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CHAPTER 1

INTRODUCTION

1-1. Introduction

The superposition property shared by all Linear systems makes it
possible to develop unified methods of analysis and synthesis of these
systems. By contrast, nonlinear systems do not share this property and
as such no single method exists at this time which can be applied to the
analysis and synthesis of all such systems.

The area of nonlinear systems analysis, however, remains an impor~
tant area of research. Most devices which are linear in a certain re-
gion of operation may reveal a nonlinear behavior when operated in a
different region. Devices such as diodes, transistors, tunnel diodes,
etc., which are ubiquitous to all electronic circuits, are inherently
nonlinear (except in a very small region of operation). The analysis of
circuits containing such devices is an important problem.

In the analysis of nonlinear systems, two alternatives are avail-
able: The first possibility is to take a problem-dependent analysis ap-
proach; that is, take a specific nonlinear system and perform a detailed
analysis on 1it, and, in the process, develop some efficient method of
analysis. In general, this "new" method may not be useful for other
nonlinear system problems. The second alternative is to develop and ap-
ply an analysis method which is applicable to a broad class of nonlinear

systems, and is not oriented towards a specific system.




In the present day, when computer-aided analysis pervades many
areas of science and engineering, the computer has become an important
arbiter in the success and popularity of an analysis method. Even a
fairly general analysis method may remain in oblivion if it is found -
or thought - unadaptable to computer-aided analysis.

The Volterra functional series E1;2] for nonlinear system analysis

may be regarded as one such method: it is applicable to a large class

of nonlinear system problems, but is not widely used in engineering cal-

culations. Although much theoretical work [3-6,12-14,15~24]1 has been
done on this method over the past two decades, the applications of this
method have been Limited in their scope. Most authors of these publica=-
tions have ignored the computational aspect of this method, and those
who have considered it have deemed this method as cumbersome or unadapt-
able to computer-aided analysis. In this report we will use the Volter-
ra series as a basis for computer-aided circuit analysis of nonlinear
circuits, and, in the process, introduce some interesting aspects of the
- ’ method.

An overview of some nonlinear system analysis methods is given iq
section 1-2, with special emphasis on the Volterra series approach.
Section 1-3 presents the objectives of this investigation. Finally, a
glimpse of the results of this research effort, along with the organiza-

tion of this report, is presented in section 1-4.

1-2. Nonlinear System Analysis Methods.

It is indeed rare to find a nonlinear system analysis problem which
has a closed-form solution. One must then resort to using approximation

methods for gaining insight into the system behavior. The broad ca-




tegory of approximation methods can be roughly broken into fuo groups:
1) analytical methods, which often yield qualitative and quantitative
information about the system, and 2) numerical methods, which give quan-
titive information about the system. The well-known methods belonging
to the latter group are: 1) polynomial approximation to the solution
function, Lleading to the ﬁumericat Integration methods; and 2) Taylor
series approximation of the solution, lLeading to the Runge-Kutte Type
methods. Our survey on the approximation methods will deal with the
analytical methods only. We consider some of them 1in the following
sub-sections.

1-2.1 Iteration Method. A method for solving nonlinear differential or

integral equations is based on the process of successive iteration,
called the iteration method. This process can be performed in a number
of ways, but the basic procedure is the same. The nonlinear equation is
first solved by neglecting certain terms - generally the nonlinear terms
- in the equation. The resulting solution is then re-substituted in the
system equation without neglecting any t«rms. This process is repeated

and, under well defined conditions [15,18,35], each resulting solution

is a better approximation to the actual solution.

When nonlinear differential/integral equations with polynomial type o
nonlinear terms are solved via the iteration process, the implementation
involves the actual squaring, cubing, etc., oﬁerafions. When sinusoidal i
steady state response is obtained using this method, the approximation
to the entire output spectrum is obtained in one step, in contrast to
some other methods, which give new distortion terms with each step.

1-2.2 Perturbation Method. Like the iteration method, the perturbation




method is applied in a wide variety of ways. This method is generally
applied to nonlinear differential equations, in which a small parameter
is associated with the nonlinear terms, by introducing a dummy variable
to help dissolve the nonlinear differential equation into a sequence
linear differential equations with nonlinear terms which can be solved
in a bootstrapping manner. The Linearized system is first solved. The
resulting solution is used to solve the next system equations involving
the quadratic terms. This is followed by solving the Linear differen-
tial equations with cubic terms, and so on. The solutions obtained at
each step are added to yield the approximation to the actual solution,
thus giving a series type approximation.

The description of the procedure above is the basic perturbation
method. However, in some nonlinear problems this approach, when applied
as above, leads to serious convergence problems. The method is then
modified to get rid of the so-called "secular terms," which grow up in-
definitely as t + = [17,181].

1-2.3 Volterra Series Method. The Volterra series method is a type of

functional series which relates the system input, x(t), to the system

output, y(t), as:

L4 N
yt) = n§1 n_[;;{_g' h (Tgpeeerty) ir=11 x(t=t) dr, (=D

where hn is the n-th order kernel function, whose n-dimensional
transform is called the n-th order transfer function. Clearly, the sys-
tem characterization, using Volterra series, is done by determining

these kernel functions, or their transforms. The solution obtained is

ey




of a series type.

Wiener [2] first applied this method to calculate the response of a
nonlinear system with memory to a Gaussian noise input. Much of
theoretical work on this method was done in the Llate 50's and early
60's. Brilliant [4] studied the convergence of the series for bounded
inputs. George [5] devised a "system of algebra" for combining Volterra
systems and developed the “association of variables" technique for
directly going from a multi~dimensional transform description to the
one-dimensional transform description. Zames [3] studied Volterra sys-
tems when placed in a feedback loop. Bedrosian and Rice [12] and Rudko
and Wiener [37]1 give a set of formulae for Volterra systems driven by
random inputs. This set of formulae have been applied to Gaussian ran-
dom inputs only.

The approach has also been applied to specific problems. Van Trees
[9] characterized the phase-lLocked lLoop with a nonlinearity. Bedrosian
and Rice [12] and Baranyi [38] used the method to calculate and compen-
sate the distortion incurred in an FM signal, respectively. Narayanan
7] and Gopal, et. al. [36] calculated the intermodulation distortion in
transistor amplifiers. The modeling of communication receivers using
Volterra series was done in [10]. Ewen [11] studied the identification
of Volterra systems and Naditch [13] applied the approach for high fre-
quency calculations. The relationship between Volterra series and Pi=
card iteration, for a class of nonlinear system problems, was developed

by Leon and Shaefer ({191,




1-3. Objectives of the Investigation.

In the analysis of nonlinear systems, two main classes of solutions
are generally sought: 1) transient, and 2) steady state. The basic
goal of this investigation is to obtain these solutions for nonlinear
circuits via the Volterra series method. Before proceeding with the
main subject of this sub-section, we briefly provide the motivation for
using Volterra series.

The most commonly used present~day approach  for analyzing nonlinear
systems 1is numerical integration. The nonltinear differential equations
are integrated from some initial time, to’ to some final time, te. when
the sinusoidal steady state response is sought, the value of tf chosen
is usually large to insure that all transients have decayed. A fast
Fourier transform then yields the frequency components of the output
response. A more efficient method for obtaining the sinusoidal steady-
state response 1is to pose the analysis problem as a two-point boundarx
value problem (31,321 and then apply an iterative two step algorithm.
This approach, however, allows only single frequency inputs.

The problems involved in the numerical integration method are well
known [29]. These problems notwithstanding, there are other inefficien-
cies. When one is solely interested in the sinusoidal steady state
response, the computation expended in reaching close to tf is a waste.
This inefficiency grows as poles of the Linearized system get close to
the j -axis, as 1is often the case in many quasi-linear communication
circuits.

Other methods such as the harmonic balance or the describing func-

tion method are seldom used, simply because the assumption behind these




methods render them undependable. The Picard iteration method can also
be used for nonlinear system analysis. This method also has limitations
when used for computer-aided analysis, particularly when multi-tone in-
puts are present. The basic perturbation method and Volterra series are
alike when applied to nonlinear circuit analysis problems.

We now return to the main subject of this sub-section, namely, the
goals of this jinvestigation.

As mentioned in the previous sub-section, thé nonlinear system is
completely characterized by the Volterra kernel functions, or their
multi~-dimensional transforms, referred to as Volterra transfer func~
tions. In analyzing a nonltinear circuit, the first problem therefore is
to characterize it.

Once the kernel functions or the transfer functiong are known, we
can determine the response of the circuit. However, since the Volterra
series is an infinite series, the error incurred as a result of trunca-
tion at a finite term must be investigated. This lLeads to the problem
of convergence. We look into how the series converges for a class of
Lumped nonlinear circuits.

Next we investigate the implementation of the Volterra series
method on a digital computer. In doing so, we first develop the basic
algorithm for adapting this method for computer-aided analysis and then
actually implement it for cbtaining the steady-state response of cir-
cuits with multiple nonlinearity, multiple multi-tone input sources.
The determination of the transient response from the Volterra transfer

function for Laplace transformable inputs 1s also investigated.




In summary, the goals of this investigation can be categorically
stated as:

1) Devise a systematic way of deriving the Volterra kernel func-

tions, or their transform domain description.

2) Determine a method of estimating the error incurred as a result

of truncating the series §olution at a finite term.

3) Obtain an algorithm for adapting the Volterra series method for

analyzing multiple nonlinearity circuits.

4) Implement the algorithm of (3) as a computer program.

Befare concluding this subsection, we make the following comment:
Many papers and theses on the theoretical aspects of Volterra series
have appeared in the literature, most of which have been included in the
References. After studying these references, one js still left with the
most practical questions: How do we apply this method to the real world
nonlinear circuit problems? How do we use this approach for analyzing
and computing the behavior of a nonlinear system problem at hand?

The motivation behind this research was to seek answers to the
above fundamental questions and also remove the misconception that the
Volterra series method is cumbersome for computer analysis. We feel
that this method could be employed in a wider variety of engineering
calculations than is presently the case. The contents of this report
are therefore centered around the practical aspects concerning Volterra

series.




1-4. Organization of the Report

In addition to this introductory chapter, this report comprises six
chapters.

Chapter 2, entitled 'Volterra Series", discusses the analysis
method (1-2.3) which forms the basis of this investigation. Commonly
used terminology and the salient features associated with the series are
presented. The applicability along with the convergence of the Volterra
series is discussed. In treating the topic of convergence, we concern
ourselves not with abstract nonlinear equations, but with a concrete
class of time-invariant nonlinear system equations with polynomial type
nonlinearities. Recursive relationships, which provide an estimate of
the error due to truncating the series (1-1), for this c¢lass of non-
linear differential equations are developed. Knowing the 4 horm of the
Linear kernel function, one can estimate the number of kernel functions
that needs be derived to meet a prescribed error criterion. When the
solution is sought during a finite time interval, the conditions for
which the Volterra series converges are given in [21,22]. However, for
the interval [—,»]1, convergence of the series has not been proven. We
present an example, based on [23] and the new recursive relationships,
to show how the bound on the input, in terms of the L1 norm of the
Linear kernel function, for which the series in this interval converges
can be derived.

In Chapter 3, we deal with the topic of multiple nonlinearity cir-
cuit analysis. In dealing with this <topic we develop a systematic
method of obtaining the transform domain description of the Volterra

kernel functions for a Large class of nonlinear systems. Our approach




relies on the application of multi-dimensional transforms, in contrast
to the "harmonic input" method used by other authors [7,12-141. This
new approach, besides being more intuitive, avoids the morass of algebra
involved in the other approaches. The determination of Volterra
transfer functions for multiple nonlinearity circuits with single inputs
is described. The extension to multiple inputs is also discussed brief-
ly.

Chapter 4 deals with the determination of the sinusoidal steady-
state and zero-state transient responses from the Volterra transfer
functions. The case of multi-tone inputs is considered, and the deter-
minatign of the responses for calculating the distortion indices at the
various and many frequencies is discussed. The fact that convolution in
the time—-domain becomes multiplication in the transform domain, along
with the "association of variables" technique, is exploited to show how
the zero-state transient response can be determined for inputs which are
Laplace transformable and factorable. Nonlinear {Llumped systems with
such inputs obviate the need for any numerical integration. With the
complete pole-residue information of thg Linearized system, it is shown
that one can determine the time-domain response for such inputs.

The ideas gathered in Chapters 2, 3, and 4 are used to develop al-
gorifhms for most "efficiently" implementing the Volterra series method
for nontinear circuit analysis on a digital computer. This is the topic
of Chapter 5. The fundamental idea used in this development is the use
of semi-symbolic [29] analysis of the Linearized circuit. Through this
approach, many advantages are accrued: 1) repeated inversion of a

“(arge” matrix is avoided; 2) the pole~residue information obtained can

10




be used for zero-state transient analysis; 3) the pole-residue informa-
tion 1is directly related to the l1 norm of the linear kernel function,
which, in turn, is related to the truncation error (Chapter 2); 4) the
functional description of the higher order transfer functions can be ob-
tained from the functional description of the lLinear functions (Chapter
3. Thus, Chapter 5, in a sense, lends unity to this whole investiga-
tion.

Chapter 6 gives an example from the use of PRANC. Various ramifi-
cations from the results obtained are discussed.

Chapter 7 is reserved for concluding remarks and some topics of

further research.




CHAPTER 2

JOLTERRA FUNCTIONAL SERIES

2-1. Introduction

In many of the problems encountered in nonlinear systems analysis,
it is difficult - if not impossible - to find explicit closed-form ex-
pressions for the solution. Approximation for the solution must then be
sought. Several methods [16-18] which yield approximate solution are
available, and were discussed in the previous section.

The intention behind using the Volterra functional series is funda-
mentafly to evaluate solutions which cannot be obtained in closed form,
and therefore the solution obtained from this approach will involve an
approximation. Whenever approximation methods are used, the question of
convergence is an important consideration. In this section we present
the general convergence properties of the Volterra series method. In
dealing with this topic we rely on the results of [22]. These results
are extended to an important class of nonlinear systems by establishihg
the bounds on the output in terms of the bound on the input and the %4
norm of the impulse response of the L%nearized system. We believe that
these results are of more practical value to a nonlinear system analyst
and designer.

Other theoretical considerations, such as the applicability of the
method and input-output uniqueness are also briefly discussed. This
discussion relies heavily on the works of George [5], Brilliant [41].

In section 2~2 we present the Volterra functional series represen-
tation of nonlinear systems along with the applicability of the method.

In discussing the applicability we present a sufficient condition U[41]

12
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for a nonlinear system to be representable by the functional - series
method.

Section 2-3 is used to illustrate the application of the Volterra
series method for obtaining the approximate solution of a general non-
linear time-invariant differential equation.

Section 2-4 deals with the convergence properties of the Volterra
functional series. Both the single nonlinearity case and the multiple
nonlinearity case are discussed in this sub-section. A brief exposition
on the stability of solutions is also presented. The stability con-
sidered here is that the response, y(t), of the system remains bounded;

that is, y(t) < », for all t z_to.

2-2. Volterra Functional Series

Consider the time-invariant nonlinear system of Figure 2-1, with an
input, x(t), and an output, y(t). The nonlinear system acts as an

operator that maps the function x(t) into a function y(t); that is

y(t) = Skx(t)] -1

S

x(t) (Nonlinear System) ;_y’(t)

Fig. 2=1. A time-~invariant nonlinear system




The basic idea behind the Volterra functional series is to approximate S
by a series of functionals. This idea is analogous to the case of func-
tions, where any function, under some well-defined conditions, can be
approximated by a series of functions, say, for example, polynomials.
Furthermore, for polynomials, the Weierstrass theorem shows that any
continuous function can be approximated arbitrarily closely in the limit
in a region by a sequence of polynomials [331. Similarly, it has been
shown* that for a continuous functional S[Cx(t; tp <t < t1)], there ex-
ists a sequence of functionals which approximate S arbitrarily closely
in the- Limit. While the existence of these sequence of functionals is
proved, their method of determination is not given.** The Volterra func-
tional series is therefore a type of functional series used for approxi-

mating S. It retates the input, x(t), to the output, y(t), as follows:

™ n
yy = E ffeeef b Copenn,n) Ixte-rdde (2-2)
n=1 n-fold " " p=1 p P
where hn(r1,...,rn) is known as the time-domain Volterra kernel of order
n. It should be clear that the nonlinear system characterization is
done through the determination of these kernel functions; for, once we
know them, the output funciion can be determined from eqn. (2-2) for a
known input function. For causal kernel functions, the Llimits of in-

tegration are between 0 and =, i.e. t0 is taken to be zero.

*Van Trees LB8J) claims that this was done by Frechet. For original

reference see [81.

**This again is analogous to the case of functions: the existence of
the sequence of approximating functions is proved by Weierstrass,
but a method of finding these functions is not given. We then
resort to using orthogonal polynomials, etc. as basis functions.
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Two well—known cases are readily derived from eqn. 2-2: First, when
the set of kernels {hz,h3,...} are zero, eqn. (2-2) reduces to the
well-known convolution integral of a Linear system; and, two, when the
kernel hn is given by a Eﬁ s(vp), then egn. (2-2) represents the out-
put of a nonlinear, memory?ess system.

Before proceeding with the discussion of the applicability of Vol-
terra functional series, we point out some important features and defin-
itions associated with the series:

(a) The term order with respect to an output component is often
used. Order in this context is defined as the number of times the input
is multiplied with itself in the ccnvolution integrals appearing in eqn.

2-2. bue to this definition of order, it is often more convenient to

write the series as:

yt) = Ly () 2-3)
n=1""
where
f n
y (t) = ene h (‘[ FAXEV XY ) n x(t-'[ )d‘t (2.4)
n n-fold " 1 n p=1 p P

Equation (2-3) then represents the output, y(t), as a summation of the
outputs of order 1,2,3,....

(b) As shown in egn. (2-4), the nth order output functional is
equal to the convolution of the kernel hn with the n=fold product of the
system input values. Thus, if the input is an impulse function, then hn

can be viewed as the nonlinear impulse response function of order n,

15




whose n dimensional transform can then be called the nonlinear transfer
function of order n [10,141].

(c) The Volterra series can be used to characterize nonlinear sys-
tems in which the present output depends on the present and past values
of the input function. Such systems are referred to as "systems with
memory”.

(d) The kernel functions themselves are not necessarily independent
of each other, but they are independent of the system input. Thus, a
parallel system realization of the form shown in Fig. 2-2 describes the
nonlinear system being studied. For obtaining an nth order response, it
follows that the first n kernel functions, or their transform domain
description, must be determined.

(e) Some important advantages of the Volterra series method are
that it places the input-output relation in explicit form and allows us

to think of the system in terms of functional blocks, as shown in Fig.

2-2.

16




x{t) y(t)

Fig. 2=2. Volterra series equivalent system representation.

This often allows us to deduce qualitative properties about the system
which may not be clear from the differential/integral equations used to
describe the system.

We now proceed with an important aspect of the Volterra series
method: its applicability. Much of the recent work on this topic was
done by Brilliant [4], who introduced a new topological space to define
the concept of a continuous system mathematically and showed that such
systems could be approximated by the functional representation.

Once again consider the nonlinear system‘of Fig. 2-1. Let x1(t)
and xz(t) be the inputs to the system which produce y1(t) and yz(t) as
outputs, respectively. We define the distance between the input func-

tions and the output functions as follows:

17
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t
dg (xq,%5) = | [xq (o) - xz(t)]dtl ,ty >0 (2-5)
t-'t.l
and
dylyqryy) = Iy, - y, (Ol (2-6)

where y1(t) = S[x1(t)3 and yz(t) = S[xz(t)]. Intuitively, we can say
that S is a continuous system if d2 is small when d1 is small. Brilli-
ant [4] gave the following mathematical definition of a continuous sys-=
tem: .For a time=invarijant system S with bounded inputs x1(t) and xa(t),
S is continuous if for any ¢ > 0, there exists a § >0, T >0 (T suffi-
ciently large, & sufficiently small) such that if d1 < 6§ for 0 §_t1 <7,
then d2 < e. It has been shown [4] that if S is continuous, according
to the above definition, then for any ¢ > 0 there is a polynomial system
Se such that, for a bounded input x(t), |SOx(t)] - Selx(t)I] < e.

