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This thesis contains two main topics, each of which is connec-
ted to the stochastic realization problem. First, we consider some
structural and algorithmic problems in wide sense stochastic realiza-
tion theory which also have applicability to many problems outside
the realm of stochastic realization theory but are here formulated in
that framework. We consider some geometric questions concerning the
solution set of the positive real lemma and provide a Hamiltonian
framework for the non-Riccati algorithms of Kailath and Lindquist;
these are then applied to the stochastic realization problem. Secondly,
we apply the basic techniques and concepts of the strict sense (proper)
stochastic realization theory of Lindquist and Picci and Ruckebusch to
the discrete-time smoothing problem, This provides a natural inter-
pretation of the Mayne-Fraser two-point formula as well as many other
smoothing results, the interpretations of which have hitherto been
quite unclear from a probabilistic point of view, Hence we have laid
the ground work for a theory of smoothing which has so far been

lacking.

Vo, BrtmI 29T

FARIS A. BADAWI

JANUVARY 5, 1980

DATE




, ACKNOWLEDGEMENTS

The author would like to express his deep gratitude to his disser-
tation advisor, Professor Anders Lindquist, without whose assistance,
support and encouragement, this dissertation would not have materialized.
Thanks are also due to Professors Roger Wets, Danny Sorensen and Georgio
Picei and to ?r. Michele Pavon, with whom the author had rewarding
discussions concerning this research.

My deepest thanks go to my wife, whose patience has no bounds.
Her moral support throughout has been invaluable to an extent that cannot
be estimated (filtered, predicted or smoothed).

The author is also grateful for financial support from the Depart-
ment of Mathematics of the University of Kentucky and the U. S. Air Force
Office of Scientific-Research.

Finally, but not least, the author would like to thank Mrs. Beth

Kaufman and Mrs. Virginia Gandy for their expert typing.

iii




TABLE OF CONTENTS

INTRODUCTION . . . & v o v et v et e e e e e e e e e o v v o1

CHAPTER 1.  RICCATI AND NON-RICCATI METHODS IN STOCHASTIC
REALIZATION THEORY OF STATIONARY PROCESSES

1.1. Stochastic Realization Theory: A Review . . . . . . . . 6
1.2. Structure of the Set P: Continuous-Time . . . . . . ., 15
1.3. Structure of the Set P: Discrete-Time . . . . . . . . . 23
1.4, A Hamiltonian Approach to the Factorization of the

Matrix Riccati Differential Equation . . . . . . . .. 29
1.5. A Hamiltonian Approach to the Factorization of the

Matrix Riccati Difference Equation . . . . . . . . . . 36
1.6. Non-Riccati Algorithms Inside the Set B . . . . . .. 45

CHAPTER 2.  SMOOTHING FOR LINEAR DISCRETE-TIME STOCHASTIC
SYSTEMS IN THE CONTEXT OF STOCHASTIC REALIZATION

THEORY
2.1, Introduction . . . . v 0 . e e e e e e e e e e e e e 57
2.2. Preliminaries . . . v ¢« ¢ ¢ v v o 4 e 0 e e e e e e e 61
2.3, Forward and Backward Realizations . . . . . . . « « + & 65
2,4, The Frame Space . . . + v v ¢ ¢ ¢« ¢ v v o o 2o o 0 v 0. 77
2.5, TheModel S* . . . . v ¢ v ¢ v v v e v v ¢ s s s e e 81
2.6. A Mayne-Fraser-Type Smoothing Formula . . . . . . . . . 88
2.7. The Brysom-Frazier Formulation . . . . . ., . . . . .. 95

jv




CHAPTER 3.

3.1,
3.2.
3.3.
3.4.
3.5.
3.6.

TOPICS ON THE STOCHASTIC REALIZATION PROBLEM FOR
CONTINUOUS-TIME NONSTATIONARY STOCHASTIC PROCESSES

Introduction . . . . ¢ ¢ ¢ 4 e 4 b et e e e e e e e 103
The Finite Interval Case: A Review . . . . . . . « . . 107
Stochastic Realizations on R . . . . ¢« . s ¢« ¢« ¢ ¢ « & 112
The Set P . & v v v v v v e v o o o v o o » e e e e e . 119
Non-Riccati Algorithm Inside B . . . . . . C e e e e e 121
The Singular and the Mixed Cases . . . . . e e e e 127
............................ 134
00000 v L ] * [ L [ ] * * L] * - . L ] L] » » L] L[] * * L ] L] » 140
v

[ U




INTRODUCTION

The stochastic realiasation problem can be simply stated as
follows: Given an m-dimensional stochastic process {y(t); t € I},
where the index set I may be either an interval of the real line or a
set of integer:, find all linear stochastic systems (in some suitable
class) having the process y as its output process. These stochastic
systems are called stochastic réalizations of y. This problem is of
consideracle importance in stochastic systems theory and has applica-
tions in and connections to many fields of study, among which are net-
work theory [8], spectral factorization [3,8], optimal control theory

1§,11], stability theory [4] and the smoothing problem [64,65].

The early contributions to this problem are due to B.D.O.
Anderson [3] and Faurre [11], the first of whom called it the ''inverse
problem of covariance generation.'" In these early-papers, the sto-
chastic realization problem was studied from a deterministic point of
view, the objective being to determine the parameters of the stochastic
systems rather than to clarify their probabilistic structures. These
early results have been extended by Clerget [71] and Germain [18].
Following [2], we shall term these aspects of the stochastic realiza-
tion problem wide sense. These problems are intimately connected to
spectral factorization [12] and the positive real lemma [75-77] (and its

1
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nonstationary extensions)j, the set of all state covariance matrices P
of the stochastic realizations of a stationary process being the solu-
tion set of the positive real lemma. The set P is also the sqlution
set of the Quadratic Matrix Inequality [12,16], and a certain subset
P; of P contains the solutions of the corresponding Algebraic Riccati

Equation [16].

More recently the probabilistic aspects of stochastic realiza-
tions and their relation to Markovian representations have been studied
in various aspects and degrees of completeness by Akaike[78,79], Picci
[80], Lindquist and Picci [2,53-56], Ruckebusch [1,10,58-60], Lind-
quist, Picci and Ruckebusch [57], Pavon [9,62] and Willems and van
Schuppen{81]. Here one is interested in a complete probabilistic de-
scription Jf the stochastic realizations; such a realization will be

named proper [2].

In this thesis, we study certain aspects connected with the sto- :
chastic realization problem: We consider some structural and algorithmic
problems in wide sense stochastic realization theory and the applica-
tions of proper stochastic realization theory to the smoothing problem.
However, some of these results, in particular those related to non-
Riccati algorithms and the structure of the set P, are not only part of

stochastic realization theory, but have wider applicability.

In Chapter 1, we consider wide sense stochastic realization theory
for stationary processes with rational spectral densities in both dis-
crete- and continuous-time. The structures of the sets P and P

mentioned above are studied. A parametric representation for P is given :
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; and its boundary points are characterized. These results are generali-
zations of some found in [2,11,18]. Then we show that the elements of
P; are extreme points of P. This seems to be a weli-known result; how-
ever, we have been unable to find a proof of this anywhere in the

literature. In Sections 1.4 and 1.5, we apply the theory of Hamiltonian

systems to obtain a new derivation of the non-Riccati algorithms of
Kailath and his coworkers [21,29] and Lindquist [22,23,27,83]. The
basic idea of this proof was suggested to us by L.E. Zachrisson. The

continuous-time version of this result, presented in Section 1.4, is

quite straight-forward and our derivation follows [82] closely. As

expected the discrete-time version is considerably more complicated; it

B I T

is presented in Section 1.5. We obtain these resuits for the special
type of Riccati equations that arises in the context of stochastic
realizations; our results on the general case will be presented else-
where. Finally, the factorization of the discrete-time Riccati equation
presented in Section 1.5 is applied to generate realizations of y.

These results are the continuous-time counterpart of Section 6 in [2].

While the study of the proper stochastic realization problem is
of interest in itself, its concepts and techniques can be applied to
other problems, an example of which is smoothing. In Chapter 2, a
smoothing theory for discrete-time nonstationary systems is developed,
much in analogy with our continuous-time papers [64,65]. It is shown
that the smoothing estimate is contained in a finite-dimensional space
H:‘ the frame space [53-56]. Unlike the situation in continuous-time,

in the discrete setting, H: is not of constant dimension, contributing
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to the fact that discrete-time problems are not just trivial modifica-
tions of their continuous-time _ounterparts. In the continuous-time
setting [64,65], the invertibility of certain covariance matrices is
essential. In discrete-time, this invertibility does not hold on the
whole interval. Hence we apply the generalized ioore-Penrose pseudo-
inverse [13,66], thereby introducing some further structure in the
theory. In Section 2.6, we derive a two-filter formula of the Mayne-
Fraser type for the smoothing estimate. This formula is in terms of
two estimates: the first (x,) is generated by the usual forward Kalman-
Bucy filter and the second (x*) by the forward counterpart of the
backward Kalman-Bucy filter. This provides further insight into the
classical theory of smoothing. In the final Section 2.7 we use a
different technique to derive the smoothing formulas of Bryson and
Frazier [35] and Rauch, Tung and Striebel [36], which does not employ
the frame space, but an orthogonal decomposition of the closed linear
span of {y(t); t € I} much along the same lines as the procedure used
in [9] to solve the stationary stochastic realization problem. Unfor-
tunately, due to time constraints, we have not had time to tie up all
the loose ends of this theory, and as explained in the text, some pro-
blems have been left open, which we feel otherwise would have been
resolved with a moderate amount of extra work since all the ingredients

needed are at hand. We shall have to return to this in a subsequent
paper.
Chapter 3 is devoted to a study of some topics on the stochastic

realization problem for continuous-time nonstationary processes defined

on the real line. One aim is to generalize the finite interval theory

‘
]
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presented in [64,65]. As a by-product we obtain a natural stochastic
interpretation of an algorithm due to Clerget [71] for the minimum and
maximum variance realizations. Then, the non-Riccati algorithm of (2]
(and Section 1.6) is generalized to this nonstationary setting. All
the results of the thesis are for the so-called regular case (i.e.,
there is a full-rank observation noise), but many of them can be
goaeralized to the nonregular setting. To aid the reader in doing the
necessary conversions for this, we have included a section (Section 3.6)
providing the necessary transformations. Our results here are general-
izations of the stationary counterparts in [18], in which paper, a con-
trol theory approach is taken. Our results should be compared with

those of Anderson et al [74].

Sections 1.4 and 1.5, and Chapter 2 are based on joint work with

Professor Anders Lindquist.

We shall adopt the following notations in the sequel. The trans-
pose of a matrix is denoted by ('). E{-} is the mathematical expecta-
tion, I is the unit matrix, All vectors without prime are column
vectors, If R is a symmetric matrix, R > 0 (R 2 0) means that R is
positive (nonnegative) definite. If R 2 0, R15 is the unique nonnega-
tive square root of R. 6st is the Kronecker symbol. The set of inte-
gers will be denoted by Z; Z* will denote {0, 1, 2, ...}. Finally,

the set of real numbers will be denoted by IR.
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CHAPTER 1

RICCATI AND NON-RICCATI METHODS IN STOCHASTIC
REALIZATION THEORY OF STATIONARY PROCESSES

1.1. Stochastic Realization Theory: A Review

In this section, we shall review certain facts from stochastic
realization theory for both discrete - and continuous - time stationary

processes. The.discrete-time case will be presented first.

Let {y(t); t € 1}, where Z is the set of integers, be an
m-dimensional centered stationary and purely nondeterministic stochastic
process defined on an underlying probability space. The process y is
said to have an n-dimensional Markovian representation [1] if there
exists an n-dimensional stochastic process {x(t); t € Z}, which

together with y satisfy a linear stochastic system

x(t+1)

y(t)

where A, B, C and D are constant matrices of dimensions n x n, n x p,

Ax(t) + Bw(t) (1.1a)

Cx(t) + Dw(t) (1.1b)

m xn and m X p respectively, A is a stability matrix i.e. all its
eigenvalues are strictly inside the unit circle (for short, IA(A)I <1),

and {w(t); t € Z} is a p~dimensional white noise, i.e. a zero-mean

PR e
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stochastic process of covariance E{w(t)w(s)'} = I8,,. The process x is

called the state of the system; it is stationary with constant covariance

E{x(t) x(t)'} =P =P' 20 1.2)
which clearly satisfies the Liapunov-type equation
P = APA' + BB', (1.3)
The process y is called the output of the system (1.1) and w is the
input.
The covariance function Ky(s): = E{y(t+s)y(s)'} of the output pro-
cess y of (1.1) is easily seen to be
K(s) =’ g1 + a5t . (CPC' + DD'}$ (1.4)
Y s -s so’
where G = APC' + BD' and ls =1 if s > 0 and 0 otherwise. Then the

spectral density function ¢(z)} of y is given by

#(z) = [ K ()2 = Cz1-0)"%6 + ' 1-a1) 1t + (cpe' + DDY), (1.5)

S300

which is a rational function in z. It is easy to see that ¢(z) has the

following properties

(1) each element of ¢ is analytic on the unit disc: |z| <1,
(i) o(z) = e(z’H)' and
(i1i) (™) 20 for all w €R.

The stochastic realization problem is the inverse of the above con-
struction i.e. from the knowledge of the spectral density of a process,

we wish to determine all representations (1.1) of the process.
P

St e v e e
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More specifically, let‘{y(t); t € I} be as above. Let the spectral
density ¢(z) of y be given. Assume $(z) has the above properties (i.e.
it is rational and satisfies (i)~(iii) above.) In addition, assume that

Q(eiw) > 0 for all w € R and that 0 < $(®) <= (the significance of

these assumptions will be made clear when the need arises.) The problem

is to find qll Markovian representations (1.1) with n = dim A minimal
and whose outputs have the same spectral density ¢ as that of the given

process y. Such a representation will be called a wide semse stochastic

realiaation [2] of y, although it might be more descriptive to call it a

realization of ¢. In fact, this is a deterministic problem which re-
quires determining all quadruplets [A, B, C, D] from the knowledge of &.
The probabalistic problem of finding all proper [2] stochastic realiza-
tions (i.e. all systems (1.1) whose outputs not merely have the same
covariance properties as the given process, but are equal to it a.s.)
will be discussed in Chapter 2 in the nonstationary setting.

The wide sense sFochastic realization problem is equivalent to the
classical spectral factorization problem [3]: given ¢(z), find all
minimal stable spectral factors of ¢ i.e. all matrices W(z) of proper
real rational functions of minimal McMillan degree [4] with all poles

inside the unit circle and satisfying

(z) = W(z) Wz . (1.6)
To see that this is the case, first observe that if [A, B, C, D] is a
minimal realization of y, then

W(z) = C(zI-A)"1B + D (1.7)
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is a minimal stable spectral factor of ¢. Conversely, any such minimal
spectral factor W, gives rise to a whole class of wide sense stochastic

realizations of the form

1

r-lar, %8, c1,0) (1.8)

where [A, B, C, D] is a minimal realization {4] of W and T is an arbi-

trary nonsingulaf n x n matrix.
Using the method of partial fractions, ¢(z) can be written
9(z) = S(z) + S(z™ 1) (1.9)

where S is a discrete positive real rational function [5]. Since S is

proper(i.e. S(®) <), it has a minimal realization [F, G, H, J], i.e.
S(z) = HEzI-H g +J - (1.10)

for some constant matrices F, G, H and J of dimensions n x. n, n x m,

m x n and m x n respectively, where n is the McMillan degree [4] of S.
Hence, | A(F)I< 1, (F, G) is controllable and (H, F) is observable.
Several procedures are available for determining (F, G, H, J] [6,7],
which is unique up to the equivalence (1.8). Using the fact that § is
discrete positive redl and the Positive Real Lemma, Anderson {5,8] has

shown that all wide sense stochastic realizations of y are given by
1 el -1 3
[A: B’ C: D] = [T FT: T (Bl’ BZ) V) HT: (R(P) 3 O)V] (1‘11)

where T is as above, V is a P x p constant orthogonal matrix, B1 is
n xmand B2 is n x (p-m), P is n x n symmetric positive definite matrix

which together with Bl’ B2 and R(P).satisfy
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P = FPF' + B.B! + B,BS (1.12a)
G = FPH' + slncp)” (1.12b)
R(P) = J + J* « HPH' . (1.12¢)

Since 0 < §(@) <=, and assuming dim F = n 2 1, it is easy to show that
F is nonsingular [9], R(P) > 0 [9,10] and that

1

R(P) = G'F'""H' + &(») - HPH! . (1.13)

It is no restriction to take T = V = I i.,e. to consider realizationsof

the form
x(t+1) = F x(t) + Blu(t)‘ + By (t) (1.14a)
y(t) = H x(t} + R(®)% u(t) , (1.14b)
where w = [3].
Let P = {P | P solves (1.12)}. For each P ¢ P, define
A(P)= -P + FPF' + (G-FPH')R(P) } (G-FPH')', (1.15)

and let P = {P ¢ P | A(P) = 0}

In the following preposition, we collect some facts from Anderson [5],

Faurre [11] and Pavon [9].

Proposition 1.1. The set P ig convex and compact and there are two

elements P, and P* in Posuch that P, S P < P*for all P ¢ P. Moreover,

P = {P|A(P) 5 0}. Finally, Po 18 the set of all solutions of (1.12) for

which 52 =0,

FIR AP —

e e oy ke s 4 A
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Remark. In the proper stochastic realization setting (to be discussed
in Chapter 2), P; has an interesting interpretation; these realizations
are the internal ones (i.e. those which can be constructed in terms of

the given process without introducing exogeneous noise).

The minimum P, and the maximum P* are of particular interest. The
following matrix Riccati equations, given in [11], may be used to

calculate them.

Proposition 1.2. Let {l(t); teZ'} and {li(t); t ¢ Z*} be the solutions

of the n x n-matrixz difference equations

M(t+1) - M(t) = ACTI(L)) ; M) =0, (1.16a)
Micesl) - fice) = Rcfie)) ;3 Ti) =o (1.16b)

respectively, where A is given by (1.15) and A by
A(P) = -P + F'PF + (H' - F'PG)(J + J' - G'PG) L(H' - F'PG)*, (L.16c)

Then T(t) + P, and M(t) > + P* qg t + = ,

Remark. Equation (1.16a) has an immediate stochastic interpretation in
terms of the XKalman filter. Consider an arbitrary realization of the
form (1.14) with state covariance P. The linear least squares estimate
R(t) of x(t) given the data {y(0), y(1),...,y(t-1)} is generated by

the Kalman filter
R(t+1) = FR(Y) + K(EIR(E) [y (t) - HR(t)] ; R(0) = 0 , (1.17)

where K is the Xalman gain and is given by
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K = [FIH' + B, R(P)""]R"s , (1.18b)
R = HIH' + R(P) (1.18¢)
and I is the error covariance I(t) = E{[x(t) - R(t)][x(t) - R()]1"}
which satisfies the matrix Riccati difference equation

I(t+l) = FL(t)F' - K(t) K(t)' + BB' ; I(0) =P . (1.18d)
Set M(t): = E{X(t)X(t)'}. Then NI(t) = P - I(t) which inserted in (1.18d)
implies that Il satisfies (1.16a) and that
K= (G- FIH)R(M)™Z. (1.18¢)

Hence, by the above proposition II(t) + P, and K(t) + B, as t + =, i,e.
P, and B, can be regarded as the state covariance and the gain of the

steady-state Kalman-Bucy filter.

In introducing the continuous-time version of the stochastic reali-

zation problem, we shall closely follow the presentation in [2]. Let

“{y(t); t € R} be a mean-square and purely nondeterministic m-dimensional

stochastic process with stationary increments and zero mean. Then there

iwt
exists an orthogonal stochastic measure df such that y(t) =r g__ﬁ;_l_ df (w)

-0

and E{d§(w) d?(w)*} = d(iw)dw. (Here + denotes conjugation and trans-
position.) The m x m-matrix of real functions ¢ is the spectral density
satisfying (i) each element of ¢ is analytic on the imaginary axis,

(ii) o(s) = ®(-s)', (iii) ®(iw) = 0 for all w € R and (iv) &(») <=,
Furthermore, ¢ is assumed to enjoy the additional properties that

R : = §(») is positive definite (the singular case will be studied in
Chapter 3) and that ¢(iw) > 0 for all w € R. Analogously to the

discrete-time case, ® can be written

e
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8(s) = 2(s) + 2(-s) (1.19)

where Z is a positive real function [8]. Let [F, G, H, R] be a minimal
realization [4] of Z. ThenRe{A(F)} <0, (F, G) is controllable, and

(H, F) is observable.
Now, the problem is to find all representations of the type

dx = Ax dt + Bdw

dy = Cx dt + Ddw ,

such that the output y has spectral density ¢,n = dim A minimal and

Re{A(A)} <O.

Modulo a trivial coordinate transformation in the state space, all

solutions to this problem are of the form
dx = Fx 4t + Bldu + Bzdv (1.20a)
dy = H x dt + deu R (1,20b)

where B = -(Bl;Bz) and P = E{x(t) x(t)'} satisfy the Positive Real Lemma

Equations
] .
FP + PF' + B,B' + B,B,' = 0 (1.21a)
G = PH' + BR (1.21b)
P=P" >0 (nx n-matrix) . (1.21¢)

Let P = {P | P solves (1.21)}. For each P ¢ P, define
A(P) = FP + PF' + (G - PHNR™L(G - PH")"' . (1.22)

Then P = {P = P' > 0 | A(P) s 0}[2]. Let P_ = {PeP | A(P) = 0}. Then

Proposition 1.1 holds for this setting also [11]. Moreover, in analogy

with the discrete-time case, this problem can be seen to be equivalent




SR Y g ! D ot hom

PRI VAR T N

Ny e,

14

to finding all minimal stable spectral factors of the type

W(s) W(-s)' = &(s) . (1.23)

The continuous-time counterpart of Proposition 1.2 is

Proposition 1.3. Let T and T be the untque solutions of the n % n-matrix
differential equations '

Ie) = ACI(E)) , M) =0 (1.24s)

Nee) = AQe)) |, @) =0 (1.24b)
respectively, where A i8 given by (1.22) and A by
R(®) = F'P + PF + (H' - PORTI(H - PG)' .

Then T(t) =+ P, and I.I(t:)"1 + P* qg t > »,

Remark. As was remarked (after Proposition 1.2), equation (1.24a) has

the interpretation that M(t) = E{R(t) X(t)'}, where %(t) is the
Linear least squares estimate of the state process x(t) of the system

(1.20) given the record {y(s); 0 < s < t} which is generated by the
Kalman-Bucy filter

d% = F % dt + K(t)R™%[dy - H R dt]; %(0) = 0 ,
where the Kalman gain K is given by

K= (G- IIH')R'% . (1.24c¢)
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1.2. Structure of the Set P: Continuous-Time

Since each wide sense stochastic realization is determined by its
covariance matrix P, an investigation of the structure of the set P
of all such matrices is deemed necessary. In this section, we shali
exploit the role played by a Hamiltonian matrix to be defined below to
provide some new links between the solutions of what is known as the
Algebraic Riccati Equation (ARE) (the solution set of which is Po) and
those of a Quadratric Matrix Inequality (QMI) with solution set P. The

boundary and extreme points of P will be studied.

Let P, = {PeP|P>P)andP_ ={PeP|P<pr}, where P, and
P* are the minimum and maximum elements of P defined in Section 1.1.

