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Let A: X » Y Dbe a densely defined closed operator where X and Y are
Banach spaces. Let F be a locally convex topological vector space and
H: X » F and operator such that N(H) and D(A) have non-trivial intersection
* . * *
and D(H ) 1is total over F. We compute AH and AP where AH is the

operator determined by A on N(H) and AH(x) = (Ax,Hx)t

We also characterize certain closed extensions of AH and the adjoints of
these extensions. 1In particular application is made to the problem of deter-
mining self-adjoint extensions of symmetric operators restricted by boundary

conditions in a Hilbert space.

AMS (MOS) Subject Classifications: 47A05, 34B10.
Key Words: Generalized boundary value problem, boundary operator, adjoint,
ordinary differential operator with multipoint boundary conditions.
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SIGNIFICANCE AND EXPLANATION

An important idea in applied mathematics is the notion of the adjoint of an
operator. Transposes or conjugate transposes of matrices are examples of adjoints.
Knowledge of adjoints can frequently tell us if an equation has a solution. For
example, let Ax = f be an equation phrased in terms of a linear operator A.

Then the eguation has a solution only if f is orthogonal to the null space of

A*. A concrete instance of this abstract principle is the Fredholm alternative

for integral equations.

Among other things this paper shows in a general way how to compute the

adjoint of an operator restricted by complicated boundary conditions. This techni-

que can be used for example to analyse differential operators such as

as Y(n) + a, y(n - + ... a 'y restricted by multipoint boundary conditions

(e.qg., y(J)(ti) =a, 0<3<n-1,0<1ic<k, k>n) or interface conditions
) + . -

et -y ) = e

1 i ij
\}§4ultipoint boundary conditions arise in the theory of beams or plates with

interior point loads, and also the mathematical theory of splines. Interface con-
ditions arise in problems of diffusion through parallel "slabs"” with different
properties (e.g., nuclear reactors or the study of shock waves). Adjoints of such
differential operators also are encountered when one attempts to derive Euler-
Lagrange equations for constrained minimization problems.

Our method is very general and is designed to work for partial differential,
integral and functional differential operators as well as differential operators.
Part I presents some of the abstract machinery to solve the problem. Part II will

apply this machinery to concrete and applied problems of the type mentioned above.

-\

The responsibility for the wording and views expressed in this descriptive summary
lies with MRC, and not with the author of this report.
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NOTES ON GENERALIZED BOUNDARY VALUE PROBLEMS
IN BANACH SPACES, I
ADJOINT AND EXTENSION THEORY

&

R. C. Brown

§1. Introduction

Suppose X, Y are Banach spaces and A: X - ¥ is a densely defined closed operator.
Let H be an operator having domain in X and range in a locally convex topological vector

space (l.c.t.v.s.) F. Assume that D(A) n N(H) is nontrivial. Then the system

Ax = f
(1.1)
Hx

"
(2t

is called a generalized boundary value problem (b.v.p.). We call the first equation of (1.1)

the operator part of the b.v.p. and the second the boundary condition. H is the boundary

operator. If r = 0 the problem is said to be homogenous, otherwise it is nonhomogenous.
In the nonhomogenous case, (1.1l) determines an operator AH: X - Y x F and in the homogenous

case an operator AH < A: X+ Y on

D(AH): = {x ¢ D(A); Hx = 0} .

* *
In this paper we are going to construct the adjoints AH and AH and compare their

* *
structure. Knowledge of A and AH yield at once statements of Fredholm Alternative

H
solvability conditions for the original b.v.p. We will also be interested in the followinag

* * * *
extension problem. Suppose A and B: Y -+ X are 1-1 and B > A. Let K: Y =G

(G a 1l.c.t.v.s.) be a boundary operator. Then (roughly speaking)

A ' (1.2)
C < . .-
By B

One can now ask for the structure of all closed extensions of A which are restriction of

H

*
BK . In the special case when X = Y = Hilbert space and H = K, AH is symmetric, and the

+Department of Mathematics, The University of Alabama, University, Alabama 35486.
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problem amounts the determination of all self-adjoint extensions of AH.

Both the adjoint and extension problems for generalized b.v.p. have been investigated in
several recent papers, notably [5], [6], [9]. 1In [6) for example A is a linear relation in
X x Y and AH =A n* B where *B is the preadjoint of a finite dimensional subspace B in
Y* x x*. Such a representation is always possible if H is continuous on G(A) and F 1is

finite dimensional. This "subspace" interpretation of AH leads to an elegant construction

* *
of (A n B) and also to a solution of the extension problem when (in our notation)

*
dim G(BK )/G(AH) < @

The contributions of the present paper are twofold. 1In the first place we extend the
theory by letting F be an infinite dimensional topological vector space. This setting is a
natural one for it allows consideration of problems with infinitely many boundary conditions -
for example, singular differential operators with infinitely many point and/or interface con-
ditions. Secondly (and of equal significance) there is a change in point of view which dis-
tinguishes this paper from [6]. We represent the boundary condition directly in terms of the
null space of the boundary operator given in the problem. Thus we bypass the task of finding
1"B. Furthermore because much of the theory presented here is an abstraction of ideas in the
writers earlier papers (2], [3] on Stieltjes b.v.p., our technique gives simple formulas and
characterizations which are easy to apply both to this and other types of concrete b.v.p.

We now briefly summarize the paper. Notational conventions and fundamental definitions
are introduced in Section 2.2. Here in particular we discuss the notion of an abstract
boundary condition and prove that every closed restriction of a closed linear relation A is
an "AH“ with reference to a certain l.c.t.v.s. F and a boundary operator H. Section 3 is

*
devoted to the computation of A_ . F is assumed to be both finite and infinite dimensicnal:;

H

and significant differences in the structure of the adjoint are pointed out. 1In the infinite
*

dimensional case we first assume that G(-A ) is complemented (Theorem 3.6). However, since

this is an inconvenient hypothesis in a non Hilbert space setting we investigate several ways

in which it can be weakened.
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*
The final result (Corollary 3.14) is an especially simple construction of AH when A
is 1l-1. We illustrate this construction by an example. Section 4 solves the extension pro-
blem mentioned above: first in the finite dimensional case and secondly for extensions having

*
closed range. Finally §5 treats the nonhomogenous case. AH is determined and its structure

*
compared with AH .