It should be noted that the distance functions defined 1in eqgns.
(2-5) and (2-6) are not unique, and that other functions could have been
chosen. The definition of continuity stated above is just one defini-
tion and, therefore, the aforementioned condition for S to admit a func-
tional series representation is only a sufficient condition, and not a
necessary one.

The conditions on the system § that admits a Volterra functional

series description can be qualitatively summarized as follows:
(a) Output is a single valued function of the input.

(b) S is time-invariant.»

*The Volterra functional series has been applied to time-varying
systems also. See, for example, [39].
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(c) Small perturbations in the input do not produce abrupt changes

in the output.

2-3. Derivation of the Volterra Series: An Example

The basic problem in applying the Volterra series method to non-
linear systems is the determination of the kernel functions. In this
section we present an approach for deriving these kernel functions. A
direct and more algorithmic approach, which also shows the similarity
between the Volterra series method and the perturbation method [17], is
given in section 3.

We consider a system with a single nonlinear element and the fol-
lowing differential equation which provides the input-output relation-

ship:

N
LIy + ek LYXa y ()1 = x(t) -7
1 [

where L1 and L2 are linear operators, defined as follows:

dm dm-1
L1['] = -d—-'i C-] + bm_1 ——i_—T{’J + ... ¢t bOE‘J (2-8)
t dt
and
d t
LZE-] = cﬂt-[.J + ‘2_{5'3‘" + .:3[-:\ 2=-9

where € and bi are constants. Notice that if g =gy = 0, we have a
memoryless nonlinearity such as a resistor; when €q Or ¢, are non-zero,

we have a memory-type nonlinearity such as a capacitor or an inductor.
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Thus, eqn. (2-7) describes a large class of nonlinear systems. We now
proceed to determine the various kernel functions.

If ¢ =0, eqn. (2-7) is the Llinear differential equation:
L1[y(t)J = x(t) -10)

Denoting the impulse response of this differential equation by h(t),
then eqn. (2-10) 1is known to have a zero input solution plus a zero

state solution. That is,
t
y(t) = zero input solution + Ih(t-t)x(t)dt 2-11)
t
0

and, second, the steady-state solution
t
y(t) = fh(t-r)x(-r)d-r (2-12)

which arises as a limiting case of egn. (2-11) when all transients have
decayed. The forcing function x(t) is, in this case, assumed to act at
atl times t, ~» < t < o,

We now derive the Volterra series for eqn. (2-7). We assume that
for t <0, x(t) = y(t) = 0. Equation (2-7) can then be converted into a
nonlinear integral equation by applying the dinverse operator to L1,

which, under the assumed initial conditions, is just the following:
t, 3wty = f
117 k() -{h(t-mmdr (2-13)
where p = %€7 and h(1) = 0 for t < 0. The resulting nonlinear integral
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equation is:
N f ®
y(t) + Jh(t-r)L [Xay (0l =fh(t"'t)x('t)d‘t (2-14)
0 22 n 0

We now assume that y(t) is given by:
y(t) = y1(t) + yz(t) + ...t yK(t) + ... (2-15)

where yi(t) denotes an i-th order output. Recalling that the order of
an output 1is defined as the number of times the values of the input is

multiplied by itself in the convolution integral, we immediately get:
¥1(t) = fh(t-vIx(rddx (2-16)
0
which is the Llinear system respdﬁse. The second order output will be
due to the squaring of the first corder output. After substituting eqn.

(2-15) in eqn. (2-14), we get the following integral equation involving

the second-order output:
yz(t) + e.gh(t-t)LZEazyf(t)Jdt =0 2-17)

Substituting for y,(t) in eqn. (2-17) from egn. (2-16), we get
1

y,(t) = - ej‘;h(t-r)LZCaz{fh(t-t1)h(r"rz) .

P e e = o




X(T1)X(T2)d'r1d12]d1 (2-18)

= - wwh(t- YhCr=1,)hCt=1,)
eazjt;_g_g T T 1’1 T ‘!2

x(r1)x(12)dt1d12dr 2-19)

where h is obtained after the linear operator L2 has been applied to the
guantities within the parenthesis in eqn. (2-18). When €4 =& =0 in

ean. (2-9), i.e., for the memoryless nonlinear case, h = e h.

Similarly, when we consider the third-order terms in egn. (2-14)
(which will be due to the second order and first order outputs), we get

the following integral:
y5(t) + € fRCt=0l,lagy (0 + 2 ayy, () y,(0ldr =0 (2-20)

Substituting for y,(t) and y,(t) in eqn. (2-20) and using eqns. (2-16)
1 2

and (2-19), we get

yg(ty = = qzh(t-t)[a3JZIﬁ(t-t1)5(1’12)5(1‘13)

+ Zag ef!_i h(t-t1)h(r'o)ﬁ(o"12) .

ﬁ(a'ts)da]x('rT)x(tz)x(132d11dtzd13d1 2-21)

i Higher order outputs can be derived in this bootstrapping manner. We
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now give the form of the kernel functions for the nontineaf system
described by egqn. (2-7),

When n=1 in eqn. (2-4), we obtain h1(r1) from eqn. (2-16) as:

1.1

EE;(;yJ (2~22)

h1(11) = h(t) =
where 1-1 denotes the inverse Laplace transform. It is noted that L1(s)
is the characteristic equation of the linear system.
Setting n=2 in eqn. (2-4) and comparing* it with eqgn. (2-19), we
get

h - eaz‘gh(r>ﬁ(r1'1)ﬁ(rz‘t>dt (2-23)

2¢1q07))

Similarly, setting n=3 in eqn. (2-4) and comparing with eqn.

{2-21), we get:

hyCryrtp,15) = gh(r)tasﬁ(11 DA~ 0f (150

~o)doldr  (2-24)

+ zagqgh(r1‘r)h(a-r)ﬁ(rz*a)ﬁ(rs

As mentioned previously, the kernel functions are independent of
the input. An important feature of the kernel functions given in eqn.

(2-23) and (2-24) is that an n~th order kernel can be expressed as a

*In eqn. €2-19), we first let u = t-q, uy = t-vg, = t 7} , and,
therefare, 14 Z t™U4, 14 * t™U,, T Ty = (t-u)-}t-u ) = and

L TP T }hen Ll 1, U1 1n eqn. (2-23).
Thege stéps are worked out 1in thl ApSend1
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product of Lower order kernals. This product structure property* holds
for many practical lumped system problems. For example, nonlinear cir-
cuits with polynomial type nonlinearities have such kernel functions.
We will use this property to investigate the convergence properties of

Volterra series for this important class of nonlinear system problems.

2-4. Convergence Properties of Volterra Series

The previous section dealt with the question of finding the kernel
functions from a nonlinear differential equation. The Volterra series
consi§ts of an infinite sum of terms. Clearly, in a practical applica-
tion, this series must be truncated at some finite term. A wvery natural
question to ask is: How many terms in the series are required to give a
good approximation of the system response? Thus, we must Look into the
convergence properties of Volterra series.

The question of convergence of Volterra series was recently exam-
ined by Gilbert [20], and Lesiah [21]. Other references on this subject
include Barrett [6,23], Geyer [34], and Ku and Wolf [22]. 1In keeping
with the application-oriented spirit of this dissertation, we first
present the basic convergence theorem from [22] and then derive some new
and more meaningful parameters, related to the linearized system, that
caﬁ be used to obtain the approximate error in the truncated series

solution.

*Many authors L8J refer to this as the 'separable" property of
higher order kernels. We use the term "product structure” instead,
so as to avoid confusng with separable kernel in Llinear systeam
theory, which denotes a different concept.
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Theorem 2-1 [22]): Let the n~th order response of the Volterra series

(2-2) be given by

® ® n
yn(t) ={ ..-"(’)hn(t",'rz,...,rn) -',I-_-I‘] x(t"'tildti (2-25)

where x(t) is the input function. Then for a bounded forcing function

x(t); i.e., there exists a constant X > 0 such that

[x(t)] < X for all t (2-26)
we have
byl =Xy ] < ¥ 6x" (2-27
=" n=1 "
where
G, sj‘;---j; Ih Ctqreeesrtddryeends, (2-28)

Proof: From the triangle inequality, we have

lyc)l = | Ly ()] < T |y (O] (2-29)
n=1 " n=t "

But,

y (t)l = ' s h (‘( ,---’f ) HX(t-f )dT l
1 1 [+]
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a -3 n
oo ( .o ) -r )ld
_‘.‘; ’('J' lhn RETARETAS | pI;I1 [x(t ™ | Tp
n [- w®
<X {)n-‘g |hn(r1,...,1n)|dr1...dtn (2-30)

Using eqns. (2-28) and (2-30) with (2-29) gives
lyw ] < | Ly ] < ):snx" (2-31)
n=1 n=

This completes the proof.

Equation (2-31) clearly emphasizes the role which the input ampli-
tude plays in the determination of the number of output terms that must
be retained to achieve a desired accuracy. The importance of the input
amplitude 1in the analysis and synthegis of nonlinear can never be over-
emphasized. The existence of multiple solutions in nonlinear systems is
not rare. Whether the system will exhibit the desired and stable solu-
tion very often depends on the input amplitude. Thus the dinput ampli-
tude plays an important role in the nonlinear system response. Later in
this section we shall briefly discuss the stability and boundedness of
solutions via the Volterra series method.

Returning to the topic of convergence, it should be clear that egn.
(2=31) is not of much use 1in its present form; for it requires the
determination of the n-th order kernel before the tound on the n~th ord-
er response can be found. Even when the kernel is determined, the
evaluation of Gn may not be a simple task. In an engineering problem

one prefers to have an a priori estimate of the order of the error that
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is incurred as a result of truncating a series at some fipite term. In
the following paragraphs of this sub-section, we explore the convergence

of lumped systems with a single nonlinear element that is characterized,

by the differential equation (2-7). We then investigate the convergence

of Lumped systems with multiple nonlinear elements.

2-4.1. Single Nonlinear Element Case:

In this section we study a nonlinear differential equation with
memoryless nonlinearity and determine the bounds on the solution in
terms of the %4 norm of the Linear kernel function, and concomitantly
in terms of the poles and residues of the linearized system. The abili-
ty to examine the convergence of the solution series in terms of the
pole-residue values is of great help to the system analyst, because such
information for the linearized system can be easily obtained from many
computer-aided analysis packages. Furthermore, the results derived in
this section give a means of estimating the bound on the next higher
term of the truncated series - something similar to the case of numeri-
cal integration formulae, which give the order of the truncation error
in terms of the step size.

The equation to be examined is for a nonlinear system with memory=-
less nonlinearity with quadratic and cubic terms. We examine the fél-

LY

lowing differential equation:
2 3 _
LEy()] + ayy (t) + agy (t) = x(t) (2-32)

where L is a Linear operator, similar to L1 in egn. (2-8). Then using
egns. (2-16), (2-19), and (2-21), we can immediately write the approxi=-

mate solution for y(t) as:

27




y () =.€h(t-r)x(r)dr + a, g]h(r>hcr1-f>h<xz-r) .

xCrg)x(ry)dr,drydv + ZaZII[[,h(1)h(t1't)h(o‘t)

h(-rz"o)h('r3‘a)x('r1 )X(TZ)X(T3)dT1d‘l’2dTSdOdT +

a3jgjyh(t)h(t1‘r)h(tz‘r)h(t3-r)x(r1)x(tz)x(rS) .

dr1d12dt3dt + see (2-33)

Now, if the following conditions hold:
Ix¢t)] < X for all t (2-34)
o

and JIh¢o)|dr = 6; he) =0, ¢ <0 (2-35)
0

then the bound on eqn. (2-33) is given by:

y(t)] = ¥ < 6X + la,l6°x? + 2[a,|%6°x°

+ |33|G x + oo (2-36)

In fact, if higher order terms were considered, the bound on ¥ will be

@ given by:
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Y SV Yy H g b Y e (2-37)
Y, < 6X
3.2
Y, §,|32|G X
2.5 4,3
Yz < 2layl76” + Jagl6)x

4

-
A

3 2.7 6 5
4 < E<4Ia2| + Iazl 6+ (Zlazlla3l + 3|33|)G + |a4|G X

i
Y, gecg |ak|Yi'kJ , 122 (2-38)
k=2
where
g=m+1
Y = A S HI § =Y (2-39)
L,m ]§1 YJ 1‘]1“"1' 1,1 L

Equations (2-38) and (2-39) giQe a recursive relationship for
determining the bound on the output terms. As shown by the first few
terms, these bounds ultimately depend on the boundedness of the L4 norm
of the kernel function, h1(1), of the Llinearized system and the input,
x(t).

We now look at an approach to estimate G. For eqn. (2-32), the
transform domain description of an asymptotically stable first order

kernel can be written as*:
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r. R.
H(s) = L—1—+ ] (2~40)
i Sy [(S+aj)2:;?]

The impulse response is then given by:
h(t) =Er.e T 4YR.e jsinwjt (2-41)
i

From eqn. (2-41), we immediately get

-p.t ~a.t
lh&)LﬁElqe"|+2|%e Jsm%tl (2-42)
i j
and, therefore,
6 =f |h()]de
0
“pP.T @ ~a.T
<Z}|Le 1Mt+2f|&e J sinw.tldr (2-43)
-3 0 1 j o J ) ‘.

The first integral in eqn. (2-43) is easily evaluated as follows:

’ -p.t
G1=§£Iqe1lm

*Here we consider the case of linear system with simple poles. The
linear system, which is asymptotically stable, but has multiple ord-
er poles can be handled similarly.
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=§;13%T (2-44)

We now seek a method of estimating the second integral in egn. (2-43).
For this we examine a single complex conjugate pole pair and evaluate

the j=th term in the series [301. Let

a.T
() = R.e I sing, (2-45)
QJ T Je s1ant
Then,
® '/wj o  “a.r/w
fla.lde= J 7 g, LT e I D3
o) . k=0
wlw,

j‘]

lg. () ]de
0 ]
(2-46)

“ra./w,;
1-e va;fu;

Eqn. (2-46) gives a method of evaluating the terms in eqgn. (2-43)

that involve complex poles. Thus, eqn. (2-43) can be rewritten as:

6<6, *+6

(2-47)

2

lril

G, =
where 1 %:TB;T
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w/wj
Igj(T)|dT -
;gyto) = Rge J sin;t (2-48)

Clearly, 61 is the contribution to G due to the real poles, and G2 is
the contribution due to the complex poles in the linearized system.

Our discussion in this sub-section has dealt with the convergence
of the Volterra series for nonlinear Llumped systems with a single
memoryless nonlinearity. The results will be summarized in the follow-

ing theorem, whose proof is included in the appendix.

Theorem 2-2: Consider the equation

L(%;o y(t) + 2: a, y () = L ( o) * X
i=2

where L(p) = p™ + bm-1pm—1 + ees 4 by

=1

L Cy-1P

() =p toeer kg, <

1

and L{(p) is assumed to have roots with negative real part. 1f, for
t < tg, x(t) = y(t) =0, and for t 2 tg, x(t)] < X, then y(t), for
t z_to, remains bounded by the inequality (2-37).

It should be noted that Theorem 2-2 shows how the series converges;
it does not show if the series converges.

The bound on the output, according to eqn. (2-37), ultimately

depends on the bound on the 2, norm of the Linear kernel function. This

1
can be easily obtained by the method discussed above for finding 6. If
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i

the series converges, these results can be used to determine the number
of terms in the Volterra series that must be retained to get a solution
within a prescribed accuracy; one does not have to first determine the’
kernel functions (except the Linear kernel), as per Theorem 2-1, to es-
timate the number of terms that must be kept. Knowing G and X and the
coefficients a:, the bound on each order output can be determined, which
tacitly provides us the information about how many kernels need be
determined to meet a prescribed error criterion.

OQur foregoing discussion has dealt with nonlinear systems with

memoryless nonlinearity. The case of memory type nonlinearity can be

. treated in a parallel manner, and an inequality similar to egn. (2-37)

derived. The only difference in the new inequality will be that the 29
norm of the differentiated or 1integrated first-order kernel function
will be involved. Thus, for example, terms of form.f l%?h(r)ldz or
0

@ T

f[? Ih(x) |daldr will now be involved in determining the bounds on the
ol|e

various order responses. These terms can again be evaluated easily.
For example, consider the case of a system with simple, real poles.
Then,

-p.t

het) =X r.e T, p; >0 (2-49)
i

From (2-49), we get

6 ={ l%{h(r)ldt = |h(D)| 0

<Xlr,l (2-50)
1
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We now consider the case of Lumped systems with multiple nonlinear-

ities.

2=4.2 Multiple Nonlinear Element Case

The case of Lumped systems with myltiple nonlinear elements is
similar to the case of one nonlinear element. Instead of working with a
single differential equation, we work with a system of differential
equations. In studying the convergence of the Volterra series we again
use the "product structure" property (PS) of the higher order kernel
functions to derive the bounds on the various order outputs in terms of
the g, norm of the linear kernels. Before proceeding with our discus-
sion of the main topic of this sub-section we point out that most higher
order kernels encountered in nonlinear systems with polynomial non-
linearities have the PS property*. In some cases, a "special" viewpoint
may be required to see this property.

Consider, for example, the system of Fig. 2-3. Van Trees [81 uses
this as an example of a system with non-PS property kernels. His claim
follows from looking at the second order input-output relationship,
which is:

() = .
z .5 {[h1a(t1)h1a(tz) + by (rpdhy (1))

x(t“t1)x(t'12)dt."d12 (2-51)

*The PS property for cascaded systems is quite apparent from the
general expressions - for their kernel function. See, for example,
{51 to verify this.
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]
vy (t) " Z, (1)
x(t)
——-ﬂ
Z(t)
y, (t) 2 Zz(t)
el b, (1) I AR y
1b 2
Fig. 2-3. A System with "non-ps" kernels.
However, if we view the output of each nonlinear element separately, and
write the system output 1in terms of these component outputs, then we
find that the kernels of the system of Fig. 2-3 indeed have the PS pro-
perty. This is evident from eqn. (2-51) when we re-write it as:
z(t) =j(" .gh1a(11)h1a(12)x(t“r1)x(t-rz)dr1dtz
+j; _6 hypCtg 2By Crpdx (=20 Ix(t=1,)d 1 d,
= z1<t) + zz(t) (2-52)
Then, the systems relating x(t) to z1(t) and x(t) to zz(t) have the PS
property. Furthermore, the bound, Z, on z{t) is given by:
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Z= |z §_|z2| + lzzl (2-53)

where Z1 and 22 are the bounds on the component outputs, 21(t) and
zz(t), respectively.

We now study the convergence of lumped nonlinear system by working
with a specific example. Consider the system described by the following

set of equations:

. L v 2 3
Y ¥ yg Fyg tyy ty, tagy, +agyy = x()

. y 2 3
Yo t ¥, + Yo + Y4 + ay, * agy; = 0 (2-54)

Just as for the case of single equation, we apply the inverse operator

to egns. (2-54) to obtain the integral form of the vector egquatinns:

2 3
(t) f 11(t ‘[) h12(t°‘t) 32y1 (1:) + 3371 (1’)
+ dt =
( -
(t) l_h t-1) h Z(t ) 3475(1) + 85)’;(1)
h 1(t-1)x(-r)'

b [hyq ctmoxco 97 (2-55)

Now we assume that y1(t) and yz(t) are made up of various order outputs;

that is,
1(t> = Y:1)(t) + y:Z)(t) + y:3)tt) + ...
) 2 ;3 (2-56)

where y( 3 denotes the j=th order output Y4 (t). Substituting eqn.
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(2-56) in egn. (2-55), and collecting terms of Like order on both sides,

the first two terms are found to be:

v b, (E=0x()de
yé1)(t) h21(t-1)x(r)dr
" an -1
y1(2>(t) _ azg.{; hyq¢rmag 00 (ema )Xy DX 1) da A,y
) =f Hit=0 dt(2-57)
Yo (t) (1 £ _ _
2 a‘Z”(') h21 (; x1)h21 (¢ Az)x(l‘l)x(xz)dhdxz
L -
where
) h11(t'r) h12(t-1)
H(t-¢) = _ _ (2-58)
~ h21(t ) hZZ(t 1)
By defining a matrix 6 as:
oot [ingeote
|heqCe)lde [hy 5 Ct) lde
999 92{ [0 M jt'J 12
6=, g A . (2-59)
0
L 4
we can readily determine the bounds on the first and second order out-

puts, provided the input x(t) is bounded, as follows:

) )
lyg )] = Y77 < gqqX
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1) ¢ _
Iy, ()] = Y577 < gygX (2-60)
) ) 2
Iy1 ) Y1 911X
= <6 (2-61)
) @ =212 .2
lyz W] Y, ~ egoX

The above example of a system with multiple nonlinear elements was

L deliberately chosen to be simple, and yet we find that the determination

of the bounds on the output is quite involved. This example neverthe-
less illustrates how the bounds on the various order outputs are related
to the matrix involving the %, norm of the linear kernel functions. We

summarize the results by the following theorem.