Since ¢(iw) > 0 for all real w,P* - P, > 0 [12; p. 360], and consequently

P+ and P_ are both nonempty. For each P ¢ P, define the feedback matrix
I'=F- (G-PHIR N . (1.25)

Let the feedback matrices corresponding to P, and P* be denoted I', and I'*
respectively. It can be shown that Re{A(T',)} <0 and Re{A(T*)} > 0
(12; p. 360], [11; p. 53]. Finally, from the given matrices F, G, H and
R, construct the 2n X 2n-matrix

- -y -anrt
1

H

r . , (1.26)

R g (F - R )

(the significance of which will be clear shortly.) It is trivial to see

0 -I
that F is a Hamiltonian matrixz i.e. F = IFI', where I = [I Oﬂ‘
n

Consequently, if xi ; 1=1,2,...,n is an eigenvalue of F, so is - A,
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[13]. It can also be shown that F must have no purely imaginary eigen-

values [14].

In the following proposition, we collect some facts from Brockett

[4], Faurre [11], MacFarlane [14], Martensson [15] and Willems [16].

Proposition 1.4. There is one and only one P € P with Re{A(T)} <0
(Re{A(T)} > 0), namely P,(P‘). Moreover, the eigenvalues of the corre-
sponding feedback matriz T, (I'*). are the n eigenvalues of F with negative

(positive) real parts.

The following lemma will be needed in this section.

Lemma 1.5. Let P and P, be arbitrary elements of Po and let FI and
I, be the corresponding feedback matrices (1.25). Then

TAP + APL,' = 0 , (1.27)

where AP = P1 - P2.

Proof: Since P and P, belong to Po’ A(Pl) = 0 and A(PZ) = 0. Sub-
tracting the second from the first and adding and subtracting the
1

HPZ’ we obtain (1.27). O

quantity PIH'R'
As a first corollary to the above, we can easily prove some of the

statements of the previous proposition.

Corollary 1.6. The feedback matrices T, and -T*' are similar. (Conse-
quently, if ki ;s i=1,2,...,n are the eigenvalues of T,, then

-Ai i 1=1,2,...,n are the eigenvalues of T*.)
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Proof. Since ¢(iw) > 0 for all w ¢ R, P* - P, > 0. By the abocve lemma,
T,(P* - P,) + (P* - P,)I*" = 0. Hence T, = -(P* - P,)I*1(p* - p,)"}, O

Now, we turn our attention to the other solutions of the Algebraic

Riccati Equation : A(P) = 0

For an arbitrary n x n-matrix M with nt eigenvalues with positive
real parts and n~ eigenvalues with negative real parts, let L"(M) and
L™ (M) denote the invariant subspaces spanned by the corresponding

(generalized) wigenvectors.

Lemma 1.7 (J. C. Willems [16]). Let P ¢ Po and T the corresponding
feedback matriz (1.25). Then

Ta=T,a , foracel (D) (1.28a)

Tb=T* , forbelL' (D (1.28b)

The following corollary is a trivial consequence of the above

lemma.

Corollary 1.8. Let Pand T be as in Lemma 1.7. Then the eigenvalues
of T are among those of T, and T'* (i.e. among those of . (In parti-
cular, the feedback matrix corresponding to any solution P € Po has no
purely imaginary eigenvalues.)

The above corollary is in agreement with the well known result of
Potter [17] (generalized in [15] to the case of nondistinct eigenvalues)
that all solutions of the (ARE) may be obtained from the eigenvectors

corresponding to the eigenvalues of the Hamiltonian matrix F.
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The next corollary, which holds under a natural and standard
assumption that F can be transformed to Jordan form, provides some more

information about the feedback matrix I' corresponding to any solution

PeP.
o

Corollary 1.9. Asewne the Hamiltonian matrixz F has distinot eigemvalues.
Let \ be an etgenvalue of the feedback matrix T corresponding to an
arbitrary element P of Po. Then -\ cannot be an eigenmvalue of T.

Proof. Let [F, B, H, Rk] be the (unique) realization corresponding to
P (since P ¢ Po , Bz = 0), which gives rise to the spectral factor
Wes) L e R 7M(sT - Ty 8111'"-+ R

1;

which can be written i-TETM(S)’ where Xp is the characteristic polynomial

T
of T and M is a matrix polynomial. Therefore, by Cramer's rule, Xp

equals the numerator of det W, and consequently, in view of (1.23),
xr(s) xr(-s) = ¢(s), where ¢ is the numerator polynomial of det ¢. But,
since, in particular, this relation holds for I' = T, and since

XF*('S) = xr*ts) (Corollarly 1.6), ¢ must be the characteristic poly-

nomial Xp of F (Proposition 1.4), i.e.

XP(S) Xr("s) = XF(S)-
Now suppose A and -A are eigenvalues of '. The (s - A)(s + A) is a
factor of both xr(s) and XP('S)' Consequently, (s - A)z(s + A)z is a
factor of xF(s), which is clearly a contradiction to the assumption that

F has distinct eigenvalues. 0
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In particular, we are able to see that the sets

P; ={PeP | P>P}and P> ={Pe P | P <P*} are singletons.

Corollary 1.10. 4An n X n symmetric matriz P belongs to P; (P;') if and
only if the feedback matriz T corresponding to P is similar to -I] (I,).

Proof. Let P ¢ P;‘ . Then P > P,. Hence, by (1.27),

r=-p- P (P - P*)'l. Conversely, if T' is similar to -.'} ,

then I' has all eigenvalues in the right half plane. But, by Proposition
1.4, there is only one such feedback matrix, which is I'*: the one
corresponding to P*. By the assumption ®(iw) > 0, P* .. P, > 0 i.e.

P* ¢ Pg . The proof of the other bart isianalogous. 0

Indeed, Corollary 1.10 may bereformulated as: P+ = {p*} and
Py = (2,1,

Next, we shall discuss the relationships between the solutions of
(ARE) ::A(P) = 0 and (QMI) : A(P) < 0.

For any € > 0 and any matrix M, define the ball U(M,e) = {L : L =
M+ N, |IN|]|" <€}, where ||+ | is the usual matrix norm associated to the

vector Euclidear: norm.

Definition 1.11. An n X n symmetrix matrix P belongs to the boundary of
P (denoted by 3P) if, for all € > 0, there exist two matrices Pl and P2
belonging to U(P,e) such that L P and P, E P. (Since P is closed,

P ¢ P.)

o o At o s =




:
i
%
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[
i
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The following theorem, which provides a complete characterization

of the boundary points of P, is due to Germain [18].

Theorem 1.12, Lat P° ¢ P and set -Q, = FP_ + P F' and So =G - Poﬂ'.
. % S
MPoeaPifandonZyifthcmtrizMo-l—s, 2 | s singular,
)
As a corollary, we obtain the following result linking P° with P.

A sharper result will be given later in this section.

Corollary 1.13. Po c 3P.

Proof. Let Po € Po‘ \Ihen A(Po) = 0, consequently, the matrix Mo (see
Theorem 1.12) is singular. 0O
In fact, if m <n (which is usually the case in application), we

have a stronger result, namely

Corollary 1.14, Let m <n and let P1 and P2 be arbitrary elements of
Po. Then the segment [Pl, P,] 18 contained in 3P. (In particular,

(P,, P*] < 3P,)

Proof. Let a € [0,1] and define P(a) =<1P1 + (1 -a)Pz. Then A(P(a))

may be written

-— . - - . s -_

B e el T T T L P T

AP@) = ah(P) + (1 - AR, - a(l - ) (P - pz)wa”ncpl - 2. (1.29)

Since Pl, P2 € Po’ A(Pl) = A(Pz) = 0, Let Q(a) = ~-FP(a) - P(a)F*' and

S(e) = G ~ P(a)H'. Then it is easy to see that

- marenn bt g e




-AP(@) = Q@) - SR IS@) = a(l - a) @, - P)) H'R‘ln(Pl - B

Q@) S(a
H is not full rank and hence the matric M(a) = S(a)' R

Ifm <n, H'R™L

is singular. Then P(a) ¢ 3P V ae{0,1]. O

The final task of this section is to prove that solutions of the
(ARE) are extreme points of the set of solutions of the (MI). This is
a much stronger result than Corollary 1.13. (The extreme points of a
set are contained in its boundary.) To this end, we shall need the

following lemma.

Lerma 1.15. Let P be an arbitrary element of Po . Suppose there
exist. two elements P and P, belonging to P such that
P = aPl + (1 - a)P2 for some o € (0,1). Then, P1 € Po’ P2 € PB and

APH'R Y HAP = 0, where AP = P, - P,

Proof. Let P, P1 and P2 be as in the lemma. Then, by (1.29), ‘
1HAP. Since a € (0,1), the

AGP) = aA(P)) + (1 - a)JA(P,) - &(1 - Q)APH'R”
last term is < 0. On the other hand, .since A(P) = 0 (for P ¢ Po),
A(Pl) < 0 and A(Pz) $ 0 (for both belong to P), the last term must
be ¥ 0. As o> 0, APH'R™'HAP = 0. Consequently, A(P,) = AP, = 0.

which implies P, and P, belong to Po. 0

The above lemma says in essence that elements of Racannot be written

as the convex combination of elements other than those of Po'

The next thcorem is the main result of this section. The basic

idea of its proof was suggested to us by Professor D. Sorensen.

N s ottt oo oo
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Theorem 1.16. Let P e P_. Then P i8 an extreme point of P.

Proof. Let P ¢ P and assume there exist P, and P, € P such that ‘
P=aP, + (1 -0)P, for & € (0,1). We shall show that P = P, = P,. |
By Lemma 1.15, P, € P_, P, ¢ P_ and APH'R™'HAP = 0. The last of these

_ facts implies AI’H‘R'}i =0, i.e. PIH'R'li = Pzﬂ'R'k. This in turn implies
that (G - PIH')R']‘(G - PH) = (G - pza')k‘lcc - PH')': = E. Hovever,
P, and P, are in P, implies FP, + P,F' = -E = FP, + P,F'. Hence
FAP + APF' = 0. But F is a stability matrix i.e. ReA(F) <0. Then F

and -F' have no eigenvalue in common, which implies AP = 0 (see e.g. ;

[19]). Hence P =P, = P. [

If the eigenvalues of F were distinct, the above result may alter-

natively be proved by the following.

Proposition 1.17. Let P, and P, be tuo elements of Po such that

1

APH'R™IHAP = 0, whare AP = P, - P,. Them, T, = T, and 3

TP+ APTY =0, (1.30) !

where P1 and I, are the feedback matrices corresponding to P and P,

respectively.

;

Proof. Recall that T, = F - GR™'H + P/H'R™'H. As was indicated in the |
t

proof of Theorem 1.16, APH'R™IHAP = 0 implies Plﬂ'R"15 = PZH'R'15 .

Then Pl = Pz. The rest of the result then follows by (1.27). O

Therefore, if the eigenvalues of F are distinct, so are those of Pz

(Corollary 1.8). Then, by Corollary 1.9, Pz has no opposite eigenvalues,




and consequently AP in (1.30) will be zero [19]. Hence, in view of

i Lemma 1.15 any P ¢ P is an exteme point of P.
‘ ; Of course, if m = n, Theorem 1.16 would follow trivially from
Lemma 1.15 since then H'R™IH is full rank and hence the condition
- APH'R™IHAP = 0 implies AP = 0.
ot 1.3 Structure of the Set P: Discrete-Time
} In this section, we shall present the discrete-time versions of some
5.
‘; of the results of the previous section; the purpose being to facilitate
i easy comparisons. At times, we shall need to resort to a well-known
v § equivalence between dynamic systems in continuous- and discrete-time
L
z (8, 11, 18] to prove some of these results. Further properties of the |
: set P in this discrete setting will be studied in Section 1.6.
1
| ¢ Let P and P_ be defined as in the previous section. Here again,

4

since Q(elm) > 0 for all real w, P* - P, > 0 [18]. Analogously with

(1.25), in this case we define the feedback matrixz to be

PR —— - - emean

I'=F - (G- FPH')R(P) 'H. (1.31)

L R W s

The feedback matrices T, and I'* corresponding to P, and P* satisfy
the properties: |A(T,)| <1 and |A(T*)| > 1 [11]. Furthermore, it can

be shown [9] that &(~) > 0 implies that T, is nonsingular. j

The foliowing is a slight modification of a result in [18]. It 3
will be useful in what follows. Our proof will shed more light on the §
structure of P. Unlike [18], we do not rely upon the corresponding

continuous-time result.
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Lerma 1.18 (a) Set R, = J + J' - HP,H'. Let P e P, and set
M, = (P - P,)"Y. Then M, satisifies

1

M, + TIMT, +HRCH+ N=0 (1.32a)

for aome nommegative definite matriz N.

) Set B = +J' - HPH'. Lot PP and astMv = (7 - P)L Then
M* gatisfies

M* - T*'M*T* + H'R*-IH +N=0 (1.32b)

for some normegative dafinite matriz N.

Proof. (a) Let P ¢ P*. In view of (1.12) and (1.16a), we have
P = FPF' + (G - FPH')R(P)-I(G - FPH')' + Bsz', and
p, = FB,F' + (G - FRHOR;I(G - FRHD" .
Upon subtracting the second of these two relations from the first, the

following is obtained

M:le BCIEY + RR(PIK = KRKL + BBy (1.33)

where K and K, are defined by KR(P) = G - FPH' and K,R, =G - FP H'. It ;
is easy to see that R, = R(P) + HM;lﬂ' and that K = [K,R, - FM;IH']R(P)"l.
Let AK = K - K,. Then &K = (KH - pMClR(P) ! and K = K, + AK and

(1.33) becomes

1

Wl s RCIFTH (R, 4 AORE) (K, + 801 - Ky (R(P) + HGTHOK] + B85

272

After long, but simple calculation, we get ;

M;1 = r,u;lr;, + r,M;lu'R(p)‘lm;lr; + B,B)

or

wler, mob e ituree) g lyr

*
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Taking the inverse of both sides, we obtain

M, s I, ct o o hreey i1y igt

from which, the following relation is obtained
-1
*

]

M, s 1,0t - or g ter

using the matrix inversion lemma

TR e B S Nt 1 I T N S B Sl (1.34)

Then, premultiply the last inequality by P: and postmultiply by T,
to get

' -
IM,T, s M, - H'RJ1H

which yields (1.32a) for some nonnegative definite matrix N. This

proves (a). The proof of (b) is anaiogous. (I

As a first application of this lemma, in the next theorem, we
give a parametric representation for the set P. The formula-
tion of the result is analogous to that in [2] for the continuous-time

case.,

Theorem 1.19 Let M,(N) and M*(N) be the solutions of (1.32a) and (1.32b)
respectively, Then

(a) the matriz P = P, + [M,(N))™" belonge to P, if and only if
N2O,

(b) the matriz P = P* - [M*(N)]™! belongs to P_ if and only if
N=20, and

(¢) P*-P, = (M, (0] = M*0)]t

e e~
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Proof. (a) We have to prove the "if" part; the "only if" was proved in
Lemma 1.18. Let M, (N) be a solution of (1.32a) with N 2 0. The pair
(T,, H) is observable for (F, H) is [20]. Recalling that T, is a
stability matrix, a standard result in stability theory (see e.g.[13;
p. 86]) implies M, (N) > 0. Consequently P, + [M,,(N)]"1 € P_. The proof

of (b) is analogous and that of (¢) is immediate. (I

In addition to its signifigance in parametrizing the set P, Theorem
1.19, together with Proposition 1.2 provide us with a procedure to gene-
rate stochastic realizations of y corresponding to an arbitrary element
Pe P+ v P_: First use (1.16a) to compute P,; P* will be obtained from
Theorem 1.19(c) and varying N over the nonnegative cone will generate
the other elements of P+ v P_. The realization [F, B, H, (R(P)k,O)]

corresponding to P ¢ P, v P_ can be computed via

By = (G - FPH')R(P)';S ' (1.35a)
3232' = -A(P) . (1.35b)

This procedure for generating stochastic realizations requires solv-

ing a matrix Riccati equation (1.16a) in order to determine P, in
addition to the burden of determining P ¢ P, uP_. In Section 1.6
another procedure that eliminates the intermediate step of computing

P will be given.

The second aspect of the structure of P that will be discussed in

this section is its boundary.

As was pointed out in Proposition 1.1, P is bounded. A complete

characterization of the boundary points of the corresponding set P¢ in

AR W e
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the continuous-time setting was given in Theorem 1.12. Here, by

associating the discrete-time quadruplet [F, G, H, J] with a continuous-

time one [Fc, Gc’ Hc, Rc](an idea that is well known {8, 11, 18]), we
shall give complete characterization of these boundary points. We shall

also gain more insight into the relationship between the set P and the

set Po.

In order to distinguish between the continuous and discrete settings,
we shall adjoin the letter c(d) (as a subscript or superscript) to the
matrices and sets of the continuous (discrete) setting whenever there is

a need for distinction.

Definition 1.20. The discrete-time quadruplet [F, G, H, J] and the

continuous-time one [Fc, G Hc’ Rc] are said to be equivalent if P = Pe.

c’
The following proposition shows how to construct a quadruplet in
one setting from one in the other setting. The proof can be found in i

[11].

Proposition 1.21. Every discrete-time quadruplet [F, G, H, J] 18 equi-

valent to a continuous-time one [Fc, G, Hc’ Rc], where

c
For= (F+ D (F-D), (1.36a)
6, :=v/7T E+Dl, (1.36b)
H : = /T HEF+ D7, (1.36¢)
R, :=d+Jd - HEF + D76 - G(F + D7 (1.36d)

Conversely, every continuous-time quadruplet (F, G, H, R] 18 equivalent

to a diserete-time one [Fd, Gd’ Hd’ Jd], where




h
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Fgi=(1-R71+R, (1.37a)
d::-/_(I-F) lg, (1.37b)
Hy : = /2 H(I - F)°l (1.37¢)
Iy --_R +HI - PG . (1.37d)

Now, we are ready to state the discrete-time version of Theorem 1.12.

Theorem 1.22. Let Po € P and set Qo = Po - FPOF' and So =G - FPOH!.

S
Then P « 3P if and only if the matriz M = [;; R‘Epo):[ is singular.

Proof. Let the quadruplet [Fc, G, H,, Rc] be the one given by (1.36)
corresponding to (F, G, H, J]. Let °c(°) be its corresponding spectral
density. It is not hard to see that @(e“ﬁ > 0 for all w €R implies
¢£(iu0 > 0; hence Rc > 0. By Theorem 1.12, Po € 97 if and only if the
matrix Mc = [:Qc Sc is singular. However, it is easily seen that [11]
5 &
-1 -1 -1
Y2 (F+I)" 0 Y2 (F' +1)7° -(F+I)H
M

c HE+ DY 0 I

Hence Mc and Mo have the same rank and one is singular if and only if the

other is. 0

Corollary 1.23. Po c 9P

Proof. If P, € Po’ then Mo in Theorem 1.22 is signular. 0
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Corollary 1.24. Let m <n and let P, and P, be arbitrary elements of
Po' Then the segment [Pl, P,] aP. (In particular [P,,P*] c 3P.)
Proof. It is not hard to see that P ¢ Po if and only if P ¢ P;. Hence,
by Corollary 1.14, P(a) = aP; + (1 - a)P, ¢ aP¢ = 3P, for all

ae [0,1]. O

Theorem 1.25. Let P ¢ Po' Then P 18 an extreme point of P.
Proof. By Theorem 1.16, P is an extreme point of P°=P. 0O

1.4 A Hamiltonian Approach to the Factorization of the Matrix Riccati
Differential Equation

Consider the matrix Riccati differential equation
P=A®) ; P(O) =P (1.38)

which is of the type encountered in Section 1.1. For convenience, we

recall that
ACP) : = FP + PE' + (G - PH')R™I(G - PH')',

where the quadruplet [F, G, H, R] is a minimal realization of the
positive real matrix function Z(s) defined by (1.19). Hence (1.38) has

a unique bounded solution on [0,%) for all P0 < P* [18]. In this section,
we shall present a new approach for factorizing the above Riccati equation
based on Pontryagin's Maximum Principle. In this way, we shall obtain

a new derivation of the non-Riccati algorithms due to Kailath- [21] and

Lindquist [22-24]. Our derivation will shed more light on these




algorithms and will provide new links to the Hamiltonian formulation of
(1.38). The basic idea of this procedure (which was indirectly suggested
to us by Professor L. E. Zachrisson) is to consider the above Riccati
eqpation,as arising from an optimal control problem, with which a
Hamiltonian function is associated. The factorization will then be a
direct consequence of the fact that the Hamiltonian function is constant
along the optimal trajectory. Another procedure based on the Hamiltonian
formulation can be found in Bucy and Joseph [25].

It is worth noting that (1.38) is not the most general type of
Riccati equations that one might encounter (e.g. one might have an extra
constant term added to the right hand side of (1.38)), However, our aim
here is to convey the basic ideas of the method, and we are therefore

using the form (1.38) which arises in stochastic realization theory.

Consider the following control problem. Find a square integrable
control function u(+) so as to minimize
1 1 (%1

J(u;tl,a) = - fx'(O)Po x(0) + T_L [u(t)'Ru(t) + 2 x(t)'G u(t)ldt,

: (1.39)

subject to
x(t) = -F'x(t) - Hu(t) ; x(t,) = a (1.40)

Note that since st) is‘positive real; the function J{u;.,.) is bounded
from below [8; pp. 231-232]. Hence § : = iﬁf J(u;.,.) > ==, Let

{uk i k ¢ 2%} (where 2*-= {0,1,2,...}) be a control sequence such that
J(uk;.,.) + £ as k + », Then, using the parallelgram identity in Hilbert

space and a completeness argument, it is seen that there is a control u®

e 7§ i ¢ <
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such that J (uo;.,.) = £, In fact, this can also be seen from the

proof of

Proposition 1.26. There ¢xists a wrique square integrable function

u’ minimiging JC“‘H")' Moreover, J(u°;t1,a) - -%n'?(tl)a, where P
is the unique solution of (1.38).

Proof, Consider the function %—x(t) 'P(t) x(t). Upon differentiating

this quantity and integrating between 0 and ty, we obtain

J(uit,a) +5 a'P(e))axg x(0)' [PO) - Py 1x(0) +3 Ltl[l.’(t) - A((t))]

. t
+3 L Mluce) + R1arx(e) - R7HP(E)x(2) |l it

where A(P) is given by (1.22) and ||x ”R = x'Rx. Then the result follows
by noting that P satisfies (1.38) and that it can be choosen to make the

last term zero. [

The optimal control u? can Le cbtained as a corollary to this proposition.
However, since the Hamiltonian function will play an important role in
what follows, we shall instead apply the Maximum Principle. First, let
x° be the solution of (1.40) corresponding to w’. To apply the Pontryagin
Maximum Principle, define the Hamiltonian function
HCt,x(8),u(t),y(£)) = 3 u(t) 'Ru(t) + x' (£)Gu(t)

+ y(e)[-F'x(t) - H'u(t)]. (1.41)

Then the Maximum Principle requires that for a control u® to be optimal,

H(t ,x° (t) ,u° (t),y(t)) must be minimal i.e.