Although we occasionally illustrate the theory with examples, most applications to
Stieltjes, and interface b.v.p., to evolution and functional differential operators, and to
calculus of variations and control theory (extending some preliminary ideas already presented

in [3])) will be reserved for the second part of this paper.
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§2. Notation and Preliminaries

If T is a linear operator or relation D(T), R(T), N(T) will stand for its domain, !
range, and null space respectively. T* denotes the conjugate transpose, dual, adjoint or pre-
adjoint of a matrix, space, or linear mapping according to the context, (we write the transrose
of a matrix M as Mt). The potation S or the term "closed" signify the weak* closure of
a set S cXx if X is a dual space; otherwise we are referring to the closure of S in the E
topology of X. Similarly, if X is a dual space, S is said to »e "complemented" in X if
H 1is complemented with respect to the weak* topology (thus in particular the projection
associated with S is weak* continuous). Otherwise "complemented" means complemented with
respect to the norm topology. Finally, in the same vein S means either the preannihilator,
i.e.,
{s € X: [s,s'}] =0, s' e s}
or the annihilator of §, i.e.,
{s ¢ X [s',s] =0, s' e 8}
*
If X is a space and X is its dual [-,*] signifies the sesquilinear pairing on

* .

X x X given by

* *
[x, x ] =x (x) .

+ + . : s
If X, Y are spaces and X is total on X and Y is total on Y we define a pairing on
+ +
(X X ¥) x (X xY) by

[x,y), (x7, yD1: = Iy, v'1 + (%, x7]
If X and Y are normed we define a norm as X x Y by
W e = |Ix]] + Nlyll .

A linear relation A: X > Y where X, Y are linear spaces is a set valued mapping whose
graph G(A) is a subspace of X x Y. Unless otherwise mentioned all relations are assumed
closed; i.e., to have closed graph. For a € D(A) we denote the image of a in R(A) by ‘

A(a); the notation (a, Aa) will signify an arbitrary element in G(A) such that Ag € A(x).

-4-
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It is easily checked that A(0) is a subspace of R(A) and elements [, u £ A{u) if and

only if B = o mod A(0); 1i.e., the induced mapping A': X > X/A(0) 1is an operator. A
relation is an operator if and only if it is single valued; i.e., if and only if A(0) = 0.
If A is a closed operator D(A) is a Banach space with respect to the graph topology defined

by the norm
Mxllf= = lxdl, + Naxli,

A is then a continuous operator with respect to the graph topology. We will also write
BcA if G(B) € G(A); in this case B is said to be a restriction of A and A 1is called

an extension of B.

* * *
2.1 pefinition. The adjoint A : Y > X of A: X > Y is the relation with graph

e 1

{(a,B): [y,0] = [x,8} = 0; (x,y) € G(a)}

* * *
2.2 Definition. The preadjoint of B : Y =+ X is the relation with graph

e

{(a,B): [a,y]l - [B.x] = 0; (x,y) € G(B)!}

Following the spirit of the policy introduced above, for closures, complements, and
annihilators, A* will mean either the adjoint or the preadjoint of A depending on the
context. A more complete discussion of the properties of adjoint and preadjoint relations
may be found in [1] or [6]. We specifically mention here only a generalization for relations
of the classical Banach closed range Theorem for operators (see [6] for the proof).

2.3 Theorem. If A: X > Y is a closed relation then norm closure of R(A) is eguivalent to

*

* * * *
both the norm and weak closure of R(A ). Similarly if B: Y -~ X is a weak _closed

* *
relation the norm closure of R(B ) is equivalent to both the norm and weak closure of R(E).

Suppose B is a (closed) restriction of a relation A: X -+ Y. Define an operator
1%
H: G(A) » (G(B)")

by

H(y,Ay) © (a,8) = [Ay,a]l + [y,8], (a,8) € G(B)"

» *
(G(B)l) under the weak topology is a l.c.t.v.s. By the definition of this topology H is

-5-




continuous. It is clear that the nullspace of H 1is exactly G{(B). We fix these ideas with
a definition.

2.4 Definition. Let A: X - Y be a relation and F a l.c.t.v.s. Then an nperator

*
H: X x Y > F such that D(H) >G(A) is called a boundary operator provided D(H ) is total

over F, and the condition H(y,Ay) = 0 is called a boundary condition.

In terms of Definition 2.4 the previous discussion has showr.

2.5 Lemma. B is a closed restriction of A if and only if B = A . The boundary operator

T
2

H is continuous with range in a l.c.t.v.s. If A is an operator H can be viewed as an

operator such that D(H) > D(A) which is continuous in the graph topology on G(A). !

The importance of Lemma 2.5 is "existential": every restriction of A 1is determined by
a certain "canonical" boundary condition. In most cases however a boundary operator H is
givena priori; it and the canonical operator supplied by the Lemma may not be the same (only
equivalent in the sense that their null spaces are the same). Indeed the canonical operator
may be hard to find. Therefore the results in this paper will be expressed solely in terms
of an arbitrary boundary operator considered to be given in the problem and Lemma 2.5 will be
used only as a theorem proving tool.

We close this section by mentioning a simple result frequently used in the proofs of this
paper.

2.6 lemma. (Linear dependence principle). Let ¥: X > ¢, i=1, ... ,n, and ¢: X+ ¢ be

linear functionals such that

N(¢)}) = n N(wi) . i

Then (provided ¢ # 0)

$=1 o,y

where not all of the constants ci are zero.

Proof. See [10] p. 62. ”
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§3. The Adjoint of A
113

Let A: X > Y be a closed densely defined operator and let H be a boundary operator

* * *
for A. 1In this section we determine AH in terms of A and H .

* i

* * *
As stated in Definition 2.4, X x Y >D(H) o G(A). Hence H : F > X xY is in general

*
a relation {(unless H 1is densely defined) and H (0) is a subspace of
* *
G(-a): = {{y, - Ay}

*
We have assumed that D(H ) is at least total over F. To see the significance of this

*
assumption, let (Vv _, U, ) denote an arbitrary representative in H (¢). Then

U4
(t)

(H(y, Ay), ¢] = [(Ay, y), H (D] ,

(3.1)

Ay, v,1 + [y, U]

¢ ¢

Since F endowed with the weak topology relative to D(H*) is a l.c.t.v.s. (see [10] p. 62)
such that F* = D(H*) the above equation shows that H: G(A) + F is now "weakly" continuous.
rhus (provided D(H*) is total) we can assume with no loss of generality that H is con-
tinuous on G(A) by redefining the topology on F if necessary.

3.1 Definition.

+ * *

D w = pD{(a ) + fV¢. $eF } .
- * —

D u = D(A ) + 'nl(R(H ))

*

where ™ denotes projection on Y

o(z): {¢: z -V, ¢ D(A*)) .

¢

* *
Y(z): = {(wl, V) e RH): 2z - wl € D(A)

+ ~+ * *
Further, let AH’ Ay be the relations in Y x X such that

(')This formally "wrong" inner product can be corrected by either regarding H as defined in

- * * * -
G(A 1) or by writing [(y, Ay), H (¢)] with H (¢) € G((-A ) l). For notational reasons

we wish to avoid either option. We hope the reader will tolerate this slight abuse of
language.