Theorem 2-3: Consider the system:

d =
LG x(0) + FIy ()] = x(®©




= T
x(t) = [x1(t) xz(t) “ee xn(t)]

[ (1) 2 (1) 3 7
[f,000] [%2 Y173 Yt e
(2) 2 (2) 3
fz(yz) a2 yo + az Yo t ...
FLy(©)1 = |, =1,
f Cy ) 2 (n) 3

with each zij(p) has roots with negative real parts. If, for t <t

x(t) = y(t) =0, and for t 2 ty, max Ixi(t)|.5 X, then Y 4 [|y1(t)|
]

|Y2(t)| vee lyn(t)IJT, for t Z.to, remains bounded by the following ine-

quality:

LIRS PRE N

where 14 A EIY:1)(t)I |y§1)(t)| soe lyr:”(t)lJT

= bound on the i-th order output vector

where

39




@ o ﬂ
|h11('r)|dt {|h12(1)|d1 ...J(;|h1n(t)|dt

(=Y

{lhm(t)ldt “;lhnz(tﬂdt .(‘;|hnn(-;)|dt

k=2

i

z Ia:2)| Y;_,’k
k=2

i .
n), i,k
z la.™| Y,

k=2 K
- -
. L=m+1 sy s
LM _ () ya=im1, v2,1 _ ()
Yn j§1 LN i Yo Yn
Y(1,) _ (2) - -
n = Iyn (t)] = bound on the g=th order output, y (t).

i

ho




i-th element of v is 1 if

|<
[

=[11...0...1]; xi(t) is non-zero; otherwise,

it is zero.

Proof: The proof for the above theorem is similar to that for Theorem
2-2, which is included in the appendix.

Theorem 2-3 gjves recursive relationship for determining the bounds
on the output series of a class of Lumped nonlinear systems. As shown
by the example, prior to the theorem, these bounds ultimately depend on
the idintegrable property of the Linear kernel functions, hij(T)' An es-
timate of the bound of these kernel functions can be obtained by the
method outlined in section 2-4.1. The theorem is useful in determining
the highest order of kernel functions that are needed to obtain the
solution within a prescribed accuracy. Only a knowledge of the G matrix
and the bound on the input, X, are required for this task.

It should be pointed out that the basic idea in the above theorem
can be extended to nonlinear systems with multiple independent and
dependent (coupled), memoryless or memory-type, nonlinear elements.
However, the notation and algebra involved becomes so complicated that
it is difficult to put it as a general theorem. One can nevertheless
apply the idea of estimating the higher order responses in terms of the
bounds on the 11 norm of the linear kernel functions and the inputs for

specific system problems at hand.

hn




2-4.3. Stability and Boundedness of Solutions.

Much of the foregoing discussion in this section has dealt with the
question of how the Volterra series solution converges, but has ignored
the question of whether, if at all, the solution for a system converges.
The question of the uniqueness of the solution has also not been ad-
dressed thus far. The answers to these later questions are directly re-
lated to the stability and boundedness of the solution. By determining
the condition on X, in terms of the 21 norm of the linear kernel func-
tion, for which the Volterra series converges, we can get much insight
into the stability and boundedness of a solution. Our discussion in
this sub-section will Llook into the determination of the constraint on X
to get a converging series. Theorem 2-2 will be most useful for such a
task.

Much of the theory on the uniqueness and boundedness of solutions
of ordinary nonlinear differential equations bhas been covered in
£15,21,351. 1In [15] the nonlinear differential equation is converted to
the Volterra integral equation (which is an equivalent representation in
integral form of eqn. (2-7)), and using the Picard iteration approach,
conditions on the nonlinearity, the Llinear kernel function, and the
boundedness of the input, are derived to prove convergence and unique-
ness. It 4is shown that if the forcing function is bounded, the linear
kernel is square integrable, and the nonlinearity satisfies the Lip~-
schitz condition, then starting from any set of initial conditions at
tD' (2-7) has a unique solution for any finite range of time t. The
proof fails 1if either to + =®or t * = Since it has been shown [191

that the sequence of iterates, obtained from the iteration process,
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correspond to the partial sums of the Volterra series, it follows that
the above criterion for uniqueness and boundedness can also be applied
when the Volterra series method is used. However, if one is wusing the
Volterra series method, it is only natural to have some criterion which
establishes a direct relationship between the convergence of the series
and the stability and boundedness of the solutions. Most authors
[20,21] have established conditions, similar to those stated above, to
prove convergence and uniqueness of the Volterra seriés in a finite time
interval [0,T]); the case of [0,~], or [-»,»] has not been addressed.
The Llatter problem has not been adequately dealt with in the literature
and is in fact a difficult problem. The only known work in this area
was done by Barrett [23]. We use results from [23] to a specific equa-
tion to show the possibility of determining the stability and bounded-
ness via the Volterra series method.

Consider the following second-order nonlinear differential equation

with a cubic nonlinearity:
y +a ; + any + ey3 = x(t) (2-61)
1 oY

Then using theorem 2-2, we can immediately write the bound on the solu-

tion y(t) as:

ly(t)| = Y <GX + |e|G"x3 + ... | (2-62)

where

b3
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6 2 fineoar ; ne = 27 - 1 -l (2-63)
0 ST+ ags + aQJ

X = max |x(t)]
0<t<=

Re-writing (2-62) as:

Y o= FO0 = 6X + e + ... (2-64)

It should be evident that if the series for f(X) in eqn. (2-64) con-
verges for some X 5_xc, then the Volterra series solution for egn.
(2-61) also converges for max |x(t)] < X , since f(X) dominates the
0<t<e ¢

Volterra series term by term. We now seek a nonlinear algebraic equa-
tion for which the series f(X) is a solution. The roots of this alge-
braic equation along with the constraints on X for which the series is
convergent will give more insight into the solution of egn. (2-61). Al.
this will become evident as we proceed along.

It can be shown that the nonlinear algebraic equation* for which

f{(X) is a solution is:
Y - [ef6Y> = 6x (2-65)

Being a cubic, eqn. (2-65) will have three solutions for ¥ in terms of

X. This shown in Fig. 2~4, where

*After the inverse operator is applied to egn. (2-61), there results
a striking resemblance with eqn. (2-65).
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2 (2-66)

y =1 (2-67)
€ V3lele Y ‘
Y. (xc"Yc)
-Xc
L . X
I
X
c
) -y
(-Xc, Yc) 4+ ¢

Fig. 2~4. Roots of the Nonlinear Algebraic Equation

Figure 2-4 provides some interesting insight into the behavior of the
solutions of eqn. (2-65), and concomitantly into the solutions of egn.
(2-61). First, when X + 0, then Y = 6X - which implies a "Linear sys-
tem” operation. When X < Xc, all three solutions of eqn. (2-65) are
given by*:

Y =3x 6 sin[% sin | :—c] (2-68)

The range of convergence for the solution Y in eqn. (2-68) 1is that

4
*If sin ~ is given its principal value, the relation Y = f(X)
results.
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1X] < Xc, where Xc is defined in terms of G and €. Since the algebraic
equation (2-64) dominates the Volterra series solution to eqn. (2-61)
term by term, it follows that the series for egn. (2-61) will also con-
verge provided [x(t)| < Xc’ for all t, and also remain bounded by the
inequality (2-62).

The above example illustrates an interesting method for arriving at
the constraint on the input function in order to insure that the Volter-
ra series solution converges. Instead of working with the functional
series, we work with a nonlinear algebraic equation. The behavior of
the roots of the algebraic equation in a given region then provides in-
sight into the convergence of Volterra series.

The above approach will also show the cases in which the Volterra
series method will not yield meaningful results. Although not proven
yet, it appears that if the Llinearized system 1is not asymptotically
stable, then the Volterra series solution may not converge. This con~
jecture can be seen when we consider the effect of a simple pole which
is very close to the jw—-axis. "This pole will predominantly effect the
31 norm of the Llinear kernel function. If Xc has G in the denominator,
as 1in the ébove illustration, it should be clear that as G + =, Xc + 0.
Thus, the bound on the input for which the series converges will go to

zero as the pole moves very close to the jw—axis.
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CHAPTER 3

MULTIPLE-NODE, MULTIPLE-NONLINEARITY CIRCUIT ANALYSIS

3-1. Introduction

Nonlinear systems that admit a Volterra series description are com-
pletely characterized by their nonlinear impulse response functions or
the generalized transfer functions, which are the multi-dimensional
transforms of the nonlinear impulse response functions. Thus, any
analysis of nonlinear systems via the Volterra series method will entail
the determination of either one of these functions.

Previous works [7,10,12,13,14,43] for determining the generalized
transfer functions have relied on the "harmonic input" method or the
"nonlinear current source” method. The harmonic input method idinvolves
the use of exponential functions as inputs, equating terms of Like order
on both sides of the system equation(s), and then determining the
transfer functions. The nonlinear current source method involves the
solving of the nonlinear differential equation(s) by repeatedly solving
a linear differential equation with nonlinear excitation, again assuming
harmonic inputs. Both these methods give a recursive relationship
between an nth order transfer function and up to the (n-1)-order
transfer functions. Although both methods =are mathematically correct
and yield the correct generalized transfer functions for a system, they
both have a common "drawback": there is no direct relationship between
the approach used and the definition of the generalized transfer func-

tions.
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Since the generalized transfer functions are transforms of the im-
pulse response functions, it only stands to reason that the determina-
tion of these transfer functions should somehow entail the use of an im-
pulse function as an input to the system - just as in the case of linear
systems. Based on this 1intuitive approach and multi-dimensional
transform theory, we develop a new method for the determination of gen-
eralized transfer functions which does not involve the use of exponen-
tial functions as inputs.

As one would expect, the results obtained from the approach
developed here coincide with those obtained previously. However, it is
believed that this new approach has some advantages: first, the approach
relies on fundamental definitions of multi~variable transforms, and is
therefore more rigorous than the "heuristic" frequency probing‘ methods;
secondly, the morass of algebra involved in the harmonic input method is
avoided; third, the new approach is more intuitive and provides a direct
link to the work done elsewhere [5] on nonlinear systems.

In this section, we develop this new approach gradually. In sec-

tion 3-2 the multi-dimensional transform theory is introduced, along

.Wwith the application of the theory to specific examples which will be

subsequently used 1in deriving the generalized transfer functions. In
section 3-3 the generaliied transfer functions for an r-th order non-
linear differential equation are obtained. Section 3-4 is devoted to
the determination of the nonlinear transfer functions of a general
multiple-node, multiple-nonlinearity circuit with a single input. The

case of multiple input sources is treated in section 3-5. A specific

48




nonlinear circuit example is presented in section 3-6.

3-2. Multi-dimensional Transforms

The Laplace transform pair of a one-dimensional function, f(t), is:

Fis) = fwre™ at 3-1)
and
g+iw
f(1) = 17%77'14 Fes)e®t ds (3-2)
g=j =

for a multi-variable function, f(t1,t2,...,tn), the corresponding

multi~dimensional transform [24] is:

F(s1,sz,...,sn) = {2?;;df(t1,t2,...,tn)exp(-s1t1-'"-sntn)dt1"°dtn(3-3)

and

1 (R} L2 A -
f ff(s1,...,sﬂ)exp(s1t1+ +sntn)ds1...dsn (3~4)

f(t ’."’t ) =
1 N (2e5)"n=fold

f(t1’--.,tn) had F(s1’--.'sn) (3-5)

Before proceeding further, we make the following notational definitions:

F(S1,52,.-.,Sn) = &[f(t1't2'--.,tn)] (3'6)




fltystynenst ) = 1-1[F(s1,sz,...,sn)] G-

whether we use Fourier transform or Laplace transform in eqns.
(3-3) and (3-4) depends on the contours of integration and values of
SqsSpreeesS,e The importance of the region of convergence when dealing

with unstable and non-causal Lineér systems is well known. Here we as-

. sume that the systems under consideration are causal; that is, the Vol-

" terra kernels hn(t1,t2,...,tn) = 0, for t1,t2,...,tn_§ 0. Also, in gen-

eral, we are concerned with functions (or generalized functions) whose
region of convergence includes the imaginary axis in each variable, so
that the Fourier transform is included in our definitions.

It should also be noted that most of the properties of the one-
dimensional transform (linear case) carry over to the multi-dimensional
case. The validity of this statement can be checked elsewhere [5].

It is often desirable to express the multi~-variable function,
f(t1,t2,...,tn), as a simple function of time, f(t), and vice versa. If
all ti's are restricted to be identical so that t = t1 = t2 = ese = tn,
then f(t1,t2,...,tn) becomes f(t).. Thus, in the two variable case, f(t)

can be obtained from f(t1,t2) by evaluating f(t1,t2) along the 45° Line

.t1 = tz. Similarly, if we plot f(t1,tz,t3) in a three~dimensional

space, then, to obtain f(t), we are only interested in f(t1,t2,t3) along
the Lline t1 = tz = t3. The idea of converting a nontinear function of
one variable t into a product of linear multi-variable functions will be
used repeatedly in the sequel. One must, however, bear in mind that the
ultimate goal is to obtain the solution of the differential equation as

a function of time,' t, and that the introduction of t1,t2, etc. are

merely for mathematical manipulations.
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We now apply multi-dimensional transforms to some specific cases

which will be subsequently used in sections (3~3) and (3-4).

3-2.1 Volterra Series: The Volterra series relates the system input x(t)

to the system y(t) as follows*:

® n
yt) = X fooof B CEprmestyd I x(tmzdg

n=1n-fold

Y Yo (t) (3-8)
n=1
where

n
y () = feoof h Crypeea,t ) I x(t-1,)d1, (3-9)
n n-fo{d Nt g

Introducing dummy variables t,l,tz,...,tn in egn. (3-9) we can write

yn(t) as:
)’ (t) = y (t ,t '...’t )I = = = =
n n 1772 n t1 t2 - tn t
! n
= Jo°f h (1,,00e,1 ) [I x(t.=1.)dx. G-10 .
n-fold " 17T nya 1T :

Taking the n-dimensional transforms of egqn. (3-10), we get:

*Unless otherwise stated, all Limits of integration are between 0
and = in our discussion here.
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Yn(s1,...,sn) = 2[yn(t ,...,tn)]

1

-s.t.
=Jf- S n(TyrToreeest) n x(t.mr)e U ldrdt.  (3-11)
2n-fold " i=1 1
Defining tn-rn =0, tn-1-rn-1 = °n-1""’t1-11 = 040 and therefore:
B A N A A T MY
do = dtn, dan_1 = dtn_1,...,da1 = dt1. Substituting these quantities

in egn. (3-11) and performing the 2n-fold integrations with respect to

dTi and dai, we get

Yn(s1,...,sn) = Hn(s1,...,s ) H X(s ) 3-12)
1

and therefore the transform domain description of eqn. (3-8) becomes:

Y05 ,S5,00e,8,) = }_‘,H (s1,...,s ).I'I1X(s .) (3-13)

where X(s) is the transform of x(t). If the input x(t) is a delta func-

tion, then egns. (3-12) and (3-13) reduce, respectively, to:

Yn(s1,...,sn) = Hn(s1,sz,...,sn) (3-14)
and
Y(s,peees) = E’Hn(s1,...,s ) (3-15)
n-

Equations (3-12) through (3-14) will be used repeatedly in section

(3-3).
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3-2.2 Nonlinear Terms. The characteristics of nonlinear elements en-

countered in many nonlinear dynamical systems can be represented over
any finite range by a polynomial. This gives rise to nonlinear dif-
ferential equations with polynomial type nonlinear terms. When such
elements are used in a system, the equilibrium equations contain in-
tegrals and derivatives of the polynomials. In this section we apply
multi-dimensional transforms to these nonlinear terms to obtain general
forms of the transform-domain description of these terms. The details

of some of these derivations are given in Appendix B.

zz(t) Term:

2 = -
y (t) = y(t1)y(t2)|t1=t2=t (3-16)

Y(sy,8,) = 2ly2(D)] =[I&<t1>y<t2>e-s1t1-sztzdt1dtz
= Y(s)¥(s,) -17)
ys(t) Term:
Y = YAV oy oy (3-18)
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-S1t1-szt 2-53t3

= 3 -
Y(sy,5,,59) =ty (03 = [ffycpytpycee dt  dt ,dt
= Y(s9)¥(s,)¥(sy) (3-19)
y"(t) Term:
n n
y ()= I y(t,) t, =t (3-20)
i=
and
n n
Y(S,p0eep8 ) = 20y ()3 = I Y(s,) (3-21)
1 n j=0 1

gfyz(t) Term:

d 2., .4d . =
Ty ) = Eiy(t1't2)|t1=t2=t ;y(ty,ty) = y(t)y(t,)

-s,t.~s.t
_ed 2 _¢ed 19122
Y(sy,55) = 2bgy (t)] -H-Jp(t,,tzn dt ,dt,

(s1 + sZ)Y(s1,s2)

= (s1 + sZ)Y(s1)Y(sz) (3-22)
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%fyn(t) Term:

]

d n
S kPR NN STV R S I
n =
n . dts
Y(S1'sz'.--'sn) - ,:[s§1?i:y(t1,-.l'tn)'a‘t_]
S (s 4 5y + aees V(5 )00V (s ) (3-24)
fr1
Jy (t)dt Term:
f n
Y eodt = [y, (romt,tmt,. e, -t)dt (3-25)

Letting T t = ti’ and taking the transform of eqn. (3-25), we get

Y(s1,sz,...,sn) = Yn(s1,...,sn)/(s1+sz+...+sn) (3-26)

rs — +s] I ¥(s)) (3-27)
[S1%52% - *5n] =1

The general forms in eqns. (3-21), (3-24) and (3-27) will be used in
sections (3-3) and (3-4). The salient feature in each of these equa-

tions is how an nth degree polynomial function in the time-domain is

represented by the nth-order product of the transform of the function in :

i
!
!
]

the transform domain. It is this product structure which, analogous to

the case of Linear system analysis, makes the analysis of nonlinear sys-

55

T v "4;-;---;;---------i-l-l-llllllllll




tems easier via the transform-domain approach.

3~3. A Nonlinear pDifferential Equation:

In this section, we present a method, based on applying the multi-
dimensional transforms to nonlinear differential equations, to determine
the response of a nonlinear system with a functional power series type
of nonlinearity. The nonlinear differential equation considered is the
following:

N

Zany"(m = x(t) (3-28)

L1[y(t)3 + L2C 2
n=2

where x(t) and y(t) are system input and output, respectively, L1 is a
Linear differential operator:

R dr

L1['3 = 2:-——F['J (3-29)

r=0dt
and L2 is g?y I, or a constant, or a sum of these operators. It should
be noted that the linear operator,.Lz, operates on a polynomial function
of y(t).

We now present an approach whereby the nonlinear differential equa-
tion (3-28) is solved by a bootstrapping operation by first dissolving
it into a set of Linear differential equations with nonlinear dinputs.
Multidimensional transforms are then applied to these new equations to
obtain the Volterra series solution.

