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ABSTRACT

Let fX., i < k(n), n > 1} be a triangular array of row-wiseni -

independent random variables. If S(X ... ,X .) is a statistic
ni' n]

based on X nl, ... ,X nj, a cumulative process is defined by

Sn (t) = S(Xnl.... ,Xn k( n )t). The asymptotic behavior of Sn is

determined for S a percentile and for S a smoothly weighted linear

combination of order statistics.
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SIGNIFICANCE AND EXPLANATION

Percentiles and linear combinations of order statistics are statistics

which are sometimes preferred to averages because they can be less sensitive

to the presence of a few wild observations. It is well known that for large

samples, both percentiles and linear combinations of order statistics

resemble averages in that the appropriately normalized statistic is approxi-

mately normally distributed, with parameters which depend on the underlying

distributions.

This pap-r shows that percentiles and linear combinations of order

statistics resemble averages in a stronger sense. It is well known that if

a sequence of averages is plotted against the number of observations contrib-

uting to the average, and the resulting plot is rescaled appropriately,

then for long sequences the picture will act like a realization of a Brownian

motion path. This paper establishes that this is still true if the averages

are replaced by percentiles or by linear combinations of order statistics.

Although this resemblance may appear to be an abstract probabilistic

theorem, these results can be applied to estimation of monotone functions.
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CUMULATIVE PROCESSES: LINEAR COMBINATIONS
OF ORDER STATISTICS AND PERCENTILES

Sue Leurgans

1. Introduction and Notation.

Let {X ., 1 < i < k(n), n > 11 be a triangular array of row-wise independent

random variables. Let S(yI .... yk
) denote a statistic based on Y1 .... Yk" Define

the cumulative processes Sn on [0,11 by S n(t) = S(X nl,.,X n,k(n)t ) For examrle,

if S(YI'. . = y1 + "'" + Yk' then Sn is the familiar cumulative sum orocesses.

It is well known that if { ni' 1 < i < k(n), n > 11 is the triangular array of

expected values of the X .'s and M is the deterministic process defined byni n

M nt) =S(Pnl, ... , t), k(n) 1/2(S - M ) converges weakly to a Gaussian processMnt = n "''n,k(n)t' n n

which is determined by the variances of the Xni 's. (This conclusion assumes only the

existence of the first two moments and the validlity of the Lindeberg condition.)

Since, in general, S (t) is a statistic for t fixed, the study of the limitinq
n

behavior of the process S is the study of the limiting behavior of a sequence of
n

statistics. It is natural to suppose that (under appropriate conditions) cumulative

percentile processes and cumulative linear function of order statistic processes con-

verge weakly to Gaussian processes. This paper focusses on these two processes under

conditions which arise in monotone estimation.

Neither of these processes have certain convenient properties of the cumulative

sum processes. The most convenient of these properties is that summing is a linear

operation. If S is a linear function of order statistics or a percentile,

S(y + z) 30 S(y) + S(z) for arbitrary y and z. This causes the extension from the

i.i.d. case to the independent, nonidentically distributed case to be more complicated

for cumulative percentiles and cumulative linear functions of order statistics than

for cumulative sums. This paper shows that under suitable conditions, these convenient

properties are almost present in the sense that cumulative linear function of order

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024. This
raterial is based upon work supported by the National Science Foundation under Grant
Nos. MCS77-16974 and MCS78-09525.



statistic processes and cumulative percentile processes in C[0,13 are asymptotically

equivalent to sums of more tractable processes. For smoothly-weighted linear functions

of order statistics, these processes are a non-random element of C[O,l] and a cumula-

tive sum process. For percentile processes, a non-random function and an empirical

distribution function are used. The empirical distribution function is the cumulative

sum obtained by formal substitution of delta-functions in the results for linear func-

tions of order statistics. Unfortunately, this formal substitution does not meet the

conditions of Section 2. Section 3 therefore consists of an independent proof for

percentile processes. Section 4 compares the conditions imposed here with assumptions

other authors have imposed in related problems.

Unless otherwise stated, {Xi, 1 < i < k(n), n > 1} will be a triangular array

of random variables such that {X , 1 < i < k(n)} is (for every n) a set of

independent random variables. F ni will be the cumulative distribution function (CDF)
k(n)

of X .. F is defined by F (x) = A F.(x)/k(n). The average CDF F can be
ni n n nI ni=l n

thought of as the CDF of a "randomly selected" member of {X., 1 < i < k(n)). This
m

notation will be extended to m < k(n) by defining Fn,m(X) = ni(x)/m. For anynm i=l n

thset of k nimubers, x . .Xk; fxl,....x}(m) will denote the m order statistic

of the set of numbers.

W will denote a standard Wiener process, usually in C[0,1]. Most of the pro-

cesses constructed in this paper are to be thought of as members of C[0,1], defined

by linear interpolation between a finite set of points. This construction will be

left implicit.

Integrals without limits are integrals over (0,11.

Additional notation will be defined as needed. When quantity A is being defined

and set equal to the expression B, this will be written either A B or B A.
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2. Smoothly Weighted Linear Combinations of Order Statistics.

Let X n denote {Xl . X Define k(n) weighted sums of order
n,m;) nm (j)*

statistics with weight function J by

m
S = J(--)X 1 <m <k(n)

nm j~ m~ln,m;)

Set S = 0 and define a random function in C[0,11 by S n(m/k(n)) = k(n))- /2Snm'

0 < m < k(n).

The first part of the theorem of this section will be proved under the five

regularity assumptions, Al-A5.

Al: J is a real-valued function on the unit interval whose derivative J'

exists everywhere on [0,11 and satisfies a H6der condition for 1/2 < y < 1,

that is, there is a constant KL  such that IJ' (u) - J' (v) < KLIu - v1Y .

A2: The support of J is a compact subset of the interior of [0,1].

A3: lim (k(n))1 / 4  max sup ( .x) - F Cxli = 0.-- n-  l<j <k (n) --< x<. ' n~x

A4: There exists an open set U containing the support of J and a continuous

CDF F such that lim t (x) = F(x), for all x such that F(x) c U.
n

A5: {F , n > 1} is a tight collection of cumulative distribution functions.