-7-




1]

G(A;) ((z, 2" (z - v)) SARECERIOY

¢

]

{2, 37 (z = ¥)) - b,

—t . .
G(AH) 2 (wl, w2) € y(z)!}

3.2 Lemma. The following is true:

*
(1) A; is well defined modulo representives (V¢, U¢) in H (¢)

+ * *
(2) D, = D(A ) +{v¢: ¢ € F }
*

(3) a ¢ A; < i;

(@ AL ) = AW - U e 4O)]
I ’;; (© = A (0)
= (A7) - vy (0. b)) € V(O]
Proof. We demonstrate only (1) since (2) - (4) are immediate from the Definition. Suppose

*
(V¢. U¢), (V'¢, U'¢) e H (¢). Since

* *
-v',, - H (0) = G(-a P
(V¢ v 6 U¢ 14 4)) 3 {0) ( )

it is clear that

§ At (v V')
Vg m Uy = A =V
and
At v Co-@t v) -u
(z ¢7) U ® a (z - 6 0) =
At v, - v "y =0 Il
( o ¢’) (U¢ U o = .
3.3 Theo RAJEIY
. eorem. AH = H.
Proof. Since A; > A', A;* < A** = A. Thus if (y, Ay) € G(A;*)

+ *
Ay, z] - [y, Ay z] [Ay, 2z) - [y, A (z ~ v¢) - U¢l

Y ’
[Ay 1 + 1y U¢]

¢

[Hy, ¢}

e Cnde SRS
]

=0 .|

‘i -8-
]
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* . +
Since D(H ) 1s total, Hy =0 and vy ¢ D(AH). Thus AH < AH' However if v ¢ D(AH)

* . !

(so that Hy = 0), the above computation shows immediately that AH < AH

. . * +
3.4 Theorem. If F is finite dimensional AH = Ay

*
Proof. In view of Theorem 3.3 it is only necessary to prove that G(AH ) © slal) . Let

*
(a,8) € G(A, ). Define the functional Y, .: G(A) + ¢ by

b oa(x): = [Ax, o] - [x, B]

afB
Since

N(¢a8) > G(AH) = N(H) n G(n) ,

it follows by Lemma 2.6 that

[Ax, a] - [x, B8]

[H{x, Ax), ¢]

*
= [(Ax, %), H ¢] ;
= [Ax, val + [x, U¢]
. * . * * 1’
for some ¢ in F . Transposing we conclude that a - VO €e D(A) and B =A (o -V,)) - U._.
3 N
We now consider the case where F is infinite dimensional.
* * * 1
3.5 Lemma. If G(-A ) is complemented there exists an operator H+: F_+G(=A) such that ]
3
+
[Hy, ¢1 = [{Ay, v}, H 4]
4
Proof. Let
" (1 - PH (3.2)
H : = - .2
(¢) (4)
* * * + . E
where P is the projection of Y x X onto G(=-A ). That an element of H(Aﬁatlsfies (3.1 ]
A
. . + + +' +! + R S
is obvious. If (v o’ U ¢), (v 6’ 9] ¢) ¢ H (¢) then it follows from (3.1) that
+ + +* + *
(Vv -V U  -U ) e G{(-A)
¢ CR [
Since
W ooVt u
¢ ¢’
by (3.2),
vt vt
¢




* * ~4
3.6 Theorem. If G(-A ) is complemented AH = AH .

+

*

Proof. By Theorem 3.3 and the standard theory of adjoints AH = AH . Thus it suffices to o
+ S+ X . + . .
show that AH = AH . To this end suppose that (zn) is a net in D y converging to z in
* * +
the weak topology of Y and that Bn € AHzn is the general term of a net converging to

* *
3 in the weak topology of X . Using Lemma 3.5 we write

w,u =W e e, 0

o e $ ] $ ¢ 3
where 3
RIS TR 6(-a"’ /
¢ (3.3)
~ -~ *
(V¢, U¢) = P(V¢, U¢) € G(-a)
Since
* "
z -V £ D(A
n ¢n
and
B " v, ) A vty -ut i
e A (z - -u, = z - - ,
n *h ¢, n L ¢,
(¢c.f. Lemma 3.2 (1)), :
z_ - v g +u’ c G(-A" 4
z ¢'—(n U(»))tG(A) (3.4)
n n
Adding (3.3} and (3.4) we obtain (z , - B ) Hence
W vty = a-Piz, -8 (3.5)
¢, o n
(z -v' ,-@® +u" ) =pz, 8 3.6)
n ¢n’ n ®n =Py Py : (3.
We conclude that the net <V+¢ , U+¢ ) converges to (wl, wz) in R(H+) c R(H*). Finally, f
n n
(3.5), (3.6) and the closure of G(—A*) imply that

*
(z - wl, -8+ Wz)) € G(-A) ,

-10-
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L

(z, 8 € G(AY)

+ ~+

and thus AH c AH

To show the reverse inclusion, suppose (y, Ay) € G(AH) and

*
(z, A (a - wl) - W2) € G(A; . Since

*
[ay, z - wll = [y, A (2 - wl)] '

it follows that

*
[Ay, z] - [y, A (z - wl) - wzl = [Ay, wll + ly, Wzl .

* *
Since (wl, wz) € R(H) and weak closed sets are also closed, given £ > Q0 there exists

(V¢ P U¢ } such that

€ €

oy = v, | <esdiayll + llvlb

E

R

bv, - vy | < e/tllavll + llylD

Consequently

|(ay, 2] - Iy, A (z - b)) = ¢.1|

| A

v (3.7)
| [ay, Uy T Ve 1+ Iy v, - U, 1] < e
€ €
(recall that [Ay, V® ] + {y, U¢ ] =0 for y in D(AH). It follows from (3.7) that
€ €
~+ |
(ay, z] - [y, B 2] =0 , ;
proving that 1
A sal=ar .|
H Ay =Ry -
7 at "
3.7 Corollary. A, = AH;
~4 = k
Proof. Immediate from Theorem 3.6 and the fact that A, = A, . H

H H

+ ~+
3.8 Corollary. If R(H) is a Banach space A, = A =A
H

*
Proof. By Theorem 2.3 R(H ) is closed and the assertion is immediate from Definiticn 3.1.

-11- I




If X and Y are Hilbert spaces G(-A*) is trivially complemented. But almost nothinc
seems known about this concept in other spaces. (It is not even clear for example if the fact
that G(A) is complemented implies that G(-A*) is complemented). We can however demonstrate
the following sufficient condition that G(-A*) be (strongly) complemented in general Banach
spaces.

3.9 Theoyem. If A is a generalized Fredholm operator; i.e., N(A) and R(A) are comple-

*
mented spaces in X and Y, then G(-A ) is complemented.