There are many different methods of rendering a nonlinear differen-
tial equation into a set of linear differential equation with nonlinear

inputs. We use the approach outlined in [14,17].
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Assume that the input in egn. (3-28) is of the form

x(t) = ev(t) 3-30

The dummy variable ¢ helps to keep track of the order of the terms: a
term with coefficient &

signifies an nth order term. This can be seen

easily by substituting egn. (3~30) in egn. (3-9), which yields:

n
. .n
Yo = " fo.f b (ropee ) Tvit=rdr,

(3~-31)
n-fold i=1

f.et us assume that r(t) is the response to the input v{(t) in eqn (3-28).
Then, according to the Volterra series expansion, as per eqn. (3-8) and

(3-9), the n-th order response is:

rn(t) =

n
.;.{dhn(t1,...,tn) .II"v(t-t,')dti (3-32)
N=T0 1=

Comparing (3-32) and (3-31), we obtain the following relationships:

_.n
yn(t) =€ rn(t)

(3-33)
and therefore, as per egn. (3-8),
y() = Ly () = Ler (o) (3-34)
n=1 n=1 "

We now have two differential equations which

relate r(t) and v(t).
First, equation (3-28) can be re-written as:

1.
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N
z:anr"m:l = v(t) (3-35)

L Cr(t)] + L,C
1 2 n=2

second, after substituting egn. (3-34) into (3-28), we get:

N ® .
[X . X enrn(t))JJ = ev(t) (3-36)

LEXe™r ()1 + L
1 n j=2 Jn=1

n=1 2

Thus in order to solve egn. (3-28), we can solve eqgn. (3-36) for rn(t),

n = 1,2,... and substitute in egn. (3~34) to solve for y(t) after set-

ting € = 1. Setting ¢ = 1 implies that x(t) = v(t), and therefore y(t)

= r(t) =2:rn(t). The introduction of ¢ is a mathematical artifice which
helps to :quate coefficients of € on both sides of ean. (3-36), thereby
yielding Llinear differential equations (involving successively higher
order outputs) with nonlinear inputs. This is simitar to the perturba-
tion method, [17,291.

To solve for r1(t), the linear system response, we equate coeffi-
cients of 61 on both sides of egn. (3-36), thus yielding the following

equation:

L1[r1(t)] = v(t) 3=37

Similarly we equate coefficients of ez, e3, e‘, es, and so on, on both

sides of egqn. (3-36) to obtain the following equations:

2 = -

L1[r2(t)3 + L2[a2r1(t)J =0 (3-38)
3 -

L1Er3(t)l + L2£2a2r1(t)r2(t) + a3r1(t)J =0 3-39
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2 2
L1[r4(t)] + L2[a2(2r1(t)r3(t) + rz(t)) + 3a3r1(§)r2(t)
+a,ri)l =0 (3-40)
4"

2
L1[r5(t)J + L2E2a2r1(t)r4(t) + a3(3r1(t)r3(t) +

2 3 5 = -
+ 3r (t)rz(t)) + 4a4r1(t)r2(t) + asr1(t)l =0 (3=41)

1

To solve for the generalized transfer functions of egn. (3-35), we take

the 1-dimensional transform of eqn. (3-37) and obtain:
L1(s1)R1(s1) = V(s1) (3-42)

If v(t) = §(t), then V(s1) = 1, and therefore, according to eqn. (3-14),

we have

Ry(sy) = Hy(s)) = t;%;;? (3-43)
To solve for the second-order transfer functions, Hz(s1,sz), we perform
a 2-dimensional transform of eqn. (3-38) to obtain

L1(s1+sz)R2(s1,s2) + asz(s1+sle1(s1)R1(sz) =0 (3-44)

Notice that we have used eqn. (3-21) to transform the rf(t) term. Using

(3-14) and (3-43) in eqn. (3-44), we obtain
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(s 50 = - azL (s +52)H1(s H (sz)
2°717°2 L1(s1+sz)

R ) =H (3-45)

2(s1,s2

Similarly, taking a 3-dimensional transform of eqn. (3-39), we obtain

(s, +s.)[2a.R, (s, )R

2(s1%s2L2a R, (5))R, (s, 85)

1(s1+sz+53)R3(s1,sz,s3) + L

+ a3R1(s1)R1(sz)R1(s3)] =0 (3=46) |

Again, using egns. (3-43), (3-45), and (3-14), we get

R3(s1,sz,s3) = H3(s1,sz,53) = - L (s +s. *s )[2a2H (s, )H, (s )

251752753 1°M2%52753

4+ a,H, (s

3H, JH, (s, )H, (s)]/L, (s, +s +s.) (3-47)

1771772771773 17717273

In a similar manner, we can derive by inspection:

Hy(S1,55055,8,) = = LZ(.§%51)[a2(2H1(51)H3(52's3’54)

+ H2(51,52)H2(s3,s4)) + 3a3H (s JH (52)H2(53's )
4 4 ]
+ n Hy(s,03/L, ¢ 2:s ) (3-48)
=1 i=1
and
Hs(s1,sz,53,s4,ss) = ( i:s )E2a2H1(s1)H4(sz,sB,s4,ss)

i=1
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+ 3a3(H1(s1)H1(sz)H3(s3,s4,ss)

+ H1(s1)H2(52,s3))H2(s4,ss))

5
X 5;) (3-49)

5
I H, (s DI/L
i ! i=1

+ 43
) i=1

H1(s JH, (s )H, (s, )H (s ,ss)+a5

P R ok s TP A 1

The overbars in eqn. (3-47) to (3-49) represents symmetrization

operation, which is an averaging operation. In general, the generalized

, transfer functions are not symmetrical in their arguments; that is,
Hz(s1,52) may not be equal to H2(52'51)' The symmetrization operation
on an unsymmetrical system js performed by summing each of the nth order

transfer function over all permutations of its arguments and dividing by

the number of components in the sum.

The use of symmetric transfer functions is not merely for notation-
al convenience, but is necessitated by the method we use for introducing
the parameters tyrtoreee, before taking the transforms. To illustrate
this, we note that v1(t)v2(t) can be written as v1(t1)v2(t2,t3),
v1(t2)v2(t1,t3>, or v1(t3)v2(t1,t2). The first term has transform:
V1(s1)V2(sz,s3); the second term has: V1(s2)V2(s1,s3); and the third has
transform: v1(s3>v2<s1,s2>. When Vz(',') is not symmetrical in its ar-
guments, each transformed quantity above will yield a different value.
Thus, it becomes necessary to use symmetric transfer functions when per=-
forming numerical computations to obtain the system response. It can be
shown that the response is unchanged when symmetrized transfer functions.
are used. For example, - expressing

f 1
% v1(t)v2(t) = 3-[v1(t1)v2(t2,t3) + v1(tz)vz(t1,t3) + v1(t3)v2(t1,t2)3,

61

5 —————



and recalling that t1 = t2 = t3 = t, does not change the contribution
due to v1(t)v2(t) in the system response. In the remaining part of this
report we will assume the generalized transfer functions to be symmetric
in their arguments.

To conclude this sub-section, we summarize the approach for obtain-
ing the generalized transfer functions of a nonlinear system and also
comment on the important ramification of the method. By introducing a
dummy variable in the nonlinear differential equation characterizing the
system, a set of differential equations of the following form was ob-

tained:
LErn(t)] f f(Ln_1(t)) =0, n=2,3,... 3-50)

where L is the linear system operator and f(*) is a nonlinear function
of rn_1(t), rn_z(t),...,r1(t). r1(t) is the first-order response, which
is simply the response of the linear system. The relationship in eqn.
(3-50) is clearly a recursive one, and can be used to solve for hn(t)

in terms of r (t), rn_z(t), etc. This 1is done by taking the n-

n-1
dimensional transform of egn. (3-50) to solve for Rn(s1,...,sn), which
is identically the nth-order transfer function when the input v(t) is an
impulse funct%on. The transform of f(°¢) is done by inspection with the
help of the results of section (3-2). The n=dimensional transform of
L[rn(t)l is shown to be L(s1+s2+...+sn)Rn(s1,sz,...,sn). With all this
information, eqn. (3-50) is easily solved for the generalized transfer
functions.

Much of the discussion above has been concerned with the

transform—domain description of the nonlinear system. It should be
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pointed out that the form of eqns. (3-37) to (3-41) 1is quite suitable
for obtaining the time domain kernels of the system. By defining an
operator L;1, we can easily solve for h1(r1). Knowing h1(11), we can

successively solve for ha(r1,12), h3(11,12,13), etc., yielding*:

hy (ty) = K(ty) (3-51)
hy(rity,ty) = afk(0h, (t,=0h, (t,=1)dx (3-52)

hg(Tity,tp,ts) =.fK(r)Ea3h1(t1't)h1(t2‘t)hi(t3—r)

+ Zazh1(t1-t)h2(r1-1;t2,t3)3dr (3-53)

h‘('[;t1,t2’t3,t4) = —IK(f)[32(2h1 (t1-1')h3('f1-f;t2’t3't4)

+ hz(rz-r;t1,tz)hz(ts-t;t3,t4)) +

3aghy (t,=Dhy (£,=Dh, (1, =Tt t,)

4
+ 3, II hy(t,=01ds (3-54)
i=1
with
ket) 2 27701/, o3 (3-55)

The fifth-order kernel can also be written by inspection of eqn. (3-41). .

*Here we have assumed L, to be a "constant” multiplication operator,
thus giving a polynomia? type memoryless nonlinearity.
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However, for the sake of space, we do not write it here. We note here
that there 1is a one-to-one correspondence of terms between the time-
domain and the transform-domain description of the kernels as presented
above. Thus, knowing the transform-domain functions, the time-domain
kernels can be obtained directly using the above equations. The pro-~
cedure must start from the first order kernel and proceed successively
upwards to determine the second-order, third-order,...,n~th order ker-

nels.

3-4, Multiple-Node, Multiple-Nonlinearity Circuit Analysis

Many analysis and design problems in circuits and systems involve
one or at most -a few nonlinear elements in an otherwise Linear time-
invariant circuit or system. When a single nonlinear element is
present, the differential equation (3-28) and the material of section
(3-2) will be adequate for analyzing the nonlinear circuit. For, 1in
such a case, the linear circuit can be characterized by a convolution
kernel (via the Thevenin or Norton Theorems) to give the overall Volter-
ra integral equation [151, whith can also be cast in a differential
equation form, similar to egn. (3-28).

However,'uhen multiple nonlinear elements are imbedded in an other-
wise linear time-invariant circuit, the analysis entails the solution of
a system of nonlinear differential equations. The approach developed in
section (3-2) for the scalar case is still applicable, but must be ex-
tended to solve the system of nonlinear differential equations.

The number of equations to be solved depends on the number and the
type of nonlinear elements considered. When only independent type non-

linear elements are considered, the number of equations is less than or
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equal to the number of nonlinear elements (assuming that the output is
across one of the nonlinear elements; otherwise, an extra equation re-
Lating the nonlinear element voltages (currents) and the output voltage
(current) is needed to solve for the output). The nonlinear differen-
tial equations in such a case is again derived by obtaining the Thevenin
(Norton) equivalent circuit (for the Linear part of the nonlinear cir-
cuit) at each of the ports at which the nonlinear elements are present.
when dependent type nonlinear elements are also aL[oued, the analysis
becomes more complicated; for, in such a case, the controlling vari-
ables, which may be across a linear element, must be solved for and sub-
stituted in the differential equation for the nonlinear element.

Previous works [7,10,14] for determining the generalized voltage
ratio transfer functions of Lumped nonlinear circuits have applied the
harmonic input method, mentioned previously in section 3-2, to the nodal
analysis. £13]1 introduces the application of harmonic input method to
hybrid analysis. The latter approach is more general in that it allows
for both current- and voltage-controlled nonlinear elements.

Our discussion in this section for solving multiple=node,
multiple=-nonlinearity circuits will be centered around the application
of multi~dimensional transforms to a cutset type analysis. Thus, we
will be solving for the generalized voltage ratio transfer functions.
As we proceed with our discussion, it will become apparent that a cutset
analysis approach is the most natural way of solving for the generalized
voltage-ratio transfer functions. We now develop the procedure.

The first step in the analysis is to represent each nonlinear ele-

ment by a polynomial expansion. Thus, in the distortion analysis of
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transistor amplifiers [7,36], the exponential type controlled sources in
the Ebers—Moll model are first represented by a Taylor series expansion
of the function about the quiescent point, thereby yielding a polynomial
in terms of the incremental variables. The types of nonlinear elements,

and their series representation, that are commonly encountered are:

1. No memory, independent nonlinearity {(Nonlinear Resistor)

i =FW = Xavd (3-56)

2. No memory, dependent nonlinearity

i = G6Cu,v) = Eza uv ann = 0 (3-57)
"7 j=ok=0 ik £ 700

3. Capacitive, independent nonlinearity

i= §;o<v> =4 v, (3-58)
=1

4. Inductive, independent nonlinearity

f“wm ]zav (3-59)

u]"1

where

-
—-le
(]

incremental current through the element i

incremental controlling voltage

<
n
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u = incremental controlling voltage

The general procedure employed to solve for the nonlinear transfer
functions of a single-input, single-output nonlinear circuit using the
cutset analysis approach is illustrated in Fig. 3-1 by considering each
of the four nonlinear element types mentioned above.

Consider the nonlinear circuit N, shown in Fig. 3-1(a), containing
a nonlinear resistor, a nonlinear dependent source, a nonlinear capaci-
tor, and a nonlinear inductor, where each nonlinear element is voltage
controlled. The procedure begins by identifying all the nonlinear ele-
ments, as shown in Fig. 3-1(b). We note that the four nonlinear ele-
ments depend on six voltages. The next step is to lump the linear parts
of the nonlinear elements with the existing lLinear network to form the

augmented linear network. The square, cubic, quartic, etc. terms of the

nonlinearity are treated as nonlinear current sources, indicated by iz,
meaning the nth order current source at port k. Since the dependent
source, g(vs,vé), depends on voltages Vs and Vgr We also extract these
as ports. Thus, altogether we end up with an 8-port Linear network, as
shown in Fig. 3-1(c).

The output variables to be found are the voltages at these eight
ports. The augmented Linear network is denoted by N' in Fig. 3-1(c).
To solve for the voltage vector v = [v1 Vo V3 ... v8], we immediately
recognize that the branches across these voltage variables must be
selected as part of the tree [29]). Clearly, some of the other branches
in the augmented Llinear network may also appear as part of the tree.
These will then appear as voltage variables in the cutset equations for

the augmented Llinear network. Since there is no need for these addi-
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tional variables, we can reduce the dimensionality of our equations by a

systematic elimination of these unwanted variables. In the case under ]

consideration, we should be left with only the vector v = [v, Vo eee Vgl

as the unknown vector, Each of these 8 ports will have a set of
transfer functions of order 1 to n associated with it. Our task here is

to solve for these transfer functions.

At this point, we make the following general notational defini-

tions:
;1( s, ) ]
k' SqrecesSy
2
Hk(s1,...,sk)
ﬂk(s1'52""’sk) = 1. (3-60)
H:(s1,sz,...,sk)
where
nJ z kth order nonlinear transfer function from the input to the jth
k

port; m = 8 in our example here.

= T -
V) = Dvg (1) vylt) won v ()] (3-61)

where vy = voltage at the ith port

The cutset equations for the m-port nonlinear network can be writ-

ten as:
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Y(pdy + FOV) + Glu,w) + pRUV) + %1‘1’ =

’ T
L (p)l101 cen
vg/zg p)i1 0 O 0l

where
- . . d

p = differential operator, at

Y{(p) = Reduced admittance matrix for the p=-port.
network

Fw) = vector composed of all non!inear currents
memory independent nonlinearity

6Qu,v) = vector composed of all nonlinear currents
memory dependent nonlinearities

Q(v) = vector composed of all nonlinear currents
Linear capacitive nonlinearities

$¢v) = vector composed of all nonlinear currents
linear inductive elements.

zg(p) = source impedance

augmented
through the
through the
through the
through the

(3-62)

Linear

2ero

zero

non=

non=

Since the linear parts of the functions F(¢), G(*), Q(*), and ¢4(*) in

eqn. (3-56) through (3-59) have been lumped together with the linear

part of the network, the general form of these functions will be as fol-

lows:
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T = 2,0+ Ziw) + 20+ e (3-63)

where

Zz(x) is a quadratic function of v
Zz(v) is a cubic function of v

24(!) is a quartic function of v

2(*) being F(+*), G(*), Q(*), or ¢(*). Thus, eqn. (3~62) can be re-

written as:

[v (t)]
g

0
0
R R G , k> 2 (3-64)

I
[

where ik(t) denotes vectors of 2nd and higher order current sources due
to F(v), 6(u,v), palv), and %y(g}. The mathematical artifice used in
section (3-2) qould have been applied here also to obtain the form of
all the nonlinear current source terms, i*(t). For the sake of brevity,
we will not use that approach here, but simply use the results of sec~
tion (3-2) to identify the different order current sources due to dif-
ferent nonlinearities. These are summarized in Table 3-1, where vi(t)
denotes the ith order response voltage v(t), which control the nonlinear

element characteristics.
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Table 3-1. Nonlinear Current Sources in multiple-node, multiple-

nonlinearity circuit analysis.

Nonlinear Resistor, F(v):

. 1.2
2: aztv ]

»
(1}

k = 3: ZaZCv1v2]+a3Ev1J3

3

4: a.L2v'y

x
[[]

2 +<v2>23+3a3£v132v2+a4cv1J‘

Nonlinear Dependent Nonlinearity G(u,v):

k = 2: 320[“1]2 + aozfv132 + a11u1v1

k = 3: a30[u1]3 + a03[v133 + a21[u1]2v1 + a12u1[v112 + 2a20u1u2 +
2a02v1v2 + a11[u1v2 + u2v1]

k = 4: al.ollu"]4 + aO‘Ev"J4 + a13u1fv133 + aZZEu132[v1]2 +
a21(2u1u3 + EuZJZ) + a11(u3v1 + u1v3 + uzvz) + 302(2v1v3 +
S IR N R T U L a,(Lu'3%2 +
2u1u2v1) + a12(u2[v1]2 + 2u1v1v2)

Nontinear Capacitive Nonlinearity p@(v):

k = 2: azp[v1]2

k = 3: Zazp[v1v2]+33p[v1]3

3 1.2 2 1.4

k=b: ap@v'y +£v232)+3339[v 1%v2+a v’
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Table 3-1 (contd.)

Nonlinear Inductive Nonlinearity, [1/ple(v)

a
k =2 -£[V1JZ
p
2a a
k = 3: —Eg[v1v23+-p—:"-[v133
a 3a a
k = 4: Fz-(2v1v3+[v232)*~6§[v132v24'-sifv1;4
o
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We observe that the nonlinear current source terms in Table 3-1 are
similar to the nonlinear terms whose transforms were derived in section
3-2, except for the nonlinear dependent source terms, which are func-
tions of two controlling voltages u and v. The form of the transforms
of the nonlinear dependent source will, however, be similar to the other

nonlinearity types. These can again be written by inspection. For ex-

ample,
2. lut ()32 = aout e out ) o aL. UCs,UGsL) (3-65)
20 20Y (t4 2 20 Y(sV(s,
a v @ = anut oV ts) + a,, UCs,OV(s.) (3-66)
11 211" ™ 2 11 7317702
aant ! (EIVECE) = annu! (B IVE(t,,ty) = ag. UCs,IV(s,,s,) (3-67)
20 20Y (tq 2-t3 20 YS9V (sy,s4
and so on.

We also note that a k-th order current source term in Table 3-1
depends on responses of order less than k, which implies that, in order
to calculate a transfer function of order k, we need to determine the
transfer functions up to order (k-1).

The first order transfer function can be solved for easily. It is

simply the Llinear circuit response. Therefore,
Y(lv(t) = jq(t) (3-68)

For a single input system, jq(t) = 1lzg [vg(t) 0 0 ... OJT, where
vg(t) is the source voltage. Taking the transform of eqn. (3-68), and

assuming that the input source to be an impulse function, we get:
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1

_V_1(s1) = Hy(s) = 17z fY(s217'1 0 0 ... 0] (3-69)

1771

where 54(51) was defined in eqn. (3-60).
The equation for obtaining the second-order response, as per eqn.

(3-64), is the following:

oD = - 3,0 (3-70)

Since the input to the nonlinear circuit is assumed to be an impulse

function, the transform of eqn. (3-70), after using egn. (3-14), is:
!(s1+sz)ﬂz(s1,sz) = - 12(51,52) 3-71

The elements of vector 12(51,52) can be obtained by performing a two-
dimensional transform on the terms associated with k = 2 in Table 3-1.
This operation, as indicated earlier, can be carried out by 1inspection.