B (61,00, () = 0 = k() + & (1) - Hy(e),  (1.423)

e e s s s na - i o e e e a




Lounden i o 2 s G " Lo e o " — e

32
where the adjoint function y is given by
B 62,00 ,y(1) =-F = G°(e) - Fy(e) (1.42b)
with initial condition y(0) = P °x°(0) . Hence the optimal control is
wO(t) = -R7G'C(t) - Hy()]. (1.43)

Using (1.40), (1.42) and (1.43), it is easy to see that the 2n-vector

°
[ y ] satisfies

L1D T Dor] Dol
= F H = 0 s (1.44)
4 4 y (0) P_x" (0)

where F is defined by (1.26). Then
() = X(t)x, (1.45a)
y(ey = Y(t)x, (1.45b)

where X, * x°(0) and X and Y are n X n matrix functions satisfying

X X X(0) I
.| =F ; = . (1.45c¢)
Y Y Y (0) p
)
We recall the following well-known fact:

Proposition 1.27. Let X and Y be as in (1.45). Then X(t) is8 non-
aingular for all t and the matrixz function P(t) : = Y(t) )((1:)'1

18 the unique solu*ion of (1.38).

As a corollary to the above proposition and using (1.45a,b), it

can be seen that

y(t) = P(t) x°(1). (1.46)
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Now, let the function H® : [0,¢,] + R be defined by

HO(t) : = H(e,x° ) w0 (t) ,y(t)). (1.47)

Levma 1.28. Let H° be defined by (1.47). Then
) = - 3 °@ B, _ (1.48)

Moreover, %g?(t) = 0, i.e. H i8 constant along the optimal trajectory.

Proof. Clearly, for each t ¢ [O,tl], the problem to minimize J(u;t,xo(t))
has the optimal solution {u®(s);s € [0,t]}; we shall misuse notations
somewhat by calling this restricted function u® also. Then, by Proposi-
tion 1.26, J(uo;t,x9(t)) a-%-xo(t)'P(t)xo(t). Hence, since

() = 3L @56,x° e + y7£)'%°(t), where y(t) is given by (1.46), ;
(1.48) follows. The fact that %g?(t) = 0 follows from elementary !

calculus. 0O

Lemma 1.29. Let H° be defined by (1.47). Then
Ho(t)z-% x; M(E)x (1.49)

where Xy = x°(0) and the n x n matriz function M is defined by

M(t) : = X(t)'P(R)X(L). (1.50)

S s

Proof. The result is an inmediate consequence of (1.45a) and (1.48) O

A g meh e et ot
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Lemma 1.30. Let M and A be given by (1.50) and (1.22) respectively. Then
M(t) = ACP)) (1,51)

(t.e. M i8 conatant.)

Proof. Using (1.44) and (1.46), it is easy to see that x° = -I'x°,
where I' is the feedback matrix (1.25). Let ¥ be the tronsition matrix
of T. Then x, = ¥(0,t)a. Hence, H(t) = -2 a'¥(0,t,)M(t)¥(0,¢,)a,
which is constant for all a ¢ R". Consequently, W(O,tl)'M(t)W(O,tl) is
a constant matrix, hence the same is true for M. But, by definition
M(0) = P(0), which, in view of (1.38) is the same as A(Po); and conse-

quently (1.51) follows. O

Lemma 1.31. Let X be as in (1.45). Then
& et = rmamn™,

where T 18 given by (1.25).

1

Proof. Using - (¢'™1) = -xr "1kl (1.45) and Y(¢) = P()X(t), the

result follows. 0O

We are now ready to state the main result. First observe that,
since the n X n-matrix A(Po) is symm.cric, there exist two constant
matrices N and S such that A(Po) = NSN', where Nisnxr, Sis r x r
and v is the rank of A(Po). (For example, S can be choosen as the

signature matrix although we shall use a different S below.)
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Theorem 1.32 ([21]). Let P-be the unique solution of (1.38). Then
{éct) = Q(NSQ(t) 5 P(O) = P (1.52a)
Q(t) = T)Q(t) ; Q) =N, (1.52b)

*

where Q(t) = (X'(t))'lN and N and S are given as above.

Proof. From (1.50) and (1.51), we have b = x'”lA(po)x‘l, which by the

preceding discussion and Lemma 1.31, is (1.52). O

As an application of the factorization (1.52), consider the problem

of determining the Kalman gain K given by (1.24c), where Il is the

1G'. Hence

solution of (1.24a), in which case I = 0 and A(0) = GR™
choosing N = GR'% and S = I in (1.52), we obtain the following non-

Riccati algorithm for K

K = -QQ'H'R‘15 s K(0) = GR™% (1.53a)
Q= (F-HQ ; Q) = GRE (1.53b)

which was first obtained independently by Kailath [21], who used the
factorization above, and Lindquist [22], who derived it from basic

principles using backward innovatioms.

As another application of interest in realization theory, consider
the case where Po is any element of P as defined in Section 1.1. In
that case A(Po) = - BzBé, where B2 is given by (1.20a), and we may choose

N and S to be B, and -I respectively to obtain

2
P=-qu ; PO =P (1.54a)
Q= TQ 5 QM) =B, (1.54b)

o e e = it i o
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Then it can be shown [2] that P(t) € P for each t ¢ R and therefore

P(t) is the state covariance of a realization for which (in view of (1.21))
B, = G- P(t)ﬂ')n“’5 and B, = Q(t) .

Hence, we have the following non-Riccati algorithm generating a family of

realizations

B, = BBIH'R™® ;B (0) = (B), (1.54¢)

B2 = (F - BIR %H)Bz ; 32(0) = (Bo)2 (1.544d)
for a given initial matrix B° = [(Bl)o'(BZ)o]‘ (Note the parameter t is

not time now.)

This algorithm was first presented in [2]. In Section 1.6, we are
going to derive its discrete-time version, which is, as expected, more

complicated. Also, in Chapter 3, we shall derive the nonstationary

version of (1.54).

1.5. A Hamiltonian Approach to the Factorization of the Matrix Riccati
Difference Equation

In this section, the matrix Riccati difference equation
P(t. + 1) = FP()F' + (G - FP(t)H')R(t)'I(G - FP(t)H")'; P(0) = Po' (1.55)

[which is the same as P(t + 1) - P(t) = A(P(t)), where A is given by
(1.15)] will be considered, where the quadruplet [F, G, H, J] is a mini-
mal realization of S(z) defined by (1.9) and R(t) = J + J' - HP(t)H'.
The aim is to obtain a factorization of this matrix Riccati equationm,
analogous to the one obtained in the previous section. This will not

only facilitate comparisons with the continuous setting, but will also
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be the basis for the next section. Moreover, as will be seen shortly,

the lack of symmetry between the two settings will again be illustrated.

Before stating the control problem which gives rise to the above
Riccati equation, we note that the matrix T : = J + J' is nonsingular
since T = R(t) + HP(t)H', and R(t) is assumed to be positive definite
for all t. Again the problem is to find a control u(.) which minimizes

tl-l

J(u;t, ,a) = -1 x(0) 'P_x(0) + %—tZO [uCt + 1)'Tu(t + 1)
» 2x(t + 1)'Gu(t + 1)], (1.56)

subject to

x(t) = F'x(t + 1) + H'u(t + 1) : x(tl) = a, . (1.57)

As in the continuous-time setting, the assumption that S(z) is posi- f
tive real insures the boundedness of the functional J and the existence
of the optimal control . Also, using an argument similar to that of

Proposition 1.26, it is not hard to check that
I5t,°(0) =-3 PO, (1.58) |

where x° is the solution of (1.57) corresponding to u°® and J(ust,x(t)) is

the value function defined by

t

-1
Just,x(t)) =-5 x(0)'Px(0) + = ] [uk + 1)'Tu(k + 1)
0

k=
+ 2x(k + 1)'Gx(k + 1)]. (1.59)

As in Section 1.4 we are misusing notations somewhat by denoting u’

restricted to [0,t] w’ also. Again, the optimal control u® can be obtained

from the derivation of (1.58); however, we shall resort to the Hamil-
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tonian. To exploit the analogy with the continuous-time problem, we

shall use the Maximum Principle of [26] with the Hamiltonian fumetion

HEE,x(t + 1), u(e + 1), y(8) = & utt + 1)'Tuct + 1) + x' (2 + DGt + 1)
Y@ Ix(t + 1) - Fix(t + 1) - Hhuce + 1],
' (1.60)

where y(t) - y(t + 1) = 5;%¥;T7-(t,x°(t + 1), Ot + 1), y(t)), i.e.

y(t +1) = Fy(t) -Gu'(t + 1) ;  y(0) =Px°(0),  (l.61a)

uP and x° are as above., Note that then

oH
sthi

Hence, with this formulation, there is a complete analogy between the

x°(t + 1) - x°(t) = (t,x°(t + 1), u’(t + 1), y(t)).
discrete- and the continuous-time settings just exchanging derivatives
for differences.
Now the Maximum Principle states that H(t,xo(t + 1), u°(t + 1), y(t))
has a minimum for u = uo(t) i.e. by differentiation ;

Tt + 1) + G'xO(t + 1) - Hy(t) = 0. ;

which implies

Wit +1) = - TGt + 1) - Hy(t)]. (1.61b)

Using relations (1.57) and (1.61), some straight-forward algebraic

)
manipulations yield the result that the 2n-vector [; :[ satisfies

xo(t) xo(t+1) xo(tl) a

y(t+1) = F y(t) H v(0) = Poxo(O) , (1.62)
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where the matrix F is given by

A nr iy
F= 1 (1.63a)
GT "G A
and
A=F - GTlu. ' (1.63b)
Then, as in the continuous-time setting
L(t) = X(£)x, (1.64a)
y(t) = Y(t)xo (1.64b)

where X, = xo(O) and X and Y are n X n matrix functions satisfying

[A'X(t + 1) = X(t) - H'TIHY(8) ; X(0) = I (1.652)
Y(t + 1) = AY(t) + GTTIG'X(t + 1) ;  Y(0) = P_. (1.65b)

To exploit the analogy with the continuous-time setting, the follow-

ing lemma is needed.

Lemma 1.33. Let P be any n X n symmetric matrix and let R : = T - HPH'
be nonsingular. Then, the matriz [I - H'T'IHP] i8 full rank and its

inverse is [I + H'R"IHP].

Proof. It is easy to check that
(1 - TPy + WR™IHP] = 1.

Hence, the two matrices in the left hand side are full rank. 0
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Lemma 1.34. Let [é] be the solution of (1.65) and let P be the solution
of the Riccati squation (1.55). Then Y(t) = P(t)X(t).

Proof. Replace Y by PX in (1.65b) to obtain

P(t + 1)X(t + 1) = AP(t)x(t) + GT 1G'X(t + 1)

.t e —— a -n -

Then, use Lemma 1.33 to obtain X(t) from (1.65a) with Y(t) set equal

to P(t)X(t). Then inserting this into the above equation, we sbtain
)
[P(t +1) - P(t) - AP(E))IX(t +1) =0

which, in view of (1.55) is an identity. Hence the lemma follows. g

As a first corollary to the above two lemmas, we have

Corollary 1.35. Let X and P be as in Lemma 1.34. Then the matriz X(t)

18 nongingular for all t e Al Moreover, the matrixz A 18 nomgingular.

Proof. From (1.65a), we have A'X(1) = [I - H'T"IHPO], which by
Lemma 1.33 is full rank since R(0) : = T - HPOH' is nonsingular. Hence
A and X(1) are also. The result now follows by repeating this argument

for t=1,2,... . O

As another corollary, we obtain the counterpart of Proposition 1.27.
Proposition 1.36. Let [é] be the solution of the system

X (t+1) At Ay ly x(t) T T x¢0) I
Y(t+1) er-torart acrlow T t| | very || Yoo P,

- (1.66a)




Then P(t) : = Y(t)X(t)™! e the solution of (1.55) and
y(t) = P(t)x°(t). (1.66b)
In analogy with the continuous-time setting, define the n X n-matrix

M(t) = X(t + 1)'6P_ . X(t + 1) (1.67)

t+l
where X(t) is given by (1.64) and (1.66a) and 6Pt+1 t = P(t +1) - P(t).
Just as in Section 1.4, we want to express the optimal sequence

H); t = 0,1,...,t,} defined by
Ho(t) & = He,xO(t + 1), WOt + 1), y(t) (1.68)

in terms of M.

Proposition 1.37. Let H® and M be gtven by (1.68) and (1.67) respectively.
Then

1

) = -2 xM(t)x, - 3 & (¢ + DPOISEC(E + 1) (1.69)

where x° = x°(0) and 6:°(t + 1) = x°(t + 1) - x°(t).

Proof. It is easy to see that

HO(e) = 35t + 1,xTe+1))-30u%6,x7 () +y () (< (¢ + 1) - x°(t)),

where J(u;t,x(t))is given by (1.59). Remember that u® restricted to

[0,t] minimizes J(u;t,xo(t)). Hence, by (1.58) and (1.66b)

) = 7 PR - 520 + DI + 10X + 1) - ) POC®)
+ () P(E)X°(t + 1),

which, upon adding and subtracting the quantity %-xoct + 1)'P(t)x°(t + 1)

and using (1.64) and (1.67), yields (1.69). O
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However, unlike the continuous-time setting, the sequence Ho(t) is
not constant, nor is the matrix function M. We shall now use the Riccati
equation (1.55) to get an alternative expression for the Hamiltonian

g sequence Ho(t).

Lemma 1.38. Let HS and M be given by (1.68) and (1.67). Then
) == xUMCe - 1) - Mt - DX HRee - DTHEE ) Me - D1y

- %Gxo(t + D)6 + 1), (1.70)

Proof. First, using (1.60), we may write

(1) = -21-u°(t + DTt + 1) + Ot + DGOt + 1) - y(t) °Ct)

+y)' <t + 1),

Upon inserting (1.61b) and (1.66b) into this equation, we-obtain

1

Ho (1) =--:]z"—x°(t)'P(t)x°(t) - %x°(r. « 16T a0 + 1)

+ 20 PORT IR (1) X (0-F2) P)C() + ()P + 1),

Next, it is not hard to check that the Riccati equation (1.55) can be

reformulated to read

P(t) - A[P(t - 1) + P(t - 1) H'R(t -~ 1) MHP(t - 1)]A* = 6T lg,

where A is given by (1.63b). Inserting this value for GT'IG' into the

above, we get

HO (1) =--;-x°(t)'P(t)x°(t) + %—xo(t + 1)'A[P(t - 1)

- 28 + 1)'P)x°( + 1),
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Finally, it is not difficult to check, using (1.61b) and (1.57) that
Lt + 1) = AT - BT P ) 10 () (1.71)
which inserted into the above equation for Ho(v) yields (1.70). O

The above lemma, together with Proposition 1.37, provide us with

a recursion for M.

Lenma 1.39. Let M be given by (1.67). Then M satisfies

M(t) = Mt - 1) - MCt - X)) " TRee - DX @ 9 Mt - 1. (.72)

Proof. Using the same argument as in the proof of Lemma 1.31, this
follows from the fact that I'(t) is nonsingular for all t, which follows

from Lemma 1.40 below. 0

Before we state the main results, we shall need the following

Lemma 1.40. et X(t) be as in (1.64) and (1.65). Then i
xee + DDy, (1.73)

where T i8 the feedback matriz (1.31).

Proof. Upon applying the matrix inversion lemma (1.34) to (1.65a), in
view of Proposition 1.36, one obtains

Xt + DO = [F+ POHRE)H - et + TRy uRee) HH (X L ;
(1.74)

raomer s e e e e
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The last term in (1.74) can be written
6t ret) + TP )R K e) ) L,
which is -GR(t) Xty L. O

Analogously to the continuous-time case, let r : = rank M(0); then

M(0) = X(l)'GPIX(l) can be written NSN', where Nisn X rand S is r X r.

Theorem 1.41. Let {P(t); t e Z'} be the solution of (1.55) and let N
and S be as above. Then P can be determined from the system

P(t + 1) = P(t) - Q()2(t)Q(t)' ; P(0) =P, (1.75a)

where the matriz sequences {Q(t); t e Z+}, {z(t); t € 7'} are generated

by
Q(t +1) = [F - Ut + DR(t + IHIQ(E) 5 QUO) =T (0N  (1.75b)
UGt + 1) = U(t) + FQ(t)Z(t)Q(t) 'H! i UG) =G - FPH  (1.75)
Rt + 1) = R(t) + HQ()Z(IQEE)'H ;  R(0) = J + J' - HRH' (1.754)
20t + 1) = Z(t) + Z(£)Qt)'H'R(t) IHQ(E)Z(t) ; Z(0) = -S. (1.75€)

Proof. Let Q(t):= (X(t+1)')'1N and U(): =G - FP(t)H'. Then by (1.73),
Q(t + 1) = I'(t +1)Q(t) which, by (1.31) and the definition of U, yields
(1.75b). Next, in view of (1.72) and the fact that M(0) = NSN', it can

be easily seen that M(t) = -NZ(t)N'. Then (1.75a) follows from (1.67).
Finally, (1.75c¢) and (1.75d) follow from (1.75a) and the definitions of

Uand R. O

As an application of the factorization (1.75), consider the problem

of determining the Kalman gain K given by (1.18e). In this case Ho =0

v ot G o
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-1 -

and A(0). = GT""G'. Hence, we may choose N = X'(1)GT 2 and S = I, in

which case,
K(t) = UGR(E)™E 5  K(0) = 6T %, (1.76)

where U(t), R(t) are given by (1.75) with initial conditions

Q(0) = GR"’, U() = G, R(0) = T and Z(0) = -1I.

This version of the algorithm is the one originally presented by
Lindquist [27, 83]. The general case can be found in [29], where the

following factorization was used
- ]
6Pt+1 = I'(t)[GPt - GPtH'R(t - 1) 1HGPt]I‘(t) . .77

Relation (1.77) can be obtained from (1.72) by inserting (1.67) and not-

ing that (X(t + 1)')"IX(t)' = I'(v).

1.6 Non-Riccati Algeorithms Inside the Set B.

Each P € P can be interpieted as the state covariance matrix (1.2)
of the corresponding realization (1.14) [5]. Consequently, there is a
minimum-variance (P,) and a maximum-variance (P*) realization for each

of which B2 = 0,

Faurre's Algorithms (1.16) show that the solutionsII(t) and fi(t:)'1
converge to P, and P* respectively as t + . However, these solutions
start outside the set P (for 0 £ P). 1In this section, é* and P* will be
approached from inside P. In particular, for a given Po € P_ (Po € P+),
we shall construct a trajectory extending from Po to P, (from Po to t*)
so that this trajectory is a totally ordered set of matrices satisfying

(1.12). Such a result will enable us to construct a countable family of
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realizations of y, the state covariances of which are totally ordered,
yielding a procedure to obtain a countable family of realizations without
resort to the intermediate step of determining the zuxilliary quantity P.
Indeed, the (non-Riccati) factorization of the previous section will be

the basis of this procedure.

The work presented in the rest of this chapter is the discrete-time
version of Section 6 in [2]. The procedure is more complicated than its
continuous-time counterpart. However, this is natural and is largely
due to the fact that the matrix R(P) depends on P, while its counterpart

in the continuous case does not.

First, let us start with the following

Lemma 1.42. Let A(P) be defined by (1.15). Then, for each P° e P,
the solution {P(i); i € yAb} of the matrixz difference equation

P(i+1) -P(H) =AP@E)) ; PO = Po (1.78)

satisfies () P(i) .« P forall i e I¥, (i1) P(i,) S P(i,) for i) s i,

and (i) if P e P_, P(i) + P, a8 i+

Proof. Since Po € 7, A(Po) s-BzBé [see (1.35)]. Then P(i) satisfies
(1.75) with N = X(l)'B2 and S = -1I. Then Z(0) = I and conseauently it
follows that Z(i) 2 0 for all i € A Therefore, in view of (1.75a),
6Pi+1 = A(P(i)) s 0. Hence P(i) ¢ P for all j € Z*. This proves (i)
and (ii).

To prove (iii), let Mi = P* - P(i). An argument similar to that

used in proving Lemma 1.18 yiclds that
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My,p = T*My T*0 - ToMHORTIMM Te M= o - P,
Since M, > 0 (for Po € P) and Mi+1 - M; 20 by (1.75a), Mi >0
vyiel. Consequently M;l exists. Let M*(N) be as defined in
Theorem 1.19. Define V, : = H*(0) - M;'. Then v,, -V, =- (M;:l -uh.

e ———— o e

Bx»(1.34),~yg‘h§ve

M—l

-1,-1,,-1 -1 1 el
i1 = T*? "M, T* © + T*! H'(Ri - HMiH‘) HI'*

i
= peeodytlped o opee-lgipe-lgrenl,
1

Consequently,

Vig -Vy =Mt - meehycipesd o operslyipetlypecd,

But by (1.32b), M*(0) satisfies
M*(0) + Tt Iy o)rx~1 4 pro~Igrpetlppel o g,

Therefore

+

Vi Vg =-Vy e vl e 20

since |A{(T*)71}] < 1,V, + 0 as i + = and consequently

M, > [M*(0)]™" = P* - P,. Hence, P(i) + P, as i +®. [

Now, we are ready to state the first main result of this section:
the non-Riccati algorithm. Since the realizations are determined by the

matfix B, the algorithm will be given in terms of this parameter.

Let B pe the set of all B = (BI,BZ) given by (1.35) with P ¢ P,
Let Bo’ B_ and B+ be defined analogously in terms of Po‘ F_ and P+.
It is clear that B = {BeB | B, = 0}. 1In particular, let B, and B*

denote those elements of Bo corresponding to P, and P* respectively.
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3
Theorem 1.43. Let [F, B, H, (R;’ 0)] be an arbitrary realization of

y, and, for each i e Z+, let B(i) = [Bl (1), Bz(i)] be given by

4}

B, (i) UEIR() X (1.79a)

B, (4)

@Iz, (1.79b)
vhere the matrix sequences U(i), Q(i), Z(i) and R(i) are generated by
(1.75) with initial conditions U(0) = (B,)|R% R_ = R , Q(0) = (B),
and 2(0) = I, For each i € 7t let P(i) be the solution of

- P + FPF' + B(i)B(i)' =0 (1.80)

Then, for all i € Z*, [F, B(), H, (R*(), 0] ie a realization of y,
with state covariance P(i). Moreover, if B, € B, B(i) -~ (B,,0) as
i+ o, Finally, the eequence {P(i); i ¢ 7'} satiefies conditions (i)--
(iii) of Lemma 1.42 and the difference equation

P(1+1) -P@1E) = - Bz(i)Bz(i)'. (1.81)

Proof. Let Po be the state covariance of the initial realization
[F, Bo’ H, (Rif, 0)], and let {P(i); i ¢ I} be the trajectory through Po
defined by Lemma 1.42. Then P(i) ¢ P for all i ¢ Z*. Define B, (i) and
B, (i) by

B () ¢ = [G - FP(1)H']R(i) "2
and

By(i) : = )z

Then, since P(i + 1) - P(i) =-Q(i)Z(i)Q(i)', (1.81) follows. From the

proof of Theorem 1.41 we see that U(i) = G - FP(i)H'. Hence

4
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P {1.79a) fo{lows. Equations (1.78) and (1.81) imply Bz(i)Bz(i)' =-A(P(1)),
which together with the above definition of Bl(i) yield (1.80). Since
|A(F)| <1 and (F, B(i)) .is controllable (for (F, B,) is), the solution

] of (1.80) is unique, symmetric and positive definite. This fact,

together with (1.80) and the definition of Bl(i) insure that (P(i), B(i))

satisfies (1.12). Hence [F, B(i), H,(R()¥%, 0)] is a realization of y
with state covariance P(i). By Lemma 1.42, P(i) satisfies conditions
(i) - (iii). Finally, by the same lemma, P(i) + P, as i + « if Po e P.
Hence, if BO € B_, Bl(i) -+ B, as i + « and, in view of (1.81),

Bz(i)Bz(i) + 0 i.e. Bz(i) +-0. 0

Remark. Throughout this section, we have used the parameter i rather

than t to stress the fact that this quantity has nothing to do with time.