Proof. It is well known (e.g. [4)) that if A is a generalized Fredholm operator then so is
A* and that the class of generalized Fredholm operators is equivalent to the class of opera-
tors admitting a generalized inverse, in other worxds, a bounded linear operator A+: Y - X
satisfying the relations

+
AA A

= A
ataat = 2" .
A ) A * g * . * 4 +%
Hence there exists a generalized inverse A for A - in fact A =A . Let J be the
. . ~ky * *
operator defined by J(x) = -x. Define A : Y - X by
~k4 * 4 * ke
A :=A JAA .
Now
* ~kg * * k4 * kg *
(-A )A (-A )(x) =JA A JAA JA (x)
* kg *
= a"a"%"
*
= -A X .
Also

~ry *ady hyp ok kg Kk ky ok Ay
A (-aA ) A JAA JAA JADA

¥y ok kp D Kk Ry
A JAA JAA

~Ry
A

* *
Thus =-A is a generalized Fredholm operator. Let @ be a projection on R(-A ) (e.g.,

* Ry . * * * * *
AA ). Let S be a projection on N(-A ) = N(A ). Define P: Y x X = G(-A) by




*  * ~k4 * * *
Py ,x) = ({I-S) A 9x + Sy, Qx)
P is obviously continuous and onto since
* * * * * K
Ply , —Ay) =1y, -Ay)

Furthermore,

2 *k * ~ky4 * * *
P (y .,x ) P((I-S) A Qx +Svy, Qx)

~% * *
((I-8) A +Q2 X + 0 + 52y )

* *
Pty , x) .|l

The inconvenience of Theorem 3.9 is that it requires that R(A) 1is closed at least if

|

! 3

Y 1is a general Banach space. Since we do not know any other sufficient condition, it seems ; 3
|

*
worthwhile to explore ways in which the hypothesis that G(-A ) be complemented can be weak-

o

ened. We devote the remainder of this section to this task. k.
The next theorem and its two corollaries are generalizations of Theorem 3.9; while

Theorem 3.13 and Corollary 3.14 represent a new approach.

* * ~
3.10 Theorem. If G(- (A + AI) ) is complemented for some A then AH':~§;*
* ~4 * * T . .
Proof. Let AA: = A + AI. Then by Theorem 3.9 AAH = Ayye But A, = A, + I. Therefcre
* ~4 - o ‘1
A H = AXH - AT . (3.8)
i i
3 Now i
i
[Hy,¢] = [Ay + )y, VA¢] + [y,UA¢] !
= [Ay,V + U
(Ay ¢)] ly ¢1 |
|
Hence !
0= [Ay,v,, - V] + W,, +u  -uU . )
(RyiVyg = Vgl * Ly Myq + Uyg = Uy -
!
And so :
v v D(A*) b
- £ !
A ¢ (3.9
W U " )
+ -uU, =A(V, -V
Wao * Do T Y MY

-13-




From (3.9) we conclude that

p.* =p"
r : .
Further
+ * -
AAH(Z): = A (a - Vx¢) + Az - VA¢) - U)\¢
A* \ + Vv v,)
= - - +
=V "% Y
Xz -V, +V, -V)-U
2=Vt Ve V) T U
At *v v, )
= - + - +
(z V¢) A 6 2o
Yz - V) + AV, ~V -v
{z 4)) (¢ )\¢) o
A% ( V) + v
= - + + U -
27 Y e T Y%
+ Xz - V) + 3V, - v, - -
(z ¢) s A U¢
W
A5z -v) + 3
= - + - U
VA ¢ z q)
N e
Since
A; + AL = i; + X1,
it follows from Theorem 3.8 that A;H = 8; + Al By (3.8)
= Ay I
A, = Ay

3.11 Corollary. If A + AI is a generalized Fredholm operator for some A and X, Y are

reflexive or if A + AI is Fredholm then

3.12 Corollary. Suppose A is a differential operator. Then if A has a nonempty essential

resolvent




Proof. If A has nonempty essential resolvent p(A), A + AI is Fredholm for A € p(A) (cf.

) (8] ¢h. vi.. |

* * —
3.13 Theorem. Suppose N(A ) is complemented in Y and H = MoA. Assume_that D(M)l is
+

: * * . . ~+ . P
complemented in Y and that D(M ) is total over F. Define A , A as in pefinition
*
3.1 (taking V¢ eEM (9), U¢ = 0). Then
at =t <&t
H " "
. . s e + * + . . .
Proof. It is readily verified that A, = AH and that AH(z) is independent of the choice
: * : + o+ . . . .
V¢ in M (¢). It remains to check that AH = Ay - Since the technique is the same as in

the proof of Theorem 3.6 we only sketch the main steps. Note first that

* *
G(a) + (PR(M ), 0) (3.10

* *
where P is the projection on %(A ) 1is a direct sum. Let (zn) be net converging weak to

: + *
z in D u Let (Bn) be a net such that Bn € A+H and Bn converges R weak to B. Let
* —— ' * *
Q be the projection of Y onto (D(M)l) . Then OM ¢ £ M (¢) and is an admissible V¢.
Now
* *
(zn, Bn) = (zn - (I - PIOM o POM 6 Bn)
n n
*
+ (POM 6 ' o) .
n

*
Since the first term of this expression is in G(A )} it follows by (3.10) that

*
POM = R(Zn: Bn)
n

* *
where R 1is a weak continuous projection in X to ((NA ) , 0). Therefore the nets

* * * *
(PQM*¢ y and ((I - P)QM 6 ) converge weak . Hence QK 0 -— ¥ in R(M). |
n n n

* , + ;
3.14 Corollary. Suppose A is 1-1 and N(A ) is complemented. Let A : ¥ + X satisfy

+ + *
A'A = 1. Assume further that D(HA )l is complemented and D(HA ) is total over F. Let

+ %
€ (HA ) (9), U¢ = 0. Then

- A




Proof. Let M = HA+. Then the hypotheses of Theorem 3.13 are satisfied. |

*
Corollary 3.14 shows that in the case of 1-1 operators A the hypothesis that G(-4 )

is complemented can be replaced by weaker conditions. Moreover HA+ and (HA+)* are usuall”
easy to calculate (A+ can often be identified with a Green's function).

The following example is intended to illustrate some of the ideas in this section with
special reference to Corollary 3.14.

3.15 Example. Let A: L'[0,%) > L'[0,#) be given by y" on

'

n: = {y e LIIO,W): y(0) = y'(O) =0;y is

absolutely continuous and y" € Ll[O.w)}

+
Let F be the space of sequences C. Let F be the space COO of seguences

with finitely many nonzero terms. Define a pairing on C X COO by

[a,B} = L uiei, aeC, Be o0

+ *

Then F is total. Under the weak and weak topologies F and P* are 1l.c.t.v.s. such
* +*

that F =F' and F = F.