Thus, we have

+s )3-11

ﬂe(s1,s2) = - [!(s1 2 5L

(s1,sz) (3-72)

Likewise we can solve for 33(51,52,53). In general, we solve for the
nth order transfer function using eqn. (3-73):
1

n -
Ho(sq,80,000,8 ) = [YC 2:si)]

PR gn(s1,...,sn) (3-73)
1=

We observe a striking similarity between eqn. (3-73) and the equa-
tions for nodal or cutset analysis encountered in Llinear circuit
analysis. A little thought would show that the process of solving eaqn.
(3-73) is identical to solving the linear circuit in Fig. 3-2. We have

nonlinear current sources as inputs to the augmented linear circuit. A
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k-th order vector of transfer functions is obtained by exciting the
linear circuit by the kth order current sources. Just as in the case of

Linear systems, superposition can be applied here when a particular ord=-

er response is determined from the lower order responses. That is, a
k-th order response can be obtained by applying the k-th order current
sources one~by-one at each of the ports and then summing up the
responses. It is 1important to note, however, that the complete
responses of order up to (k-1) must be determined before we can obtain
the kth order response by superposition. It 1is also noted that the
jllustration of Fig. 3-2 is for pedagogic purpose and that the nonlinear
current sources are not physically present in the circuit under con-

sideration.

3-5., Multiple Input Circuit Analysis

Much of the foregoing discussion has been concerned with the
analysis of nonl{neaf circuits with single inputs. However, many appli-
cations of practical significance in nonlinear circuit analysis have
multiple dinputs. For example, in- a receiver system, the mixer circuit
has two inputs: 1) the message signal, and 2) the local oscillator sig-
nal. The transmitter again has nonlinear circuits with multiple inputs.
The Volterra series method is especially well suited for the analysis of
such circuits. In this section we discuss how the various order
transfer functions change as a result of multiple inputs.

From the discussion in section 3-4, it should be apparent that the
analysis of nonlinear circuits using the Volterra series method involves
the repeated analysis of a linearized circuit. The fundamental rela-

tionship had the following form (see eqn. 3-64):
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! i, (t) = 3

Y~(p)l(t) = Zg 5y 14 i,

(1) = ig(0) + ... (3-74)

where l*(t) is the k-th current source vector. The k-th order current

source (k > 2), as per our previous discussion, depends on up to the

(k-1) order voltage ratio transfer functions, is injected at each of the
A N

ports at which the nonlinea;\élements are present, and is due entirely

to the nonlinear characteristics of the nonlinearity. Furthermore, it

is proportional to the k values of the circuit input multiplied togeth-

er. Thus, the number of elements in the vector jk<t), k > 2, remain un-
changed when multiple 1inputs are present; only the j4(t) vector is
changed. *

Consider, for example, the two-input circuit of Fig. 3-3(a). Then,
to solve for the first-order transfer function, we write the vector

transform equations as:

Y(s,OV(s,) = L (s (3-75)

110597 = 19 (sy)

where

T

11(51) = [Yg1(s1)vg1(s1) Ygz(s1)ng(s1) 0...0] (3-76)

and Y and V are as defined previously. The transfer function vector can

be written as:
ﬂ4(s1) = ﬂ40(51? + H01(s1) (3-77)

where
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V(1)(s1) V(Z)(S1) V(p)(s1) T
Hagtsy) = |—7 , v T - (3-78)
9 g ot | g2
and
V(1)(s1) v(z’(s1> V(p)(s1) T
501(51) = v v aee v _ 3-79)
gl g2 gl Vg1—0

where V(i) is the voltage atr port 1i.

_The second~ and higher-order transfer function vectors are solved
for by removing the given input sources and applying the fictitious non=-
Linear current sources across the ports at which the nonlinear elements
are present. The vector transform equation for solving for the second-

order transfer function is still given by:

= - -1 -
Hylsq,sp) = =D¥(s, + 5501 7 [I,(s,,s,)] (3-80)

where

1) @ ¢
LyGsys) = (1 P0s0,50) 1990¢s,,55) won 1P¢s,,801  (3-81)

L)

Depending on the nonlinearity type, the general form of 1 (s1,sz), the

second~order current source across port £, will be:

) (1) )H(k)(

I2 (51,52) = azH1 (s1 1 $,) (3-82)

2

where H:‘)(') is known from eqn. (3-77). The determination of the

higher~order transfer functions is done similarly.
In summary, we note that the presence of multiple input sources in

a nonlinear circuit does not drastically alter the procedure for deter-
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mining the Volterra transfer functions. Only the structure "of the
first-order current source vector is changed as a result of multiple
sources. This change is reflected in the values of the elements making
up the second- and higher-order current source vectors, whose structure

remains unchanged.

3-6. An Example

In this sub-section, we present an example to illustrate the ideas
! presented 1in the previous sub-sections. Specifically, we derive the
nonlinear transfer functions for a multiple nonlinearity circuit.
Consider the circuit of Fig. 3-4(a), which contains a resistive and
a capacitive nonlinearity. The nonlinear element descriptions are also
given in the Figure. The augmented linear network 1is shown in Fig.
3-4(b). The equilibrium equations for the nontinear circuit can be

written by inspection as:

G+pC  -nt 0 v (0
-pC pC+pC1+1/pL -1/pL vz(t) =
0 -1/pL 1/pL+g1 v3(t)
6v (t) 0
s
- 2 3 -
0 czpv2 + c3pv2 (3-83)
0 2 3
; vz * o3vz

where vi(t) is the i-th node voltage, p = g?; and 6 = 1/R. Each of the

node voltages can be expanded into a Volterra series, thus giving
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Figure 3-4,

A Nonlinear Circuit Example
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vt = T v (3-84)
i |
k=1
where vgk)(t) represents a k-th order term in the solution for the i-th’
node voltage. Substituting eqn. (3-84) in egn. (3-83) for i = 1,2, and
3, and equating terms of Llike order on both sides of eqn. (3-83), we get

the following sets of equations for the various order responses.

First Order:
F ), ]
v t)
G+pC -pC 0 1 Gvs(t)
¢ peepe #1/pL -1/t | {vP )| = o (3-85)
0o _ 1/pL+g 0
1/pL 1 v;1)(t)
Second Order:
_ - _ .
G+pC -pC 0
~pC pC+pC +1/pL ~1/pL v§2’<t> - - c2p£v§1’<t>32 (3-86)
0 _ 1/pL+g
1/pL 1 véz)(t) g, (172

Third Order:

vf3’<t;
G+pC -pC 0
=-pC pc+pC1+1/pL -1/pL v§3)(tf =
0 - “1/plL+g
1/pL 1 Lv;S)(t)
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. ]
- (1)) 1,3
ZCZpEv2 Vs ]+ CSpCv1 ]

292Ev§1)v§2)] + g3Ev§1) 3

(3-87)

The higher order response equations can be written similarly. We now
solve for the transfer functions from the above equations.

Taking the one-dimensional transform of egqn. (3-85), we get:

-

v(1)

- (s,)
G+s1c s1c 0 1 1 GVs(s1)
1 _ _
~s1C s1(C1+C)+1/s1L 1/s1L V2 (51) = 0 (3-88)
0
| 0 1/s1L 1/s1L+g1 V§1)(s1)
Assuming vs(t) = §(t), and therefore Vs(s1) =1, we get:
1P = e 6 0 (3-89)
where
. V:1)(s1) V;1)(s1) V§1)(s1) :
B s) = = 7 3 (3-90)
s s s
and
G+s,C -s,C -1
1 1 0
Z(s1) = -s1c s1(c+c1)*1/s1L -1Is1L 3-91)
0 -1/s1L 1/s1L+g1

To solve for the second-order transfer function vector,

!fZ)(s1,sz), we must first recognize the following with (t1 =ty = t):
86
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L[vgz)(t)l

TR o
L[!!.hi (11,t2)vs(t1 T1)Vs(t2 tz)dT1d12]

L@ -
= 1.5 (sq,8 0V (s, 0V (5 (3-92)

Since Vs(s1) = Vs(sz) = 1, the right-hand side of eqn. (3-92) is identi-

cally HiZ)(s1,sz). Similarly, we write (with t1 = tz = t):

™ e ff D P o vace -
L[ﬁvi (t)J%] = L[jE!vi (e vy (1) 80t =1,)6(t,=1,)dT, d1,]

= ¢ 2)
v, (s1)Vi

3 (sz) (3-93)

4)

We note here that Vi M

Hi (s1) since vs(t) = §(t).

(s1)
Taking the two-dimensional transform of eqn. (3-86), and substitut-

ing eqns. (3-92) and (3-93) in it, we get:

o3 . A "
H (51,52) = 5(51 + sz)[D (s1+sz)C2H2 (51)H2 (sz)
gzu§1’<s1)u§1’<s2>37 (3-94)

where H, Z are defined in egns. (3-90) and (3-91).
To solve for the third-order transfer function, we proceed in a
similar manner. However, as mentioned in section 3-4, symmetrization

operation is used in solving for the third-order transfer function vec-

tor. The symmetriiation operator is associated with the
Cv§1)(t)v§2)(t)] term. To see this, we write
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1) 2) 1 (1) ) ) 2)
[vi (t)vi (t)l = 3-Cvi (1:1)\’_i (tz,t3) v (tz)vi (t1,t3)
s v PP, L3 (3-95)
i 377 177277 =p_=t_=t
17273
_ o)) _
= v, (t1)vi (tz,t3) (3-96)

We note that when we let t1 = fz = t3 = t in egn. (3-95), the two sides
are identically equal. As mentioned previously, the variables ti's are
used for mathematical manipulations; the final analysis 1involves only
one variable t. Thus, with this in mind, we note that the response, as
a function of t, wili remain unchanged when symmetrization is performed.

Proceeding in a manner similar to that for solving for the second-
order transfer function vector, we obtain the following third-order

transfer function vector:

3)
H (51,52,53) = E(s1+52+53) .

r -
0
M 2) M M 1 -
- (s1+sz*s3)[2czﬂ2 (s1)H2 (sz,s3)+C3H2 <s1)H2 (sZ)H2 (53) 3-97)
¢P 2) 4 D) 4P m
i Zng3 (s1)H3 (sz,s3)+93u3 (s1)H3 (sz)H3 (53) )

We note that all the guantities on the right side of eqn. (3-97) are
known, and thus we -can solve for the third-order transfer functions.

Our derivations here have been fairly detailed; it should, however, be
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pointed out that the form of these transfer functions can be obtained in

an algorithmic manner by dinspection, thus rendering Volterra series

method a viable approach for computer aided analysis of nonlinear

cir-
cuits.




CHAPTER &

STEADY-STATE AND TRANSIENT ANALYSIS

4-1. Introduction

In the analysis of nonlinear systems, two main classes of solutions
are generally sought: 1) steady state, and 2) transient response. In
this section we show how these solutions can be obtained via the volter-
ra series method.

In this section we present how the steady state and the zero-state
transient responses can be obtained from the generalized transfer func-
tions, which can be obtained in an algorithmic manner - as was shown in
section 3. For the sinusoidal steady-state response we deal with the
case of multi-tone input; for the transient response, we treat the case
of 1input signals which are Laplace transformable and factorable - which
clearly includes a large class of signals used in everyday application,
No numerical integration is required in obtaining both these solutions.

Section 4-2 deals with the subject of obtaining the sinusoidal
steady-state solution using the generalized transfer functions. Section
4-3 presents the approach for obtaining the zero-state transient

response.

4-2. Sinusoidal Steady-State Analysis

In linear system theory, the sinusoidal steady-state response is
intimately tied to the transfer function of the system. A similar
result is found for higher order responses using the Volterra series
method: an n-th order response at a particular frequency is directly re-

Lated to the n-th order transfer function. In this section we develop
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this relationship.

1f the harmonic input method [7,10-14] had been used in deriving
the generalized transfer functions 1in section 3, the relationship
between the n-th order steady state response and the n-th order transfer
function would have been self-evident. 3ut, since multi-dimensional
transform theory was used to derive the generalized transfer functions,
this relationship must be developed. We treat the specific case of n=2
in section 4-2.1 and then derive the general relationship 1in section

4-2-2-

4-2.1. Second-order Sinusoidal response:

The second-order output, according to the Volterra series, is given

by:

(t) =

O Y=g
O g

Y, hz(t-T1,t-Tz)x(T1)X(Tz)dt1d12 (4-1

Consider the input signal comprising two unit sinusoidal signals at fre-

quencies w, and Wy The input x(t) is therefore:

rbxp(jma1)+exp(-jmarf] . [éxp(jub1)+exp(-jmbr)]

A |

Substituting egn. (4=-2) in (4-1), we have:

4=2)

).

y,(t) =.£.£hz'(t-t1,t-tz

N




S T

B T

. exp(]mat1)+exp(-]mat1) . exp(;ubt1)+exp(-1mbt1i]
2 2 J

réxp(Jwatz)+exp(-Jmatz) . exp(Jwbtz)+exp(-3wb12)]

[ I

. dT1d12 (4-3)
Considering one cross term only,
®N @® 1 :
J(;.g hy(t=t,,t-1,) 7 explju, T +jw, T,)dr dr, (4=4)

and letting g, = t-t, and o, = t-t, and carrying out the integration
1 1 2 2

yields,

3 HyGin,u, ) expli w_to )t] (4-5)
Considering the other cross term similarly yields

3 HyCiu, pjo_dexplj w_+u )t] (46

However, if'Hz(s1,sz) is symmetrical in its arguments, as they are as-
sumed to be 1in this dissertation, then the terms in egns. (4-5) and
(4~6) are equal. The complex conjugate terms appear similarly. Hence,

the output at frequency ”a+”b is:

Y(t)lua+”b = IHz(jma,jub)|cos[(ma+wb)t + °a+bJ 4-7)

The Z”a or Zub term and their complex conjugates appear only once in
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egn. (4-3); hence, their magnitude will be %JHZ(jwa,jma)l and

%Jﬂz(jwb,jmb)l, respectively. If only one frequency input was present,

the results would be similar. The second-order output would then be:
|H2(Jma,3ma)|

) = [HyGo ,~je )] + > cos(2v_t+0, ) (4-8)

Y2
Thus, if we know H2(51’52)' then the quantities in eqn. (4-8) can obe
easily evaluated. This is analogous to the case of linear systems,
where the complex variable s is replaced by ju to compute the response
at w,

If more than two-tones were present at the input, the second order
response would be evaluated by taking all combinations of two frequen-
cies at a time.

The response of the third and higher orders is similarly treated.

We now present the general case.

4-2.2. General Sinusoidal Steady~State Analysis.

In this sub-section, we develop the relationship which can be ap~-
plied directly to compute the sinusoidal steady-state response of a non-
Linear system from its nonlinear transfer functions, which can be ob~-
tained by the method presented in section 3. The discussion here relies
heavily on [10].

Consider a nonlinear system excited by the sum of K distinct tones;

i.e., defining N = 2K,. we have,

N
x(t) =% }:1 A, exp(ju.t) (4=9)
1‘—'




where w g wilt include both positive and negative frequencies, and Ai for
a negative frequency will be the complex conjugate of Ai for the posi-
tive frequency in order to have x(t) real. Then, the nth order output,

yn(t), is given by:

fooof n
yn(t) = ) hn(t1,...,1n) iE1 X(t'Ti)dTi

, N
= XX 1 n 1
=L ety = k);j1 A expljw, (t=1)]dr, (4-10)

Carrying out the product operation in egn. (4-10), we get a function

yn(t) containing N? terms, given by:

...Ak Hn(jwk ,...,jmk )

; _ N N 1
yn t) = Z XX 2 _Ak
k,=1 1 n 1 n

~ _n
1 kn-1 2

. exp[j(wk1+...+mk dt] (4-11)
n

Notice that in arriving at egn. (4-11), we have performed the T, in-
tegration in eqn. (4-10), thus giving rise to the n-th order transfer
function in egn. (4-11). As the indices ki are varied over the range 1
to N, many of the terms will be at the same frequency. The number of
terms at various particular frequencies will vary according to what fre-
quency combinations are taken. For example, in the case of n=2 in sec-
tion 4-2.1, there were two cross frequency terms, while there was only
one second harmonic (at Z“a) term. Similarly, for n=3, there are six

terms in egn. (4-11) at frequency u.+wb+uc, three terms at Zwa+ub, one
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term at 3ma, etc. The nonlinear transfer functions, which make up the
coefficients of these frequency terms, differ only in their arguments.
However, since the transfer functions are assumed to be symmetric, the
coefficient of the output at frequency ma+mb+mc (in the case of n=3)
can be multiplied by 6. This obviates the need for taking all combina-
tions to compute the output at ma+wb+wc. Likewise we handle the case of
other frequency combinations. With this insight, we can peek at the
problem from a different perspective.

Let MyoMsyese,my be non-negative integers. Then, the number of

terms at frequency w, = m1u1+m2w2+...+m“mN is equal to the number of

I
ways of forming m1w1+...+meN. In the n-th order output spectrum to a
multi-tone idinput, each term is evaluated by taking a distinct combina-
tion of n input tones at a time. To compute the n-th order output when

the input frequencies are Wesosene, iy, We must therefore restrict m. in

the following manner to compute wps

m, + m, + 4+ my=n (4-12)

Now the problem reduces to the following: find the number of ways in
which n objects can be divided into N groups of which the first contains
m,y objects, the second my objects, etc. The solution to this problem is

given by the multi-nomial coefficient [40]:

= n! -
cn,N - m1!m2...mN! (4=13)
8y deriving eqn. (4-13), we have obviated the repetition of terms that
js inherent in ean. (4-11). An equivalent way of representing ean.

(4=11) through the use of eqn. (4=-13) then becomes:

95

Tt LT :m ":(u—&»!':g—'; :‘"' T -

e aoza) oy — e




1,2

m, m I'IIN
A, A, seep
yn(t) =L c 1.2 N

n,N n,N 2"

o Hn(ju1'---'jm2'---' see, ij’..-)

m1t1mes mZtImes mNt1mes

. exp[j(m1w1 + eee tm wN)t] (4-14)

N

Since yn(t) is real, egn. (4-14) also contains the complex conjugate
terms. Thus, the coefficient of the sinusoidal term at frequency

m1m1+...+m w . in the n-th order output is given by:

NN
m, m m
A11A22000A N ] . )
Cn’N ——;"__1'-—' Hn(JW1’-..’JNZ,--.’--.’JWN'Q-.) (4-15)
m1times mztimes mNtimes

In computing the entire n-th order response in eqn. (4-14), we take all
distinguishable combinations of m. satisfying eq. (4~12). According to

C40] there are

P L et Y

sn,N - n nt(N=T)T

(4-16)

such combinations.

Equation (4-14) is the fundamental relationship between the n-th
order output and the n-th order transfer function. At first glance, the
evaluation of this equation appears to be a formidable task. But, after
some thought, one finds that this is not such a difficult task after

all. We, however, defer the discussion* of this till section 5.

*A computer implementation for n=2.3 appears in [41]. One can -ex-
tend it for any n, with the ultimate Limitation being the storage.
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We now illustrate the use of eqn. (4-15). We assume that the non-
linear transfer functions are known. The case for n=2 can be easily
verified from the discussion in section 4-2.1. For a two-tone input at
0y and w, and n=3, we have the following cases:

(a) The output at W, and 0y have the following amplitudes, respectively:

3!|A2l2A1

y3(t>|m1 = BT [H3 G =iy, joy) | (4=17)
31A,0A, 12

y3(t)|m2 = W |H3(ju1,—jm1,jm2)| (4-18)

(b) The output at 2m1+w2 has the following magnitude:

3142,

= 172 ST -
‘ y3(t)|2m1+w2 = m- |H3(1w1,]01,]lﬂ2)| (4-19)

| (¢c) The output at 3@1 has the following magnitude:

3!(A1)3
' )!3(t)|._,m1 = o3 H3(Jw1,Jm1,Jm1)| (4-20)

| The other combinations can be carried out similarly. For the above
cases we make the following observations: both eqns. (4-17) and (4-18)
are similar to obtaining the output at wa+ub+wc, and therefore we see a

31 (=6) multiplication factor*, which accounts for the six combinations

B

i at o tu te that were mentioned earlier; eqn. (4-19) is similar to ob~-

*The constant factor 4 in the denominator appears consistently in
all the output terms, and is therefore not regarded as a variable

multiplication factor here. This factor appears due to the way x(t)
was expressed in eqn. (4=9).
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taining the output at Zma+mb, and therefore has a multiplication factor

) of 3, which again 1is in accordance with our earlier discussion; egn.
(4-20) is Like evaluating the output at 3wa, and hence has a multiplica~
tion factor of 1.
In section (3-5), we dealt with the analysis of multiple input non-
Linear circuits. In obtaining the sinusoidal steady-state response of
such circuits the material of this section is still applicable. Howev-
- er, care must be taken in keeping track of the various input frequen-
cies, and their associated transfer functions, when such an analysis is

warranted.