The next task is to construct a sequence belonging to set P which
is increasing (rather than decredsing) in i and which converges to P*.
In the continuous-time case, this can be done using the same Riccati
equation; the analogue of (1.78). Here, unfortunately, to achieve
this, we shall have to follow an indirect procedure through a '‘backward"
approach. To this end, let us review certain facts about backward

realizations.

We would like to consider realizations of y that evolve backward
in time of the form
x(t - 1) = Ax(t) + Bw(t) (1.82a)
y(t) = Cx(t) + Dw(t). (1.82b)
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where w is a normalized white noise sequence such that, for each t, w(t)

is uncorrelated to future (rather than past) values of x.

Hence, we can state the backward wide sense stochastic realization
problem as follows: Given the spectral density ¢ of y (or equivalently,
the quadruplet [F, G, H, J]), determine all quadruplets [A, B, C, D)
with dim A = n minimal and |A(R)| > 1 such that the output y of (1.82b)

has spectral density 9.

The problem has been studied by Pavon [9] and earlier in [10, 11,
18]. We shall outline some of the results of [9, 11] here, since we

shall need them below.

The backward realization problem is deterministic in nature and is
equivalent to the dual spectral factorization problem considered by
Anderson {30] and Faurre [11], which requires determining all minimal
unst;ble factors W(z) of $(z). Since W(z'l)W(z)' = §(z)', this problem
is equivalent to finding all minimal stable factors W(z"l) of ¢(z)'.
Consequently, we have reduced the problem to the one considered before.

In fact all solutions to this problem are given by
B -1lp, -1 ' R )
[A, B, ¢, D] = [T°F'T, T (B, B,)V, 6'T, (R(FYZ, 0)V]

where T and V are as before, El’ §2, P and R(P) satisfy

P = F'BF §1§i + Ezﬁé (1.83a)
H* = F'BG + Blr’z(ﬁ)’i (1.83b)
R(P)y =3+ J' - Gg'BG , ' (1.83¢)

and P is an n X n symmetric positive definite matrix.




51
Again, here it is no restriction to take T =V = I i.e. to consider

backward realizations of the form

x(t - 1) = F'x(t) + Tslﬁ(t) + §2\7(t) (1.84a)
Y(t) = G'%(t) + R(BYZi(t) (1.84b)
where w = [g].

Analogous to what we have done before, let P be the set of all solu-

tions of (1.83)., define the map

R(P) = - B + F'BF + ('« FBG)R(P) L(u' - F'3G)", (1.85)
and let P = {P | K(P) = 0}. Then P = {F | A(P) < 0} and it has the same
properties as P. Hence there exist two elements P* and P* in ?o such
that B, < P < P* for every P ¢ P. It is well known [11, 18] that P is
related to P by P = {p~} | PeP). Thuse B, = (P*)™! and B* = .

This also explains the choice of (1.16b,c) by Faurre.

In fact there is a one-one correspondence between forward and back-
ward realizations. It was shown in [9] how to compute the backward
elements B and R(P) from the knowledge of the forward ones. In
the following proposition, for convenience, we also include the converse

statement.

Proposition 1.44 (a)([9]). Assume the quadruplet [F, B, H, (R(P)%, 0)]
solves the forward problem. Set
Be-plrlp(r - mplp®, g {1.86a)
RP®Y% 0) = [RPY%, 0) - HF2By[1 - B gy, (1.86b)
Then, [F, B, 6', (R(F)™, 0)] solves the backvard ome.
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(b) Assume the quadruplet [F, B, G', (ﬁ(f’)}’, 0)] solves the

backward problem. Set
B=-B"lplpr . B lHY  ang
RP)E, 0) = [RYE, 0) - P lE)[1 - Bplnyt
Then, [F, B, H, (R(P)l‘, 0)] solves the forward ome.

The following lemma is the backward counterpart of Lemma 1.42 and

Theorem 1.43.

Lemma 1.45. (a) Let K(P) be defined by (1.85). Then, for each

(1.86c)
(1.86d)

Po e P, the solution {P(i); i ¢ 2} of the matriz difference equation

P +1) -P@) = AP@)) ; Bo) = P,

satisfies (i) P(i) ¢ P for all i € ¥, (ii) P(i,) s B(i,) for
i) s 1, and (idd) if B e P,BGE)+5, a8 i+w,

(1.87)

() Zet [F', B, G', (RY, 0)] be an arbitrary backuard realisation of

Yy, and, for each i € Z*, Ze; B(i) = [§1(i), §2(i)] be given by
B (i) = D()R()™
B,(1) = Q)ZW*

(1.88a)

(1.88b)

where the matrix sequences U(i), Q(i), Z(1) and R(1) are generated by

QL+ 1) = [Fr-0 + DRA + D718 ;5 8O = &),
0 + 1) = 0) + FAOEIWAW 'S 5 00) = (B,
RE + 1) = R(3) + 6ADEDAE) 6 ; R(0) = &,

2(1+1) = 2()+LHAA) 'R G QAILE) 5 2(0) = 1

(1.88¢c)
(1.88d)

(1.88e)

(1.88£)
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For each i ¢ 1%, let P(i) be the solution of
-P + F'PF + B()B(1)* = 0. (1.89)

Then, for all i € Z%, [F', B(i), G', (R()Y, 0Y] e a baskuard realization
of y, with state covariance B(i). Moreover, if B e B, 8@~ (B, 0
a8 i+, The sequence {P(i); i ¢ Z'} is the same as in (a) and it also
satisfies the difference equation

PAd+1) -P(1) --Bzci)ﬁzci)' . (1.90)

Proof. (a) By an argument similar to that of Theorem 1.41, it can be

shown that
Pi +1) - P = Q@A) Z()QGE) ', (1.91)

where §, Z, together with R and 0 are given by (1.88). The rest of the

proof is analogous to that of Lemma 1.42.

(b) Let Po be the state covariance of the initial backward reali-
zation [F', Bo' G', (ﬁz, 0)], and let {P(i); ie 2% be the trajectory
through Po defined by part (a). Then the proof of (b) follows upon defining
Bl(i) : = (H' - F'P(i)G)R(i)'}’and Ez(i) P = Q(i)Z(i);’. 0

Now, we are ready to state the second main result of this section.
It provides us with a trajectory inside P converging to P* and a non-
Riccati procedure to generate a family of realizations, the state

covariances of which are increasing.

" sme - - a3 - ———
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= Theorem 1.46. (a) Let P e P and set Fo s = Pgl. Let {P(i); i € 2}

be the solution of
P(i+1) - P@) =PENA)PH) 7y P(0) = Po. (1.92)

where

N(i) = Q@) [23) - Q(i)'P(i)Q(i)]-lQ(i)‘. (1.93)
and (i) and Z(i) are given by (1.88). Then ({) P(i) ¢ P Vi € Z%,
(#0) P(i)) s P(i,) for i < i, and (i44) if P € P,, P(i) + P* as
i+,
(b) Let [F, B, H (R:f, 0)] be an arbitrary realization of y, and
for each i ¢ I*, let [F', B(), 6', (R(1)%,0)] be the family of realiza-

tions of Lemma 1.45, having state covariance P(i). Let

B(i) : =-P@) I BE) (1 - BE)'Ba) B, (1.94a)

(R(i)%, 0 : = [R@%0) - 6P BT - E(i)'F(i)°1§(i)]¥- (1.94b)

Then, [F, B(i), H.(R(i)lﬁ,O)] i8 a realization of y with state covariance l
P() = Pi)". Momeover, if B, € B,, B(i) + (B*, 0) as i + = Finally,
the sequence {P(i); i ¢ Z:"} 18 the same as in (a) and it aleo satisfies

the difference equation |

P(i+ 1) - P(Q) :-Bz(i)Bz(i)'.

Proof. (a) Let P eP. ThenB_: = p;l eP. Let (B(i); i ¢ Z') ve

the sequence generated by (1.91) and (1.88) corresponding to Po. Set

It e A Aoy

P(i) : = P(i)~! for each i € Z*. Then, by (1.91), P(i + 1)} = P(i)"? -
- Q@)12(1)Q@E) . Using (1.34), we obtain (1.92) and (1.93). Since
B(i) e P={P2 | Pe P}, P(i) ¢ P for all i € 2*. This proves (i).




55

By condition (ii) of Lemma 1.45, ﬁ(iz) < ﬁ(il) for i, s i,, from which

1 2’

1 S i, follows. Finally, if PO € P+, Thea Po eP.

Therefore, by condition (iii) of Lemma 1.45, P(i) + P, i.e.

P(il) £ P(iz) for 1

Pi) Y + prloas i+,

(b) The proof of this part is an immediate consequence of

Proposition 1.44. 0

Remarks. (1) Theorems 143 and 1.46 have the following interpretation.
Let

xo(t +1) = Fxo(t) + (Bo)lu(t) + (Bo)zv(t) (1.95a)
y(t) = Hx (t) + Rﬁu(t) (1.95b)

be an arbitrary (wide sense) realization of y with state covariance Po'

(a) Let B(i) = [B(i), Bz(i)] and R(i) be given by (1.79)

and (1.75). Then for each i ¢ Z*,

x; (t + 1) = Fx, (£) + B, ()u(t) + B,(1Iv(t) (1.968)
y(t) = Hx, () + R(4)%u(t) (1.96b)

is a realization of y with state covariance P(i) = E{xi(t)xi(t)'}
given by
P(i+1) -P@{1) =- Bz(i)Bz(i)' ;  P(O) = Po. (1.97)

Furthermore, {P(i); i ¢ *} is a decreasing sequence in i such that, if
B° e B_, P(i) - P, and B(i) + (B,, 0) as i + «, where B, is the Kalman

gain of the steady-state Kalman-Bucy filter (1,17).
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v (b) Let B(i) = [Qﬁi),Bz(i)] and R(i) be given by (1.94).
Then (1.96) is a realization of y with state covariance P(i) given by
(1.97). But now, the sequence {P(i); i € 7*} is inereasing in i such

that, if Bo € B+, P(i) - P* and B(i) + (B*, 0) as i + =, In fact, B*

is the forward counterpart (in the sense of Proposition 1.44) of the

gain of the steady-state backward Kalman-Bucy filter.

(2) As an application of Theorems 1.43 and 1.46, we can exploit
the equivalence between dynamical systems in the discrete- and the
continuous-time settings summarized in Proposition 1.21, to construct
a discrete trajectory inside the "continuous" set P as defined in
Section 1.1 and to generate families of realizations for the continuous-

time problem via difference equations rather than differential ones.

To this end, suppose we are given the continuous-time quadruplet

[F, G, H, R]. Let [Fd, G Hd’ Ja] be defined by (1.37). Then, as we

d!
have seen in Section 1.3, Pd = P, For each P ¢ P define

Ay(P) =-P + FPF}

GPFy + (6 - FPHORGI(S, - EgPHY',

vhere Rd = Jd + J& - HdPHa.
For each Po e P, the solution {P(i); i € 7*} of

P(i +1) - P(i) = Ay(PA)) 5 P(O) =P

satisfies conditions (i) - (iii) of Lemma 1.42. Also, the analogue

of Theorem 1.43 holds using the quadruplet [Fd, Gd’ Hd’ Jd].




CHAPTER 2

SMOOTHING FOR LINEAR DISCRETE-TIME STOCHASTIC SYSTEMS
IN THE CONTEXT OF STOCHASTIC REALIZATION THEORY

2.1, Introduction

The linear least-squares estimation problem is of great impor-
tance in stochastic systems theory. The classical results on this
subject, which were started in frequency domain lahguage are primarily
due to Kolmogrov [31] and Wiener [32]. However, here we shall be con-
cerned with the state space formulations introduced by Kalman [33],

Kalman and Bucy [34], and others.

The problem deals with estimating the state of a given system
from noisy measurements. It can be classified into three categories:
given a past record of data, estimating current values of the state
(filtering), future values (prediction) and past values (smoothing).

In this chapter, it is the last category that we are interested in.

The smoothing problem has received considerable attention in the
literature in the last few years [35-51,61]. (See the survey paper
[52] for further references.) Originally, our interest in this problem
was caused by the well-known two-filter formula due to Mayne [38]
and Fraser [39], on which topic a large number of papers had been

57 ‘
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written [40-42, 45-51], and which, nevertheless, we think had not re-
ceived a satisfactory stochastic interpretation. This led to our con-
tinuous-time papers [64,65]. Here, we shall give the discrete-time

version of this theory.

Let {x(t); t € [0,T + 1]} and {y(t); t ¢ [0,T]} (here [0,T] :=
0, 1, ... T) be two stochastic processes of dimensions n and m respec-

tively, defined as the solution of the linear stochastic system

x(t +1) = F(t)x(t) + B(t)w(t) ; x(0) =& (2.1a)

(5)
y(t) = H(t)x(t) + D(t)w(t) ' y(0) =0, (2.1b)

where w is a p-dimensional (p 2 m), zero mean white noise sequence
satisfying
E{w(t)} = 0 and E{w(t)w(s)'} = I8, » (2.2)

and £ is an n~-dimensional, zero mean random vector with finite covari-
ance matrix N := E{EE'} and uncorrelated with w. The matrix R(t) :=
D(t)D(t)' is positive definite for all t ¢ [0,T], and F, B, Hand D
are time-varying matrices of dimensions compatible with x, y and w.
Finally, F(t)"! exists for all t e [0,T].

The model S will be called a linear stochastic systam; x is its
state process, y its output process and w its inmput process.

The state covariance functicn P(t) 2= E{x(t)x(t)'} clearly satis-
fies the Liapunov-type equation

P(t + 1) = F(t)P(t)F(t)' + B(t)B(t)' ; P(0) =N . (2.3)
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The fized-interval smoothing problem can now be stated as follows:

for an arbitrary t ¢ [0,T], find the linear least-squares estimate X(t)
of x(t) given {v(s); s ¢ [0,T}} i.e., the wide-sense conditional expec-

tation [70]
2et) = E{x(t) | y(s) ; s e [0,T]} . (2.4)

In this chapter, we shall study this problem from a new angle,
our aim being to develop a unified theory which, we feel, the literature
is still lacking, It is true that some authors [49] have attempted to
do so; nevertheless, we feel those attempts are not satisfactory. Many
problems of interpretation of the existing solutions have remained un-
resolved. The approach we follow to provide such a theory employs con-
cepts and techniques from the stochastic realization theory developed
in [2,9,10] and in [1,53-60]. The basic idea is to embed the given model
S in a class of models S all having the same output process (not only
the covariances are the same as in Chapter 1, but also the processes
are equal for each t a,s.) and the same Kalman-Bucy filter. Such a
representation is called a proper [2] stochastic realization of y to
distinguish it from the wide sense realizations of Chapter 1. The class
S will be shown to contain an element (S,), which together with another
element (S*) which does not belong to S in general, contains all the

information on y needed to estimate x.

We note that the model S we are considering is more general than
the one usually encountered in the literature in that Bw and Dw may be
correlated, i.e., BD' # 0. Secondly, as will be shown later, one of

the major obstacles in developing this theory is the fact that P(t) is
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in general not positive definite. We could assume that the model S is
minimal (see Section 2.3); however, this assumption will not guarantee
the invertibility of P on the whole interval [0,T]. In our continuous-
time papers [64,65], this obstacle was removed upon imposing the extra
assumption that the system matrices are analytic functions, which implies
that S is totally controllable. It is worth noting that in the smoothing
literature, conditions to insure invertibility of P are either ignored
all together [61] or mistakenly assumed to hold on the entire interval
as a consequence of complete controllability (minimality) of S. This
is clearly incorrect (see e.g. [63]). Hence, at times we shall apply
the generalized Moore-Penrose pseudo-inverse P* of P wherever P } 0,

leading to certain nontrivial complications.

The organization of this chapter goes as follows. Section 2.2 is
devoted to preliminaries. A strict sense version of some results on
backward representations developed in Section 1.6 is presented. Our
results are generalizations of those of [9] obtained in the stationar&
setting. In Section 2.3, the stochastic realization theory concepts
will be developed and in Section 2.4, we present a discussion about
the frame space, the importance of which is that it contains the smooth-
ing estimate. Section 2.5 will be devoted to the model S* mentioned
above. In Section 2.6, we give a general formula for the smoothing
estimate in terms of S, and S*. Section 2.7 is devoted to deriving
some previousiy known formulas for the smoothing estimate and to inter-

pret them in terms of our realization theory.
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2.2, Preliminaries

Let H be the space of all centered stochastic variables with
finite second order moments; H is a Hilbert space when endowed with
the inner product (£,n) = E{&n}. If u is a p-dimensional stochastic
vector process with components in H, define H(u) to be the subspace
spanned by {ul, Ugs wees up}. Then, for each stochastic vector process
{z(t); t ¢ [to,ti]} and t ¢ [to’tI]’ define H_(z) to be H(z(t));

H(z), H;(z) and H:(z) will denote the closed linear hulls in H of all
subspaces Hs(z) such that s € [to’tll’ [to,t] and [t,tl] respectively.
Given n ¢ H and a subspace H, < B, E{n | H '} will be the orthogonal
projection of n onto Hl’ i.e., the wide sense conditional mean [70].
We shall write E{n | u} in place of E{n | H(u)}. The process n is
called a wide sense Markov process if E{n(t) | H (M} = E{n(t) | n(s)}
for s s t or equivalently, E{n(s) | H:(n)} = E{n(s) | n(t)}, i.e.,

the Markov property is independent of the time direction.
Let & be the transition function of F, i.e.,
o(t+l,s) = F(t)d(t,s) ; &(s,s) = 1.

Since the state process x defined by (2.la) satisfies
t-1
x(t) = 8(t.s)x(s) + [ &(t,j+1)B(IW()) (2.5a)
j=s
for s ¢ [0,t-1] and, consequently, H{(w) L H_(x) ® H_(w) > H_(x), it
easily follows that E{x(t) | H;(x)} = E{x(t) | x(s)}. Hence, x is a
Markov process., However, the difference equution (2.la) is not symme-

tric with time: the two terms in the right-hand member of (2.5a) are

orthogonal if and only if t > s.

| NSV
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Of great importance in this chapter is a backward counterpart
of (2.1a). By the above argument, such an equation cannot be readily
obtained by merely reversing the time direction. In this section, we
shall construct the backward version of (2.1a) under the assumption
that N > 0; later in Section 2.5, we shall remove this assumption.

Since the covariance matrix function P is given by

t-1
P(t) = 8(t,0)NO(t,0)" + ] O(t,i+1)B(IIB(H)10(t,5+1)',  (2.5b)
370

it follows that P(t) > 0 for all t ¢ [0,T] if and only if N > 0,
In this case, the process
£(t-1) = P(t) 1x(t) (2.6)

is well-defined for all t e [<1,T], with components in H. Let P denote

its covariance function
B(t-1) := E{X(t-1)X(t-1)"} . (2.7)

Then, the backward version of (2.la) is given by

Lemma 2.1. Let x be the state process of the linear stochastic system
S, and let N > 0. Then, the process {X(t); t ¢ [~1,T]} defined by
(2.6) satisfies the backward recursion

-

X(t-1) = F(t)'X(t) + B(r)€(t) ; i(?) =E

(2.8)
fort € [0,T], where E = P(T+1) " x(T+1),
Bt) = -P(t) " R(t) Bt [T - B(t) 'P(t+1) LB (1)1 (2.9)

and W i8 a p-dimensional normalized white noise sequence satisfying

(2.2) and the condition H (W) 1 H (%) fort e [0,T) and is given by
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wt) = [I - B(t)'P(t+l)'1B(t)]%[w(t) ~B(t)'F'(t)-lP(t)-lx(t)].(2.10)

The covariance function (2.7) ig given by
P(t-1) = P(t)™
and satisfies the Liapunov equation
B(t-1) = F'()B(t)F(t) + BOYBt)' ;3 B(M =P+l (2.11)

If N % 0, equations (2.8)-(2.11) are defined for all t e [0,T] for which
P(t) > O.

This lemma is a generalization of the results of Section 1.6
which were obtained in [9] for the stationary case. This is a strict
sense version of the wide sense results presented in [48,50] which are
insufficient for our purposes since they are deterministic rather than
probabilistic in nature. Moreover, we have chosen to write the back-
ward version (2.8) in terms of X rather than x, since this choice will

yield a backward Kalman-Bucy filter which is invariant over the class S.

The proof of this lemma is based on the observation that, as the

orthogonal decomposition
x(t+1) = E{x(t+1) | Hp(x)} + [x(t+1) - Blx(t+1) | HLOH (2.12)
yields (é.la), the orthogonal decomposition
x(t) = Blx(t) | H) (0} + [x(2) - Blx(t) | H[,; (0} (2.13)

yields the backward version (2.8). (The basic idea of this proof first
appeared in [2].) We shall need the following lemma, the proof of which

can be found in most standard books on estimation theory.

N S o v 4 e e o




64

Lemma 2.2. Let u and v be two etochastic vectore with componente in

T emr s

H, and assume E{vv'} > 0. Then,

v

P

E{u | v} = E{uv'}(B{vv'})'lv .

g

Proof of Lemma 2.1. We shall prove the lemma for the case N > 0; if

N % 0, everything will be the same for t ¢ [0,T] such that P(t)"1

exists. Since x is Markov,
Blx(t) | B, (0} = Blx(e) | x(e+1)} .

Upon using Lemma 2.2, the right-hand side is P(t)F(t)'P(t+1) ‘x(t+1).

Inserting this into (2.13) and multiplying by'P(t)'1 yields
%(t-1) = F(t)'%(t) + P(t) " In(t) (2.14a)

where n(t) := x(t) - E{x(t) | x(t+1)}. But, x(t) =

F(t)’lx(t+1) - F(t)'ln(t)w(t), and consequently
n(t) = -F(t) " B(t)[w(t) - Blw(t) | x(t+1)} |
= -F(t) "1B(t) [w(t) - B(t) 'P(t+1) 1x(t+1)] (2.14b)

where we have used Lemma 2.2 to obtain the last relation. Now, from

(2.3), it is not hard to see that

B(t)'P(t+1)“1F(t) = [I - B(t)'P(t+1)’13(t)]B(t)'F(t)"lp(t) .
Then inserting this and (2.la) into'(é.14b), we obtain
n(t) = -F(t) “*B(t) [T - B(t) 'P(t+1)"1B(t)] [W(t) - B(t) 'F(t) 2P(£)x()] .

This together with (2.14a) yields (2.8) with B and # given by (2.9) and

(2.10). From the above discussion, it follows that ?
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[1- B(&) 'P(t+1) LB (0) 1% (1) = w(e) - Blwee) | ], (0}

(cf£. [9]), which relation implies that w is a white noise such that
{ H;(W) 1 H:+1(x) = H:(i); the factor in front of w(t) is the appro-
priate normalization factor so that W satisfies (2.2), as can be easily
checked. Finally, P(t-1) = E{X(t-1)X(t-1)'} = P(t:)'lli{x(t)x(t)'}P(t)“1 =
P(t)'l. Equation (2.11) is obtained from (2.8) precisely as (2.3) is
obtained from (2.1la). 0

' § 2.3. Forward and Backward Realizations

Let the output process y be defined as in Section 2,1, Any
system of type (2.1) (with Ei e H fori=1, 2, ..., n, w satisfying
(2.2) and Ei 41 H(w) for all i) having y as its output is called a

realization of y. Clearly, the components of x, y and w belong to H.