Define H: D > F by

Hy: (y(n))

>
1]

t
[ (t=s)(+)as
o}

*
A is obviously 1-1. It is known, see [8] Ch. VI, that A : L [0,0) -~ L [0,%) is given by

z on

* []
D:={zel[0,®: 2z is absolutely continuous and

z" ¢ L[0,®); lim z(t) y (t) - z(t) y(t) = 0, y ¢ D}

£

+
Then on R(A), AA =1 and

n
HA+w = (f (n-s)w(s)ds), w £ R(A)
0

~16-
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*
Since N(A ) is finite dimensional it is complemented. Also

— e — 1 .
D(HA ) = R(A) = N(A)

This discussion shows that the hypotheses of Corollary 3.14 are satisfied. It is easily veri-
. + 0* +0* . : . . .
fied that D(HA') = C00 and that R(HA) consists of the space of piecewise linear functiorns

of compact support with corners on a finite subset of z+. A simple limiting argument (see

+ *
[3] §5.5 for similar reasoning) implies that R(HA ) consists of piecewise linear functions
oo
in L [0,®] with infinitely many corners.

Application of Definition 3.1 and Corollary 3.14 now gives the following characterization

*
of AH.
* @ L
D(AH ={zeL [0,®: 2 is absolutely continuous on (n, n+l), n ¢ Z+ H
[ JE— 1 ' [ [ - [
z has jumps on Z+; lim(z(t) y (t) - (z (t) + z (z (n+) -z (n))y (¢t} =0), v ¢ DAH-
tro n<t

*
AH is given by z" on D(AH).
Note further that since

(ay, zl - [y, A’;zl = [Hy, ¢]

H (and also HA+): D +~ F is continuous if D is given the graph topology and F the weak
topology defined above.

It is easy to show that R(A) is dense and not surjective in LmIO,w). Hence by
Theorem 2.3 R(A*) is not closed. Further R(A; = R(A*). Applying the closed range theorem
again we see that R(AH) is not closed either, so that the closure of R(A) is not affected

by the perturbation H. Obviously this fact can be generalized to give the following result.

3.16 Coro ry. Let the hypotheses of Theorem 3.6 or Theorem 3.13 be satisfied then R(AHL

is closed if and only if R(A) is closed.




§4. Extension Theory

* * *
Suppose A: X+ Y and B: Y -+ X are densely defined operators such that B o>A. If

*
H: X > F, Ki: Y - G are boundary operators for A and B then

* *
c < B < .
AH A BK

The purpose of this section is to determine the structure of all relations between AH and

*
BK

We make the following assumptions concerning AH and BK:

* *
(1) N(A) and N(B ) are complemented spaces.
* *
(2) H=Mo°o A, XK=N-o° B where D(M) >R(B) and D(N) o R(A ).

* *
(3) DM) and D(N ) are total over F and G.

(4) D(M)l and D(N)l are complemented spaces.

* ~+ * ~+ ~t *
It follows from Theorem 3.13 that AH = AH and BK = BK . In AH wl ¢ R(M ) and wz = 0.

+ * ~+
Similarly for By wl € R(N ), wz = 0. (To avoid confusion we write “wl" in BK as "nl“ R

* *
when we are discussing Ay and By at the same time).

*
We consider first the case when dim G(BK)/G(AH) < o, Two preliminary lemmas will be

required.

4.1 Lemma. Suppose S: X +¢" and T: X > ¢" are operators such that N(T) » N(§). Then

T =MS where M is a m x n matrix. If furthermore the component functionals of T are

linearly independent, m < n and M is of full rank.

Proof. Let LA be the projection onto the ith coordinate of ¢n or ¢m. Since
ker T (T) > N(T) > N{(S} = n ker ni(S) '
it follows by Lemma 2.6 that

t : t n
TAT) = c; S, i=1,...,m, c, ¢ ¢

-18-
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Choose M to be the matrix
et 2
1 ' 3
. . ; '
; .t ’ i
c 3
) :

Suppose the component functionals ni(T) are linearly independent. If the rows of M are A
not linearly independent there exists 4 ¢ ¢m such that dtM = 0. Hence

atr = a%ms) = @ms =0 ,

contradicting the independence of the component functionals of T. Thus rank M =m and
since row rank = column rank m < n}|.

* *
4.2 Lemma. (A generalized Green's Identity). Suppose that A: X >y, B: v » X are rela-

*
tions such that A < B and

dim G(A")/G(B) = G(B™)/G(A) = n <= . (4.1)

. : . 5 : * n
Then there exist an n X n  nonsingular matrix B and continuous operators J: G(B) ~ ¢ -

= *
J: G(A) ~» ¢n with linearly independent coordinate functionals such that

[B*y, z] - [y, A*z] = j(z, A*z)* B j(y, B*y)

* * * *
on G(A ) x G(B ). Moreover in a Hilbert space setting (X = Y a Hilbert space, B = A,

and A symmetric) then B is skew-hermitian.

Proof. By Lemma 2.5 G(B) is the nullspace of a functional j: G(A*) - (G(B)l)*. Now
(G(A*)/G(B))* =g(B)?
By (4.1)

A" /60BN = A" /6B = ¢"

Hence (G(B)l)* = ¢".

-19~




The components of J must be independent; for otherwise it would be cruivalent teo

functional with range of dimension < n. The existence of J follows by a similar arcur. :°

Fix an element (o,R) in G(A*). Then
*
By, ul - [y, €]

determines a functional whose nullspace contains N(J). By Lemma 4.1 therc exists

k(a,8) € ¢” such that

(B"y, al - {y, 8] = k(2,8 Jiy, B'y) .

Since the component functionals of J are independent k(a,8) is unigue. A simple calcuila-

* ~ *
tion verifies that k: G(A") » ¢" is linear. If J(a,8) = 0, k(a,8 J(y, A'y) =0 on

Since J is onto, k(a,8 = 0. Hence N(J) c N(k). Applying Lemma 4.1 again we find that

k{a,B8) = BJ(a,8) where B isa n xn nonsingular matrix.

*
We now show that B is skew-hermitian if A = B 2 A apd is defined on a Hilbert

space H. To see this note that (4.1) becomes
* * * Y *

Ay, z) - 1y, Az) = J(z, A 2)BJ(y, Ay)

Taking conjugate transposes and interchanging y and =z gives
* * * ~ % *

ly, Azl ~ Ay, 2] =J(z, AyB J(y, A y)

Hence
* - * "%
JBI+JIBJ=0
- . .

which implies that 8 = -B.||
.3_Remark. Note that if A and B are Fredholm operators then (4.1) is always true;
if « denotes the index of an operator, then

G(A.)/G(B) = D(A*)/D(B) = K(A*) - x(B)

* * * *
~«(A) + x(B) = DB )I/D(A) = G(B)/G(A)

(See (8] Theorem IV. 2.3)). (4.2) alsc holds if A and B have a nonempty Fredholm resclvent.