4-3. Transient Analysis using Volterra Series

In Linear system analysis, the most fundamental relationship
between the input and the output is the convolution integral. Thus, to
compute the output response, one merely convolves the input function
with the impulse response function. However, when the input function is
Laplace transformable, the convolution operation is rarely performed and
one resorts to the simpler tran§form methods for obtaining the system
response. The transform method involves the use of the system transfer
function,

A scheme, analogous to the transform domain method in Linear system
analysis, can be devised for obtaining the response of a nonlinear sys-
tem via the Volterra series method. Again, the inputs allowable under
this scheme must be Laplace transformable. This restriction is not very
severe since most of the inputs considered in everyday applications are
Laplace transformable. The schgme presented here uses the generalized

transfer functions and the transform-domain description of the input to
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compute the output. The response thus obtained is the zero-state time-
response.

The basic problem considered here 1is: Given the generalized.
transfer functions of the nonlinear system and the transform of the -in-
put, determine the output response without performing a convolution in
the trahsform domain. A procedure, due to George [S], helps to solve
this problem by associating time variables in the transform domain.
That 1is, given Yz(s1,sz) as the transform of the output function
yz(t1,t2), then Yz(s), the transform of yz(t), will be found directly
from Yz(s1,sz). This technique is called “association of variables" and
js applicable to the class of lumped systems. Lumped systems bhave the
property that all the generalized *ransfer functions are factorable

(just Like the linear situation); that is, if

)

f(t1,t f1(t1)f1(t ) (4=21)

2 2

then

F(s1,sz) F(s1)F(sz) (4-22)

The examples in section 3 - in particular the example in section (3-6) -
illustrate the concept of factorable transforms.

In the following sub-section we present the "association of vari-
able" technique. In section 4-3.2 we aqply»this technique to the time-

domain analysis of multiple node, multiple-nonlinearity circuits.
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4-3.1. Association of Transform Variables

The association of variables technique (5] is derived here for the

Q
second-order response. For higher-order transforms, one simply associ-
ates variables successively using the results for the second-order

case.

The two-dimensional transform pair is related as follows:

Yy(50,8,) = ;i ;{ ¥Ct t)explos, t -5 t )dt dt, (4-23)
and
Yp(tety) = i) 2.[f Yy(s,.5,0exp(s,t 45,0 0ds ds,  (4-26)

We would like to find

(t,) = yz(t1,t1) €4=25)

Y'Y

without actually performing the inverse transformation indicated by egn.

(4-24).

The transform of yz(t1) is Y2(s1), where

1. ¢ sty
Yp(t) = o) :i Yy(sde 'ds (4-26)

But from eqns. (4-24) and (4-25) we have

yz(t1) = yz(t1,t1)
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o (s +s.)t
= mp? ffds,ds, v 05,508 12T 4-27)
Letting 51 + s2 = s, we have
S f
yz(t1) ol :L exp(st1)ds
el Fycen g
[275-_{ YZ(S Sz,sz)dsz] (4-28,
Equating (4-28) and (4-26), we have
V() = 5t [ v, (s-s,,5.)ds (4-29)
2 any 402 27727772

Equation (4-29) still involves a convolution operation, and hence is not
too wuseful for our purpose. In the case of Lumped systems, where the
transfer functions are factorable, this convolution can be performed by
inspection. For example, a typical second order transform is of the

following form:

X .Y . 2
Sy¥sy¥x  siby syh2

Yz(s1,sz) = (4-30)

Then, substituting egn. (4=30) in eqn. (4-29), we have:

Y ..
S2

ds

+2

1 X___.
29 = xmy _{ ST5,75,7K | -5, %7 2
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X .1 fY .1
= ?T‘_{s-szw 5 ds, (4-31)

The integral in egn. (4-31) reduces to:

1 % Y z _ vz
r3 1 ;[ =S+ (s+y) sz+z'dsz T sty+z (4-32)

Thus, we find that:

X X
E;;;;;;-becomes Fven

and

Y 1

. becomes
s1+y sz+z

YZ
sty+2z

A list of commonly encountered transform terms in Lumped nonlinear sys-

tems along with their transforms after the association of variables is

given in Table 4-1. A more detailed List can be found elsewhere [24].

Table 4-1. List of. Associated Transforms

Multi~-dimensional Transforms Associated Transforms

F(s1+s2+...+sn) F(s)
k k
(s.*a) (s,+D) s+atb
1 2
: k k
i 1§;+s2+a)(s1+b51s2+c7 (s+a) (s+b+c)
: k k
(s,+3,+55+2) (5, 4D) (s,+0) (s5+d) (s+a) (s+b+ctd)

102




Table 4-1. (contd.)

k k . 1 _ A
?§1+s2+33+a)(sz+s3i55(§1+c)(52+c5(§3+c) (Za-b) sta [;+5+c s+§€]

4-3.2 Transient Analysis of Nonlinear Circuits

From the discussion in section 3, it is apparent that the analysis
of Llumped nonlinear circuits reduces to the repeated analysis of the
augmented linear circuit excited by nonlinear current sources. The
terms that make up the nonlinear current sources, as per Table 3-1, are
factorable. Thus, the "association of variables"” technique can be ap-
plied to obtain the transient analisis of nonlinear circuits. We now

discuss how the various order responses can be obtained. We consider

the unit step input case here; the cases for other factorable inputs can

be handled similarly.

FIRST ORDER RESPONSE:

The general form of the first-order transfer function for the aug-

mented linear network, ignoring multiple poles*, is:

H.(s.) = | m— R, s (4-33)
1Y s sy =0 K

where Pi’ P; and Rk are complex constants. Then if X(s1), the transform
of input x(t), is factorable, the response Y1(s) will have the same form
as eqn. (4=-33). We note here most of the inputs used in practice are

factorable; that is, they can be expanded into partial expansion form as

i
b
4
[

*The case of multiple poles can also be handled by the "association

of variables" technique. In our discussion here, we do not treat
this case. :
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in eqn. (4-33). Specifically, if x(t) is a step function, then the out-

put, Y1(s1), will have the form:

Ao ﬁ% Ai 351 k
Y. (s,)= — + + Qs (4-34)
171 Sy =1 s1+pi k=0 k™1

The time-domain response can be easily determined from egn. (4-34) by

taking the inverse laplace ‘transform.

SECOND ORDER RESPONSE:

The equation for determining the second-order transfer function is

(see section 3.3):

52(51,52) = -;(s1+sz) 32(51,52) (4-35)

where ﬁz is the vector of second-order transfer functions for the multi-
ple node, multiple nonlinear circuit, g(s1+52) is the inverse of the re-
duced admittance matrix, and 12(31,52) is the vector of second-order
current sources. For the four types of nonlinear elements described in
section 3-3, the elements of the vector 32(51,52) will be of the follow~-

ing form, depending on the type of nonlinear element:

- Nonlinear Resistor:

p = a WP P -
12(51,s2) 32H1(s1)H1(s2) (4-36)

Nonlinear Dependent Source:

p - r r q q
15084055 = aqH, (s9)Hy(55) + ag H (sIH (s))
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1 r q q r -
ts a11[H1(s1)H1(sz) + Hi(sdH, (550 . (4=37)

Nonlinear Capacitor:

p = -
12(31,52) = (s +sz)a2H1(s )H1(sz) (4-38)

Nontinear Inductor:

p _ P _
12(51,52) = azH1(s JH (sz)/(s1+sz) | (4=-39)

where Ig is the current source at port p, a, is the coefficient of the
quadratic term of the nonlinearity, and H% is the first—-order transfer
function from the input port to port j. Thus, depending on the number

of nonlinear elements, the second-order transfer function T can be ex-

2
pressed using egqn. (4-35) as:
L K
Hy(s4,8,) -;Ei 2, (s +sz)12(s1,sz) (4~40)

where zlk(s1+52) is the {,k element of Z(s1+sz) and K is the number of

second-order current sources. .

Observing the form of eqns., (4-36) through (4-39), we recognize
that the output transfer function will be made up of a summation of

terms of the following form:

Hz(s1,sz) = ?(s1+sz)H1(s1)H1(§2) (4=41)

where ﬁz denotes the "partial” transfer function, and 2 is obtained

after the (s1+sz) term appearing in eqgn. (4-38) and (4-39) has been

Llumped with z(s1+s25. Then for an input x(t) having transform X(s), we
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have, the partial output, ?2(51,s2), given by:

72(51,s2) = 92(51,sz>x<s1>x(s2)

1(sZ)X(sz) (4=42)

2(s1+sz)H1(s1)x(s1)H

Recalling that H1(s1)X(s ) is the Llinear response at a particular port

1
in the circuit, we can re-write eqn. (4-42) as:

?2(51,32) = 2(s1+sz)Y1(s1)Y1(sz)

A, A,

8(s 45, L —bm —d . (4=44)
1 Z)i,j s1+pi sz+pj

Equation (4-44) has the same form as egn. (4-30). Therefore, we can ap-
ply the "association of variables" technique by inspection to solve for
?z(s), and then for 92(t). By taking all the terms in eqn. (4-40), we
can obtain yz(t), the second order time-domain response to an input
x(t). It should be noted that the terms X Gksk, which were present in
eqn. (4-34), have been dropped from eqn.k(4-44). This is because func-

tions such as impulses, doublets, etc. do not exist when squared.

THIRD ORDER RESPONSE:

The equation for determining the third-order transfer function vec-

tor, 33(51,sz,s3), is:

53(91,52,33) = -E(s1+sz+33)£3(s1,sz,s3) (4=45)

where 2(*) is the inverse of the reduced admittance matrix and I,(*) is

the third-order current source vector. The elements of the third-order
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current source vector depends on the type of the nonlinearity. The form

of these elements are as follows:

Nonlinear Resistor:

p - p p p p P -
13(51,52,53) 232H1(s1)H2(52,53) + a3H1(s1)H1(sz)H1(s3)(4 46)

Nonlinear Dependent Source:

H (s, ,s)H (s,) + 2a

= q Qq
) = 2a,0H5(s4,8,)H, (54 o2t (s92H;(s5085)

p
13(51,52,53

r q r q
+ a11EH1(s1)H2(sz,ss) + “2(51'52)“2(53)]

3 r
+ a3o _H H1(si) + a

3
n H?(s.) (4=47)
i=1 1

03 4=

Nonlinear Capacitor:

P = p p
13(51,s2,s3) (s, +s +s)(2a H, (s, )H (s

1¥sp¥sg)L2a M (s IR (s, ,85)

+

p P P -
agHy (s)H] (s,)H] (s5)] (4-48)

Nonlinear Inductor:

P = P p
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Hp(s Y1/ (s +s.+s_) (4=49)

p p

37

where Ig(') is the current source at port p, a, is the coefficient of

the nonlinearity at port p, and H: and H; are the first- and second-
order transfer functions at port i. Using egn. (4-45), the third-order
transfer function at port | can be expressed in terms of the individual
third-order current sources in the network as follows:
L K k
H3(s1,sz,s3) = JE% Lk(s1+sz+s3)13(s1,sz,53) (4=50)
where 2 is the l,k-th element of matrix Z and K is the number of
third-order current sources.
Observing the basic form of eqns. (4=46) through (4-49), we see a
striking similarity. There are basically two types of terms making up

the third-order current sources: 1) due to the squaring operating, giv-

ing rise to H1(s1)H2(sz,s3); and 2) due to the cubing operation giving
3 .

rise to [I H(si). The transfer function at port L, from eagn. (4-50),
=1

is a summation, a typical term of which will have the following form:

93(51,s2,33) = 2(s1+2+53)u1(51)H2(sz,s3)

+ 2(s1+s2+53)H1(s1)H1(sz)H1(s3) (4~-51)

where 93 is the “partial" third-order transfer function, and 2 1is ab-
tained after the (s1+sz+s3) term appearing in eqn. (4~48) and (4-49) has
been Lumped with z(s1+sz+ss).
For an input x(t) having a transform X(s), the partial response,
7(31,sz,s3), is given by:
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IX(s,)

?3(51,52,53) = 93(51,52,5 5 3

3)X(s1)X(s

[2(s,+s +s_)H, (s, )H. (s

1¥SotSgIH (5K, (s5,,54)

3

2(s1+sz+53)H1(51)H1(52)H1(53)] iE; X(si) (4~52)

+

We now seek to obtain ?3(5), the transform of 93(t), from ean. (4-52).
To do this, we look at each term in eqn. (4~52) separately.

Recalling* that Hz(s1,sz) = 22(s1+sz)H1(s1)H1(sz), we can re-write
the first term of eqn. (4-52) after performing the symmetrization opera-

tion as:

YH, (s, )H, (s )H, (s

2(sq¥s,ts 3t (S90H, (s 50H, (s4

)2(sz+s )x(s1)x(sz)X(s

3 3)

1
= 3£(s1+s2+s3)E2(s1+sz)+2(s1+53)+2(sz+53)l

3

iE% H{(si)X(si) (4-53)
Equation (4=53) is in a form suitable for applying the “association

of variables" technique. We associate two variables at a time to reduce

?3(51,52,53) to 93(s). For example, consider the following association

steps:

R *see eqns. (4-40) and (4-41).
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3
2(s1+52'53)2(s1+52)i£& H1(si)X(si)

= 2(s1+sz+53)2(s1+sz)v1(51)Y1(sz)Y1(s3) ]
$.,8
1772
= 2(sn+s3)a(sn)Y1(53) as s
n’>3
= R(s) (4-54)

The association of two variables is identical to the association in-
volved in determining the second order response. Thus, the partial
third-order response is obtained by repeating this step once.

The association of variables involved in the second term 1in eqn.
(4=51) is quite straightforward. Recalling that H1(si)X(si) = Y1ksi) we
can write the second term in egn. (4-51) as:

3 3 A,

2syrsprey) T Yy(sp) = Asprsyesy 1 (j 32%3;° (4=55)

A typical term in egn. (4-55) will be of the following form:

Ay Ay A
P(s,,8,,8,) = 2(s_ +s_+s,) (4-56)
1772773 17273 s1+p1 sz+pz s3+p3

Associating two variables at a time, the final form, P(s), is given by:
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A ALA
P(s) = 2(S) 23 (4=57)

StPy*ptP4

In our above discussion we isolated the typical terms present in
the higher order responses to illustrate the application of the associa~
tion of variables techniques to reduce these terms into a form suitable
for obtaining the transient response. By summing up the partial
responses, we can obtain the complete response for the network.

The association of variables involved in determining the complete
response can be done by inspection, provided we have all information re-
garding the poles, and the associated residues, of the Llinearized sys-
tem. For adapting this scheme on the computer, an algorithm which pro-
vides all this information must be used. A semi-symbolic analysis [29]
of the \Llinearized system must therefore be part of the algorithm for
adapting Volterra series computer aided analysis. The main problem in
implementing this scheme on the computer is the need to repeatedly per-
form a partial fraction expansion. For nonlinear resistive networks,
this task is not so difficult if we make use of some of the basic pro~
perties of Lumped linear systems. We will, however, defer this topic
until chapter 5.

finally, it is noted that the zero-input time domain response can
be obtained by using the ideas presented above. For a circuit with mul-
tiple dynamic elements, this reduces to the multiple-input, multiple~
output problem, where each input corresponds to the initial condition

across the energy storage element.
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CHAPTER 5

COMPUTER~AIDED ANALYSIS USING VOLTERRA SERILES

5-1. Introduction

The adapting of Volterra series method in a general simulation pro-
gram has been regarded as difficult by various authors [16,29,43]). As
such, virtually no effort has been spent on investigating the computa-
tional aspect of this method and using it for the spectrum and time-
domain analysis of general nonlinear circuits with polynomial type non-
linearities. Previous works [7,36] have endeavored to check the validi-
ty of this approach by applying it to specific circuit problems using a
computer, but have never implemented the approach in a general simula-
tion program.

The only major effort in using Volterra series for general non-
tinear circuit analysis has been the development of the program NCAP
[10,44]. A cursory review of this program reveals the inherent ineffi-
ciency 4in the computational approach with regards to storage and types
of algorithms used. This inefficiency notwithstanding, there are severe
Limitation regarding the usefulness of the péogram: first, the program
merely computes the numerical values of the nonlinear transfer function
at the various program-prescribed combinations of the input frequencies,
and does not compute all the transfer function values which are required
to compute the complete output spectrum. Thus, NCAP does not yield the
entire output spectrum information. Second, to compute up to an n=th
order transfer function, the user must specify n input frequencies,
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which are assumed to be a sum of exponentials and not real sinusoids.
The program, therefore, is severely limited in its usefulness from the
point of view of a user, who may only be interested 1in obtaining the
output spectrum = say, for example, up to the third order response to
two sinusoidal inputs = and has Little use for the numerical values of
the transfer functions at the program prescribed frequencies.

The zero-state time—domain analysis of nonlinear circuits using
Volterra series approach on a computer has not been attempted before -
not even for a specific nonlinear circuit problem.

In this section we look at the computational aspect of the Voliterra
series method for general simulation purposes and then present the basic
algorithms for adapting this method for 1) spectrum and distortion
analysis, and 2) for zero-state time-~domain analysis to a step input,.
A digital computer program, PRANC (Program for Analysing Nonlinear
Circuits), which makes use of the algorithms, has been written and im-
plemented on the CDC 6500 computer. A detailed description and program
listing is contained in a separate technical report [41]1. Some examples
from the use of this program are given in section 6.

In section 5-2, we present a brief overview of symbolic¢c analysis in
linear circuits, and then describe the reason why a symbolic approach is
particularly useful in adapting Volterra series for general simulation.
Section 5-3 deals with the implementation of the symbolic approach, and
also contrasts the computational effort between a numerical approach and
the particular symbolic approach used here. The algorithm for obtaining
the complete output spectrum and the various distortion indices is

described in section 5-4; the algorithm for zero-state time-domain
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analysis to a step input is presented in section 5-5. A description of

the computer implementation of these algorithms is given in section 5-6.

5-2. Why a Symbolic Analysis Approach.
The symbolic analysis of circuits involves the computation of the

a, and bi for network functions in the form

:
NGs) | &3 S

F(s) = = : -1
D(s) z:bi‘51
when all circuit elements are known. The more general form
N(S X, pnuapX @
1 n (5~2)

F(s;x1,x2,,..,xn) = D(s;x1,...,xn)
applies when some elements of the circuit X, are kept as symbols. The
advantages of symbolic analysis have been recognized previously [29,45].
One particular advantage, and the one which is relevant to our problem
here, is that the numerical evaluation of a function at discrete points
is much easier and faster once the symbolic function is obtained than
working repeatedly with a circuit analysis program. With this brief
overview of symbalic analysis, we now proceed to answer the questioq:
Why use a symbolic analysis approach for adapting the Volterra series
method for general circuit analysis?

As pointed out in the previous sections, a nonlinear circuit is
completely characterized by its Volterra kernels, or their transforms -

the generalized transfer functions. These transfer functions are then

directly related to the various order sinusoidal steady-state responses,

as described in Chapter 4.  The n~th order transfer function is deter-
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mined from the following equation (see Chapter 3):

n
= -1 -
H (81,--.,Sn) - [t( 1.§1 S_i)] I (51,.--,Sn) (5 3)

where !( ﬁ; si) is the reduced node admittance matrix evaluated as Sy
+ S5 + ::. + s“,'and 3“ is the n-th order current source vector due to
the nonlinear elements. To compute the output spectrum, we evaluate Hn
at various and many frequency combinations. From eqn; (5-3) it should
be clear that such an evaluation will entail the inversion of the re~
duced node admittance matrix at each of these fregquency combinations.
Using combinational analysis, it has been shown [40] that for an input
consisting of M sine waves, the number of inversions involved in an n-th
order response, given by Nn,m’ is:

2M+n-1

Nn,m = n (5-4)

Thus, for a 5-tone input and up to a third order analysis, the number of
inversions is approximately 285. For higher order responses, this num-
ber grows up very rapidly.