The purpose of this section is to introduce the two models S, and
8,, the knowledge of which determines the frame space (to be definsd

in Section 2.4), which in turn contains the smoothing estimate.
As we have seen in Section 1.1, the linear least-squares estimate
x,(t) = Elx(e) | H_, (N} (2.15)

of the state process x of S is generated on [0,T] by the Kalman-Bucy
filter

x4 (£41) = F(£)x,(t) + B, ()R, (£) 2[y(t) - H(t)x, ()] ; %,(0) =0, (2.16a)
where the Xalman gain function B, is given by

B, = [FQH' + BD']R.Y , (2.16b)
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R, = HQH' + DD! (2.16¢)
and the error covariance matrix

Q (t) = E{[x(t) - x,(t)]1[x(t) - x,(t)]'} (2.16d)

is the solution of

Q. (t+1) =F(t)Q, (t)F(t) ' - B, (t)B,(t) ' +B(t)B(t)' ; Q.(0) =N (2.16e)
which is a matrix Riccati difference equation when (2.16b) is inserted.

As we shall see shortly, there are other realizations of y which
have (2.16a) as their Kalman-Bucy filter. Hence define S to be the
class of all realizations S of y such that R(t) :=
D(t)D(t)* > 0 % t € [0,T] and such that the corresponding Kalman-Bucy
filter is given by (2.16a), that is, it has the same matrix functions
F, Hand K, := B*R:15 as those of (2.16a) and consequently the same esti-

mates {x,(t); t € [0,T+1]}.
The sequence {w,(t); t € [0,T]} defined by
W(8) = Ry () [y (t) - H(t)x, (1)) (2.17)

is called the Znmovation process. It is a normalized white noise sat-
isfying (2.2) and characterized by the property H;(w*) x H;(y) for all

t € [0,T]. Combining (2.16a) and (2.17), we obtain the model

x, (t+1) = F(t)x,(t) + B,(tIw,(t) ; x,(0) =0

(S,) (2.18a)

y(t) = H(t)x,(t) + R, (t) %, (t) ,

which clearly belongs to S. It can be immediately seen that the co-

variance matrix P,(t) := E{x,(t)x,(t)'} of x, (t) satisfies

P, (t+1) = F(t)P, (t)F(t)' + B,(t)B,(t)' ; P,(0) = O, (2.18b)




67

and that

Q =P-P, . (2.18¢)
It is essential at this point to show that S, is uniquely defined
regardless of the choice of the S ¢ S from which S, was formed, i.e.,
that the matrices B, and R, are both invariants for the class S (by

definition, F and H clearly are). To this end, we need to define the

n X m-matrix function
G = FPH' + BD! (2.19a)

for each realization S € S; P is its state covariance function.

Lemma 2.3. Let G, R, and B, be defined by (2.19a), (2.16¢c) and (2.16b)

respectively. Then G, R, and B, are invariante for the class S.

Proof. Let S € S be arbitrary and let G be as in (2.19a). Then
P=0Q, +P,. Also, by (2.16b), BD' = K, - FQH'. Inserting these two

relations into (2.19a), we obtain
G = FP H' + B,,R:;5 , (2.19b)

which, by the definition of S, is invariant over S. Next, since
A (1) 1= E{y(t)y(t)'} = H(t)P(t)H(t)* + D(t)D(t)', R, = A - HPH',
which does not depend on the choice of S, for 1\.o and P, do not. Finally,

since B, = K,R% (or B, = (G - FP,H')R;%), B, is also invariant over S. 00

Consequently, F, H, G, B, and R, are invariants for S, whereas

B, D, P, w and x will vary with different realizations S ¢ S, Actually,
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even the dimension p of w will vary. However, since R is of full rank,

we will always have p 2 m.

The model S, belongs to a class of realizaticns for which p is
minimal, i.e., p = m. Define So to be the subclass of all S ¢ S such

that p = m and x(0) € H(y). Let

x (t+1) = Fx_(t) + B w (t) ; x (0) =§
s,) { ° ° oo ° °  (2.20)
y(t) = Hx (t) + D w (t)

be a realization in So with state covariance Po. As Do is invertible,
-1 . .
xo(t+1) = Fxo(t) + BoDo (y(t) - on(t)] ; xo(O) Eo . (2.21a)
Let (2.1) be an arbitrary realization in S and define
Q° =P - P° . (2.21b)
Then, by (2.20) and Lemma 2.3,
Ro = DODO' = A.o - HPOH' = HQOH' + DD (2.21c)
and
. >
Bo = (G - FPOH')Ro (FQOH' + BD')R° . (2.21d)
Inserting (2.21d) into the equation (2.3) for Po and subtracting from
(2.3), we conclude that Qo satisfies
Qo(t+1) tF(t)Qo(t)F(t)' - Bo(t)Bo(t)' +B(t)B(t)' ; Qo(O) =N -.No. (2.21e)

Equations (2.21) look formally like the filtering equations (2.16), only
the initial conditions are different. In view of the assumption that
Eo € H(y), (2.21a) implies H(xo) < H(y). We shall call a realization
S € S intermal if it satisfies the condition H(x) < H(y) and extermal

otherwise [2].

v -
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Therefore, by the above discussion, we have shown that all § ¢ So

are internal.

Our next task is to derive a backward realization 5 for each
S € S. We shall begin by restricting our attention to the subclass
S, consisting of all S ¢ S for which N > 0. The class S, is nonempty.
This can be seen by using an argument similar to that in the continu-
ous-time case [64]. The basic idea is that the stochastic process y
can be extended to an interval [t,T] where t < 0 so that the covariance
matrix S(t) of a realization S of y on [£,T] is positive definite for
t € [0,T]. Hence, the restriction of S to [0,T] belongs to S+. (See

[64] and [73] for details.)

Let S ¢ S+. Then, by Lemma 2.1, X(t-1) = P(t)'lx(t) is defined
for every t € [0,T] and satisfies (2.8). It remains to obtain a "back-

ward" equation for y.

Lemma 2.4, Let y be given by (2.1b). Then, y can be written
y(t) = G'(t)x(t) + D(t)w(t) (2.22)
where G is given by (2.19) and the m x p-matrix function D is given by

B(e) = [D(t) - H(t)F(t)'IB(t)] [1-B(t) 'P(t+1)'18(t)]l’ (2.23)

Proof. Inserting (2.19a) into (2.1b), we get

y(t) = [6'(&)F (£) " tP(t) ™! - D(e)B(t) 'F(t) "I (t) " Ix(e) + DCEIW(L) .
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From (2.8),
x(t) = P()F(t)'P(t+1)  x(t+1) + P(t)B(L)W(t) .

Using this expression for x{t) in the above equation for y, we obtain

after some lengthy algebraic manipulations
y(t) = G' (£)P(t+1) 2x(t+1) - G (£)P(t+1) 1B (t) [w(t) - B(t)F' (t) "2P() x(t))

D(t)W(t) - D(t)B(t) 'F' (t) " 1P(t) "Ix(t).

+

G' (£)P(t+1) "Lx(t+1)

[D(t) -G (£)P(t+1)"LB(t) 1 [w(t) - B' (£)F () ~2p(t) “Ix(t)] .

+

Using (2.19a) and adding and subtracting the quantity H(t)F(t)‘lB(t),

we get
D(t) - G(t)'P(t+1) " B(t) =
= D(t) - D(t)B(t)'P(t+1)"1B(t) - H(t)F(t) 1B(t) + H(t)F(t) 1B(t)
- H(t)P(£)F(t) 'P(t+1) 'B(2) .
= D(t) - D(t)B(t) 'P(t+1) "1B(t) - H(L)F(t) “1B(t)
+ He) TR(e) T [P(241) - F(6)P(E)F(t) 'IP(t+1) 2B () .
= [D(t) - HEEOF() B ] [1 - B(t) 'P(e+1) T IB(E)]

where in the last step, we employed (2.3). Then, using the definition

(2.10) for W, the desired result follows. 0

Combining (2.8) and (2.22), we obtain the following backward

model

£(t-1) = F(t)'%(t) + B(t)a(t) ; (M) = £
€)) (2.24)
y(t) = G(t)'%(t) + B(t)w(t)




i ke £ Liiata &5 T B — g R e L LTI SR IE . - - PN N
e T S T V-
o by T - e e
:
{

71
where B, # and D are given by (2.9), (2.10) and (2.23} respectively
and £ = P(T+1)'1x(T+l) 1 H(W). The state covariance function P(t) =
P(t+1)"_1 satisfies (2.11). We shall call any model of type (2.24)
with y as its output, Ei €eH, fori=1, 2, ..., n, w satisfying (2.2)
and Ei 1 H(w) for all i, a backward realization of y. Note that S and

S have the same state spaces, i.e.,

% H (x) = H, (%) . (2.25)

; for each t ¢ [0,T+1].

It is essential at this point to show that the matrix R(t) :=
be)b(e)! is positive definite wherever the matrix R(t) := D(t)D(t)'
is. To this end, define the m X m-matrix functions

-1

A = DD' - DB'F' "H' (2.26)

A = Db* - DB'F "G . (2.27)

Lenma 2.5. Let A and A be defined by (2.26) and (2.27) respectively.

Then A = A'., Furthermore, A and R are both invariants for the class S.

Proof. Inserting DD!' = Ao - HPH' (by (2.16)) and DB' = G' - HPF'
(by (2.19a)) into (2.26), we obtain

1

A= Ao - G'F' *H' , (2.28)

which is invariant for S. Using (2.19a), (2.9) and (2.23), it can be

seen that the matrix function H can be written

H' = F'PG + BD' . (2.29)
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Now, by the above argument and (2.24), it easily follows that

R=n - Hr G (2.30)

from which the lemma follows. 0

Proposition 2.6. Let A and A be defined by (2.26) and (2.27) respec-
tively. Then, for each t € [0,T], the following statements are equiva-
lent: (1) D(t)D(t)' > 0, (ii) A(t) is nonsingular, (iii) A(t) e

nongingular, and (iv) D(t)D(t)' > 0.

Proof. The equivalence between (i) and (ii) is proved by Pavon
([9;Theorem 3.2], [62]); this proof does not require stationarity. The
same argument can be used to prove the equivalence between (iii) and
(iv). Finally, the equivalence between (ii) and (iii) follows trivi-

ally from Lemma 2.5. O

In analogy with the forward setting, the least-squares estimate
- & +
%,(t) = E(x(t) | H_,, N} (2.31)
is generated by the backward Kolman-Bucy filter:
%, (£=1) = F(£) 1%, (t) + B, (£)R, (£) F[y(t) - G(t) "%, (£)] ; %, (T) =0, (2.32a)

where

B, = [F'Q,6 + §ﬁ']ﬁ;li , (2.32b)
R, = G'Q,G6 + bBD' , (2.32¢)

(which, by Proposition 2.6, is positive definite for all t ¢ [0,T]) and

the error covariance matrix function
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Qu(t) = E{[X(t) - X, (t)][X(t) - X, (t)]") (2.32d)

being the solution of the dual matrix Riccati equation
Qu(t-1) =F(t)'Q, (t)F(t) - B, (t)B, (t)" +B(t)B(t)' ; Qu(T) = P(T‘*l)-l, (2.32e¢)
with B, given by (2.32b).
The backward innovation process W, defined by
R,(1) = R, Hy(1) - 6 (1)E, (1)) (2.33)

is a normalized white noise satisfying (2.2) and the condition
H:(ﬁ*) = H;(y). The covariance matrix B, (t) := E{X,(t)X,(t)'} satisfies

the backward Liapunov equation
Pu(t-1) =F' (t)F, (t)F(t) + B, (DB, (t)' ; B, (T) =0 (2.34)

Again, we need to show the invariance of the backward filter.

Lemma 2.7. Let R, and B, be given by (2.32¢c) and (2.32b) respectively.
Then,

Ry = A - G'P,6 (2.35)

B, = (1 - F'B,OR% , ’ (2.36)

i.e., R,, B,, and hence the model S,, defined by (2.37) below, are all

invariante for the class S.

Proof. It is easy to see that (2.35) holds. As for B,, observe that

it can be written

B, = (F'PG + §B' - F'B,OR]E,
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from which (2.36) follows, upon using (2.29). Hence 5, does not depend

on 3 (consequently on the choice of S ¢ S+.) 0

Now, in the same way as above, define § to be the class of all
backward realizations 3 having (2.32) as their backward Kalman-Bucy
filter, and let §+ be the subclass consisting of those 5 ¢ S for which
N := E{EE'} > 0. In the same way as in the forward setting, it is seen

that the realization

X, (t-1) = F'(t)X,(t) + B, ()W, (t) ; X, (T) =0

(5,) (2.37)

yit) = G'(£)%,(t) + R, (t) %, (t)

belongs to S. By Lemma 2.7, the class S is uniquely defined in terms of
the invariants F, H, G and Ao, and therefore, the backward counterpart
Sofany S € S, belongs to S. In particular, since P(T+l) is positive
definite and since B(T) = P(T+1)'1, 5¢ §+. Also, note that, by Pro-

position 2.6, DO' > 0 for all 3 ¢ §+.

It is clear that there is a complete symmetry between forward
and backward realizations. In particular, the subclasses S+ and §+
are in one-one correspondence. Therefore, in the following lemma, we
summarize the procedure for constructing a forward realization corres-
ponding to a backward one in §+. This lemma is the counterpart of

Lemna 2.1.

Lemma 2.8. Let (2.24) be an arbitrary backward realization in § , with
state process X and state covariance function P. Then, the process x,

defined by

|
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x(t) = B(e-1)"tx(t-1) (2.38)
for t e [0,T], satisfies the foruard recursion
x(t+1) = F(t)x(t) + B()w(t) ; x(0) = P(-1)"1R(-1), (2.39a)
where
B(t) = -P(t)"1F(e) " BCe) [1 - Bee) 'Be-1) " B(e) 1% (2.40)

and w 18 a p-dimensional normalized white noise sequence satisfying

(2.2) and the condition Hy(w) 1 H (x) for all t ¢ [0,T] and is given by
w(t) = [I - B(t)'B(e-1)"18ct) 1 Ewm(e) -E(tip(tr'lpct)'li(t)]. (2.41)
Moreover, the process y satisfies the recursion
y(t) = H(t)x(t) + D(tIw(t) , (2.39b)
where the matrix function D is given by
D(t) = (B(t) - G(t) "F(t) '~ LB(e) 11T - B(e) Be-1)"18(t)] . (2.42)

Finally, if 5 ¢ §,, relations (2.38)-(2.43) hold for all t ¢ [0,T], for

which B(t-1)"! exists.

In the sequel, we shall be interested in obtaining the backward
(forward) counterpart of S, (5,). As is clear by now, for this we need
to invert the matrices P, (t) in (2.18b) and P, (t-1) in (2.34). However,

1 ana P;l will not exist on the whole

since P,(0) = 0 and P (T) = 0, P,
interval [0,T]; they may not even exist on part of it for that matter.

Therefore, we introduce the following

Definition 2.9. Let t, be the smallest t such that P,(t) > 0; if there

isnosuchton [0,T], set t, := T+l, Similarly, let t, be the largest
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t such that B, (t-1) > 0; if there is no such t, set t, = -1.

As is clear from the definition above, t, and t, might lie out-
side the interval [0,T]. However, if we impose some more conditions

on the class S, we can guarantee that t, and t, belong to [0,T].

Definition 2.10. The class S is said to be minimal if there is no
realization of type (2.1), the state process of which has dimension

smaller than n.
Lemma 2.11. S is minimal if and only if S is minimal.

Proof. Let S be minimal. Assume that there is a backward realization
5 ¢ S such that § is not minimal. Then all 3 in the (nonempty) sub-
class §+ are also nonminimal, and consequently, by Lemma 2.8, we could

construct a nonminimal forward realization from such an 5, contradict-

ing the minimality assumption of S. The converse follows analogously. 0

Lenma 2.12. Let S be minimal. Then t, < T and t, 2 0.

Proof. Since S, € S, S, is minimal. Hence, the pair (F,B,) is com-
pletely controllable on the interval [0,T] [63]. In fact, were this not
the case, the input-output map of S, could be reduced [4] contradicting

minimality. Therefore, the controllability gramian
t,-1
W, (0,t5) = .Zo«:(t,,ju)e,cj)s*(j)'¢(t*,5+1)' (2.43)
JB
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is positive definite for some t, ¢ [0,T]. Consequently, upon writing
the solution P, of (2.18b) as in (2.5b), we see that P, (t) > 0 for all
t e [t,,T]. Now, if S is minimal, § is minimal also by Lemma 2.11.

Since §, € S, we can analogously show that £, 2 0. 0

0f course, there is no guarantee that there is a t ¢ [0,T] for

which both P,(t) and P, (t-1) are positive definite.

Definition 2.13. The class S is said to be regular if t, s t,+1, i.e.,
for each t ¢ [0,T], either P,(t) > 0 or P,(t-1) > 0 (or both), and is

said to be irregular otherwise.

In fact, the regularity property of the class S depends to a
certain extent on the length of the interval [0,T]; for if T is suffi-
ciently large compared with n, § will be regular, since then the con-
trollability gramian (2.43) will eventually become positive definite;
the same holds in the backward direction for the controllability
gramian W;(T,E*) of §,. If T < n, we will encounter irregularity; then

we do not have minimality either.

2.4. The Frame Space

Now, we are ready to justify introducing the two processes x, and

X, It follows from (2.15) that
Hy (x,) = B, () | By (0} e B, () .

Also, by (2.25) and (2.31), we have
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By (&) = BH. (0 | ) < o) i

W4

-

for all t € [0,T]. Define the orthogonal complements

- - + + -
Nt 1= Ht-I(Y) ® Ht(x*) and Nt 1= Ht(y) © Ht-l(x*) .

Then, H(y) can be decomposed as
= - o +
H(y) =N, @ H @N , (2.44)
where H: is the frame space [53,54,56]
P = % j
Ht = Ht (x,) VHt_1 (x,) (2.45)

for all t ¢ [0,T].

Lemma 2.14, Let x be the state process of a realization S € S. Then
H, (x) < B] @ [H()]* (2.46)

for all t ¢ [0,T].
'Proof. See the proof of Lemma 3.7 in [64]. 0 §

Notice that therefore, the smoothing estimate (2.4) will always

be contained in the frame space, hence its importance. !

PrA e

In 'the continuous-time setting of our papers [64,65], the frame

space has the constant dimension 2n on the open interval (0,T). This

e o e

however will not be the case here, and this contributes to the fact that

the discrete-~time results are nontrivial modifications of the continuous-

P

time ones. To see this, first note that the dimensions of Ht(x*) and
Ht_l(i,) can be related to the ranks of P, and P,, and hence to the con-

dition of regularity through the following

T, S ik b TRl W e d §




Lemma 2.15. Let x be a stochastic vector with covariance P and let

H(x) be the span in H of its components. Then

dim H(x) = rank P . (2.47)

Proof. Set r := dim H(x) and let £ be an orthonormal basis

in H(x). Then x = 2151 + 225 + .., ¢+ zrgr for some £ lz, erey zre .

2 1’

Define the n X r-matrix L = (21, 22, vess 2r). Then x = L&, and hence

P = LL'. Consequently, rank P < r, with equality if and only if L is

full rank. But L must be full rank, because otherwise lr = Ei;i akzk
_ r_l A ~

for some al, oy eeey O € R. Then x = zi'l 2i£i, where Ei =

Ei + a3 i=1, 2, ..., r-1. Hence, H(x) is the span of the r-1 random

variables {El, Ez, ooy Er-l}, which contradicts the fact that dim H(x) = r. O

Consequently, the dimensions of Ht(x*) and Ht_l(i*) vary between
0 and n. When S is regular, the lemma implies that, for each t, at least
one of these spaces has dimension n and that there are some t's for
which both of them have dimension n. Consequently, for each t ¢ [0,T],
n < dim Hg S 2n, vwhere each limit is attained for some t. (To see this,
we note that under the given conditions, it can be shown that
H, (x,) n Ht_l(i*) = {0}.) On the other hand, if S is irregular,
dim Hf < n on the whole interval,

It will be more convenient in the sequel to express the frame

space H: in a somewhat more symmetric form. To this end, we shall con-

struct the forward counterpart of 5,. However, since P, (t-1) is not

. ]
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positive definite for every t ¢ [0,T], the previous argument of con-
structing a backward realization from a forward one cannot be reversed
on the whole interval. Therefore, we apply the generalized Moore-

Penroge pseudo-inverse (see e.g. [13]).

Definition 2.16. Let P be any matrix. The generalized Moore-Penroge
pseudo-inverse P¥ of P is the unique matrix satisfying

(1) pp¥p = p, (ii) pPppf = p*, (iii) (PP*)' = PP, and

(iv) (p*p)* = P¥p | (2.48)

1

(Hence, if P is nonsingular, p¥ = p~ .) In the sequel, we shall need

the following

Lemma 2.17. Let x be a stochastic vector with ecovariance matrix P.
Then
PP#x =X . (2.49)

Proof, I1f x = 0, the statement is trivial; hence assume that x = 0.

By the Singular Value Decomposition Theorem [66], there exists an or-
Py O
thogonal matrix V (i.e., VW' = I) such that P = V 01 0 V' where

X
P, > 0. Then x can be written V[;i] where X is stochastic vector

1
¥ Pyl 0 *
with covariance P,. Also, it is easy to see that P" =V 01 olV' :
Relation (2.49) then follows by direct multiplication. 0
|
Now, define
x*(t) = B, (t-1)¥x, (t-1) (2.50)
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for each t ¢ [0,T]. Then, premultiplying both sides of (2.50) by

P*(t-l) and applying Lemma 2.17, we obtain
%, (t-1) = B (t-1)x*(t) . (2.51)

Hence Ht(x*) = “t~1(**) and consequently, we have the following sSymme-

tric expression
u =
Ht Ht(x*) VHt(x*) (2.52)
for the frame space.

The next section will be devoted to finding a forward recursion

for x*,

Of course, we can equally well have a symmetric expression for

Hg involving two processes that are the states of backward realizations

via
o, - -
Ht Ht-l (x,) VHt_l(x*) (2.53)
where X* is defined by
2r(t-1) = P () ¥x, (1) (2.54)

for all t ¢ (0,T].

2.5. The Model S*

The aim of this section is to construct and study the properties
of the model S* whose state process is x* defined by (2.50). As we
mentioned earlier, since 5, ¢ §+, the forward-backward construction of
Lemmas 2.1 and 2.8 cannot be applied here. However, the basic idea of

the derivation is the same, but the results will be somewhat different.
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Although for cur purposes we only need to construct the forward model
(S*) corresponding to (5,), nevertheless, and for completeness only,
we shall do the reverse procedure, i.e., also construct a backward model

corresponding to any S ¢ S (note not in S+).

To do this, we need the following three lemmas. The first of
these is the natural generalization of Lemma 2.2 and can be found in
most standard texts. The other two are generalizations of results in

[9,67].

Lemma 2.18. Let u and v be two stochastic vectors with components in H.
Then
E{u | v} = Efw'}EW'DY . (2.55)

Lema 2.19. (a) Let P be the state covariance function of any S € S.
Then
P(t)F(t)' = P(t)E(t) 'P(t+1)¥P(t+1) (2.56)

for all t € [0,T].