This may be demonstrated by reasoning similar to Corollary 3.11.

=20~
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Suppose

1l
=1

dim D(8")/D(A) = D(A")/D(B)

* *
By Lemmas 2.5 and 4.2 A =B I and B = A j where J, J are boundary operators with rarnuc

n . * * p . . e
¢ . Since A and B are operators J and J can be viewed as continucus operators with

* * *
respect to the graph norms on D(B ) and D(A ). Thus we will write Jy instead of J(, , -

~+ . - . ) 4+ -
If z €D H and wz e y(z) we write 2z for z + wz. Similarly if y ¢ D g 7 means

y + ny for some ny e n(y). In terms of this notation we have the following generalized

Green's identity extending Lemma 4.2.

4.4 Lemma. For all y in D,Z in Dy _ny, and yz

~4 ~4 L
By, 2} - Iy, Azl = (32) Biy
* *
+ [ny, A z] - [B Yo 021
Proof. By Lemma 4.2

[é;y: z] ~ Iy, ;\;21 = (32) "By

R -+ * . ~+ *- . *- *- ;
since Bky: =By and AHz = A z, Adding [ny, Azl - [By, wz] to both sides gives the

4.5 Theorem. Suppose A, B are relations such that G(B)/G{A) = n < ©. Then A:=(C - B

result.

y

e

and only if there exists a k X n (k < n) matrix D of full rank such that

G(C) = N(D(J) n G(B)

where J is a boundary operator for A.

Proof. Suppose A c C ¢ B. Then G(C) is the nullspace of some nonzero boundary operator H:
G(B)y » ¢k, k < n. Since N(H) > N(J) H = DJ by Lemma 4.1 where D is a k ¥ 7 matrix of full
rank. The converse is trivial since DJ 1is a boundary operator.lj

It is sometimes convenient to give a "parmetric" rather than a boundary operator descrii-

*
tion of extensions ( between A and B .

-21~-
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*
4.6 Corollary. ( is a relation between A and B if and only if there exists a subspace

P of ¢n such that

*
DCYy = {y ¢« DB ): Jly, By),,‘ =0; ¢ eP } . (4.3)
*
Proof. Let P_ = R(IDH. B
*
We now turn to the description of ( . We introduce the following notation: if § |is

a finite dimensional space let [S] signify a matrix whose columns form a basis of S.

* * *
4.7 rem. If A< (CcB then B < <A and

*

* B * * > - * N
G(CH) = {{y, ay): (N(DY] B 3y, Ay)y =0} . (4.4)

* *
Proof. We consider only the last statement. Let (a, A o) ¢ G(C ). Then by Lemma 4.1
~% *
J (2, A a) is a functional on G(A ) whose null space includes N{DJ(+)). Hence on all of
*
G(A)
~% * = *
J (e, A )BT = ¢ DJ
where 2 e C", k < n. This implies
i * *
B J(x,A a) ¢ R(D)
Equivalently
* ~k T *
[N(D)}] B J(a,A o) =0
On the other hand if (o, A a) satisfies (4.4)

Tk * = * * * S~k *
(J (a,A a) B J(y, By)) J (y, By) BJ(a, A )

i

* * *
J(ty, By)y D¢

i

* w
(DIty, B y)) ¢

"

= 0

* *
So that (a, A a) ¢ G(C).]|]

0 for all 0 ¢ Pcl}

* * * *
G(C) = {(y, A y): [B Jty, A y),8)

-22-
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*
4.9 Corollary. Suppose A is a symmetric relation (i.e. A c A ) defined on a Hilbert space

H and
*
dim G(A )/G(A) = n < =

*
Let J be the boundary operator for A. Then A c Cc A is self-adjoint if and only if

there exists a k x n (k < n) matrix of full rank D such that

D= 1B

or eguivalently

8" = o

where B is the skew-hermitian matrix of Lemma 4.2.

Proof. Apply Theorems 4.5 and 4.7. It is clear that rank D must be less than n. |

If we can find boundary operators J, J determining AH and BK as restrictions of

* *

BK and AH' Theorem 4.5 - Corollary 4.8 can be applied verbatim to determine all extensions
* *

betwecn A and BK and their adjoints. Let us assume that D(H), D(J) > G(BK). Then

H
£
. HYy
J:=ng‘
)
\
K
Jo=1| 3
\ﬁ

N * * * *
where K, H are boundary operators determining B and A as restrictions of BK and AH'

Clearly the only novelty is the determination of i and H.

4.10 Lemma. Suppose R(K) = C° and R(H) = c". Then
~ * *
¥iy., BKy) = {fy, [R(NoB)]): = [R(NoB)] 8y . (4.5)
~ * , ]
H(z, AH z) = [[R(MoA}}, v, . (4.6)
-~ * *
Proof. By definition K is an operator on G(Bk ) whose nullspace is exactly G(B ). If
, . th * )
e, is the i row of [R(NoB)] , choose z, D(B) such that

-23-




Define

3
\

1

- [Y: BZl].

- *
Ky, By y) =

7/ . \

y

= {16, NoBz,) .
4 1

! \, ) k.
N
3 -
= [ey,[R(NoB)]]
{Note that k is well defined since ny - ﬁy' € R(B)L = N(B*)). If [5VI[R(NOE)1] = 1, then
1 *
8 € R(NoB) = - & R(B})” € N(B )
Y Yy ]
* * £
y = {y, BK y) € G(B )

~ *
So that N(K) < G(B ). The reverse inclusion is trivial. This rroves (4.%).

(4.6) is similar and will be omitted. i

*
.11 Theorem. If C is a closed relation between A _and B then

heorem k
K\

* * vk *

G(C ) = N(IN(DY) B | )) T GUA)

.
o
\ H
\
\
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Equivalently
!
e
* . *
D(C) = {zzle zeP:=RD);
\a
where B is the n+m+ k X n+m+ k nonsingular matrix given in Lemma 4.2 taking

* *
wATe o= op wg'w = B

e o

K
ST
H

e :!:

—

[
4.12 Example. For fixed 1 < p < «, and I an interval let
Ll

1]
Wl'p(I): ={y : vy is absolutely continuous, y ¢ Lp(I): f

wrl)'-pm: = {y : @P(D: y(a) =y = 0}

v
Define A on Wé'p[o,l] by Aay: = ~iy and B Oon wé’q[o,l], =1, by Bz: = -iz

Rl
+
- =

* : . l,q * . . l,p L
Then A is given by -iz on W {0,1] and B is given by -iy on W [0.1]. Turthor

* *
AcB and B<A . Let G=F-= ¢ and define

1 1 1 1+
H: W 'p[o,E) ew ’p(%,l] > ¢ by Hy: =y(;)

l’

Similarly let K: wl'q[o,%a & W q(%,l] -~ ¢ be given by Ky = y(%f). By the methods of

* *
Section 3 (cf. Example 3) it is readily shown that A " and B x are given by =-iz , -iy

1l,q,1

on w90, 6 wi) and wP0,D) @ w'Pd)) respectively.