The second part of Theorem 2.1 imposes two more conditions: one a rate condition and

the other limiting discontinuities.

A6: There exists an open set U containing the support of J such that

im A (k(n))1
/4 

< -, where A = sup IF-l(u)-F-l(u)J.
n n uEU n

A7: F and F are strictly increasing on the support of J.-- n

Note that conditions A3, A4, A5, A6 and A7 are trivial if all of the F n are the same

continuous strictly increasing distribution function F.

The first two assumptions involve only the weight function J, and not the random

variables. Al is a smoothness condition for J', which forces J to be continuously

differentiable. If y = 1, the H6"ider condition is a first-order Lipschitz condition.
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Since J is a bounded function on a bounded interval it is no loss of generality to

require y < 1. The existence of J' everywhere ensures that the Mean Value Tl.eorer

can be applied straight-forwardly. A2 implies that the weighted sum of order srttst.

trims and guarantees the existence of certain integrals. The trimming implies tat

arithmetic mean does not meet these assumptions. The smoothness conditions are not

by percentiles or by trimmed means. The next two assumptions involve the random vari-

ables only, and not the weight functions. A3 asserts that, as n gets large, the
th

distributions of the random variables within the n row of the triangular array

approach each other quickly enough that the nonidentical nature of the distributions

within each row does not disturb the asymptotic behavior. A4 asserts that the mean

distribution functions approach a limiting distribution function, except possibly in

the tails. The limiting distribution determines the limiting variance. The tail condi-

tion A5 is used to show that the weights J(+ can be replaced by J(%. A5 does

not require that the F converge in the tails, only that mass does not escape ton

infinity. The first part of Theorem 2.1 does not require any assumptions about the

rate of convergence in A4. A6 is just such a condition. A7, which does not involve

the tails -f the mean CDF, is used to ignore ties.

Theorem 2.1. Under Al-A5, if {Xnl, . Xn k(n) are mutually independent for

every n, then
1 W
ISn(-) - D (0 - Cn(.] -> w
o Sn(- n Cn n-V*

where

22Y = f J(F(x))J(F(y))F(min(x,y))(l- F(max(x,y))dxdy

and D and C are defined by (1) and (2) respectively.n n

Cl) ~ n'kn) = An) [iRnmuJVn(u))drnm(u) + f' Rn (u) J(u) dU (u)]
mI) n- (W R)nUnm (u)J ' VnM nm nnm

r m F*(u)
f K'kn)- I Rn (u)J(u)du + f G(u)J(u)du + f J(uj u y n - dGMI.

j=l m



G, Rn , F*, r n, U and V are defined below. If A6 and A7 also hold, then
n nj i ram nm

D P-N 0
n

Sketch of proof of theorem:

The proof is based on rewriting the process S as the sum of ten explicit pro-n

cesses. Five of these processes will be grouped to form D and C . Four of then n

processes are shown to converge weakly to zero. The remaining process is shown to have

a non-degenerate proper weak limit.

Since this proof is necessarily very intricate, most of the details are suppressed.

The proof consists of five lemmas.

Throughout this section, G will be used for inverse distribution functions

(assumed left-continuous, if there is any ambiguity): G(u) = F (u) and G (u) = F-(u).
n n

Set R (u) = G (u) - G(u). Thus A6 assumes that (k(n)) upIRn M i bounded

n ni uEU

Transform the X 's into [0,1] by Y = F (X .). Denoting the corresponding
ni ni n ni

distribution functions F*. = F 'G , it follows that X. = ( (Y .) with probability
ni nl n nl n ni

one and that Y = F (X .). Let r be the empirical distribution function of
nm;j n nm;J nm

[Y . Y ). In the course of this proof, the empirical distribution function T
ril nm

will be compared with the uniform distribution function, and the difference will be

rescaled to have a non-degenerate limiting distribution. Therefore set

Urn(u) = Ym Cnm(u) - u). In this notation, off a null set,

S = m f J(-- 1 r m (u))G (u)dn (u). If G is continuous, the null set is empty.nm n m n n m n

Since the failure of the equality on a null set will not affect the weak converqence,

this possibility will not be dealt with explicitly in sequel.
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Define the ten processes below by linear interpolation between the following points:

M. ()=O 0 0<j9< 9
]nj

M= f [J(mr--- n(U)) -J(r (u))]G (u)dF Cu) ,

On W m 1jn n rm

Mln() = f U ( [J'(V (u)) - J(u)]G(u)dr (u)lnTn)nm nm n

(See Lem, a 2.1 for V .)
nm

(3) m f U
2 

(u)d[G(u)J' (u)](3 2nik-n)) TX 2(n) n m

m

3n~ (n)m 2m7(n) j Ynj)J,(Ynjm - (

Mn k' = 
f 
Rn (u)Un (u) J' (Vnm (u)) drnm (u)

m)M5n (k-- ) = - n (u)J(u)dUnm (u)

m m(4) M s -n))rJ=/?T nn

(5) M(n(-)n)) = 7 R n(u)J(u)du

n = [f I' J(u)u - j F* (u) 1  
•

M m m

8n(--)= -) G(u)J(u)du

m Z.

91 (n where

(6) Z = f J(u)[F* (u) - I udG(u)
nj nj fYn -1u)nj-

Note that all the component processes are piecewise linear with corners at the same

coordinates. M arises %,hen the weights J( are replaced by J(). Mn M2

and M3n are the processes defined in Guiahi (1975). The assumptions Al and A2 imply

that the total variation of GJ' is finite and therefore that the integral in (3) is

finite. The integrals in (5) to (6) exist and are finite by Al and A2. D and Cn n

are formed from M4n through M8n'
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Dn(t) =M 4n(t) + M 5n(t), 0< t <1.