(b) Let P be the state covariance function of any 3 ¢ S.
Then
B(t)F(t) = B(e)F()P(e-1)*P(e-1) (2.57)

for all t ¢ [0,T].

Proof. (a) Postmultiply both sides of (2.12) by x(t+l) and taking co-
variances, Lemma 2.18 and the fact that the components of x(t+l) are

orthogonal to those of the second term of the right-hand side of (2.12)
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yield (2.56).

(b) The proof is analogous to that of (a). 0

Lemma 2.20. Let P be as in the previous lemma. Then
P(t+1)P(t+1)¥B(t) = B(L) (2.58)

for all t ¢ [0,T].

Proof. To prove this lemma, we follow [67]. First, premultiply (2.1a)

by P(t+1)P(t+1)¥ to obtain
P(t+1)P(t+1)¥x(t+1) = P(t+1)P(t+1)¥F(t)x(t) + P(t+1)P(t+1)¥B(t)w(t), (2.59)

and observe that the left-hand side of (2.59) is x(t+l) (by Lemmaz 2.17).

Next, reformulate (2.56) to read
P(t+1)P(t+1)¥F(t)P(t) = F(t)P(L) .

Postmultiplying this by P(t)¥x(t) and using Lemma 2.17 again, we see that
the first term of the right-hand side of (2.59) is F(t)x(t). Comparing
(2.59) with (2.1a), one obtains

B(t)w(t) = P(t+1)P(t+1)¥B(OIW(E)

which postmultiplied by w(t)' and téking expectations yields (2.58). 0

Now, we are ready to state the first main result of this section,
which is the analogue of Lemma 2.1 and which provides us with a back-

ward counterpart of any S € S on the whole interval {0,T].
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Proposition 2.21. Let S be an arbitrary realization in S and let the

matrix function © be given by

o(t) = I + B(t)'F(t) " Ip(t)¥r(t) 1B(t) . (2.60)

Then S has the following backward counterpart

x(t) = P(t)F(t) 'P(t+1)¥x(t+1) + P(t)B(t)¥W(t)

. ~ (2.61)
y(t) = G(t) 'x(t+1) + D(t)W(t)
on [0,T], where
B(t) = -P)*F(e) IB(e) [1 - B(t)'P(e+1)*B()]00E) % (2.62a)
Bt) = [D(t) - G(t)'P(e+1)¥BE)]OCE) " (2.62b)
G(t) = F(t)P()¥P(t)F(t) 6(t) (2.62¢)

and W i8 q white noise satisfying (2.2) such that H;(ﬁ) L H:(x) given
by, '
w(t) = G(t)-k[w(t) - B(t)'F(t)'-IP(t)#x(t)] . (2.63)

Proof. Applying the orthogonal decomposition (2.12) to (2.la), we
obtain

x(t) = P(t)F(t) 'P(t+1)¥x(t+1) + [x(t) - P(L)F(t) 'P(t+1)¥x(t+1)].(2.64)

Many, but straight-forward algebraic manipulations, applying Lemmas
2.17, 2.19 and 2.20, yield the first of relations (2.61). The argu-
ment of Lemma 2.4 can now be used to prove the second relation in

(2.61). O

Remark. If we define R(t-1) = P(t)*x(t), we could, using (2.61), obtain

a backward model whose state is X; but the model obtained will not, in
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general, belong to S since P(t)#P(t)F(t)' and G are not equal to F(t)'

and G. If P(t) >0, (2.61) premultiplied by P(t) ™} will be (2.24).

Using an analogous argument in the backward setting, the following

proposition can be easily proved.

Proposition 2.22. Let §, and x* be given by (2.37) and (2.50) respec-

tively and define O* as
o*(t) = I + B, (t)'F(t)" B, ()*F(e) 1B, () . (2.65)

Ther. x* 18 the state procese of the following model, which ie the for-

ward counterpart of §,.
x*(t+1) =M(t+1)F(t)x*(t) + M(t+1)B*(t)w*(t) ; x*(0) = p*(-l)#i*(-l) 1
(s%) N f
y(t) = H(e)x*(t) + R*(E) W), (2.66) ,

where
B*(t) = -p*(t)#F(t)'-lﬁ*(t)U -ﬁ*(t)'P,Ct-l)#ﬁ*(t)lﬁ*(t)%, (2.67a)

R ()% = [R,(0)% - H(0)F, (e-1)*B, () ]or ()% (2.67b)
- i) = HEOFE®) e ) (2.67¢)
w* ig g white noise eatisfying (2.2) and the forward property
Hy (W) L Hy (x*) given by
W () = 0 () 0, (1) - B, () F) B, (0%, (), (2.68)
and the n X n-matriz funetion Il is def;lned by
ne) := Pr(t)Pr(t)* , (2.69) !

where P* is the covariance function of x*, i.e., P*(t) =E{x*(t)x*(t)'},

which satiefies the Liapunov type equation
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P*(t+1) =TI(t+1)F(t)P*(t)F(t) 'N(t+1) + B*(t)B*(t)' ; P*(0) = P*(-l)#. (2.70)

Proof. First, in a manner analogous to that of Proposition 2.21, it
can easily be seen that X, is the state process of the forward realiza-

tion

%,(t) = B, ()F(t)P, (t-1)"%, (t-1) + B, (£)B*(t)w*(t)
- (2.71)
y(t) = AP, (t-1)*%, (t-1) + Re(t)%w*(t) , (2.71)

where B*, w*, H and R* are given above. Premultiply the first equation
in (2.71) by B, (t)¥, observe that B, (t)¥ = P*(t+1) and use (2.50),
(2.48), and (2.69) to obtain (2.66). Finally, (2.70) follows from the

state equation in (2.66). 0

The matrix function Il defined by (2.69) will play an important
role in what follows. Relations (2.48) imply that N> = Il and that
I = II', hence Il is an orthogonal projection. Also, Lemma 2.17 yields

M(t)x*(t) = x*(t) (2.72)

for all t € {0,T+1]}. Finally, if S is minimal, S is also minimal
(Lemma 2.11), inwhich case Lemma 2.12 guarantees the existence ¢f a
t, € [0,T] such that P*(t) > 0 for all t ¢ [0,t,]. Then Il = I on [0,%,];
in this case, x* will satisfy a recursion of type (2.1a), and the fol-
lowing relation

P, (t) s P(t) s P*(t) (2.73)

holds for each such t. (In fact, P,(t) < P(t) holds for all t e [0,T].)

Finally, the following three lemmas will be needed in the sequel.
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Lenma 2.23. Let x be the state process and P the state covariance

funetion of any S e S+ and let x, and x* be defined by (2.15) and (2.50)

respectively. Then
E{x(t)x,(t)'} = P (t) (2.74)

and
E{x(t)x*(t) '} = P(t)N(t) . (2.75)

for all t e [0,T+1].

Proof. In view of the definition (2.15), Ho(x - x,) & Ht(x,) and
therefore, (2.74) follows. Since S € S+, 8 e §+, and hence the backward
counterpart of (2.74) reads E{X(t)X,(t)'} = B, (t). But x*(t) =
P*(t)X,(t-1), and hence E{x(t)x*(t)'} = P(t)E{X(t-1)X,(t-1)"}P*(t),

which yields (2.75). 0

Lenma 2.24, Assume that S is regular. Let x; and x* be defined by
(2.16) and (2.66) respectively. Then, for all t e [0,T+l],

E{x*(t) | x,(£)} = T(t)x,(t) (2.76)

and

E{x,(t)x*(t)'} = B(t)T(t) . (2.77)

Proof. Since S is regular, the two intervals [0,t,] and [t,,T+l] cover
the whole interval [0,T+1]. Om [0,t,], P,(t-1) > 0, and consequently
S* has all the properties of realizations in S_on that interval.

Since 1 = I on [0,t,], this implies that (2.76) and (2.77) hold there.

o 8 g
ettt sy 33
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Similarly, on [t,,T+1], P,(t) > 0, and therefore, analogously with the
above, E{X,(t-1)X*(t-1)'} = P (t-1) on this interval. Premultiply this
by P*(t) and postmultiply by P,(t) and remembering that P, (t-1) = P*(t)#,
(2.77) is seen to hold on [t,,T+l]. Then Lemma 2.18 provides the re-

quested formula (2.76) on this interval. 0

Lemma 2.25. Let S ¢ S+ and let Q@* be the covariance function of
I(x* - x). Then

Q* = I(P* - P)IT . (2.78)
If in addition S is regular, then

E{[x - x,]J[x* - x]'I} =0 . (2.79)

Proof. Relation (2.78) follows from (2.75). Relation (2.79) follows
from (2.74), (2.75) and (2.77). 0

Remark. Since N1 is projection, IIQ*N = Q*.

2.6. A Mayne-Fraser-Type Smoothing Fornula

Given the state process x and the output process y of a model
(2.1), the smoothing problem consists in determining the smoothing
estimate

2(t) = E{x(t) | HO} (2.80)
of x and the smoothing error covariance

I(t) = E{[x(t) - R(t)I[x(t) - R(t)]'} (2.81)

M aa "'(w,
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for all t € [0,T]. In this section, we shall derive a smoothing formula
for the case that S is regular. At the end of the section, we shall

present a conjecture which, if true, would allow us to remove this regu-

larity assumption. Our approach w’ll utilize an orthogonal decomposition

of the frame space H: to be given telow.

In view of Lemma 2.14, K(t) € H:. In order to obtain a formula
for %, we need to decompose the frame space Hg perpendicularly. To this

end, we introduce the process z defined by
z(t) = x*(t) - M(t)x,(t) (2.82)

for all t ¢ [0,T+1].

Lemma 2.26. Assume that the class S i8 regular. Let z be defined by
(2.82), and Let Q(t) := E{z(t)z(t)'}. Then

. Hf = H (x,) ® H, (2) (2.83)
for all t ¢ [0,T+1]. Moreover,

Q = N(P* - P11 (2.84)

Q = I(Q, + Q"I (2.85)

where Q, and Q* are given by (2.18c) and (2.78) respectively and P is

the state covariance of any S € S.

Proof. Since S is resgular, Lemma 2.24 implies that the components of z
are orthogonal to those of x,, and therefore (2.83) follows from (2.52).

Next, since x* = JIx*, 2z = Ji(x* - x,}). Then (2.84) is a direct
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consequence of (2.77). Finally, write Q = II(P* - P + P - P)Il to obtain

(2.85). 0

Lemma 2.27. Let z be given by (2.82) and Q be its covariance function.
Then

Q=1Q=qQl = QN , (2.862)
o' = n¢* = o'n = ne*n (2.86b)

and
ot =qtq=1. (2.86c)

Proof. We shall first show that Q = IIQI and Qf = HQ#H, the first of
which follows trivially from (2.84) and the fact that Il is a projection.
For the second relation, let t ¢ [0,T] be fixed. The case P*(t) = 0
is trivial (for then Q(t) = 0 and II(t) = 0); hence we shall assume that
P*(t) = 0. As mentioned in Lemma 2.17, there exists an orthogonal

. " _vlP*() O > #
matrix V such that P*(t) = V 0 0 V' where P* > 0. Then P*(t)" =

0

P -1
v P*(t) - 0

0 0 00

V' and Ii(t) = Vl.' :IV'. In view of the fact that Q = IIQI,
Q(t) can be written Q(t) =V g(t) 8 V!'. We want to show that a(t) >0,
But in view of (2.85), this must be the case, because if we choose S in
S,» Q.(t) > 0 and Q*(t) 2 0. Hence Q) = v g(t)-l g V' and conse-
quently, Q# = HQ”H. From the above discussion it is clear that (2.86c)
holds. The rest of relations (2.86) follow trivially by remembering

that Il is a projection. 0

Now, we are ready to present the main result of this chapter.
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Theorem 2.28, Asswme that the clase S is regular., Let x be the state
process of any S of class S .. Then the smoothing estimate (2.80) is
given by

R(e) = [1 - Q) Ix,(0) + Q) ()x*(t) (2.87)

and the crror covariance (2.81) by
I(t) = Q(t) - Q.(v)atyte, () (2.88)

for all t ¢ [0,T+1].

Proof. Since X(t) = E{x(t) | HE} (Lemma 2.14), (2.83) yields
R(t) = E{x(t) | x, ()} + Elx(t) | 20D},
which upon using (2.15) and Lemma 2,18 can be written
(1) = x,(t) + Elx(t)z(t) Jawd)tzr) .

In view of (2.74) and (2.75), E{x(t)z(t)'} = Q,(t)N(t). Since z = Nz,
(2.87) follows from the above relation noting (2.86). To prove (2.88),

observe that
x-%=(1-Q@x-x)+Qe*x-x*.

Replacing Q* by TIQ*I, and noting that the two terms above are, in view

of (2.79), orthogonal, we obtain
T = Q, - QUQfng, - Qn¢*m,
+ Qie*ne,nofnq, + q,Me*ngrnqtng,

which, in view of (2.85) and (2.86), yields (2.88). 0
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To obtain the discrete-time version of the Mayne-Fraser formula

(38,39], the following lemma is needed.

f Lemma 2.29. Let S € S,. Then, for each t ¢ [0,T+1], Q,(t) and L(t)
are positive definite and satisfy

tt)? =g+ eyt ‘ (2.89)

where Q* 18 given by (2.78).

Proof. Let P be the covariance function of S. Since S e S, Q(0) =
P(0) - P,(0) = N > 0, consequently Q,(t) > 0 for all t ¢ [0,T+1]. To
see this, observe that the Riccati equation (2.16e) can be reformulated
to read ‘
Q,(t+1) = T, (t)Q, ()T, ()"
+ (B, (£)R,(£) D(t) - B(t)) (B, (£)R, (£) “ID(z) - B(£))", (2.90)

where T, is the feadback matriz
T, = F - B,R.H . (2.91)

The Liapunov-type equation (2.90) can be written in the form (2.5b) to
yield Q,(t) > 0 for all t ¢ [0,T+1], since Q,(0) > 0. The same argu-
entn can be used to prove that I > 0: first determine I from the
Liapunov-type equation corresponding to the backward representation
(2.115) below (the proof of which, of course, does not depend on this
lemma); thén, as above, note that for all t € [0,T], Z(t) 2 L(T+l) =
Q (T+1) > 0. This proves the positivity of L. Next, it follows from
(2.88) that
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I- Q@ = oqj! (2.92)

which is nonsingular for all t € [0,T+1]. Then applying the matrix
inversion lemma (1.34) to (2.88), it is seen that 2'1 = Q;l + Z, where
z= Q' - qah = (1 - feet. (2.93)

Therefore, it just remains to show that Z = Q*¥, Since Il is a projec-

tion, (2.85) yields

Q*=Q-1TIQ . (2.94)
In view of Lemma 2.27, (2.94) and the first of relations (2.93) yield
Q*Z = I, which is symmetric. Likewise, using the second of relations

(2.93), we obtain ZQ* = II. Then, Lemma 2.27 implies that Q*ZQ* = Q*

and 2Q*Z = Z also. Consequently, by Definition 2,16, Z = Q*#. O

Now, we are in a position to state the Mayne-Fraser two-filter

formula.

Theorem 2.30. Let S be regular and let S € S,. Then the smoothing

estimate X of the state x of S is given by
(1) = T()[Q. (1) " Ix, (8) + Qe (t)¥x*(t)) (2.95)

where x,, x* and L are given by (2.16), (2.66) and (2.89) respectively.

Proof. It follows from (2.89) and (2.92) that Q.q = 1 - 1Q;! =
w 227! - Q1) = 1Q**. This together with (2.92) yields (2.95) when

inserted in (2.88). 0

DR T SUE SRR e <
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Although the regularity assumption imposed on the class S is not
a very stringent one (especially if T is large enough in comparison with
n), it would be interesting to see if it can be removed. Actually,
this assumption was introduced only to obtain relation (2.76). We be-
lieve that (2.76) holds without the regularity assumption; as expressed

in the following

Conjecture. Let x, and x* be defined by (2.15) and (2.50) respectively.
Then
E{x*(t) | x, ()} = M(t)x,(t) . (2.96)

Justification. First, note that E{x*(t) | x,(t)} = E{x*(t) IHE_1 m1i.
To see this, note that H;_l(y) = H (x,) @ N; where N; L H (x*), for

N; il H:. Now, let x* be defined by

' o |XT(EA1) = F(O)XT(E) + BH(t)WH(1)
(s . y (2.97)
y(t) = H(t)x*(t) + R*(t)*w*(t) .
Then, noting that (2.57) implies N(t+1)F(t)N(t) = NI(t+1)F(t) and
fi(t) = H(t)N(t), we obtain
x*(t) = I(t)x*(e) . {2.98)

Hence, (2.96) is equivalent to showing that X*(t) :=
E{x*(t) | He ; (N} = x,() . But &*(t) is gemerated by the Kalman-
Bucy filter

R (£41) = F(DR* (1) + KR (0) [y (e) -HORH ()] 5 £4(0) =0,  (2.99)
where K is the gain function and RY is given by

R' = A, - HPR' | (2.100)
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A (t) = E{y(t)y(t)'} and P(t) = E{X*(t)X*(t)'}. Using the output
equations of (2.18a) and (2.91) alternatively to compute E{y(t) |H;_1(y)},

we easily see that
Hx, = Hx* , (2.101)

which implies that HP H' = HPH'. Hence R' = R, and the process
R+(t)'k[y(t) - H(t)X*(t)] is the innovation process w,(t) defined by
(2.17). To justify the conjecture, it then only remains to show that
the gain functions K and B, are the same. Due to time limitations, we

shall leave this open. O

2.7. The Bryson-Frazier Formulation

In this section we shall derive the discrete-time version of the
Bryson-Frazier smoothing formula [35]. This will be done by using a
procedure, based on an orthogonal decomposition of H(y), which does not
require that S be regular. Then the smoothing formula of Rauch, Tung ;

and Striebel [36] will be obtained as a corollary.

Since H(y) = H(w,) = H_;(w,) ® Hy(w,) (for w, is a white noise)
and He_; (v,) = Hy_) (9)

HOy) = Ho_ () © H{(w,) , '(2.102)

and consequently, (2.80) yields ;

£t) = Blx(v) | H_, (N} + Elx(e) | H WY,
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R which in view of (2.15) and the orthogonality between x,(t) and H;(w,)
i can be written

R(t) = x,(8) + Elz,(t) | H{(w,)} (2.103)

1 where

z,(t) = x(t) - x,(t) . (2.104)

This stochastic process satisfies the forward recursion

2,(t+1) =T, (8)z,(t) + [B(E) - B,(£R,(£) “D(E)Iw(t), (2.105)

where I', is the feedback matrix function (2.91). To see this, first

note that (2.16a) can be written

X

x,(t+1) = T (t)x,(t) + B (t)R,(t) “y(t) ;

then insert (2.1b) into this and subtract from (2.1la) to obtain . .105).
Moreover, we see that the covariance function of z, is precisely Q, as

defina:d in Section 2.3.

However, to evaluate the second term of (2.103) we shall need
the backward counterpart of (2.105), in the sense of Section 2.S.
Modulo a complete description of the exogeneous noise v, such a back-

ward representation was provided by Pavon in [9].

Lenma 2.31. ([9]) Let x be the state process of any realiaation in
S and let P be its covariance function. Then the process z, defined by
(2.104) satisfies the backward recursion

z*(t)!lQ*(t)r*(t)'Q*(t+1)#z*(t+1)-+Q*(t)H(t)'R*(t)-kw*(t)+v(t) (2.106)

where T, and Q, are given by (2.91) and (2.18b) respectively and v i8 an

(unnormalized) white noise whose components are contained in [H(y)]l.




97
Relation (2.106) 8 a backuard representation in the sense that

Hy (W2V) L HJ(z,) for «ll t € [0,T].

Equation (2.106) was derived in [9] by first noting that it is
no restriction to assume that the basic Hilbert space H can be written
H = H(y) ® H(n), where n is an n-dimensional white noise process of
type (2.2) such that H__ (n) L H;(z,) for all t ¢ [0,T]. In fact, such
a framework is sufficient for representing the state, output and input
processes, Next, it was seen that w, and n could be regarded as outputs
of a forward realization with (2.105) as its state equation; the white
noise character of the output modifies the construction of a backward

representation.

An alternacive derivation of Lemma 2,31, which in addition pro-
vides a complete charicterization of the process v, can be obtained
along the lines of Theorem 4.3 in our continuous-time paper [64]:

First note that, for each t € [0,T], there is an orthogonal p X p-matrix

B(t) Bl(t) Bz(t)
. " V(L) (2.106)
D(t) R(t) 0

where B1 is n xm and B, isnx (p - m)., Let

u
= Vw (2.107)
.

define a pair of mutually uncorrelated white noise processes u and v

V(t) such that
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of dimensions m and p - m respectively. Then Bw = Blu + Bzv and Dw =

R4, and (2.105) can be written
z,(t+1) =T, (t)z,(t) =T, (t)Q.(t)H(t)'R (t)J‘u(t) + Bz(t)V(t) . (2.108)

1

To see this, first use (2.16c) to see that R;IR = I - R;IHQH' and

(2.16b) to see that B Rls - B,R? = -FQH'; from this it is easy to see

1
that B, - B,R;'R* = -[,QH'. Given (2.108), Lemma 2.31 follows from
the appropriate modifications of Proposition 2.21 and some tedious
calculation. This also provides an expression for Vv in terms of v and

z,, Which is useful in obtaining a representation for the smoothing

error, such as the one in Theorem 4.3 in [64].

Now, we are ready to state the main result of this section. To
simplify notations, we introduce the process {r(t) ; t € [0,T+1]}

defined by
r(t) = Blz,(t) | H{(w)} . (2.109) ;

Since w, is defined only on [0,T], set vr(T+l) = 0.

Theorem 2.32. Let x be the state process of any S € S with state
covariance function P and let X be the corresponding smoothing esti-

mate (2.80). Then, for all t ¢ [0,T],
X(t) = x,(t) + r(t) (2.110)
where r 18 defined by (2.109) and satisfies the backward recursion !

£(t) = Qu ()T, (£)'Q, (t+1)Fr (£+1)+Q, (£)H(E) 'R, (t) ~Hw, (1)
T(T+1l) = 0 , (2.111)
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Proof. In view of the definition (2.109), (2.110) is the same as

(2.103). Next, since the components of v are orthogonal to H(w,),

-

(2.111) follows trivially from Lemma 2.31. a

Remark. Relations (2.110) and (2.111) imply that the covariancs matrix
L(T+1) = Q,(T+l), which, in view of Lemma 2.29, is positive definite
if S e 3*.

The Bryson-Frazier formula [35] can now be obtained from the

above theorem.

Corollary 2.33. Let x be the state process of a realisation S € S R
Then the smoothing estimate % satisfies

R(t) = xy(t) + Qu()E(E-1) (2.112) |

vhere x, and Q, are given by (2.16) and Z satisfies |

zZ(t-1) = T, (t)'Z(t) + H(t)'R*(t)-%w*(t) ; Z2(T) =0 . (2.113)

The process 7z i8 related to r through

Z(t-1) = Q. (t) lr(t) . (2.114)

Proof. Since S ¢ S+, Q. (t) > 0 for all t € [0,T+1] (Lemma 2.29) and
consequently, the process Z given by (2.114) is well-defined. Then the

result follows from the theorem. 0

Finally, to obtain the result of Rauch et al [36], the following

proposition is needed.
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Proposition 2.34. Let S ¢ S, and let x be its state process. Then the
smoothing estimate X satisfies the difference equation

2241 = FEOIR(E) + BCE) (T -D() R, (&) D)) BCE) 2(8)

L:‘E(‘l’ﬂ) =x, (T+1) ,

where
Z(t) = Q (t+1) L [(R(t+1) - x,(t+1)] .