~ + -— * . .
Clearly Ky = y(%-) - y(%-) and a boundary operator J: D(BK) -~ ¢ defining AH as

*
a restriction of B X is

1 1-
/'y({) - yG

y(0) '\

AREETET

VLt
\y(z ) /

-25-
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*
Similarly BK < AH is determined by

7

EPTC S RPPTE

z(0)
z(1)

1+
‘2(2 ) ’}

ot s etz -

A short calculation reveals that B is the skew-Hermitian unitary matrix

/0 0 0 -j

Thus if
10 1 0\ i
D= ’ 3
L0 2 0 l/ i
!
N(D) is spanned by |
]
3 ‘/1\ / o
| o
o i
=1 i 0 i
\ 0 \-l ;

Conpay

and application of Theorem 4.7 gives the adjoint boundary conditions

b

1+ 1- '

-(zl2 ) - 2(5')) - 2z{0) =0 i

1+ i

- + = = C

2 (1) 2(2 ) 0 )
M *
3 for C

*
! If G(BK )/G(AH) is not finite dimensional the foregoing extension theory breaks down

because the linear dependence principlc is not available.
We conclude this section with a new approach which works in the infinite dimensional case

for extensions with closed range, and a new characterization of self-adjoint extensions in

Hilbert space.
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a* *
2.122 Lemma. Let S be subspace of Y and Nc be a closed subsvace of N(B ). Let

D(C): = {y e (D(B*) n N(B*)') + Nc: [B*y, ¥l =0, € S}. (4.7)

Define G{(() by B on D(C). Then C(C is closed.

* * * *
Proof. 1If Y, ¥ and B Y, *z Y€ D(B) and z =B vy since B is closed. Further

*
[By, 9] =0 w9 € S by the continuity of the pairing and y must lie in the closed set

*
N(B ) + N .||
[

* * *
Let SC be a subspace of R(N ), Sc a closed subspace of R(M ), Nc a closed subspace

* * *
of N(B ) and N, 2 subspace of N(A ). Define
* *
D{C): = {y € (D(B) nN(B) + Nc) - Sc:
L * *
By 1 S, + N, } (4.8)
*
G(@): = {(y, By): y e DO} .
* * *
We call C the relation determined by S , S N and N . Clearly A _c C c B and
c c c [o] H K
G(C) = G(O) ~ (s, 0 (4.9)

* *x 1
where ( ¢ B is defined relative to Nc and N(B ) + NC by (4.7) and @ 1is a projection
% t
on N(B ) . Since G(C) 1is closed by Lemma 4.12 and (4.9) is equivalent to a direct sum,

C 1is closed. This proves the following result:

* *
4.13 Theorem. Let the hypotheses of Theorem 3.13 hold. Let Sc'—sc’—Nc and Nc be sub-

* * * *
spaces of R(M ), R(M ), N(B ) and N(A ) such that Sc and N_ _are closed. Then there

* * *
exists a unigque closed relation between A, _and BK determined by Sc' Sa,_Nc and N+
-

The following is a partial converse to Theorem 4.13:

*
4.14 Theorem. Suppose C is a closed relation between AH and BK then there exist closed

* * * * * *
subspaces N_ = N(B ), N_ ¢ N(A ), S < RM) and S, S R(N ) such that

-27-
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Moreover if C

has closed range C 1s determined by SC, SC, Nc and U

*
Proof. Set Sc

*

Sin cCc<cB_ ,
ce K

S

[of

1 *
R(C)™ = SC + N .t

N(C) =S _+ N .

*
A, cC and Cc B

H

* *
Applying the definitions of SC ’ NC ; S

K

1 * * 1 * *
R(C)™ n R(M ), Nc : = R(C) N{A ), SC: = N(C) R{N ), = (7
* *
= y: D(C). Clearly R(C) = Sc + NC and H(C) = 8+ However .
* ~ 4+ * *
R(O)Y < R(A, )Y = N(ALT) = R(M) + 8@
H H
* * *
N(C) < N(BK } = R(N) + N(B) .
and N_  gives the reverse-inclusions. I!ow =zu
1 * *
C has closed range. Let C be the relation determined bv Sc' N, SC and U acouri:

'
to Theorem 3.13. Obwviously C = C. Since

and R(C)

'
Let (a,f) € G(C ). Then there exists & ¢ D(C)

v
a - a' ¢ N(C)

N(C). Thus =2 ¢ D(C) and £ ¢ C(a).

* *
R(CHY = RO =5+ u
c [

13 L}
is closed, R(C ) = R(C). Thus R{(C ) = R(C). From (4.8) and {4.13) Wi ) =

such that

(v',:2) ¢ G(C Y. Hence

I

4.15 Theorem. If C is a relation with closed rance between AH and BK » < 1s a relas
* * * *
with closed ranae between BK and AH and C is determined by Sc*f_S-,_Sc* =3,
* *
N *=1N and W * = N .
-¢c—¢——— ¢ —¢

Proof. We verify only the last statement

g: D(C): =

{vz

z £ D(C)}.

=28~




* * 1 *
N(C ) n R(M ) = R(C)” n R(M)

[3]
%
"
n

wn

1
1]

* *J_ * *
sC*: = R(C )" n R(N ) = N(C) n R(N)

z
»
H

* * 1 *
N(C) nN(A) =R(C)" nN(A) =N

]
2

'.L * *
R(C )7 n N(B ) = N(C) n N(B)

z
"

*
The following result is an alternate characterization of D(C ) without the srace xc*

*
that is available if A 1is a finite dimensional restriction of B .

*
4.16 Corollary. Suppose dim D(B )/D(A) < =, Then

* ~4 * *o ~
D(C ) = {z ¢ DH: ll)z € Sc ; Az L 5.

(4.11)
~— R o
(52) Biy = 0, y in D(CO)}

*

Proof. If z e D(C), v, €S, and A"z L S_ by Theorem 4.15. If y & D(C), by (4.8)

; e D(C) for any ny. Similarly by Theorem 4.15 and (4.8) if 2 ¢ D(C*) z & D(C*). Since

c and ¢ are mutually adjoint by Lemma 4.4 (35)*éJy = 0 (taking ngr vz T 3). Therefore
D(C*) satisfies (4.11). Conversely if 2z satisfies (4.11), application of Lerma 4.4 and

*
the definitions of Sc and Sc gives
T .
[BKy, z] - [y, A 2] =0

*
for all y in D(C). Hence =z e D{(C ).]|

4.17 Remark. The analogue of (4.11) can in the same way be proved for C, i.e.,

* o *

D(C) = {y € D' $: By is
=fyepg: n &S y 1S,

—— N i'
(32) Bay = 0, vz € D(C )}

We turn now to the characterization of self-adjoint extensions in a Hilbert spiace sottin:.