Cn(t) M 6n(t) M 7n(t) + Mn(t) 0 t I

Msn is the centering constant for asymptotic distributions of linear combinations of

order statistics of independent, identically distributed random variables. M6 n is the

correction necessary if the assumption that the random variables all have the same dis-

tribution is relaxed. (See Shorack (1973), Wesley (1977).) M7n can be thought of as

a further correction necessary when centering an entire process if the distributions

F nj, 1 < j < k(n), change systematically with j, for each n. Since M6n' M7n

and Mn involve non-random quantities only, Cn is a deterministic process.

If the average cumulative distribution functions F are all equal, R isn n

identically zero. In that case, the processes M4n, M5n and M6n are identically

zero. If the F*. are all standard uniform distributions, M is zero. Therefore,
ni 7n

if the random variables Xnj all have the same distribution, then M4n, M5n, M6n and

M7n all vanish.

Lemma 2.1.
9

S (t) = M. (t)
n j=0 jn

The proof of this lemma involves many substitutions, and several integrations by

parts. The mean value theorem is applied to J to define functions V such thatnm

J( (u)) = J(u) + (F (u) - u)J'(V (u)) and V (u) = Or (u) + ( 1 - e)u, where

u and e are in [0,1] and n < m -
- 
k(n). The details are similar to Moore (1967)

and Guiahi (1975).

Lemma 2.2.

If A3 holds, then

a) 1 P
a)/4 max sup ,Unt(u) > 0

(k(n)) l<m<k(n) 0<u<1

If A6 also holds, then

b) A max sup IU(U)I -,> 0.
n 0<m<k(n) a1<u<a 2
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The proof of this lemma is similar to that of Lemma 3.5 below. Once the sam,-

construction has been established the connection with a sequence of jid uniforms, the

law of the iterated logarithm for Kolmogorov-Smirnov distances (see Csaki (1968)) an,-

Lemma 3.2 are used to complete the proof.

Lemma 2.3.

(7) max IM. (m/k(n))I p
--- > 0 0 j < 3

O<m<k(n) 3n n-

Proof: The convergence (7) will be established for each j in turn. In order to

simplify the notation, we describe the proof of this lemma for j = 0 in the case in

which the support of J is connected. In this case, A2 and A4 imply that al, a2, b1

and b2  can be chosen such that 0 < a, < bI < b 2 < a2 < 1, (al,a 2 ) is an open set

satisfying A4 and [b ,b 2  is the support of J. The trimming assumption and the

Lipschitz condition for J (implied by Al) can be user to show tnat

IJ(m1 rnm(u)) - J(rnm(u))I

<Irnm(u)! + I'(
(m+l) L KL I{u'U (a I a +} + (a 2)<a 2-F]-- nm 1al 1a+ nm2 2

The strong law of large numbers for Bernoulli random variables ensures the existence

of a fixed m (E) such that for n sufficiently large,

P( (Irnm (aI)>al
+ E } 

+ I 
f nm (a 2 )<a 2-

E
})K  

0 for some m, m0 () _ M < k(n)" <t

It follows that with probability at least 1 - £

K' K'
On (t/ < L max f IGudFnm(u)] + L sup IG(U)

IMOn (t k <m<m 0  
n (u ) 

dnmU] al<u<a 2

Because m () is fixed and A3 and A5 imply that the CDF's {Fnj 1 < j - k(n), n

are tight, the maximum of the m (C), {X nl,...,Xn,m(C ) I iF uniformly stochastically

bounded in n and the first term above converges in prohbhility to zero. A4 irm-li.-

that supG n(u) : a, < u < a 2  is bounded uniformly in n. Therefore with probbili,"

1 - , Mon I is had by a random quantity which converges to zero in probability.

Since E can be chosen arbitrarily small, MOn conve'-'ee to zero weakly in CPf 11.

-8-



By the Lipschitz Condition Al and by the construction of Vnm

nm L- nm

where KL  is the Lipschitz constant. Substitution of this bound in Mln gives

l--Y

I~~~~~ Km 2 (~)-ul (u) drn (u)

(Mlnk ~ 7kn) b ~ )1 mn

1-Y

K (k(n)) 2
L sup U (u)l1I+  sup IG(u)l- 1/2 n
(k(n)) 0<ul nm b <u<b 2

The conclusion (7) for j = 1 follows immediately from Lemma 2.2, the continuous

mapping theorem, and the fact that Al forces Y - 1 to be nonpositive.

Similarly, the definition of M2n (3) implies (8):

M m i [ 2 [V(GJ')1
(8) IM 2nk-)I< = max sup (u) 1121

v-n) O<m<k(n) 07u<1 U n m

where V denotes total variation. Since A2 implies V(GJ') is finite, Lemma 2.2 and

the continuous mapping theorem imply (7) for j = 2. By definition of M,

M m 1 m G(Yn*)J' (Yn.)

max I n3 nj 
1
b<S3n (k (n)) I  24 max) 1IG( bl<gj<b2

<m<k(n) i21

Al implies that J is a continuous function on a compact interval, hence a bounded

function. A2 implies G is bounded on [b ,b2 1. Therefore each mean inside the

maximum, and the maximum itself, is bounded. Since k(n) converges to infinity, (7)

holds for j = 3. 8

Lemma 2.4.

1 M _±_> W
M 9n n1-

Proof of Lemma 2.4:

Recall that M9n is the normalized cumulative sum of {Zn , I < j < k(n)l. B%

Prohorov's generalization of Donsker's theorem (see Billingsley (1968)



(p. 77, pr. 10.1)), it suffices to show that the Z .'s satisfy Lindeberg's ConditionnJ

and that the random functions T converge weakly to the identity function on [0,i,n

where Tn (t) := Var M9n (t)/Var M9n(1). Since Znj depends only on Xnj,

{Znl' ... Zn k(n) I are mutually independent random variables. A2 implies that expec-

tation and integration can he interchanged to give the following formulae:

EZ . = f J(u)fF*.(u) - EIy l<u}]dG(u) = 0
n3 n3 Ynj--

22 Var Z = ff J(u)J(v)[F*.(u A v) - F*.(u)F*,(v)]dG(u)dG(v)
nj n3 n) nj nj

a2 is finite, because IJ(u)J(v)I dominates the integrand for all n and j and
n)

A2 implies that the dominating function is integrable with respect to dG(u)dG(v).