Proof. Writing (2.112) as
X(t+1) = x, (t+1) + Q (t+1)Z(t) , (2.116)

using the recursions (2.18a) and (2.16e) for x, and Q, and adding and
subtracting F(t)Q, (t)Z(t-1) in (2.116), we obtain

R(t+1) = F(L)R(t) + B(L)B(L)'Z(t) + u(t) (2.117)
where

u(t) = -F(t)Q,(t)Z(t-1) + F(t)Q,(t)F(t)'zZ(t)
- B, (t)B, (t)'2(t) + B, (t)w,(t)

(2.118)

Now inserting (2.113) into (2.118) and using (2.91) to eliminate [,,
we get
H(t)=F(t)Q, (t)H(t) 'R.(t)J’B,(t) 'Z2(t)-F(t)Q, (t)H(t) 'R*(t)J’W, (t)
- B, (t)B,(t)'Z(t) + B, (t)w,(t) .
Insertiqg (2.i6b) and (2.17) into the last two terms of this expression

and cancelling similar terms, we see thgt

e — 5 o 0t g et £

- .

+B(EID() 'R, ()L [y(t) - H(t)x, (t) - H(E)Q (£)F(£)'E(t)]  (2.119)

1 +B(£)D(t) 'R, () L [y(e) - Hit)x, () - H(t)Q, (£)F(t) 'E(t)] (2.115)
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which immediately yields (2.115). 0

Now, let BD' = 0; this is a basic assumption in [36]. Then

(2.115) reduces to
X(t+1) = F(t)X(t) + B(t)B(t)'Z(t) ; R(T+l) = x,(T+l) ,
which, in view of (2.116), becomes

R(E+1)=F(L)R(£)+B(£)B(L) 'Q, (t+1) "L[R(t+1) -x, (t+1)] ; X(T+1)=x, (T+1) .
(2.120)

Corollary 2.35. Let x be the state process of any S € S_ and let

BD' = 0. Then, the smoothing estimate X can be unitten
i(t)-x(tlt)+p(t|t)r(t)'[F(t)?(tlt)p(t)'+B(t)n(t)']‘l[ict+1)-pct)x(t|t)]
R(T+1) = x,(T+1) (2.121)

where x(t|t) is the filter E{x(t) | H;(y)} and P(t|s) is its error co-

variance matriz, i.e., P(t|t) = E{[x(t) - x(t]t)][x(t) - x(t|t)]'}.

Proof. First, solve (2.120) for X(t) in terms of X(t+l), add and sub-
tract F(t)'lx*(t+1) and rearrange terms to obtain
ﬁ(t).F(t)‘lx,(t+1)+[F(t)‘l-F(t)“IB(t)B(t)'Q*(t+1)‘1][2(t+1)-x*(t+1)].
This can be rewritten as
R(t) = F(£) "Ix,y (£+1) + F(£) 71 [Q, (£+1) - B()B(t) 'IF(£) IR (D) !
o (2.122)
 [(Q,(t+1) -=B(t)B(t)') +B(t)B(t)'] " [x(t+1) -x,(t+1)].

It is well-known and easy to see that the one step predictor x,(t+l) and

the filter x(t|t) are related by
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x,(t+1) = F(t)x(t|t) (2.124)
and that the corresponding error covariances satisfy the relation
Q. (t+1) = F(t)P(t|t)F(t)' + B(t)B(t)' . (2.125)
Finally, note that (2.124) and (2.125) may be reformulated as

x(t]t) = F(e) "I, (ts1)

P(t|t) = F(t)"1{Q (t+1) - B(t)B(t)']F(t)'!

which, inserted into (2.122), yields (2.121). a

Relation (2.121) is the formula of Rauch, Tung and Striebel

presented in [36].

It remains to clarify the connections between the results of
Sections 2.6 and 2.7. Note that the two-filter formula (2.87) can

be written

R(t) = x,(t) + Q. (e)Qe)¥z(ry

where z is defined by (2.82). Comparing this with (2.112), it is seen

that we need to prove that
2(t-1) = Qt)¥a(e) ,

analogously with the continuous-time setting [64,65]. The problems
encountered in trying to show this are similar to those of proving the
conjecture in Section 2.6, and due to time limitations, we are leaving

this question for a future paper.
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CHAPTER 3

TOPICS ON THE STOCHASTIC REALIZATION PROBLEM FOR
CONTINUOUS-TIME NONSTATIONARY STOCHASTIC PROCESSES

3.1. Introduction

Let the Hilbert space H be as defined in Section 2.2. In this
chapter, Eﬁe following notations will be adopted. For any n-dimensional
stochastic process z, Ht(z) will denote the (closed) subspace spanned
by the random variables {zl(t), 2,(t)y oo, zn(t)}. Let H(z) and the

past spaces H_(z) and H 1(2z) be defined asV (z), where the
t [to,t]

Tel Hr
interval I is (-», =), (-»,t] and [to,t] respectively. The future spaces
H[t,tllcz) and H:(z) are defined analogously. Sometimes, we shall be
interested in spaces spanned by the increments of z. Hence, we de-

fine H(dz), H;(dz) and H:(dz) fo be the closed linear hulls in H of

{z(s) - z(x); s, r ¢ I}, where the interval I is (-»,»), (-»,t] and

[t,») respectively.

Let {x(t); t ¢ R} and {y(t); t ¢ R} be two stcchastic processes
of dimensions n and m respectively, defined as the solution of the

linear stochastic system

103
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dx = F(t)x(t)dt + B(t)dw (3.1a)

()
dy = H(t)x(t)dt + D(t)dw

where w is a vector process, of dimension p 2 m, with orthogonal in-

crements such that

E{dw} = 0 ; E{dwdw'} = I dt (3.2)
and Hy(dw) & HZ(x) for all t € R. The matrix R(t) := D(t)D(t)' is.
positive definite on R, the matrix F(t) is uniformly asymptotically
stable on R and F, B, H, D and R"1 are matrices of bounded and analy-
tic functions. As before, the process x is called the state of the
model S, y is the output and w is the imput. We shall assume the
model S to be minimal in the sense that there is no other model of the
form (3.1) with the process y as its output and with a state process x
of smaller dimension than n. The stochastic realization problem con-
sists of finding all possible stochastic systems (3.1) (belonging to
a class S to be prescribed below) having the process {y(t); t ¢ R} as
their output. Each such model S will be called a stochastic realiza-
tion of y: In particular, S is minimal and analytic, i.e., F, B, H,

D and R} are analytic on R.

For each t ¢ R, there exists an orthogonal matrix V(t) such that

B B (6) B,(8)

V(t) (3.3)
oty [rR)E O

where B, is n X m and 32 isnx (p -m), It is no restriction to take

du
l:] = dw (3.4)
dv

1
V(t) = I. Next, let

i e b = e 7o o gt . <l
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define a pair of orthogonal increment processes u and v, of dimensions
m and p - m respectively. It is obvious that (3.4) satisfies (3.2).
Accordingly, we have reduced the problem to that of finding all admiss-

able models S of the type

- dx = F(t)x(t)dt + Bl(t)du + Bz(t)dv (3.5a)
s
dy = H(t)x(t)dt + R(t)E du , (3.5b)

having the process {y(t); t ¢ R} as an output. Clearly, the matrix

function P(t) := E{x(t)x(t)'} satisfies the differential equation

P = FP + PF' + BlBi + BZBé (3.6)

on R. We shall call P the state covariance function of S.

As we have seen in the previous chapters, it is sometimes more
convenient to use a backward representation for the state process x.
To do this, we need to invert the matrix function P. Since S is mini-
mal, (F,B) must be completely controllable [4,63]. Since in addition,
F and B are analytic, (F,B) must be totally controllable [68,69].

With this condition satisfied, it is not hard to prove that P(t) must

be positive definite for all t € R (see [71; p.28]). Then, the process

2(t) = P(t)™ x(t) (3.7)
is well-defined with components in H. Let P be its covariance function
B(t) = E{x(t)X(t)'} . (3.8)

The following lemma, the proof of which can be found in [64], is the

analogue of Lemma 2.1,

Lemma 3.1. Let x be the state process of an arbitrary realization

(3.5) with state covariance P. Then the process X defined by (3.7)
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satisfiees the buckward model
dX = -F(t)' X(t)dt + B(t)de (3.9a)
for all t € R, where B = Pls ond W is a p-~dimensional orthogonal in-
eremente procese satisfying (3.2) and the condition H;(dﬁ) 1 H: (x) for

all t €« R, The increments of W = [:] are given by

af]  [du - B'P7L x af
dw = = 1 -1 (3.9b)
dv dv - BéP x dt
and the covariance function (3.8) by P = p-l ; it satisfies

B« -F'P-PF- BB . (3.10)

To obtain a backward realization for y, insert (3.9) in (3.5b) to
get dy = (HP + R'])% + K@, Then, defining B, and B, to be P'B, and

P'IB2 respectively, Lemma 3.1 yields

dx = -F'(t)Xx(t)dt + Bl(t)dﬁ + Bz(t)dv

(3) ) o _ (3.11)
dy = G'(t)X(t)dt + R*(t)du ,
where the n X m-matrix function G is defined by
G = PH' + BRE | (3.12)
Note that (3.5) and (3.11) have the same state space, i.e.,
Ht(x) = Ht(i) (3.13)

for each t ¢ R. We shall call any model of type (3.11) with y as its
output, and H;(dﬁ) L H:(i) for each t ¢ R a backward realization of

{y(t); t € R}. Note that 3 is also analytic.
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3.2. The Finite Interval Case: A Review

In order to complete the statement of the realization problem
indicated in Section 3.1, we shall have to specify the classes S
and S to which the realizations (3.5) and (3.11) respectively belong.
To this end, we shall first restrict ourselves to the finite interval
[to,tll, where t, and t, are arbitrary elements of IR. Realization
theory for processes defined on a finite interval was developed in our
papers [64,65] (this is the continuous-time version of the theory of

Chapter 2) and next we shall briefly review some facts from it.
Hence we shall consider models

dx = F(t)x(t)dt + B, (t)du + By(t)dv ; x(t)) =&
(s) (3.14)

dy = H(t)x(t)dt + R(t)%du

of type (3.5) but defined on the finite interval [to,tll. We shall

call such representations stochastic realizations of {y(t); t ¢ [to,tll}.
Note that it is now necessary to specify the initial condition §; dif-
ferent £ will define different realizations S. If N := E{£E'} is
positive definite, x(to) can be thought of as being generated by a

model (3.5) on the interval (-w,to]; consequently, (3.14) is merely a
restriction of (3.5) to the interval [to,tl]. However, note that the
class (3.14) also contains realizations S such that N is singular

(even zero); then there is no such interpretation, and we shall have

to take some care in defining the corresponding backward model.
The linear least-squares estimate

Kul(titg) = Blx(®) [ By 00} (3.15)
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of the state process x of S is generated on [to,tll by the Xalman-Bucy

filter
dx*(t;to) = F(t)x*(t»to)dt + B*(t:to)du*(t:to) ’ xt(to;to) = 0 (3.16a)

where

du, (t,t)) = Ree) ildy - H(E)x,(tit )dt] . (3.16b)
The matrix function B,, called the Kalman gain is given by
B,(t,t) = Qu(E, £ JHCE) 'R(E) 7% + B (£) (3.16¢)
the error covariance matrix
Q(t,t,) = E{[x(t) = x,(t;t)][x(%) - xu(t;t )11} (3.16d)

being the solution of the matrix Riccati equation

ee,e ) = FOIQE ) + QIETIFE) = Bu(t,t)Bu(t,) ! + BB
Q(t,,t,) = P(t)) (3.16e)
with B, given by (3.16c).
‘Let P,(t,t])) := E{x*(t;to)x*(t;to)'}. Then, it is easy to see that
P.(t,t)) = P(t) - Qe (t,t)) (3.17)
for all t ¢ [to,tI] and that

BPet, 1) = F(EIPL(E,T,) * Palts LIF(D) ' +By(,E)Bu(EsE0) " P, (t,ty) =0 .
(3.18)

The representation (3.14) is not the only model defined on [to,tl]
that has (3.16a) as its Kalman-Bucy filter. Hence, define S[to,tl] to

be the class of all analytic realizations S of {y(t); t € [to,tl]}

which has (3.16a) as its Kalman-Bucy filter on [to,tl]. Since we are

bt 2 -

ot -
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only'considering propér [2] realizations, not only F, H, R and B,, but
also the estimates x*(t;to) will be the same. Of course, different
S ¢ S[to,tll will have different state processes x and different Q,, B,
w and P. Rewriting (3.16b) to obtain an expression for dy, it is easy
to see that (3.16a) and (3.16b) together define a realization in
S[to,tll; we shall call it S*(to,tl).

Now for any realization S ¢ S[to,tll, the n X m-matrix function G

defined by (3.12) is invariant for the class S. To see this, note that

(3.16c) and (3.17) yield that
G(t) = P, (t,t JH(E)" + B,(t,t IR(E)?, (3.19)

and that
Bu(t,t)) = (G(t) - P,(t,t JH(E) DR()® . (3.20)

Therefore, (3.18) may be written

e (t,)) = ME,P(6,6)) 5 P(t,t) =0, (3.21)
where A is defined by
A(t,P) = F(t)P + PF(L)' + (G(t) - PH(t)")R(t) L(G(t) - PH(t)")"'.
(3.22)
Let S+[to,t1] denote the subclass of all realizations in
S[to,tl] such that N > 0, For such an S the construction of backward
realizations presented in Section 3.1 remains valid, for X will be well-
defined on the whole interval [to’tll‘ Then, by symmetry with the
forward setting, we can now see that, given an arbitrary backward reali-

zation S ¢ S+[to’t1]’ the estimate

%,(tit;) = Blx(t) | fie, ¢ 1000 (3.23)
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of the process X is generated on [to,tl] by the backward Kalman-Bucy

filter
di,(t;tl) = -F(t) ':’c,‘(t;tl)dt + E*(t,tl)dﬁ,(t,tl) H x,(tl;tl) =0, (3.24a)

where

d,(t,t)) = R(t) “H[dy ~ G(£) 1%, (t;t))dt] (3.24b)
The matrix function' B, is given by
Bu(6,t)) = -Qa(5,t)GEIRE) E « By (1) (3. 24¢)

where

%§;<t.t1) =-F(t)'Q,(t,t)) - Qut,t))F(t) + B, (t,t,)B,(t,t)) " - Be)B(E)!

Qultyaty) = Bley) = Pep™ . (3.244)

Here, of course, {, is the error covariance matrix
Qu(t,ty) == E{[R(L) - R, (t5e)]R(L) - Re(t38)]1'3 . (3.24e)
Let P*(t,tl) i= E{X, (t;t))X,(t;¢,) '}, Then
Po(t,t) = B(t) - Qu(t,t)) (3.25)
for all t ¢ [to,tll and
%gg{t,tl) = At P (t,))) 5 Pultyut)) = 0, (3.26)
where A is given by
A(t,P) = F(t)'P+PF(t) + (H(t)' - PE(t)IR(t) F(H(t) ' -PG())'.  (3.27)
It can be shown that the matrix function B, is invariant over the

class S[to,tl] (cf. Lemma 2.5). Hence the backward filter (3.24a) is

invariant also. Now, define §[t°,t1] to be the class of all analytic
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backward realizations 3 of {y(t); t € [to.tlj} which has (3.24a) as its
Kalman-Bucy filter.

Analogously to the forward setting, it is seen that (3.24a) and
(3.24b) properly reformulated, constitute a realization in §[to,t1]; it

will here be called S,(to,tl).

We wish to construct the forward counterpart S*(to,tl) of
S*(to’ti)' However, we now run into problems, because P*(tl) = Q so
that the (reverse of the) construction in Section 3.1 is no longer
valid. But, as shown in [64,65], the minimality and analyticity of
S, implies that P* := P:l is well-defined on [t ,t,-€] for all € > 0,

and hence so is x* := P:Ii*. Consequently, we can define the model

dx*(t;tl) =F(t)x*(t;t1)dt-#B*(t,tI)R(t)‘%[dy-H(t)x*(t;tl)dt]

-1

(8*(t,,t)) . .
x*(t,;t)) = P*(to,tl) Xa(tysty) (3.28a)

on any such interval; such a realization is called a generalized reali-
zation of {y(t); t ¢ [to’tl]}‘ (See [64,65].) Here
B () = ~(Q (6t RO RE) T - By(6)) ,  (3.28)

with Q* satisfying

%%*-(t,tl) =F(£)Q*(t,t) +Q*(t,t))F(t) " +B*(t,t,)B*(t,t;) ' - B(t)B(t)"

larce,ty) = P*(to,tl)'l - P(t) . (3.28¢)

Let P*(t,t)) := E{x*(t;tl)x*(t;tl)'}. Then, it can be seen that
P*(t,tl) = P(t) + Q*(t,tl) (3.29)

and that
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Tt t) = AGE,PR () 5 PR, t) =Bt el (3.30)
t’l L, ’1 3 0’1 *0’1 . *
As ve have seen in Chapter 2, since Q,(t,to) 2 0 and
Q.(t,tl) 2 0, it can be easily seen that for all t e [t ,¢t,],
P,(t,to) S P(t) < P*(t,tl) . (3.31)

Hence the models S, and S* are called the minimum-variance and the

maximum-variance respectively (cf. [64,65]).

Finally, we recall that these two models S, and S*, contain all
the information on y that is needed to estimate x. Consequently, as
was done in Chapter 2 and in [64,65], it is seen that the smoothing

estimate

x(t;t,t;) = E{x(t) | H[to’t1](Y)} (3.32)
of the state process x of any realization S ¢ s+[to’t1] is given by

x(e5t ) = [T - Q (6,8 )Qt, t,t,) Ik, (e5t ) +
1 (3.33)
+ Qt(t:to)Q(t)tO’tl) X*(t;tl)

on [to,tl), where

Qt,t,t)) = PH(E,ty) = Po(t,t) . (3.34)

3.3. Stochastic Realizations on R

In this section, we shall let t, - and t, + =, Consequently,

1
we shall extend the discussion of the previous section to the infinite

interval setting of Section 3.1.

Since, for each fixed t ¢ R, the process {x, (t;~t); T2 -t} is a

uniformly integrable wide sense martingale [70], x*(t;to) tends to a
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limit x,(t) := gfx(t) | VtOStH[t t] (¥)} in mean square as t, =
o’

(cf. [2; p.378]). ButV ](y) = H;(y) and consequently

tOStH[to,t
x,(t) = E{x(t) | Ho ()} (3.35)

for all t ¢ R. Then u.(t,to) tends to a limit process

{u,(t); t € R} which satisfies (3.2), for u,(t,to) satisfies (3.2).
Since x,(t;t°)~+ x,(t), P,(t,to) and B,(t,to) as given by (3.17) and
(3.20) tend to the limits P, (t) and B, (t) respectively. Consequently,

x, and u, must satisfy
dx,(t) = F(t)x,(t)dt + B,(t)R(t) “F[dy - H(t)x,(t) dt] (3.36)

for each t ¢ R. Now, we define S to be the class of all analytic
realizations (3.5) of {y(t); t € R} whose Kalman-Bucy filter on any
interval [to’tll tends to {3.36) (in the obvious sense) as t,* -
and as t, + =, It is easy to see that (3.36) may be reformulated to

1
yield the model

dx, = Fx,dt + B,du,
(S,) y (3.37)
dy = Hx,dt + R°u,

Let @{x,(t) | H ](y)} be denoted 2*(t;to). Then, by a similar

[to,t
argument to that leading to (3.35), the limit in mean square of
R.(t;t)) as t  + = is seen to be E{x,(t) | He(¥)}, which is x,(t).
Since, in addition S, is minimal and analytic, this implies the model

S, belongs to S.

The following proposition summarizes the pertinent facts about

the model S,. The results are obtained from the corresponding finite

interval results by merely taking the appropriate limits as
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explained above. It is the nonstationary version of Theorem 4.1
in [2].

Proposition 3.2, There e one and only one realization (3.5) in S,
namely (3.37) having any of the following properties:

(7) x,(t), u,(t), B, (t) and the state covariance P,(t) of S, are
the limite (the first two in the mean square) of x,(t;to),
u,(t,to), B,(t,to) and P*(t,to) respectively as t, *+ -,

(i1) the covariance matrixz function P, satisfies
B.(t) = A(t,P,(t)) , (3.38)
where A i8 giwen by (3.22), ad it i8 minimum in the seénse that
P,(t) < P(t) (for each t ¢ R) , (3.39)
(1i1) the innovation process u, satisfies
H;(du*) = H;(Y) (3.40)
for all t ¢ R, and
(W) for any realiaation S € S, with state process x, the process
x, 18 the estimate
E(x(t) | H{(} = x,(t) (3.41)

(i.e., x, 18 twariant with respect to the partiaular realiza-

tion S € S.).

In analogy with the forward setting, we see that the process
i*(t;tl) tends to a limit X, (t) in mean square as t:1 + o, Consequently,
i,(t,ty), §*(t,t1) and P*(t,tl) tends to the limits d,(t), B,(t) and

P*(t) as t:1 + o, Hence, we obtain a representation analogous to (3.36)
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for ®,; we shall call it the steady-state backward Kalman-Bucy filter.
Therefore, we define S to be the class of all analytic backward reali-
zations (3.11) of {y(t); t € R} whose Kalman-Bucy estimate on the
interval [to,tll tends to the steady-state backward Kalman-Bucy filter
as t1 + @, Precisely as in the forward setting, we can see that X, is

the state process of the model

d%, = -F'%,dt + B,dd,
3 \ (3.42)
dy = G'%,dt + R,

and that §, ¢ S. The state covariance function P, of §, satisfies
B,(t) = Act,B,(t) (3.43)
where A is given by (3.27).
Since P (t) > 0 for all t ¢ R, we see that the process
x*(t) = B,(£) 1%, (t) (3.44)
is well-defined, and is the state of the model

dx* = Fx*dt + B*du*

(§*) (3.45)

dy = Hx*dt + Ridu* ,

where B* and u* are the limits of B*(t,tl) and u*(t,tl) as t:1 + o, The

state covariance function P* of (3.45) is 13;1 = (lim P,,(t:,tl))'1 =
tq¥c0

lim (B,(t,t))" = lim P*(t,t;). It is easy to See that P* satisfies
1 tl"‘”
P*(t) = A(t,P*(t)) (3.46)

and that Q*(t) := E{[x(t) - x*(t)][x(t) - x*(£)]'} is given by

Q*(t) = P*(t) - P(t) . (3.47)

ai

¥

e *
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Since x*(t) = th-:o x*(t;t;) and E{x*(t;tl) | H[to,t] N} = Xe(t5t ),
we see that the Kalman-Bucy filter of S* on [to,tll tends to x, in

mean square as t + -». Hence S* ¢ S.

As a corollary to Proposition 3.2 and the above discussion,

it is now clear that
P,(t) S P(t) S P*(t) ‘ (3.48)
for all t € R.

As another corollary, we shall obtain the following algorithms
to calculate P, and P*, They were originally obtained by Clerget [71]
through an argument first used in [11]. The proof in [71] relies on
control theory techniques and gives little insight into the stochastic

nature of the problem. Our proof is not only simpler, but it also pro-

-vides a stochastic interpretation for these equations.