Here the hypothesis that C has closed range is no longer needed, the next two theorems aive
simple necessary sufficient conditions for the existence of a rich supply of self-adjoint

*
extensions between AH and AH .
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4.18 Theorem. Let A be a symmetric operator defined on a Hilbert space H. Then if A has

*
a self-adjoint extension €, for each closed subspace S of R(M ) there exists a self-

adjoint extension Cs of AH such that

* -
D(Cs) = {y e D(C) -s8: Ayl S}

* (4.12)
Gc) = {(y, ay): yve D(cs)}
* .
Proof. Let AH S Cs < AH be the relation determined by (4.12). Then
K - - K
C.ys2] - ly,C 2l = (A y,2] - ly.A 2]
(4.13)
LI *
- {Aa y,wz] + [ﬂy,A z]
wnere ; =y + qy, zZ =2z + yz and ny, vz € S. By (4.12) and the self-adjointness of C the

*
{4.13) is zero, showing that Cs is symmetric. Now suppose (x,8&) € u(cs).

ks

n * *
Since C_ = A i =A a. Further

*
[CSy,a] - ly,Aal =0
e - * - -
= [Ay,n] - [y,Au - (4.14) 3
K- L .
(A ylwq] + [ny,A a)
Since
* * i *
y & N(C_ ) n R(M) = R{C)" n R{M)
A® S S
=S
and

*
”y £ S ¢ N(CS) = R(CS) .

the last two terms in (4.14) vanish and hence
- x_ * 1
(a,B o) £ G(C ) = G(O)

*
Thus a & D(C) - S. Since ny is arbitrary in S, A a L S. We conclude that (a,B) € G(CS)

and that C_=¢C A
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. 0, . Let A be a symmetric operator defined on a Hilbert space H. Suppose € is

a self-adjoint extension of A Then A has a self-adjoint extension C. Moreover if

g

S: = R(C), C is the self-adjoint extension CS determined by C and S given by Theorem

4.18.

Proof. Define C by
- - H
G(C): = {(y, A y): y ¢ D(C)}

Obviously by C > A. It follows at once from (4.13) that C is symmetric since n

wz € N(C) L R(C). Suppose (a, A*a) € G(E*). Let % € y: D(C). Then by (4.13) again
- - * * o
[Cy, a-yi - [y, A a] = [ny. A o]
Hence
- - * o
[Cy, a-y) - [y, Aa} =0 ,
so that
- * o - -
(a-y, A u) € G(C ) = G(C)

- - - * - - - -
We conclude that a - % £ D{(C), (a, B a) ¢ C. Thus C < C and C 1is self~-adjoint.

- * * *
Since R{C) = R{C) and R{C) ¢ N(AH f’= R(M ), 8§ 1is a closed subspace of R(M ). By
Theorem 4.18 there exists a self-adjoint extension cS determined by C and S. By (4.12)

E=c_. |

4.20 Corollary. Suppose A is a symmetric operator on a Hilbert space H with equal defi-~

ciency indices. Let R(H) be a Banach space and let the hypotheses of Corollary 3.14 be

satisfied, Further let S be a closed subspace of R(H). Then AH has a self-adjoint

extension determined by the boundary conditions

+ %
{HA (A z),¢] =0, ¢ € S

where € is a self-adjoint extension of A.

Proof. Since A has equal deficiency indices there is a self-adjoint extension C of A.

+

*
Corollary 3.8 AH = AH . By Corollary 3.14 M = HA+. Now apply Theorem 4.18.
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We use Corollary 4.20 to find self-adjcint extensions of &r in bxar: 1. <.,
; :

4.21 Example.
when p = 2. Here
+ t
A" =i [ (nas
0

2
on L7[0,1]. Further

(HA'z,¢] = 3i [ zdt

= [ z i N (t)edt
[0} {0,3]

* - *
so that (Hah)%p = -ix L (8. since z =z + (HA") ¢ is absolutely continuous
[0,5]
- 1+ - 1- -
z(% ) = z(%') and we obtain ¢ = i(z(%f) - z(%—)). Moreover
g 14 1 1
i z + 2(5 ) - 2(5 ) 0 <t < 3
: =/ & _ L
z = 2(2 ) t = ) '
! 1
!\Z t‘E
and

(N3]

* -
ata’z = f z ds
()
=20 - z(0)

Thus if S = ¢ applying Corollary 3.20 we find that one boundary condition is z(%_) = ¢ i,

Since self-adjoint extensions C of A satisfy the boundary condition 2z(0) = z(1) weo hav
also
1+ 1-
+ —_— - -_— =
z(0) z(2 ) z(2 ) z(1)

so that z(%f) = z(1l). On the other hand if S is trivial the boundary conditions are

z(1) = z(0) and z(%f) - (z%r) =0,



- e e

The same boundary conditions for this simple example could have been determined @ a
straightforward integration by parts argument. Our method however is a general one and can L«

applied to more difficult examples which we will consider systematically elscwhere.
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We

end the payer ot somo o mare s 0 toe adjoint theory of (1.1) when r # .

) + 4 * * .
= -+ . -4 »F and AH:_DH x F > X be given respectively by

t - *
a 4,

s, Hy) ai A (z2,3) = A z where & ¢ y'2).

. . +
It is trivial that AH and AH are densely defined operators.

5.2 Lemma. lAHy' (z,3)1 = [y, A;(z,t)] on D(A) x D(A;).

Proof.

Immediate from Definition 5.1, Theorem 3.3, and the definition of an inner product on

* * "
(Y x F) x {Y x F ) (see 52). .

The main result of this section is the following:

* + 4%

. o . A = = .

5.3 Theorem » AH and AH AH
+ +* *
Proof., By Lemma 5.2 A ~A and A - A Suppose  ({%,%),R) ¢ G{A )., Then
‘ H H H il '
[ay, o) + [Hy,$] = [y,B8] . (5.1)
+

On the other hand ¢ ¢ ¢(z) for some 2z in DH' By Lemma 5.2

{ay,z) + [Hy,$) = ly.A'z] . (5.2)

Subtracting (5.2) from (5.1) we find that

Thus

We con

the we

(Ay,a-z] = [y,8-A 2] .

*
a=2 =« D(A ), ¥Yu e D and

* - *
S =A 2+ A (1-2)
* .
= A (v) .
* + .
clude that G(Aq) 4 G(AH)’ Since H is continuous on G(A) when F 1is endowed with

4%
ak topology, AH is easily verified to be closed. Hence AH = AH.Il

mark. Note the adjoint theory for nonhomogenous b.v.p. is much simpler than for AH

S+
are always closed operators and that there are no analogues of AH.
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