There are two basic approaches available to handle this inversion
process: 1. Numerical approach, or 2. Symbolic approach. The advan-
tage of evaluating symbolic transfer functions mentioned earlier makes
the symbolic approach more attractive. How much advantage is gained in
using a symbolic analysis depends on how much computational effort is
expended in obtaining the symbolic inverse of the reduced node admit-
tance matrix; thus, we need an efficient scheme for obtaining the sym-

bolic dinverse. The determination of the symbolic inverse will be the
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subject of section 5-3,

Another reason for using a symbolic analysis is concerned with the
determination of the zero-state time~domain response. The basic step
involved in the "association of variables" technique, which was present-
ed in section 4-3, is the prescribed combining of the various poles, and
their associated residues, of the ahgmented linear network. A pole Llo-
cation and its residue can be readily determined once the transfer func-
tion, as per egn. (5-1), is known. The entries of the symbolic inverse
of the reduced node admittance matrix, which form the higher order
transfer functions, will contain all the information needed to perform
the prescribed combining of the various poles and residues to determine
the zero-state response.

The reasons presented above stem from Looking at the computational
aspect of adapting Volterra series for computer-aided analysis. There
are other advantages gained from using a symbolic analysis. An impor-
tant one is that the generalized transfer functions can be obtained as
functions of s; once the inverse of the reduced node admittance matrix
is obtained as a symbolic function of s. This can be seen from examin-
ing egn. (5-3). The formation of the n-th order current source vector
.is a bootstrapping operation, as was pointed out in Chapter 3. That is,
an n=-th order source is formed from transfer functions of order less
than n. The first-order transfer function vector is determined from a
column* of the symbolic inverse of the reduced node admittance matrix.
The second order current sources, which depend on the elements of the

first order transfer function vector, are therefore formed from this

*This is assuming a single input circuit.
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column of [Y(s)J-1. The second-order transfer function _vector is ob~-
tained by pre-multiplying the second-order current source vector by
[Y(s1+sz)3-1, according to which the second-order transfer function vec-
tor eventually depends on the entries of inverse of the node admittance
matrix evaluated at (s1+sz). The third- and higher-order transfer func-
tions have a similar dependence. Thus, if the inverse of the reduced
node admittance matrix is obtained in symbolic form, with s retained as
a symbol, then a functional description of the nonlinear functions can
also be obtained. A concomitant advantage of this functional descrip-
tion is that theorems from multi-dimensional theory [5] (such as initial
value, final value, etc.) can then be applied to these transfer func-
tions to gain more insight into the workings of the circuit.

In Chapter 2 we developed recursive relationships to estimate the
error incurred in the truncation of the series solution. This error was
directly related to the L1 norm of the linear kernel function, which, in
turn, is related to the poles and residues of the linearized system.
Thus, we can get an estimate of the accuracy of our solution through the

pole-residue information provided to us by the symbolic analysis.

5-3. Symbolic Analysis Method

Symbolic circuit analysis by digital computer has been of consider-
able interest in the past decade. Many algorithms and methods have been
derived to obtain symbolic transfer functions of linear circuits (29].
Most of these methods use tree enumeration [46], signal-flow graphs
[29], or purely numerical methods [47] to obtain symbolic transfer func-
tion between the input and the output. These approaches are basically

useful for single-input, single~output systems. The inversion of the
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reduced node admittance matrix to obtain the open-circuit impedance ma-
trix, which 1is the problem we are dealing with, is basically a multi-
input, multi-output problem. The methods mentioned above can be adapted
to solving the problem at hand; however, the generation of multiple sym=
bolic functions using these approaches many not be satisfactory because
of excessive computer time requirements. Some other approach is defin-
itely warranted.

Published methods [25-27] for inverting the nodal admittance matrix
when the elements are ratioﬁaL functions of the Laplace transform vari-
aple s use pivotal techniques. It may appear that, since it is easy to
program a computer to perform polynomial arithmetic, these pivotal-~
techniques are a qatural way to approach the symbolic inversion problem.
Results from the use of such a technique have proved to be disappoint-
ing, mainly due to the following reasons:

(a) The process of inversion transforms the nodal admittance matrix,
which contains terms of the form as + §-+ ¢, into a matrix in which
every element is a rational function of s. The pivotal technigue pro-
duces the 1inverse matrix where common factors appear between numerator
and denominator, and unless some mechanism is built 1into the process
whereby these common factors are recognized and removed, the elemgnts
produced will have polynomials of excessively high order.

(b) When the circuit complexity is high, the evaluation of the symbolic
function at high frequency values can give rise to numerical problems.
for example, a circuit with 8 poles will have an s8 term in the charac-
teristic polynomial. When evaluated at 10 Mrad/sec, this term produces

0%,

a number equal to 1 0f course, this problem can be alleviated by
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obtaining a partial fraction expansion (PFE) form for the transfer func-
tions. But this again entails additional computations = not to mention
the numerical instability problems involved in root finding.

(c) It has also been found that pivotal techniques become numerically
unstable for higher order circuits.

we therefore seek another alternative for obtaining the symbolic
open circuit impedance matrix.

An approach based on the state variable formulation can be used to
achieve this goal. Specifically, consicer the general p-port augmented
Linear circuit of Fig. 5-1(a). We wish to solve for the transfer im-
pedances, zij(S)' i, =1,2,...,p, from the j=-th port to the i-th port.

Knowing these transfer impedances, we can write for the p-port:

V(s) = Z(ICs) = L)1 1(s) (5-5)

where Vis) = v () vz(s) cus Vp(s)] (5-6)
2(s) = [zij(S)] (5-7)

and I¢s) = LI,(s) I,(s) ... I (s)] (5-8)
- 1 2 p

Note that the vector V(s) contains entries which are the output voltages
and voltages that control the nonlinear elgment characteristics in the
nonlinear circuit.

To obtain E(s) symbolically, we write for the network of Fig.

5-1(b), the following state equations:
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x = Ax + Bi (5-9)
TR (5-10)

where x is the vector of state variables, and v and i are vectors whose
transforms appear in eqns. (5-6) and (5-8), respectively. Taking the
Laplace transform of eqn. (5-9) and (5-10), and solving for V(s), we

get:

V(s) = [C(sI-A) T

~ o~

8 + 0] 1(s) 5-11)
and, therefore, we get Z(s) to be

2¢s) = [CsI-A"1 B + p3 (5-12)

-~ ~ o~ -~ -~

which is identically tpe inverse of the reduced node admittance matrix.

The matrix (sI-A) can be inverted by applying the similarity

~ ~

transformation as follows:

MW (sI-A0M = s1 - Tam = sT - 2

~ ~ ~ ~n

1

or (s1-00"1 = mest-p~ 1 w7 (5-13)

-~

where the inverse of (si - ﬁ) is simply  diag {(5-11)-1,(s-xz)-1, .
where A; are the eigenvalues* of the A matrix and M is the modal matrix.

Substituting eqn. (5-13) into eqn. (5~12), we get,

*Here we assume distinct eigenvalues; the repeated eigenvalues can
be handled similarly.

121




Eemesi-n~ T M g + 03

~n -~ ~ ~

1(s)

tfs1-0"1 8 + 03 (5-14)

where € A Eﬁ and 8 A Qﬁ1g. Equation (5-14) yields the entries of i(s)
in partial fraction expansion form, which, as mentioned previously, is a
more desirable form from a computational standpoint. ALl information
regarding {(s) is contained in the matrices §, %, D and a vector con-
taining the eigenvalues. An algorithm for implementing this approach is
qiven in Fig. 5-2. It should be noted that the approach used here is
completely numérical and does not involve any coding and decoding of
symbols.

Now that an algorithm for obtaining the symbolic Z(s) 1is defined,
we can make a comparison of the computational effort involved between
using a symbolic inverse and the numerical inverse of the node admit-
tance matrix at each frequency point.

The computational trade-off between the symbolic approach and a nu-
merical approach for matrix inversion is very problem dependent. While
a clear-cut winner cannot be established, a tentative answer can be ob-
tained by noting the operations count, defined in terms of multiplica-
tions and additions, involved in the two schemes.

In the case of the numerical approach, the number of independent
nodes, n, and the number of branches, b, are the most important quanti-
ties for determining the computational effort along with the number of
frequency points at which the output is desired. Assuming that no
sparse matrix techniques are used, the numerical inversion of an (nxn)
matrix requires O(n313) units of work, where 0C( ) £ "order of", and 1
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Linear Circuit
Description

y

Extract ports required for
nonlinear analysis and
apply zero-valued current
sources across them.

Perform Hybrid analysis
of the p-port network:

Hz = D
1
Form x = Ax + Bj
V= 6+ 6F
(&!BJJ'?‘ c ~) i

i

Determine eigenvalues, ), and
eigenvectors of matrix A

R)

Form B = M-1B, t=cn

~ ~ o ~

1

Entries of Z(s) stored in
PFE form in"8,{,0,&8 A

Fig. 5-2. Algorithm for inverting Y(s) symbolically.
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unit of work = one addition and one multiplication. for k frequency
points, the work becomes D(kn3/3). This does not involve book—keeping
and other pre= and post-processing steps such as pivoting and iterative
refinement, which are wusually necessary to insure reliability and
robustness of the algorithm.

In the case of symbolic inversion using our approach, the important
parameters in the computational effort are the dynamic degrees of free-
dom, d, and the number of ports, p, where voltages and currents are in-
jected or measured. Using the QR algorithm [29,48] for computing the
eigenvalues of the A matrix, the operation count 1is 0(8d3). The total
work required for obtaining the inverse at k frequency points is there-

3 + kdpz). The number, p, depends on the number of nonlineari-

fore 0(8d
ties in the circuit, and is usually small. Also, if the network com-
plexity is Less than the number of nodes, the symbolic approach would,
in general, require Lless computational effort. As far as accuracy is
concerned, both the QR algorithm and the Crout's algorithm with pivoting
and iterative refinement yield accurate results.

The efficiency of the symbolic method rests heavily upon the avai-
lability on an efficient process for forming the state equations. The
hybrid analysis method [28,29], which essentially reduces to the

analysis of a resistive network, is well-suited for our purposes here.

We shall discuss this topic in section 5-6.

5-4. Spectrum and Distortion Analysis Algorithm

The output spectrum and distortion indices for a nonlinear circuit

with polynomial type nonlinearities can be computed on the basis of the

material of Chapters 3 and 4. A flou-chart of the basic algorithm for
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such a computation is given in Fig. 5-3. We describe the steps involved
in the following paragraphs:

Step 1: For the given nonlinear circuit, determine the dc operating
point. Expand each nonlinear function into a Taylor series about.the
operating point to get a polynomial representation for the nonlinear
element . in terms of the incremental quantities. Thus, for example, a

forward-biased diode having the "global" V-I representation
I =1 CexpaV/nkT) = 1] | (5-15)

can be expanded into a Taylor series to yield the following 1incremental

v=i representation:

I
. _ . q 0,9.2.2,% 9,33 )
1 1 (n ) v +3T(nkT) v + ... (5-16)

where I0 is the d¢ oherating current.

Step 2: Lump the linear part of the nonlinear elements with the existing
linear network to form the augmented linear network. Extract as ports
the nonlinear element branches and the branches that control the non-
linear clement characteristics (dependent nonlinear element case), along
with the output and source branches, from the augmented linear network.
Let V=10v,V, ... Vp] and L = (1, I, ... Ip] denote the vector of vol-
tages and currents for these ports, respectively.

Step 3: Using a symbolic analysis algorithm (see Fig. 5.2), obtain the

entries of the Z matrix as a function of s, where

Vs) = 2(s) 1(s) 5-17

fFor each of the input sources, and their associated frequency tones,
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Figure 5-3, Algorithm for Spectrum and Distortion Analysis.
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compute the first-order output voltages at each of the éxtracted ports
by using the appropriate entries of the Z matrix. This step amounts to
letting s = jwi in zij(S)’ the entries of 1(s).

Step 4: The second-order output spectrum is evaluated using the follow~

ing relationship:

(s1,sz) (5-18)

ngs1,sz) = Efs1+sz) 12

The vector 52(51,52) is the second-order current source vector, which is
formed by using the coefficients associated with the quadratic term of
the nonlinear element and the first~order output at the controlling
port(s) of the nonlinearity. The Latter information was obtained in
step 3. The given input tones are taken two at a time in eqn. (5-18),
along with the information derived in section 4-2, to evaluate the out-
put voltages at each of the p-ports.

The third-order output spectrum is obtained in exactly the same
manner. The first- and second-order outputs are used to form the
third-order current source at each combination frequency, which is then
pre-multiplied by evaluating E(s) at the combination frequency.

Step 5: Perform a histogram analysis of all frequency points and combine
the responses at points which are repeated. The distortion indices are

computed using:

IVO(ZWi)I
HDZ = TW- (5-19)
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IVD(3wi)I

1

where HD2 and HD3 denote the second and third order harmonic distortion

indices.

5-5. Time-Domain Analysis Algorithm.

With Z(s) in egn. (5-17) obtained in symbolic form, the zero-state
time-domain response to Laplace transformable inputs can be determined
by extending the algorithm discussed in section 5-4. This extension is
carfied on the basis of the materialkof section 4-3. Before outlining
the new algorithm here, we derive relationships for obtaining the com-
plete second~ and ‘third-order responses to a step input. The case of
nonlinear capacitor and inductor is not treated here. As mentioned in
[291, any nonlinear network can be equivalently represented by a non-
linear resistive network; we therefore treat this case herc.

Consider a network with multiple nonlinear resistive elements, as
shown in Fig. 5~4. As per steps 2 and 3 of section 5-4, we have the re-
tationship (5-17) for the augmented linear network. Then, for a Llumped
linearized system, the transfer function H:(s), i=1,2,.0.,p, is of the
following form*:

n,‘“(s>=%=z”<s>= {: =+ T RV cen
in j=1 j k=0
Then, for a step input, the first-order output at each of these ports

is:

H
&
¥
% *Without any lose of generality, we have assumed that the source
; port is the port number 1.
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(i)
$¢) = _f& 2{37 . 5 o sk (5-22)
i=0 i k=0
Notice that the first summation index starts from 0 instead of 1. This
accounts for the Aols term appearing due to the step input.
The second~order transfer function can be expressed as (see eqn.
4-40 and 4-36):

L
W& _ . (L, (L () _
Hy' (sq,85) = h 2, (5445508, Hy  (s9)Hg " (s5) (5-23)

=1
where L is the number of nonlinear elements, aét) is the coefficient of
the quadratic term of the l-th nontinearity. Then, the second-order

output Y;‘)(s1,sz) is given by:

(1) (1)
Y5 (51,52) 2 (51,52) X(s1) X(sz)

L

- (W L (L

= 15% 2, (s,¥5,) ay " Hyo'(sq) X(sg) Hio"(sy) HUsy)
2 L0 WL

= - 2% 1165150 85 Y4 (s) Y, (sy) (5-24)
[=

Substituting eqn. (5-22) in eqn. (5-24) and removing any impulses, doub-

lets, etc., we get the following:

(1)(5 s,) = - i: 2., (s,+s,) a(l) ( 2: :iii—é
’ 2 .
Yo (5205, R [t A S S PN
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k
(Y X (5-25)
+p.
k=0 S27P;
(i) (i) (i)

Y2 (s1,sz) can be reduced to Y2 (s), the transform of Y2 (t), by us-

ing the association of variables [5]1. This yields the following:

v = - ;_j st T -P-?—U) (r 3 M) (5-28)
2 312 g=1t S5 20 w0 S'Pn*Pn

*
Since the input is a step function, eqn. (5~28) can be simplified to :

g ey
() k k
W =X + X (5-29)
2 kK ST (s+pj)2

[}
where Bk and Ck are related to rk s and Ak

linear system poles, pj. The second—-order time response can be easily

's, and By is related to the

obtained from eqn. (5-29).

The third-order time domain response can be obtained similarly.  We
do not present it here in order to conserve space. Suffice it to say,
the third-order response can be obtained from the values of the poles,
and their associated residues, of the linearized system without perform-
ing any numerical integration or iteration. We now outline the algo-
rithm for obtaining the zero-state time-domain response of a network
with resistive nonlinearities (see Fig. 5-4):

Step 1: From the polynomial description of the resistive nonlinearities,
é form the augmented linear network. Extract as ports the nonlinear ele-

ment branches along with the output and the source branches. Let

*Here we have assumed that the linearized system had distinct poles.
The case of multiple poles can be handled similarly, but it compli-
cates the algorithm for computer implementation.
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Y=g v, ... Vp] and 1 = LI, I, ... Ip] denote the vector of voltages

1
N and currents for these ports, respectively.
Step 2: Using a symbolic analysis algorithm (see Fig. 5-2), obtain the

entries of the Z matrix in partial fractial expansion form, where
V(s) = 2(s) 1(S) (5-30)

Step 3: From the pole-residue information obtained in step 2, obtain the
g first-order output response to the Laplace transformable input. This

amounts to evaluating the sum of exponentials at each time step.

Step 4: Next obtain the second- and higher-order responses by appropri-
' ately associating the poles and residues of the Linearized system.

Thus, for example, in the second-~order case, this amounts to determining

8 Ck, and By in equation (5-29). Once this information is obtained,

kl
the output is determined by evaluating terms of the form Bk exp(gkt) and

C. t exp (pkt) at each discrete time point.

k

5-6. Program PRANC.

The Program for Analysing Nonlinear Circuits, known as PRANC, is a
digital computer program, written in FORTRAN IV, that computes up to the
third-order complete output spectrum of a nonlinear circuit with polyno-
mial nonlinearities driven by up to'tuo multi-frequency inputs.* In the
process it computes the Volterra transfer functions at each of the fre-

quency combinations involved. PRANC also computes the zero-state time=~

N
i
B

domain response of circuits with only resistive nonlinear elements and a

step input.

*Thus, mixer~type circuits can be analyzed using PRANC.
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As mentioned previously, the solution of the nonlinea; circuit
problem reduces to the repgated solution of the linear circuit. To ef-
ficiently handle this basic problem, PRANC uses a semi~symbolic approach:
[29] for analysing the augmented linear circuit. Specifically, the in-~
verse of the reduced node admittance matrix is obtained in terms of the
symbol s using the state equation formulation as described above.

The state equations for the linear circuit are formulated via the
Hybrid analysis method [28,29]. 1If T denotes port branches in the tree
[29] and C denotes port branches in the co-tree of a Llinear circuit,

then the Hybrid analysis yields the following relationship:
- .
11 M2 M3 My [y

Hap Moo Moz Houl IV,

g H3p Haz Mgl |vy

H

[}
(=]

(5-31)

Har Moo Mz Ml e
.\ - - -
H z

By suitably forcing the various ports in the Llinear circuit 1into the
tree and co-tree branches, PRANC uses the above formulation for setting
up the state equations. ALl capacitor branches are extracted as ports
which necessarily become part of the tree and all inductors, nonlinear
element branches (which are assumed to be voltage controlled), and input
and output branches, are extracted as ports which are forced as part of
the co-tree. The matrix H is obtained in a form where H,, =1 (I being
the identity matrix), H,, = H,; =0, Hoy = I. This yields the capacitor

currents and the inductor and nonlLinear element branch voltages in teras

of known variables. Thus, the A, B, C, and D matrices in the state and
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output equations (see egns. 5-9 through 5-12) are obtained from the sub-
matrices of H. The formulation of eqn. (5-31) is quite fast, since it
only involves the analysis of a resistive network.

It is noted that the matrix H may not exist in idealized circuits.
However, for most practical circuit this matrix is almost certain to ex-
ist [29]. It should also be noted that the above formulation of state
equations tacitly assumes that no degenerate cutsets (all inductor-
current source cutset) or degenerate loops (all capacitor-voltage source
Loop) are present in the linearized circuit. These restrictions are not
very severe, especially when the realistic lossy models of circuit com-
ponents are taken into account.

The next step in the PRANC algorithm is to determine the eigen-
values and the eigenvectors of the A matrix. For this purpose, the dou-
ble QR algorithm [48] for obtaining the eigenvalues is employed. The
basic steps, such as matrix balancing, reduction to Hessenberg form,
shift of origin, are employed in this algorithm to make it efficient and
reliable. The eigenvectors are also obtained in the process.

ALl information about the inverse of the reduced node admittance
matrix is stored as three matrices and a vector. The matrices are §, 2,
and D (see egns. 5-14), and the vector contains the eigenvalues. It is
noted that the solution of eigenvectors for repeated eigenvalues can be
a numerical unstable process [49]. Thus, the programs outputs a diag~
nostic message when such a case occurs.

The first-order voltage response at the prescribed ports is now
computed from the entries of the open—circuit impedance matrix. These

ports include: source port, output ports, nonlinear element ports, and
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ports which control the nonlinear element characteristics. The response
is calculated for each user prescribed frequency, and stored as a two-
dimensional array: port number vs. the frequency number.