Corollary 3.3. Let Il and 1 be the unique solutions of the n X n-

matriz partial differential equations

[%», %}H(t,s) = A(t,0(t,$)) ; N(£,0) = 0 (3.49)
and
[.a%a, ,;’?)ﬁ(t,s) = ACe,fice,s)) 5 fi(t,0) = 0 (3.50)

respectively, where A and A arve given by (3.22) and (3.27) respectively.

Then T(t,s) + P,(t) and fi(t,s) + P*(t)™" as s + =,

Proof: Let t) € R, Sets=¢t - t, and II(t,s) := P (t,t - s). Then

dP« _ |9 o
P*(t,to) = JI(t,t - to). Hence It (t,to) = ['a—t-:- + -B?]H(t,t - to).
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But, by (3.22), Sb& (t,t)) = ACE,P,(8,))) = ACETICE,t - £)). Since
P,(t,t) = 0, N(t,0) = 0. Hence (3.49) follows. To see that
M(t,s) = P, (t) as s + =, just observe that, by Proposition 3.2,
P*(t,to) + P,(t) as t, - Finally, (3.50) follows from (3.43) and

an argument analogous to the above. a

Finally, we shall solve the smoothing problem for this infinite

interval setting.

Let S € S be arbitrary. The smoothing problem requires deter-

mining the estimate
2(t) := E{x(t) | HN} (3.51)
of the state x of S. Recall that the smoothing estimate x(t;to,tl) on

the finite interval [to,tl] is defined by (3.32). Since, by the argu-

ment used above

R(tie,ty) = Bx(e) | By o 00 > Elx(®) [ HODY = X
o’

as to + -» and as tl + », we see that (3.33) yields the following
formula ((3.53)), which holds under the assumption that the covariance
function Ky of y is coercive, i.e., there exists a positive constant

such that

t Jt

t ¢t
I I u' (r)K_(r,s)u(s)drds > g lluct)n2 (3.52)
o 0 Y

for all square integrable functions u. It was shown by Clerget

[71; p.29] that this assumption implies P* - P, > 0.
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Proposition 3.4. Assume that the covariance function Ky of y te co=
erciwe. Let x be the state procese of an arbitrary realiaation S € S,

and let X be the corresponding smoothing estimate (3.51). Then

R(E) = [1 - Q(8)Qt) Lix,(t) + Q(0)Q®) “Lx*(t) ,  (3.53)

where Q, =P - P, and Q = P* - P_.

Remark. Formula (3.53) suggests a representation for the state process
of an internal realization (i.e., a realization satisfying H(x) < H(dy).)

If S € S is internal, then, by (3.51), x(t) = X(t) for each t € R.

Corollary 3.5. Assume that the covariance function Ky of y i8 cvercive.
Let x be the state process of an internal realization S € S. Then x can

be written
x(t) = M(t)x,(t) + [T - M(t)]x*(t) , (3.54)

where 1l 18 a projection given by 1l = Q*Q"1 and Q* = P* - P,

Proof. 1In view of Proposition 3.4, it only remains to show that

I = Q"'Q'1 is a projection. Let I(t) := E{[x(t) - X(£)][x(t) - X(t)]'}.
Then, it can be shown (Chapter 2) that £ = Q, - Q*Q'IQ*. Then, since
X =x, & =0, Consequently, Q,,,Q'1 = Q,Q’IQ*Q'I. But I - Q,\,Q'1 =

QL hence ¢*qQt = *Qlg*qQ7l, ive., WP =1 O
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Let P be the set of all state covariance functions P given by

(3.6) as S ranges over S. Any P ¢ P must also satisfy (3.12); (3.6)

and (3.12) constitute the equations of the nonstationary version of

the Positive Real Lemma. Since, in addition, the state covariance P

of any S ¢ S is positive definite, we may write P = {P =P' > 0 | P

solves (3.6) and (3.12)}. It can easily be checked that P is bounded

and convex [71]. Some straightforward algebraic manipulations yield

P={P=P'| A(t,P(t)) - P(t) S0 for all t € R}, (3.55)

For each P ¢ P, define the feedback matrix

I =F - (G- PHYR M .

(3.56)

Let the feedback matrices corresponding to P, and P* be denoted I, and

I* respectively, Let P, = {P [ P> P} and P = {P | P < P*}, If the

covariance function of y is coercive, i.e., satisfies (3.52), P* - P, > 0,

Consequently P+ and P_ are both nonempty.
Now let Po be the subset of P defined by
P,={P e P | ACt,P(t)) - P(t) = 0} .

Then it is immediately seen that P, = {P ¢ P | B, = 0}.

Lemma 3.6. Let S ¢ S with state covariance function P,

ternal 1f and only if P ¢ PB.

Proof. Let P ¢ PB. Then 82 = 0, hence S has the form

(3.57)

Then S i8 in-
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|
' E dx = Fxdt + Bldu

dy = Hxdt + Rﬁdu .
Consequently, x can be solved for in terms of y as follows

dx = Fxdt + B/R™¥[dy - Hxdt]

which clearly implies that S is internal. Since the smoothing for-
mula (3.53) is the same as (3.33), the argument in proving Theorem 4.4

in [64] can be used to prove the converse. a
Coroliary 3.7. P, and P* belong to PB.
Proof. This follows from (3.38) and (3.46). a
It is worth noting that once the covariance function P of a

realization S ¢ S is known, the quadruplet [F, B, H, (R*,O)] is deter-

mined upon observing that

B, = (G - PH')R'* (3.58a)
3235 =P - A(P) . (3.58b)

Determining the quadruplets [F, B, H, (R%,O)] solves what we have

called before the wide sense stochastic realization problem, i.e., is
equivalent to finding all realizations whose outputs have the same co-
variance properties. In the next section, we shall present an algorithm

to generate such quadruplets.

Finally, it is not hard to see that Proposition 1.12 and Coxol-

laries 1.13 and 1.14 hold for this setting also with obvious modifications.
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3.5. Non-Riccati Algorithm Inside B

In this section, we shall present an algorithm to generate (wide
sense) realizations without resort to the intermediate step of solving
for P. This algorithm is the nonstationary, continuous-time version of
(1.54) and Theorem 6.2 in [2]. In order for the idea of proof used in
[2] to be applicable in our nonstationary setting, we shall have to in-
troduce an additional condition on the given process {y(t); t € R}:
Assume that y is generated as the output of a stochastic system (3.5)
such that 82 is congtant and nonzero. Of course this does not imply
that all S € S have such a Bz, merely that there are nontrivial

(52 = 0), elements in the subclass Sc = {SeS | 82 constant}. Let Pc

be the subset of P corresponding to realizations in Sc.

Lemma 3.8. Let P ¢ P.. Then A(t,P(t)) - P(t) i8 constant on the

real line.

To develop the algorithm, we shall first construct, for a given
matrix function Po € Pc, a trajectory of matrix functions in P extend-
ing from P, through Po to P*, so that these functions are totally ordered

in a sense to be defined below.

Theorem 3.9, Assume that the covariance function Ky of y i8 coercive.
Let A be defined by (3.22). Let P, be an arbitrary function in Pc'
Let P be the unique solution in the (t,s) plane of the matriz partial

differential equation




122

[saz-d- -aa?] P(t,s) = A(t,P(t,s)) ; P(t,0) = po(t) . (3.59)

Then, (1) P(+,3) € P for all s ¢ (~»,»), (i1) for each t ¢ R,
P(t,sz) < P(t,sl) for $; S 8y, (i1t) if Po € P, for eacht ¢ R,
P(t,s) + P (t) a8 s +» ad (W) if Po € P, foreach t ¢ R,

P(t,s) + P*(t) a8 s + -,

Remark. Before proving this theorem, it is worth noting that the par-
tial differential equation (3.59) can be trivially transformed to an
(infinite) family of ordinary differential equations (3.18) with differ-
ent initi#l conditions, To see this, set o = t - s and let

P(t,0) := P(t,t -~ 0). Then, it is easy to see that the left-hand side
of (3.59) is gg(t,c). Finally, P(0,0) = P(0,0). Hence, (3.59) is the

ordinary differential equation

dp ~ ~
a?(t,o) = A(t,P(t,0)) ; P(0,0) = Po(c) . (3.60)

The following two lemmas will be needed for the proof of

Theorem 3.9.

Lemma 3.10. The matrix partial differential equation (3.59) has a
unique solution P(t,s) which i8 a matrix of _analytic ﬁfnctions in the

two real variables t and s.

Proof. It is well knovn that the ordinary differential equation (3.60)
has a unique solution [4; p.156] which is also analytic (for the param-

eter matrices are). Then the same is true for (3.59). 0

e - e g
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L Lemma 3.11. Let P° € PE. Then the matrixz partial differential equa-
tion (3.59) can be replaced (in the sense that it has the same solution P)

F by the system

52(E,8) = UCE,8) [ACE, P (1)) = B ()IUCE,5)" 5 P(£,0) = P (t) (3.61a)

[Fat‘* ‘SaE]U("*S) = I(t,s)u(t,s) ; UC,0) = T (3.61b)

where I'(t,s) t8 the feedback matrix (3.56) corresponding to P(t,s).

Proof. We shall use the differentiation technique of [21]. The reason
why this method works in this nonstationary setting is of course that
the coefficient matrices do not depend on s, which is the dynamic vari-

able of the algorithm. First, reformulate relation (3.59) to read
[+ Pt = (R0 -6 MHE0IIPCE, ) + REE, [P - GC0IRE ) )
+ P(t,s)H(t) 'R(t) “LH(E)P(t,s) + G()R(E) LGt . (3.62)

Since P(t,s) is a matrix of analytic functions, the mixed partial
derivatives of P(t,s) with respect to t and s are identical. Using
this fact, differentiating (3.62) with respect to s and setting N(t,s) :=

g;{t,s), it can be seen that
[,;t_», gis_]nct,s) = T(t,s)N(t,s) + N(t,$)T(t,s)' .  (3.63a)

In view of (3.59), this partial differential equation has the boundary

condition

N(t,0) = A(t,P (t)) - f’o(t) , (3.63b)

which, by Lemma 3.8, is constant for Po € PE. Consequently, (3.63) can

be integrated to yield
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N(t,s) = U(t,s)N(t,0)u(t,s)' , (3.64)

where U is given by (3.61b). Consequently, P satisfies (3.61). But

(3.61) clearly has a unique solution, and therefore the lemma follows. 0

Proof of Theorem 3.9. Let P_ ¢ P_. Then A(t,P (t)) - l'>°(t) < 0, and

consequently, by (3.61a),
<o, (3.65)

which, in view of (3.59) and (3.55), implies that P(-,s) € P for all

s € (-»,»), i.e., (i) holds. Property (ii) is an immediate consequence
of (3.65). To prove (iii), we follow [72]. First note that (i), (ii),
and (3.39) imply that, for each t ¢ R, s~ P(t,s) is a nonincreasing
function bounded from below by P,(t), and consequently P(t,s) tends to
a limit P(t) as s +®, It remains to show that P = P,. Keeping t
fixed and letting s + = in (3.59), it is not hard to see that P satis-
fies the differential equation gg-a A(t,i(t)); hence P ¢ PB. Then, by
Lemma 3.6, P is the state covariance function of an internal realization;
let x denote its state process, But, then X satisfies (3.54) for some
family {li(t); t ¢ R} of projections, i.e,, x* - X = ((x* - x,), which

yields
P*(t) - P(t) = M(t)[P*(t) - P, (t)IT(L)" . (3.66)

To see this, use the orthogonality relations of Lemma 3.5 in [64]. Now,
use the fact that P ¢ P_and P(t) S P (t) for all t ¢ R (for P(t,*)
is a nonincreasing function), to see that P(t) < P*(t) for all t € R.

Consequently, for each t ¢ R,
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I(t) [P*(t) - P, (t)1N(L)' > 0

\ which can hold only if NI(t) is nonsingular. But II(t) is a projection,
i.e., II(t:)2 = JI[(t), which together with nonsingularity implies that
M(t) = I. Hence, it follows from (3.66) that P = P,, as required. The

proof of (iv) is analogous. g

We are now ready to formulate the non-Riccati algorithm to
generate families of (wide sense) rualizations. As all realizations
are determined by the matrix B, the algorithm will be given in terms of

this parameter only.

Let B = {B = (81,82) | B1 and B2 are given by (3.58) as P ranges
over P}. Let Bo’ B_and B+ be defined analogously in terms of Po’ P
and P* respectively. It is clear that Bo consists of those B ¢ B for e
which B,=0. In particular, let B, and B* denote the elements of Bo

corresponding to P, and P*,

Theorem 3.12. Assume that the covariance function Ky of y 18 coercive.

Let [F, B°, H, (R%,O)] be an arbitrary (wide sense) realization of y

0
2

be the unique solution of the system :
=3(t,s) =B, (t,s)B,(t,s) 'H(L) 'R(t) ; Bl(t,OJ = B,(t)(3.672) ?

such that B, i8 constant on (-»,°) and let s » B(t,s) = [Bl(t,s), BZ(t,s)]

(%4-%]82(1:,5) = [F(t) - Bl(t,s)R(t)'liH(t)]Bz(t,s) s Bz(t,O) = Bg. (3.67b)

For each s ¢ (-=,»), let P(t,s) be the unique solution of

e g{-(t.S) =F(t)P(t,s) + P(t,s)F(t)" +B(t,s)B(t,s)' . (3.68) f

P,
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Then, for each s ¢ (-»,»), [F, B(+,s), H, (Rk,O)] 18 a (wide sense)
realization of y, with state ocovariance function P(e,s). If B, ¢ B,
fqr each t ¢ R, B(t,s) +B,(t) a8 s +», ad if 8° ¢ B,, fqr eaoh
t ¢ R, B(t,s) + B*(t) a8 s + -», Finally, the function P aatisfies
oonditions (i) - (W) of Theorem 3.9 and the equation

g§<t,s) = -B,(t,5)B,(t,5)" . ' (3.69)

Proof. Let P0 be the state covariance function of the initial real-
realization (F, B°, H, (R;’,O)] and let s » P(t,s) be the trajectory

through Po defined by Theorem 3.9. Define

B (t,8) = [G(¢) - P(t,s)H(t) 'JR(t) ™% (3.70a)
and

B,(t,s) = U(:,s)sg , (3.70b)

where U(t,s) is given by (3.61b). Then, 30(t,s) = U(t,s)N(t,0)U(t,s)" =
-U(t,s)Bng' U(t,s)' = -B,(t,s)B,(t,s)'. This proves (3.69). Differ-
entiate (3.70a) with respect to s and use (3.69) to get (3.67a). To
prove (3.67b), differentiate (3.70b) with respect to s and use (3.61lb).
In view of (3.59) and (3.69), 5=(t,s) = -B,(t,s)B,(t,s)" =

ACE,P(t,5)) - 95(t,s). Hence 3E(t,s) = At,P(t,5)) + By(t,s)By(t,s)"
which is (3.68). Hence (P(t,s), B(t,s)) satisfy (3.6) and (3.12), and

consequently [F(t), B(t,s), H(t), (R(t)%,O] is a realization of y with

state covariance P(t,s) which satisfies conditions (i)-(iv) of Theorem 3.9,

Finally, the fact that Bl(t,s) + B,(t) (B*(t)) under the stated condi-
tions follows from condition (iii) ((iv)) of Theorem 3.9. Since
%%{t,s) + 0 as 5 + +o(.»), Bz(t,s) + 0 as s + +o(-»), Hence B(t,s) +

(B,(t),0) ((B*(t),0)) as s + +o(=), 0
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Remark. This theorem has the following interpretation. Each realiza-

tion (3.5) in Sc gives rise to a family of realizations indexed by

$ € (~»,»)

) dxs = F(t)xs(t)dt + Bl(t,s)dus + Bz(t.s)dvs (3.71a)
S lay = HEEIx (e)dt + R(e) R (3.71b)
which are totally ordered in the sense that the state covariances

P(t,s) = E{xs(t)xs(t)'} of S, satisfy P(t,s,) < P(t,s|) for s, s s,.

1f B ¢ B , this family will contain the minimum-variance reali-
zation S,, and if B® ¢ B+, the family contains the maximum-variance
realization S*. Finally, if Y ¢ Bo’ (3.71) will contain only one

realization: (3.5) itself.

3.6. The Singular and The Mixed Cases . |

The stochastic realization problem may be classified into three
categories:

(1) the regular case, for which R(t) is positive definite for
allt ¢« R ,

(ii) the singular case, for which R(t) £ 0, and
(iii) the mixed case, for which R(t) = 0, but det R(t) = 0 for
all t € R.
(In fact, there is a fourth case, which we shali not deal with here,

i.e., the case for which det R(t) = 0 for some, lut mot all t ¢ R.)

By the assumptions made in Section 3.1, we have just studied the
first of these cases. The analysis used depends heavily on the fact i

that R(t) is invertible for all t ¢ R. To solve the problems of the
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last two categories, we shall first have to reformulate them in the
following way: the given realization [F, G, H, R] will be converted
to an equivalent realization (in the sense of the definition given
below) [Fa’ G a’ Ha’ Ra] where R,(t) is positive definite for all
t € R. The results of this section are generalizations of similar

results presented in [18].

Definition 3.13. ([18]). The two realizations [Fl’ Gl' Hy, Rll
and [Fz, Gz, H2’ RZ] are said to be ¢quiwalent if thoy have the

same set P,

Let us start with the singular case, i.e., let R(t) = 0 for
all t ¢ R. Then the equations (3.6) and (3.12) of the Positive

Real Lemma become

P = FP + PF' + BB' (3.72a)
G- Pd' =0 (3.72b)
P=P'>0. (3.72¢)

Proposition 3.14. Let the entries of G and H be differentiable at

leagt n times. Then, the realizations [F, G, H, 0] and [F, Ga’ Ha, Ra],

where

G, = G - FG , (3.73a)

H, = HF + i, (3.73b)

OSSO U Y |
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R, = HG - G'H' - HFG - G'F'H! (3.73¢)

are equivalent (in the sense of Def inition 3.13).

Proof. All realizations arising from the quadruplet [F, G, H, O] have

the form
dx = Fxdt + Bdw (3.74a)
y = Hx (3.74b)

with state covariance function P, which, together with F, G, and H sat-
isfy equations (3.72). Let Yo * y. Then, using relation (3.74b), the

following is a realization of the process Yq
dx = Fxdt + Bdw {3.75a)
dy, = Haxdt + HBdw . (3.75b)

where Ha is given by (3.73b). Observe that (3.74) and (3.75) have the
same state process X and hence the same state covariance P. Hence,
these realizations of y and Ya have the same set P. We shall show that

all realizations obtained using the quadruplet [F, Ga’ H_, Ra] are of

a
the form (3.75). First, observe that Ga as given by (3.73a) can be
written as Ga = PH; + BB'H'. To see this, we use the following sequence
of equalities: G, = G - FG = PH' + PH' - FPH' = P[F'H' + H'] +

PH' - FPH' - PF'H! = PH! + BB'H', which is the G that corresponds

to (3.75), obtained from the Positive Real Lemma, It remains to show

that Ra = DaD; where Da = HB, This is shown by the following sequence

of identities:
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HG - G'H' - HFG - G'F'H' ,

= HPH' - HFPH' - HPF'H'

- ,
! ,

H[P - FP - PF']H'

HBB'H' = DaD; . 8]

Consequently, by the above proposition, instead of studying the

quadruplet [F, G, H, 0], we can study (F, Ga’ H, Ra]. If R, = 0,

RTINS0 S

£ the above procedure of differentiating the output may be repeated until ;
a positive definite Ra is obtained. If Ra # (0, but det Ra Z 0, the pro- ;

}f cedure of the third category, which will be discussed shortly, may be §
! used. 5
;: With this setup, all the results of the previous sections can be §

carried over using Ga’ Ha and Ra instead of G, H and 0. §

g ¥ Next, we consider case (iii) which is the most general. Here we

need more assumptions than in case (ii). Assume R(t) has constant rank ?

for all t € R and the entries of R(*) are differentiable at least n

times. Set k := rank R(t).

i
|
!
Since R(t) # 0 but det R(t) = 0, by Dolezal's Theorem (see |
e.g. [73]), there exists a nonsingular matrix function S, the entries E

b

SR NP 1 01 P T

of which are differentiable at least n times, such that ﬁ = SRS =
[zl g] with R1 a positive definite k x k matrix function. This trans- i
formation corresponds to a change of basis in the subspace spanned by y:

instead of examining the process y, we examine another process ¥ = Sy. ;

R
Without loss of generality, we shall assume R = l;l g:l with R1 as above, .
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Partition the matrices H, G and D in the following manner:

2
G = [Gl’ GZ] with G, is n x k and G2 is n

2

H
Hsl:l:l withl-l1 iskxnandl-lzis (m - k) xn,

x (m - k) and

Dr-El]withblistpandDZis(m-k)Xp.

Consequently, equations (3.6) and (3.12) become

P = FP + PF' + BB!

' '
G1 - l?l'l1 = BD1

'
DIDI 2 Rl >0

D, =0

2

G, - PH' = 0
r'4

2

P=P'>0
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(3.76a)
(3.76b)
(3.76¢c)
(3.76d)
(3.76e)

(3.76f)

The following is the generalized version of Proposition 3.14.

Proposition 3.15. Let the entries of G, H and R be differentiable at

least n times ard let R(t) be of constant rank for all t € R.

G,» G,, H

13 1.’
[F, G, H, R] aud [F, Ga’ Ha’ Ra]’ where

Tyt
L S
a HZGI - G2H1 HZGZ - GZHZ - HZFG

1 ' ’
2" GZF'Hz]

Let

H2 and R1 be as defined above. Then the realizations

(3.77a)

(3.77b)

(3.77¢)

PR
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are equivalent (in the sense of Defintition 3.13).

Proof. The proof is an immediate consequence of that of Proposition 3.14
Y

and follows upon defining Yq ® yl » Where y has been partitioned com-
2 Y
patibly with the rest of the matrices, as y = yl . g
2

1f Ra obtained above is not full rank, we repeat the above proce-
dure of changing the basis and differentiating the component of the
output that does not contain a white noise until we arrive at a nonsingu-
lar Ra. The natural question that arises is whether this procedure
terminates in a finite number of steps. Silverman [74] has shown that,

subject to some extra regularity conditions, the answer is yes.,

As a special case, we may quite easily obtain all the results
of Germain [18] for the stationary singular and mixed cases. These re-

sults are summarized in the following two corollaries.

Corollary 3.16. Let F, G and H be constant and let R = 0. Then the
qadrupletes [F, G, H, 0] and [F, -FG, HF, -HFG - G'F'H'] are equivalent.

Corollary 3.17. Let F, G, H and R be constant and let R = 0 but
det R = 0. Then the quadruplete [F, G, H, R] and [F, G,» H, Ra], where
H

= = (1
G, = [6, - FG,] , H [2{2{[ and

ot
. R1 . GIH - HIGZ
= ' '
a HZG1 - GZHl -HZFG2 - GZF'H2

are equivalent.
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Remark. Germain [18] has obtained the following values for G , H and

Ra; a choice that we are not able to explain or understand:
G, = [Gl’ Cl] ’ Ha = [Hl’ 2] , [ :l where

c, = -FG, - G,R] [G - H,6,]

1
= ' -

= - - tgryp=l 'yt
B = ~[H,FG, + GYF'H,] ~ [Hj6) - GIHIIR][H,Gy - GH]]' .
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