A3 and A4 imply F*.(u A v) - P*.(u)F*.(v) converges to u A v - uv uniformly in
nj n) n3

j, for u and v in a neighborhood of the support of J. Therefore the Lebesque

2
Dominated Convergence 1Ieorem implies that a . converges uniformly in j to

n2

2 := Jf J(u)J(v) [u A v - uv]dG(u)dG(v). The uniformity of this convergence implies

t k(n)

that V a-2j/k(n) converges uniformly to a 2t and hence that T (t) converges
jL n nj=l

uniformly to t.

2
It remains only to verify the Lindeberg Condition for the Z .'s. Since a.

is of order k(n), it suffices to show that the random variables Z
2  

are uniformlyn3

integrable. Since both indicators and probabilities are bounded, the definition of

Znj implies that

Z 2.dP 4P{IZn < t} If IJ(u)J(v)IdG(u)dG(v)
f~ It} nj Ji{ IZnj -~}n

2
Chebychev's inequality and the uniform convergence of 0 . imply that for n suffi-n3

ciently large Ptj I >_ t) 22t
- 2 

uniformly in j. These two inequalities show

that the Z
2 . 

are uniformly intearable and hence that the Z . satisfy the Lindeberg

Condition.

-l10-



Lemma 2.5.

Al-A7 imply D 0.

n n- 
=

Proof. Since Dn = M4n + M5n, it suffices to show M4n and M5n converge in prob-

ability to zero. The proof for M4n follows that for MOn in Lemma 2.3 and is omitted.

Expanding the definition of M5n (4) and integrating by parts yields

(9) M n [_n) m f d )m + 
f  

ud(R'J(u))
j=l (y ,i( n

A7 implies that F and F are strictly increasing and thdt * , and k I ,n n

continuous on the support of J. Therefore, R J is a continuous function, ,inln

(Y .,i1 can be replaced by lY .,I) in (9). Collecting terms after this !ubtitu-n) nj

tion and using A2 and A6 gives

MSn(-))I < sup IUnm(u)I sup IR(u)I sup IJ(u)la I <u<a 2 b l<Uwb 2 0 'ulI

< An sup 'Unm(U) sup J(u) .
a . _u < a 2

Lemma 2.2 can be extended to imply (in the presence of A6) that sup jUnm(U)l
a lu<a2

converges to zero in probability. Therefore M converges weakly to 0 in C[0,1,
5n

and the proof of Lemma 2.5 is complete.

-11-



3. Percentiles.

Let p be a number between 0 and 1. En will denote the p percentile of the

average CDF F n' that is, the numnber such that Fn (n) = p. - (m/k(n)) will denote

th ththe p percentile of F . Cn (m/k(n)) will be the p sample percentile ofn,mn

{X nj, 1 < j < m) and F will be the empirical distribution function of the same-- )--n,m

set of random variables. Set

2 m
s (m/k(n))= F (En(m/k(n))(l - F ni(n(m/k(n)))n i ni n"

When no ambiguity will result, n (1), s n(1) and Fn,k(n) will be referred to as n' Sn

and F , respectively. The cumulative process discussed in this section isn

t k(n)( ( (t) - ~)
w (t) :=n

W n W (k (n))1/

Define

Vn (t) :2 P - Fn,k(n)t(Cnlt))n (k(n)) 1/2 [ fn (")

and D (t) := W (t) - V (t). (See Assumption P2 below for the definition of f

Theorem 3.2 below asserts that D converges weakly to 0 in C[0,1], and hence that

W n inherits the asymptotic behavior of V .n n
The first piece in the proof of Theorem 3.2 is Theorem 3.1, an extension to tri-

angular arrays of Bahadur's approximation of quantiles. The proof uses Lemma 3.1, an

inequality proved in Hoeffding (1956). Corollary 3.1 gives a reduction to i.i.d.

sequences. Lemma 3.3 states the finite dimensional distributions of V , and Lemma

3.4 gives the tightness of V . The proof of Lemma 3.5 uses a convenient version ofn

V and W . Corollary 3.1 to show that their difference D is tight. Theorem 3.2n n n

gives the asymptotic behavior of W , the cumulative percentile process.

The following assumptions will be used in the first part of this section:

Pl: [Xni, 1 - i < k(n)} are mutually independent random variables and

X . F..
ni ni

-12-
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P2: Fn,k(n) t  is continuously differentiable at n(t) with derivative

f n(t) satisfying 0 < inf f (t) < sup f (t) < .
n n

P3: lir k(n)/in n = and the sequence of constants a satisfies the two
n

conditions below:

f2 (t)a2 k(n)n n
lirn > 2p

in n
n-o

lima =0
n

n-

P4: lira k(n) (ln n)
- 4 

=

n-

P5: The variances s
2 
(t) satisfy- n

2s 2 (t)
n

lirn P(t) > 0
k k (n)

lir sup Ik n (s ) -En (t) =0.
n- <t<l

Os<l

P2 reduces to the usual assumption of a non-zero density in the i.i.d. case. P3

is primarily a pair of growth conditions on the constants a used in the approxima-n

tion (Theorem 3.1). P2 and P4 imply that a = in n/(k(n)) /2f (t)) satisfies P3n n

and that 0((a in n) 
/2

) = o(i). P5 imposes some regularity conditions on F ni asn n

a function of i. The first condition of P5, although more restrictive then necessary,

is appropriate for W as defined here. Additional notation will be introduced
n

before Lemma 3.4andwillbe used to give a simpler, more restrictive replacement for P5.

Theorem 3.1.

Under the assumptions PI, P2 and P3 for t = 1, with probability i,

P (1) = 0((a In n) 
/

).
n n

The conclusion of this theorem can be reexpressed as

(kVn))i/2( - an) as. k(n)p - k(n)Fnln) n) 1 / 2 )
(kn)) (4n~ n n '_(n + 0((a n n)

n
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In the case of iid sequences (Fni = F, Xni = Xi, k(n) = n, a = n-1/2in n), this

theorem is due to Bahadur (1966). The result was extended to m-dependent (possibly

non-stationary) sequences by Sen (1968). Since the proof of Theorem 3.1

resembles their proofs, only the modifications of Bahadur's proof necessary for this

extension will be given.

