correlation needed to
describe 8 accurately, has mixed effects. Since a larger correlation
correction will typically be obtained in a better basis set, as the basis is
improved, the observed reduction in the CHF |g| will probably be largely
offset by the greater correlation contribution. This has the implication
that some hope exists for obtaining a reasonable level of convergence with
basis sets for predictions of |g|. However, at the CHF level, no such
possibility persists. On the other hand, the sensitivity of g to both basis
sets and correlation emphasizes the importance of treating both aspects of
the problem in a balance fashion, and at a higher level of sophistication.

The results of basis D in Table II correspond to an electric
susceptibility x%%)(w=0) of -66 at reo and -74 at o still about 21 percent
different than the frequency dependent SHG results of -94+4., It is clear,
however, that what agreement there is between experiment and prior CHF
calcu]ations(5'7) has to be essentially accidental.

In Table III arereported the individual correlation corrections to
M, E, and X As in the prior study of HF, second-order perturbation theory
provides most of the correlation contribution. Since in the finite-field
approach used in this work, most of the single excitations effects that are
quite important for one-electron vperators are incorporated into the CHF

( unperturbed) results, most important correlation effects are due to
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double-excitation relative to field-dependent orbitals, which are exclusively
responsible for second- and third-order perturbation theory. In fourth-
order, the residual effects of single excitations first appear, and their

value is slightly larger than the fourth-order double excitation contribution.

V —e—— [e—— prme—— - -

As in I, the quadruple excitation fourth-order diagrams contribute very little
to the correlated result.

In summary, the importance of electron correlation to predictions
of hyperpolarizabilities has been emphasized. Correlation effects make
a contribution that significantly increases |g| and the components of X
Since the experimental values for |g| are normally larger than the theoretical
predictions, correlation can make an important contribution toward resolving
this discrepancy. It is fairly clear, that CHF results can at best offer
fortuitous agreement with experiment when inferior basis sets are used. We
have also shown that the g hyperpolarizability can be very sensitive to small
displacements of the nuclei in a molecule. This sensitivity should be

considered in future theoretical calculations and can be a source of error

in comparing with the experimental results. The remaining major question
to resolve, is the change in 8 with frequency. That feature, too, should
increase the |g| obtained in theoretical calculations. When this element
js included, perhaps reasonable agreement between ab initio calculations

and experiment will finally become possible.
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FIGURE 1. DEPENDENCE OF THE 8,,, AND Byyz COMPONENTS OF THE HYPERPOLARIZABILITY
ON THE SYMMETRIC STRETCH OF Hy0. CHF CALCULATIONS, BASIS C.
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| ON THE BENDING MODE OF H20. CHF CALCULATIONS, BASIS C. '
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TABLE I. DIPOLE MOMENT AND FIRST, SECOND, AND THIRD ORDER POLARIZABILITIES
FOR HpoO DETERMINED BY COUPLED-HARTREE-FOCK THEORY (Molecule is in
zy-plane, with z the molecular axis. Orientation is O‘H§ defined as
a positive dipole moment; r,, = 1.811b, 8 = 104.5°)

Basis Set A2 g c pd
, 0.807  0.796  0.79  0.784
ayy 8.01 8.50 8.55 8.47
ayy 8.78 9.11 9.12 9.18
. 7.21 7.96 7.95 7.95
8227 -8.08  -6.65  -6.31  -5.22
Byyz -12.86  -10.03  -9.75  -9.63
s 0. 0.85  -0.68  -0.48
: Yzz2z 490 } - 770
f Yyyzz - - - 210
Yxxzz B B B 350
Yxxxx - ) - 1400
Tyyyy ) ) - de0
Yxxyy i i i i
@ Basis A is (6sdp2d|4s2p), WO} = -76.05391.
b gasis B is (7s5p3d|5s3p), wggg - 076.05412.
€ Basis C is (7s5p3d|5s3p;Ts1p); WLO) = -76.05420.
d

Basis D is (6s5p4d|4s2p); wég} = .75.05443.

L e
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TABLE I11: EFFECT OF CORRELATION ON PREDICTED DIPOLE MOMENT, POLARIZABILITY AND

HYPERPOLARIZABILITIES OF H,0 (values in atomic units)
CHF SDQ-MBPT(4)
a a a a b .
A Axmv D Awmv A Awmv D Axmv D Asov Experiment

W(o) -76.05391 -76.05443  -76.29481 -76.29898 ... -76.374°
W --- .- - 0.2409  -0.2446C ... 0.306°

corr d

u 0.807 0.784 0.758 0.735  0.737 0.724
o, 8.01 8.47 8.77 9.46 9.64 -

oy 8.78 9.18 9.49 9.87  10.07 - ,
@ x 7.21 7.95 7.73 9.30 9.38 - |
L3l ey ) 8.0 8.7 8.7 9.5 9.7 9.82°

F 72 -81 -5.2 -11.5 -9.2 -9.8 -

2yy -12.9  -9.6 -14.3 -10.0  -12.3 -

B ex 0 - 0.5 -1.9 - 3.7 -3.5 .
m-AmNNN+mex+mN<«V -21.0 -15.3 -27.7 -22.9  -25.6 -32.7
Y222 490, 700 700 1230 1300 -

Yyyyy - 460 - 630 e

Y exxx - 1400 - 2580 ee -

Y22y - 270 - 400 . -

Y2k - 360 - 630 ... -
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Footnotes (Table 11.)

4 calculations in basis sets A and D are at Yo~ 1.811 a.u. and 8 = 104.5°.

b Axo = 1.8376, oo = 104.63); these values are estimated from linear extrapolation

of calculations at a symmetric stretch of o + 0.079 a.u.

C The experimental value is the estimated RHF 1imit of J. A. Pople and J. J. Binkley
Molec. Phys. 29, 599 (1975), plus the estimated valence correlation energy. All
correlation contributions are obtained by freezing the 1s2 oxygen core electrons at
the SCF level.

A. L. McClellan, Tables of Experimental Dipole Moments, 1963, Freeman and Co.
Reference 13.

Reference 4. This is a frequency dependent result.
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TABLE I11. INDIVIDUAL CORRELATION CORRECTIONS FOR THE DIPOLE MOMENT
AND HYPERPOLARIZABILITISS (atomic units)

(1,0, R = 0.958R0 = 104.5°, Basis A)

el . BE

2nd 3rd 4th ORDER B NET CORRELATION CHF+SDQ-MBPT(4)
CHF ORDER ORDER SINGLE DOUBLE QUAD. TOTAL
0.807 -0.047  +0.007 -0.006 -0.005 -0.003 -0.048 -0.048 0.758
-8.1 -3.78 +2.08 -1.2)  -0.72 +0.30 -1.63 -3.33 -11.5
-12.9 -1.28 +0.69 -0.78 -0.2 +0.24 -0.85 -1.44 -14.3
0 -2.19 +1.27 -0.72 -0.38 +0.08 -1.02 -1.94 -1.9
-21.0 -7.24 +4.04 -2.71  -1.39 +0.61 -3.49 -6.7 -27.7
490 244 -126 64 40 -12 92 210 700