The second-order voltage response is computed at each distinct com-
bination of the input tones taken two at a time. The ports of interest
are the same as that for the first-order response. The second-order
current source vector, at a particular frequency combination, is formed
by considering the nonlinear element type and the voltage(s) controlling
it, which is determined from the first order response array. This vec-
tor is pre-multiplied by the open-circuit impedance matrix evaluated at
the combination frequency to obtain the second-order transfer function
vector at that frequency. The response voltage at this frequency is
then determined from the transfer function value. The second-order
transfer function values are again stored as a two-dimensional array:
port number and the particular frequency combination.

The third-order response is determined similarly. The third-order
current source vector is formed by properly picking out the values of
the first- and second-order transfer functions. The indexing of the ar-
rays is of critical importance to the efficient implementation of this
scheme.

When the time-domain response of a circuit with only nonlinear
resistive elements 1is desired, the procedure is identical up until the
formation of the symbolic open~circuit impedance matrix. The first=-
order step response is easily evaluated using the pole-residue informa-
tion of the Linearized circuit. The second-order response is evaluated

by performing the association of poles and residues in a prescribed
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manner. The third-order response is computed similarly. No numerical
integration is used in these computations.

Since the hybrid analysis forms the basis for forming the open cir-
cuit impedance matrix, the following linear elements are allowed by the
program*: resistors, capacitors, inductors, voltage or current sources,
and all four types of controlled sources. The nonlinear elements are

assumed to be voltage controlled, with the following polynomial descrip-

tions:
i = a,flv.] + a flvel + a flv>] (5-32)
P 1" 7p 2 7p 3
i = aggv + @V + a,v + a v e
P 107q 01%r 207 q 02'r
a,.vVv +a v3 + a v3 + a,4V. . V_ + aj.v.y (5-33)
M%'r 30°q 03'r 12°qr 21°g'r

where in and v, are currents a:d voltages across branch n, f is a Linear
operator of the type g;; :L, or constant, and aij are constants. It
should be noted that egn. (5-33) mo@els a 3-port device.

In the present version, PRANC imposes the following restrictions on
the circuit parameters: maximum number of elements (both Linear and
nonlinear) = 50; maximum number of nonlinear elements = 10; maximum num-
ber of dependent nonlinear elements (eqn. 5-33) = 5; maximum number of
reactive elements = 20; maximum number of independent nodes = 30; number

{ of input frequencies = 5. These restrictions can be relaxed if desired.

The modular structure and algorithms of PRANC makes it possible to ex-

tended the order of analysis in a straightforward manner. The Llimit on

#*A direct nodal analysis would only allow for voltage controllied |
current source. P
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the highest order will eventually be dictated by the storage restric-
tions of the computer.

The validity of the results obtained from using PRANC has been ver- *
jfied through hand-worked examples and comparing with the results ob-
tained from NCAP [44]. In the next chapter we will present two examples

showing the results obtained from the use of PRANC.
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CHAPTER 6

NONLINEAR CIRCUIT ANALYSIS EXAMPLES

6-1. Introduction

In this section, results from the analysis of two nonlinear cir-
cuits using PRANC will be discussed. For the sake of brevity, the cir-

cuits are kept simple. A brief comparison of the execution times for

PRANC and NCAP [44] is also included in this section.

Previous works (7,10,36] have used the Volterra series method to

study the distortion phenomenon in transistor amplifiers. These authors

show a good agreement between the predicted and the measured values of

the response for small signal operation. Thus, the Volterra series is

established as a viable approach for analyzing nonltinear circuits. 1In

section 6-2, a single stage untuned amplifier is analyzed using PRANC.

Time-domain analysis using the Volterra series method has not re-

ceived much attention in the literature. As such no practical circuits
have been analyzed using this technigue to study the validity of the

results obtained. In section 6-3, the step response of a simple non-

linear circuit is obtained. These results are then compared with those

obtained from a numerical integration method.

Finally, section 6~4 compares the execution times for the specific

circuit examples analyzed using PRANC and NCAP.
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6-2. Spectrum and Distortion Analysis Example.

Consider the single stage untuned bipolar transistor amplifier cir-
cuit shown in Fig. 6~1. This circuit configuration has been taken from
£10]. The results obtained from using PRANC are in excellent agreemenf
with those obtained from using NCAP, which, as reported in [10], are in
good agreement with the measured results.

The eguivalent circuit model £7] used for the bipolar transistor is
shown 1in Fig. 6-2. It contains three nonlinear elements: a nonlinear
resistor, a nonlinear capacitor, and a dependent nonlinearity. The
operating point of the transistor is: vCE = 10v, Ic = 10mA. The per-

. * . . .
tinent parameters of the transistor are given in Table 6-1.

Table 6-1. Transistor Parameters for the Circuit of Fig. 6~1.

Parameter value Parameter Value
IE 11.4mA n 4.6
Ic 10.0mA a 0.125
ponax e b s
vCB 9.27 V re 635ka
vCBD 140. v cE 1040pF
u 0.348 cc1 11.1pF
k 25pF c3 1.5pF

The nonlinear elements, using the Taylor series expansion of the

nonlinear functions, are represented by the following polynomials:

#These parameters depend on the transistor type.
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g K(vR) g1vR + gZVR + gsz 6-1)
dvc dv§ dvz

1c - P(Vc) - CC1 a?—‘.' ccz-d—t-—+ Cc3'd—t— (6-2)

_ 2
g = SVarvep) = 990% * 901Vep ¥ %20Vk * 902"

-
1}

3 3 2 2
* 991 * 930YR T %03Veh * 921VRVeb T 912YRVcb (6-3)

Using the analytical formulae for 9:, Cci, and g_ij derived in (7] and
the transistor parameters given in Table 6-1, the numerical values of
the coefficients of the polynomials appearing 1in egns. (6-1) through
(6=3) are obtained. These values are given in Table 6-2.

The values in Table 6-2 along with the linear element values, the
circuit topology, and the source information are used as the input in-
formation for PRANC. The effects of the frequency and the input ampli-
tude on the output response are discussed below.

6-2.1. Effect of Frequency: The effect of frequency on the system

response 1is airectly related to the effect of frequency on the transfer
functions. In the following pafagraph we elaborate on this concept.

The relationship of the first-order steady state response and the
first-order (linear) transfer function is well understood. For the cir-
cuit of Fig. 6-1, the first order transfer function magnitude charac-
teristics is shown in Fig. 6-3. 1t should be apparent that the amplif-
ier has a fairly broadband first order response.

The magnitude characteristics of the second-order transfer function

as a function of freguency can be plotted similarly. However, in this
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Table 6-2. Coefficients of the polynomial type nontinearities in Fig.

6-2.
Nonlinear Cccfficient
Element Values
Emitter Resistive g,=0.4348 2 gz=8.291
Nonlinearity, K(vR) g3=1.054x10
Collector Capacitance Cc1=11.1x10-112S Cc2=-1.996x10-13
Nonlinearity, P(vc) Cc3=4.?84x10
Collector dependent 940=0-3856 go1=1.871x10:g
Nonlinearity, G(vR,vcb) g 0=7.419 -7 goz=3.633x10
911=7.21Sx10_10 g3o=94.66 -5
903=3.397x10_7 gz1=1.388x10
912=1.401x10
143 r.
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case, two frequencies are involved, and the significance of the magni-
tude plot must be clearly understood. An example of this plot is shown
in Fig. 6=4, which depicts the magnitude characteristic of the second
harmonic frequency response as the input tone is varied from 100KHz to
100MHz. Similarly, if the magnitude characteristics of an intermoduta-
tion frequency, wiys Were desired, a similar plot of 'Hz(jmi'jmk)l' such
that wg + w = w__. in the band of interest, would provide the informa-

k M

. % . .
tion. Thus, by letting wg = - mKl, and sweeping w, across the band

lopy
of interest, the information on how the magnitude of an intermodulation
product will vary can be obtained.

The magnitude characteristic of the third-order transfer function
has a similar significance. In this case, a combination of three

discrete fregquencies is involved.

6-2.2. Effect of Input Amplitude. The effect of the input amplitude

on the distortion products for the amplifier circuit is shown in Fig.
6~5. A single tone at 2.5MHz is used as the input to the amplifier and
the second and third harmonic outputs are computed. On the double loga-
rithmic paper, we note that the distortion plots are straight Llines,
with my > m, > My, where Map Moy, and m, are the slopes of the first,
second, and third harmonic distortion, respectively. It is noted that
the validity of the small~signal model extends up to approximately 25mVv
input amplitude, after which the Volterra series prediction is more pes-
simistic than the measured results for the amplifier (101. Also, the

harmonic distortion indices for a given input amplitude can be deter-

*Since PRANC computes the entire output spectrum, it automatically
takes the negative freguencies into account. Thus the user does not
have to specify, for exemple, a -~ 2.5MHz and 3MHz frequency to get
the intermodulation product at 0.5MHz.
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mined directly from Fig. 6-5.

6-3. Time-Domain Analysis Example. Consider the simple resistive non-

linearity circuit of Fig. 6-6. The v-i characteristics for the non-~
linear element is i=10v3. In this section we will determine the step
response of the circuit using Volterra series method and then compare

the results obtained from an exact numerical integration method.

" ig=1ov3
AN~ g —
+
Auft) wwmden C R
u P ‘g 1 VR -
— 4

Fig. 6-¢. A Nonlinear Circuit

By inspection, the first-order transfer for the circuit is:

Ho(s) =t s p = M 6 =4 =1, (6-4)
1 TsEm i fTRe P T O TR 6 = L%

For an input Au(t), the first order response, y,(t), is given by
1

we

vy () = a1 - e PY ; 5 =~§£ (6-5)

Since there is no square term 1in the nonlinearity, the second-order

transfer function 1is zero. The third-order transfer function is found

to be:
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H3(s1,sz,s3) = - E—'((s1+sz+s3 ) H,(s,2H, (s, )H, (s) (6-6)

)+TG+G1)/C 1771717727173

and, therefore, the third-order output:

A3

Y3(s1,s2,s3) = H3(s1,sz,§3) s

6-7)
15283

Substituting egn. (6~6) in egn. (6-7), and carrying out the association

of variables, the third-order response is given by:

s Wll 15 3 0.5 _ 3 _
Yz(s) = K[; L= 5+ S+3é}' K =10 A”/Cp (6-8)

Therefore, the approximate response of the circuit of Fig. 6-8 is given

by:

y(v) y1(t) + y3(t)

a(1 - e-pt) ~ K[1 - 1.5exp(-pt) - 3ptexp(-pt)

- 3exp(-=2pt) + 0.5exp(-3pt)] (6-9)

The response y(t) can be calculated using egqn. (6~9). The step response
of the circuit of Fig. 6-8 is not as interesting as the error incurred
in using Volterra series. A summary of the error vs. the l1 norm of the
linear kernal function 1is given in Table 6-3. The norm is varied by
changing the values of R1 in the circuit. This alters the value of p,
but not of r, in egn. (6-4). An estimate of the truncation error as
predicted by Theorem 2-2 is also given in Table 6-3. Clearly, there is

a good agreement between the calculated and the predicted values of this
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error.

Table 6-3. Summary of Truncation Error

Calculated Error

l1 Norm of Predicted Errorx
h(t) 0(3OZGSXS) Max imum Steady
State
0.1333 1072 1072 1072
0.0909 1073 T 1073
9.9x1073 1077 107 10710
*"Order of "

6-4.  PRANC vs. NCAP

Both PRANC and NCAP [44] are based on the Volterra series method
for analyzing nonlinear circuits. The basic algorithms used by the two
programs are, however, different. PRANC uses a semi-symboli¢ analysis
procedure, where as NCAP uses a purely numerical approach. Furthermore,
the features offered by the two programs are different. NCAP allows a
free-format 1input and computes the transfer functions and node voltages
at 2"-1 discrete frequency points, where n is the order of the
analysis.* PRANC, on the other hand, requires a fixed format input, but

computes the complete output spectrum. Thus, the number of output fre-

*For NCAP, this happens to be the number of 1nput frequencies also,
since the user must specify n 1nput tones in order to obtain an n-
order analysis.
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quency points for PRANC is much higher than that for NCAP. Because of
the algorithm and the feature differences, the execution times required
by the two programs for analyzing similar circuits are different. In
the following paragraph we compare the approximate execution times for
the two programs on the CDC 6500 computer at Purdue University.

The bipolar transistor amplifier of Figure 6-1 was analyzed on both
PRANC and NCAP. For a two—~tone input and up to a third-order analysis,
PRANC required 1.74 sec to computed the complete output spectrum (in-
volving approximately 32 frequency points). For a 5-tone input, it re-
quired 6 seconds to do the same job (approximately 150 points). By con-
trast, NCAP required 7.5 sec to compute the response at 7 discrete fre-
quencies for a three tone input. Other examples exercised on PRANC and
NCAP show a similar advantage in execution times: PRANC, despite pro-
viding more information to the user, requires less execution time then

NCAP. A more detailed comparison of the two programs is contained else-

where [41].
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CHAPTER 7.

CONCLUDING REMARKS

7-1. Summary

The contents of this thesis has dealt with the various aspects o%
Volterra series analysis of Lumped systems, with polynomial type non-
linear elements, with special emphasis on nonlinear circuits. The fun-
damental dintent behind this work is to show that the Volterra series
method could be used in a variety of engineering calculations - particu-
Larly computer-aided analysis of mildly nonlinear systems.

By investigating a concrete, ye:c general, set of differential equa-
tion that characterize lumped nonlinear systems, a unified theory has
been developed here which can be used to study the behavior of such sys-
tems.

By analyzing how the series solution converges, simple and easy to
use recursive relationships have been derived. These relationships can
be used for: 1) estimating the error incurred in truncating the series;
and 2) determining the bound on the input function for which the series
converges., The higher-order kernel functions are not required a priori
in these relationships; only the Llinearized system need be analyzed to
determine how, if at all, the series converges.

The determination of the transfer function by the direct applica-
tion of the multi-dimensional transforms has been developed here. This
approach provides a more direct and rigorous way of characterizing the
system using Volterra series,

The entire investigation culminated in the development of a comput-

er program which, through the use of semi-symbolic analysis, provides an
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efficient tool for spectrum and distortion analysis of mildly nonlinear
circuits. The time-domain analysis of nonlinear circuits has also been

investigated.

7-2. Further Research

There are several problems that were unraveled during the course of
this investigation. We mention a few of them here.

In dealing with the convergence of a class of Lumped nonlinear sys-
tems, we showed that the truncation error involved three quantities: 1)
the %, norm of the Linearized system, 2) the bound on the system input,
and 3) the coefficients of the polynomial describing the nonlinear ele-
ments. An important consequence of this result leads to the following
qﬁestion: How do we speed up the convergence of the series solution and
yet obtain meaningful results? One factor which has a direct bearing on
the answer to this question is the criterion and method used for approx-
imating the nonlinear function by polynomials. By changing the coeffi-
cient values, the convergence would also change. These coefficients
depend on the norm of the error function we choose to minimize when ap-
proximating the nonlinear function by a polynomial. Thus, the need for
establishing a criterion (choice of a norm) to arrive at a rapidly con- ﬁ
verging series is important.

Another problem is related to the interpretation of the nonlinear 5
transfer functions. We have shown that these can be obtained directly {
from the application of multidimensional transforms., In the case of
Llinear systems, the poles and zeros have a direct relation to the system

response and stability. Since the Volterra series solution regards the

Linear system as a lLimiting case of the nonlinear system, an important
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question to ask is: Is there a relation between the nonlinear transfer
functions and the system stability? How does one interbret, for exam-

ple, the significance of P in the (s1+s +p1) term in the second-order

2
transfer function? If these questions can be adequately answered in
terms of the circuit parameters, a significant insight into the behavibr
of nonlinear systems would be gained. As pointed out earlier, working
in the transform domain is much simpler and algorithmic as compared to
working in the time domain.

The synthesis problem using Volterra series has not received much
attention. It 4s an important problem, one which can be used in a
variety of applications. One of them, for example, could be to improve

the received signal-to-noise ratio of a signal subjected to nonlinear

processing.
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A-1.

APPENDIX

_A_. For Chapter 3_

Derivation of Eqgn. 2-23:

According to eqn. (2-4):
= T T -T -1 T 4T
yz(t) ]: E hz( 1 2)x(t 1)x(t z)d 1d 2
from egn. (2-19), we have

y,(t) = -ca, £IIh(t-T)h("-T1)ﬁ(T-T2).

x (T Ix(T

%, at

T
)d‘1d 2

We make the following change of variables:

Uu st-r1 ==> 1 =t -y
u1 =t - 11 == 11 =t ~ u1
= - == = -
Upg =t =T > ErEhn

Substituting eqn. (A-3) in eqn. (A~2), we get

y,(e) = -ca, fj";[ htw) Rluy=u) M) (uymw)

x(t-u1)x(t-u2)dudu1duz

Re~definining v = 1, u, = 11, uy = s in eqn. (A-4), we

(A-1)

(A=2)

(A=-3)

(A-4)

Rt Tl ST e




y,(t) = -ea, IIZI h(t) ACry, = ﬂ('r2 - 1).

ddtdt, dT (A-5)

x(t - t1) x(t - t2 1975

Comparing (A=5) with (A-1), we get

-T)dt (A-6)

hy(t,,1,) = sazjg h(t) 5(11-1) h(fz

2

A-2. Proof of Theorem 2-2:

Given

L) y(t) + & anyn(t) = x(t)
ns2

Applying the inverse operator we get

y (1) +f: h(t - 1) [Z anyn(r)] dt = f: h(t - ©x(t)dt  (A=7)
n=2

’

Assuming a series solution for y(t), such that
y(t) = y.‘(t) + yz(t) + y3(t) + *° (A-8)

and substituting in eqn. (A~7), we get

a [ ] [ ) n _ _
r Y5 (0 +j"; h(t - 1) [2 a (L yi(r))] dr = J: h(t - 1) x(t)dt

$=1 n=2 " §=1
(A-9)

Solving for y1(t), yz(t), «ee Successively in egn. (A=9), we get

the following set of equations:
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y () - j: h(t = 1) x(t) dr

2
Yot + a, jz h(t = ©) yg() dr = 0

» 2 3 -
)'3(t) + a, !o h(t - © [a2y1(1>y2(1) + a3¥1(1)} dt =0

Ye(D + £t -1 i (0 dr=0 (A-10)
where in(r) is shown [10,12] to be:
n
1n(t) = g akyn,k » n22
k=2
L-m+1 (A-11)
Yiijmm ¢ YL N,

y =
L I’

Then, for G =I: |h¢x)|dr and

X=  max [x(v))
0<t<w=

we get

Y, = ly(t)| < 6x

3.2
Yz §_|82|G X

v, <6l |
where Yn is given by eqn. (2-38) after we use eqn. (A-11). The inequal-

ity (2-37) then follows from egn. (A-8).
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B. For Chapter 3

B-1. Derivation g_f__l_ELE(QJ:

Using the functional property of the §~function, we can write

2 = £ f yy 8 = 108G - 1) dr,dt, -1

Introducing dummy variables t1 and ty in eqn. (B-1), we get
2 o
= = $ - [ - -
y(ty,t5) = y () ) y ey (8¢, - 1 )8, - T,) dT dr, (8-2)

Taking a two-dimensional transform of egn. (B-2), as per eqns.

(3-11) and (3-12), we get

The derivation for L[?n(ti] is done similarly by introducing n-delta

functions first, etc.

B~2. Derivation of z[:-;? yz(t)]

Using the chain rule, we get

d

a-t—yz(t) = 2y(t) %;y(t) = 2y(t) y' (O (B=4)

Using eqn. (B-2), we re-write eqn. (B-4) as:

1 ]
2y (t) y*' () =5 [Zfof y(t,l) y'(tz) 6(t1_- T.‘) cS(t2 - 12) dr1dt2

+2 f0f yixrdy'(r) 6ty = 1,) 6(t, = 1) dr,dr,  (B-5)

Taking a two dimensional transform of eqn. (B-5), we get




=1 -
Y(s1,sz) -'5-[?52Y(s1)Y(sz) + Zs1Y(s1)Y(szi] (B-6)

(s, + sZ)Y(s

1 )Y(sz)

1

The derivation of LBT yn(t)] is done similarly.