Lemma 3.1.

If IX., 1 < i < n! are independent random variables taking the value 1 with prob-

n
ability pi and the value 0 with probability 1 - pi if S := X., ifn - n 1

n
np = .Pi and if a < np < b, then P{a < s < b} is minimized for pi E p.n1

For a proof of this lemma, see Hoeffding (1956).

Sketch of proof of theorem:

Let b denote (a k(n)/ln n)
I

, I denote the interval n + a , In n n n -n nr

denote the interval [C. + r a n/b n, n + (r + l)a n/bn I and Unr the interval between

and E + r a /b . The first step of the proof is to show that, withn n n n

probability 1,

n(X) =F (
r 

) 
+ F (x) -F + 0((a nn n/k(n))

I/2
)

n n n n n n n

uniformly in I , or chatn

(10) H = sup Fn(x) - - (F (x) - F(&)) I = O((a In n/k(n))1/2
n n n n n n n

xeI n

Simple algebra shows that

H < max Fn(Jn) - F (J I + max IF (I )I
n- IrI<b n nr n nr IrI<b n nr

The differentiability condition P2 implies the second term is

1/2O(a /b) = O((a In n/k(n))/). Using Lemma 3.1, the probability that the first term

exceeds any number y can be bounded by the corresponding expression when F n- F nn nl n

This latter probability is itself bounded by a sum of k(n) probabilities that a

binomial random variable exceeds Ynk(n). The binomial probabilities are bounded as

in Bahadur (1966) and the Borel-Cantelli Lemma is applied (with y ya /b) to

complete the proof of (10).

-14-



The second step is to show that if q p k(n) + o(k(n)a n), then

{X ni 1 i I k(n) ( I for all n sufficiently large with probability 1. Thisnl(qn) n

step follows from Lemma 3.1, Assumption P3 and the Borel-Cantelli Lemma. The remainder

of the proof of Theorem 3.1 parallels Bahadur (1966).

Lemma 3.2.

If Y. is a sequence of random variables and 4'(n) a monotone deterministic sequence1

converging to infinity such that lim Y /i,(n) < a - with probability 1, then, with
nnn-""

probability 1,

lim [max Ym 1/(n) _ am
n-- m<n

This lemma is based on a problem in Chung (1974) (p. 237, pr. 2). The proof is

omitted.

Corollary 3.1.

If {Xi , i > 11 is a sequence of independent, identically distributed random vari-

ables with cumulative distribution function F, if F has a continuous derivative

th
f at its p percentile F, and if k(n) satisfies P4, then, D converqes weakly

n

in C[0,11 to the zero process and W converges weakly to (p)( - p))/2 W.
n

Proof: Since W and V are based on a single sequence, defining
n n

Y : m[( - ) - (p - F (F,))], it is easy to check that
m m m

sup IVn(t) - W (t)1 = max Y
0 tnl l'm k(n)

1/2 -l1 3 hrfrIf a is set equal to (ln n) (k(n) f(F) - , P4 implies P3. Theorem 1 thereforen
-1/4

implies that with probability 1, Yk(n) O(in n k(n) ) = o(l), or equivalently

Yk(n) (kn))1/4/ln n = 0, a.s. Lemma 2 implies that sup IW (t) V W io

Thus W - V converges weakly to the zero process. Because 7 (t) F2, V is a
n n k(n)t n

normalized cumulative sum process (V (t) = (k(n))
-  (p - I" )), and

n i=l i -

Donsker's Theorem implies that V converges weakly to (1,(1 p,))/2 W, a non-n

degenerate limit. Together with Stutsky's Theorem, this implies the same weak limit

for W
n
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Lemma 3.3.

Under the assumptions PI, P2, P4 and P5, the finite-dimensional distribution ful-t t.:

of V converge to those of W o p. (See P5 for the definition of (j.)n

Proof: V (t) can be rewritten as
n

t k(n) [P - I ( s W t k (
n) 

(p -  i
{X 

W(t )I
ni - n ni-

i=l k(n)
1 2  k(n) i= n

The definition of n(t) implies that EV (t) 0. Assumption P5 implies that s2 (t;,nnn
t k(n)

the variance of (p - I{X .< (t)), becomes infinite with n. Since each

ni- n

summand is bounded, Lindeberg's condition for triangular arrays (see Billingsley (i.'6S)

p. 42) is satisfied trivially for all n sufficiently large, and the term in brackets

converges in distribution to the standard normal distribution. P5 therefore implies that

V nt) converges weakly to a normal distribution with (positive) varlance i(t).n

It remains only to show that Vn(t 2 ) - Vn(t I )  is asymptotically independent if

V n(t ). An increment of Vn has the form

t 2k(n) t k(n)
(2) p -(t2 i (

i~t k(n)+l ni-'n 2 I (i t ) I 'x t Xn (t
Vn (t2 ) - Vn (t1 ) 1 + 2 ni-n 1

(k(n)) (k(n))
1

/
2

The first term of (11) is independent of V n(t , by assumption Pl. The second term

is (up to a sign change) a normalized summatio of t k(n) independent Bernoulli

random variables, with parameters F .(a ,b n, where a = n (t1) ,% n (t2
) 

and
ni n n n ~n1 n2

b = In(tl) V n(t2 ). The variance of this normalized summation is

t k(n) F (a. b ) i F (a b 11 k(n)tIFn t1k(n) (a b n1 F ab11- P a, 11ntk n n n
ni n n ni n n1

2 - 2i~ls s
n n

k (n) tIf (t)

2- In(t2)1 n> 0 .

n
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The approximation follows from P2 ani the convergence to zero is a consequence of P2

and P5. Since the variance of the second sumnmation converges to zero, the summation

converges weakly to zero, V n(t2 ) - V n(t ) is asymptotically independent of V n(t I

The extension to the joint distribution of (W n(t )...,W n(t k)) is routine. 0

Note that if the last condition of P5 is weakened, asymptotic independence does

not obtain. If n(t) exhibits other systematic behavior, a Brownian bridge component

may result.

The notation which follows will be used for the rest of this section.

Define the stochastic majorant F and the stochastic minorant F1 of
n n

{Fn., I < j < k(n)} by (12) and (13)

F (t) = min F (t)(12) n < n

F'(t) = max F n(t)(13) n IJkn

Let n and Cn be the corresponding percentiles defined by F (Cn) = Fn () =p.
S n n n n n

These definitions imply the following inequalities:

(14) > Pn (u) > (u) 1 < i < kCn), 0 < u < 1nn - - -

n(t )

A sufficient condition for assumption P5 with p(t) M p(l - p)t can now be stated:

P6: There is a positive function H1, a distribution function F and a sequence of

positive numbers 6 such that H and F have positive derivatives at &n

and the following inequalities hold:

(a) F Cu) <F-l(u) + 6nH(u)

n n

(b) Fl(u) > F- l (u) 6nH(u)n n

(C) li-m 62k(n) <=.
n

-17-



P6 is strong enough to imply that F and F' satisfy similar constraints in a
n n

neighborhood of . In particular, P6 implies

(16) (F'n( ) - p) V (p - F (F)) 0(6

n n n n n

One further assumption will also be used:

P7: The derivative of F at , f(V) satisfies

lim sul If (t) - f()J = 0
n-0-t 1 n

Let fU, 1 j be a sequence of independent uniform random variables. By

the independence of the X 's,

(17) ix ., j _ k(n) I F-I(u ), 1 j k(n) .
nj nj]

The symbol will be used to denote the version of a process based on

{F
-

(U.), 1 j k (ni) . For example,
nj j

t rk (n)1]r

V*(t) t Y (- I )I (k(n) 1/2f (t)
n l I (U.)- '' (t) n

ni i-n

By (17), VN Vn
N n

Lemma 3.4.

If PI and P6 hold, the sequence of probability measures on C[0,11 generated by the

sequence of processes V is tight.n

Proof: V* reduces to
N

1 t k(n)

V*(t) 1 1 1) p- I + I - I
(k (n)) i=l 1Ui-n iLUi--V. n

(The statement above will hold only almost surely if for some i, F!1i is flat at

[ (t)). Donsker's Theorem implies that
n

t k(n) (p - I -p)

i-l (k(n)p(l - p))
1
/
2

and hence that

t k(n)1 )
(18) 1/2 (p I{ui P)

(k(n)) i=l

-18-- M



is tight. Set

(19) Yni = 1 {Ui~p1 - '{ui<Fn ( n (t)) }

Y 2.-n Inu P

Since (18) is tight, V* will be tight if
n

t k(n) y.
ni
1/2i=l (k (n))

is tight.

Y ni is 1 with probability (p - F ni (Cn (t)) +, -1 with probability

(Fni (n(t)) -P)+, and 0 with probability 1 - 1P - Fni( n(t))I- The inequality (15)

and the definitions (12) and (13) and the approximation (16) imply that there is a

finite constant C such that

SYni < I{p-C6 n<Ui<_p+C6n

Therefore

k (n)t

Yni k(n) I fp-C6n<UiP+C6n
1/2 1/(k (n)) I 2 -~ (k (n)) / n

The variance of Zn  is less than 2k(n)C6 n/k(n) = 2C6 . Since P6 implies 6 con-nnn n

verges to zero, the variance of Z converges to zero, Z is tight,n n

(19) is tight, and V is tight.n

Lemma 3.5.

Assumptions PI, P4, P6 and P7 imply that the sequence of probability measures on C[0,1]

generated by the sequence of processes D is tight.n

Proof: Let Z*(m/k(n)) denote the pth percentile of {F-(U.), 1 < J i m) and F*
N n j - n,m

the empirical CDF of the same set of random variables. The proof of Lemma 3.5

consists of showing that D* is bounded above and below by the sum of three tightn

processes, and is therefore tight. Only the proof for the upper bound is given bere,

since the proof for the lower bound is essentially identical.
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Define D* = (k1n))i/2 Dn*(m/k(n))/m. This can be reexpressed as

p- F* (F (m/k(n))

D*= *(m/k(n)) - Fn(m/k(n)) - nm n
nf (m/k(n))

n

Since (14) implies that 7;N(m/k(n)) > F*(m/k(n)), substitution in D* (arid addi.'.:
N- n,m

a complicated form of zero) yields

(20) D* < [-*(m/k(n))- 
n  

(F (Fn
) - F* (F

n
))/f (m/k(n

) )]

nm n n n n,m n n

+ [;n - Fn (m/k(n))] + [(F n ( ) - F nm(Fn (m/k(n))))/fn (m/k(n))]

+ [(Fn (F; (m/k(n))) - Fm (Fn))/fn(m/k(n))]

n,m n m ,n n))/n

(21) = + ITn - Fn(m/k(n) )
f + (F* ( (m/k(n))) - F* (n )]/f

nm n n nm n ni'm n n

where D* denotes the quantity inside the first set of square brackets on the RHS
nm

of (20). (The quantity inside the third set of square brackets on the RHS of (20)

reduces to zero.) We shall show that each of the terms in (21) generates to a tight

- 1/2 :

process when multiplied by m(k(n)) ,

The process generated by the second term of (21) is uniformly bounded b,.

(k(n))I/2( -1'), which is itself bounded by 2(k(n))
1
/26 H(u). The third condition

n n n

of P6 ensures that this quantity is bounded, and hence that the second term of (1)

generates a tight process.

The convergence of the other two processes will be inferred from the underlying

sequence of uniform random variables. Set Ym := {U., 1 < j < m) (ap)" For the first

process, note that the construction implies
(22) T*(m/k(n)) - = -- 1(p)

n n n m n

Assumption P6 implies that the right hand side of (22) is less than

F (Ym ) + 
n

H(Y ) - (F (p) - 6n H(p)). Therefore the process generated by D*nm

satisfies the following inequality:

-20-



(m (p-I(kDnm m m {F (U) - -
123) (Y m -(Y) - F-(p) - (V

(k (n))l1/2 - (k (n)) 172 m

m 6n

(24) + ( (Y) + H(p))(k (n) ) 1 / 2  m

(25) + 1 11 
m  ( _ { -

{k())1/2 fn (m/k (n)) f (p((k(n)) n i=l {F(U)<F (p)l

The first term of the bound is of the form of the process D of Corollary 3.1. Since
Th n

the assumptions of Corollary 3.1 hold, this term converges weakly to zero and is con-

sequently tight.

The process determined by (24) is uniformly bounded by

(k(n))1/2 6n (max[fH(Ym)I : m < k(n)] + IH(p)JI. Since, with probability 1, Yn con-

verges with n to p, for every positive c, there is an integer N and a numberC

K £ such that P{max{Yn n > NE_} < c/21 and P{max{ Yn : n I N'} > K < c/2,

the sequence (max[(H(Y(m)) : m < k(n)), n > 1) is tight. Assumption P6 implies that

m6 (k(n))-1 /2  is bounded for m < k(n) and therefore that the process (24) is tight.n

The process generated by (25) contains a cumulative sum of i.i.d. Bernoulli

random variables. Since this sum multiplied by (k(n))-1/2 converges to a Gaussian

process, and since Assumption P7 implies that (I/f (m/k(n)) - /f(&)) converges ton

zero, the process generated by (25) is also tight. Therefore the process corresponding

to the left-hand side of (23) is tight.

For the third process, note that

m
(26) mlF* (Q (m/k(n))) - F_* n)I (k (n)) - 1/2 < k(n)-1/2 {F n )<Ui aP

i1 n n 1

Therefore the process generated by the left-hand side of (26) is uniformly bounded

by the random quantity

k (n)
(27) k (n) - I 2  kUn -

i=l In n
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The sum is a binomial random variable with parameters k(n) and p - Fn (n). Thus the

variance of the bound (27) is less than (p - F ( n)), which converges to zero.
n n

Therefore the process generated by the third term of (21) is tight.

This completes the proof that the process D* has an upper bound which is tight.
n

The fact that D* has a lower bound which is tight is shown in exactly the same manner.
n

Therefcre D* itself is a tight process, and since D* d D , D is tight. Un n n n

Theorem 3.2.

If P1, P2, P4, P6 and P7 hold, W converges weakly in C[0,1] to (p(l - p)) /2W.n

Proof: Applying Theorem 3.1 to {Xnj, j < tik(n)} for each fixed ti in iul]

shows that the finite dimensional distribution functions of D are those of the zero
n

process. By Lemma 3.5, D converges weakly to zero. Since P6 forces p(t)= p(l -p)t,n

Lemmas 3.3 and 3.4 imply that V converges weakly to W o p = (p(l p)) /2W. Sincen

W = V + D , the theorem follows.n n n
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4. Discussion.

Many papers have considered cumulative processes based on i.i.d. sequences. These

include Braun (1976) and Lai (1975) for rank test statistics, Miller and Sen (1972) for

U-statistics and von Mises' differentiable statistical functions, and Guiahi (1975) and

Ghosh Lnd Sen (1976) for linear combinations of order statistics. All of these authors

obtain limiting Gaussian processes. Lamperti (1964) showed that normalized cumulative

maximum processes converge weakly to extremal processes. Welsch (1973) is the third

in a series of papers extending Lamperti's conclusions to certain strong-mixing

Gaussian sequences. However, none of these papers applies to non-trivial triangular

arrays.

Some other papers are less closely related than their titles suggest. The strong

quantile process approximation of Csorgo and Revesz (for example, Csorgo and Revesz

(1978)) is primarily concerned with quantile processes as a function of p, rather

than cumulative processes. Their method uses an embedding which is suitable for the

i.i.d. case. Guiahi (1975) and Sen (1978) discuss a process based on a tail-sequence

of linear combinations of order statistics from an i.i.d. sequence. Sen (1979) derives

a Gaussian limit for a process based on {X(I ) ... ,X (ntp) This process differs from

the process considered here in that the values of the X's themselves, rather than

the values of their indices, determine which random variableF are used to construct

the process.

The weaker conclusion of asymptotic normality has been studied for percentiles

and smooth linear combinations of order statistics in the case of independent, non-

identically distributed random variables. The assumptions AI-A7 will therefore be

compared with the assumptions of Stigler (1972) and Shorack (1972, 1973), as well as

those of Guiahi. The assumptions Pl-P7 will be compared with those of Sen (1968) and

Weiss (1969).

Theorem 2.1 is an analog of Guiahi's Theorem 1. Guiahi derives his version with

three regularity conditions and the assumption that F ni = F, for all n and

1 < i < n. A3, A4, A5, and A6 are all irmediate in this case. The first regularity
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condition is that the first absolute moment of a random variable with cumulative

distribution F be finite. There is no moment condition for F in Al-A7. The secon
.

condition is a smoothness condition for the weight function J. This condition is

equivalent to Al, with y = 1. A2 is not imposed. The third condition is that the

total variation of the product of G and J' be finite. This condition is a conse-

quence of Al and A2. The proof here is similar to that of Guiahi, but the trimminq

condition A2 is imposed and tail conditions on F are weakened.

Stigler (1974) uses Hajek's projection theorem to derive the asymptotic normality

of linear combinations of order statistics. Wesley (1977) discusses Stigler's results,

gives a counterexample to the theorem as stated, and indicates a few corrections.

(See also Stigler (1979)). Since the theorems in question concern the non-identically

distributed case, the conditions are more complicated than Guiahi's. There are two

conditions on the distributions: a tightness condition and a convergence condition.

The tightness condition is the requirement that there exist a finite number M, a

positive constant c, and a cumulative distribution function H such that (28) and

(29) hold.

F (y) < H(y) y <_ -M

(28) nk

F nk(y) > H(y) y > M

(29) lim x
t (l - H(x) + H(x)) = 0

The convergence condition is that (30) and (31) hold for almost all x and y.

(30) lim F (x) = F(x)nn-

n [F nk(min(x,y)) - Fnk(X)PFnk(Y)l
(31) lim I = K(X,y)

n- k=l

Condition (30) asserts that the average cumulative distribution F converges weaklyn

to F. The assumption (30) is stronger than A4, which is better suited to the trimminq

assumption in that the convergence is required only for x in a neighborhood of the

support of the weight function J. A3 and A4 imply (30) for x and y in a

neighborhood of the support of J, with K(x,y) = F(min(x,y)) - F(x)F(y).
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Stigler places two conditions on the weight function J. The first condition is

the same as A2, which requires that J trim. The second condition imposes some smooth-

ness conditions on J. J is required to be bounded and to satisfy a H6lder condition
1

for Y > I, except at possibly finitely many points, each of which is a null set for

-levery F -  This condition allows J to have a finite set of discontinuities as longnk"

as the corresponding quantiles are well-defined for all the distributions Fnk* This

is a weaker condition than Al, which assumes J differentiable and imposes the H6*der

condition on J'. The necessity of the condition that the discontinuities of J cor-

respond to well-defined quantiles was demonstrated in Stigler (1973), where the limiting

distribution of the trimmed mean was shown to be non-normal if the trimming fractions

correspond to ill-defined percentiles.

The final stages of Stigler's proof are very similar to the proof given in this

chapter. The asymptotic normality is obtained from a normalized sum of the random

variables Z ., where
n3

' = f [F (y) - I IJ(F(y))dy
nj - nj 1X .yI

The random variables used in Section 2 are Z n, where

Z f f J(u)[F*. (u) - I udG(u)
n3nj (Y .<uln3-

If the average cumulative distribution functions F are all equal to F and if Fn

is strictly increasing, Z. = Zi. Otherwise, the random variables are not necessarilynj nj'

equal.

Since the use of the projection theorem avoids the Mean Value Theorem, the differ-

entiability conditions on J are unnecessary. In his proof that (in the notation of

this chapter) S (I) is asymptotically equivalent to a normalized sum of Z', Stigler
n n)

avoids writing out the remainder term explicitly. However, his techniques cannot be

extended to show that a corresponding remainder process converges in probability to

zero in C10,11. The methods of Section 2 are also difficult to apply, because

the remainder process (from Z' .) will not decompose conveniently into processes which

can be treated individually.
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Shorack has derived the asymptotic normality of linear combinations of order

statistics from weak convergence of the empirical processes. His theorems apply to

more general statistics than. Stigler's, allowing finitely many percentiles to receive

asymptotically non-negligible weight and including sums of (non-monotone) functions of

order statistics. Shorack (1972) contains the basic proofs, but the conditions require

that F ni = F , 1 ' i " n. In a later paper (Shorack (1973)), a more general theorem

is stated. The proof consists of a list of substitutions in the earlier proof. In the

general case, one of two triples of assumptions is required. The first assumption of

both triples is that there exist a finite M and a positive ', such that (32) and (33)

hold for all u in the unit interval.

1

(32) G(u) _ Mfu(l - u)] 2

1

(33) ICn (u) _ 1 - u(l - u) 

This condition is a fairly strict tightness condition. Shorack'u; th,,orm:s do not imply

Stigler's results, since the Cauchy distribution satisfies (29), but n,,t (2)1. The

second basic assumption is that J be continuou:;, t'xept po:;:;ihly at ill-dtfind

quantiles. The third condition is that (34) hold, with tle same- 1;, alve.

1-

(34) 2 t(1 - t) d c; - C (t .n

The second assumption can be replaced by the condition that J be continuou., and, th,

third condition can be replaced by the convergence (1'), for all u such that 1; 1:1

continuous at u.

(35) lim Cn (u) = G (u)
n

Condition (35) implies that the quantiles of F converge to the quantiles of F,n

whenever the latter are well-defined. This condition is equivalent to the weak

convergence (30).

Neither Shorack nor Stigler requires a condition resembling A3, which asserts that

the Fnk approach each other quickly enough in Kolmogorov-Smirnov distance. Indeed,
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I

such a condition will not be necessary for asymptotic normality. Consider the situation

in which, for every n, half of the Fnk equal H1 and the rest equal H2 . The mean

cumulative distribution function Fn will converge to H, the average of H1 and H2 .

The covatiance function K will also be simply related to H and H . Therefore, if

HI , H2 , and J are sufficiently regular, the weighted linear combination of order

statistics will be asymptotically normal. However, a theorem like Theorem 2.1 cannot

bold without additional conditions, because the process S is not a function of then

order statistics of all n random variables, but also depends on the order statistic-

of X nl,..X for every m < n. The asymptotic behavior of the process will dependnm

on which half of the Fni are equal to H The weak convergence of the proess cannot

be obtained without additional conditions, such as A3.

Sen (1968) extends Bahadur (1966) to m-dependent sequences. Li.- ("Of,) Qses

moment generating function techniques to study the joint asymt,,t- Nhavior ')f ;everal

sample percentiles based on a triangular array of independent, non-identi, all7 distri-

buted random variables. We examine Sen's conditions for independence, wli!,!' ; ondition

for a single percentile, and Pl-P7 with k(n) = n.

The most obvious difference is that Weiss weakens the first condition of P5 (which

is only slightly stronger than Sen's assumption that inf(s 2(1)/n) 0) ton

lim(n 2/3/s (1)) 0. The only other differences between Weiss and Sen are that Sen
n

requires F to be twice differentiable and Weiss imposes slightly more complicatedn

bounds on the various density functions. Since neither Weiss nor Sen requires the

percentiles &n to converge, Assumption P6 is clearly stronger than the assumptions

of Weiss and of Sen. However, PI-P7 avoid their requirement that eac& F have ani

density. The results of Section 3 apply whenever the average distributions Fnm are

nndifferentiable in a neighborhood of Fn'
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