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ABSTRACT

Let A: X - Y be a densely defined closed operator where X and Y are

Banach spaces. Let F be a locally convex topological vector space and

H: X - F and operator such that N(H) and D(A) have non-trivial intersection

and D(H ) is total over F. We compute A and A where A is the
H FH

toperator determined by A on N(H) and AH (x) = (Ax,Hx)

We also characterize certain closed extensions of AH  and the adjoints of

these extensions. In particular application is made to the problem of deter-

mining self-adjoint extensions of symmetric operators restricted by boundary

conditions in a Hilbert space.
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SIGNIFICANCE AND EXPLANATION

An important idea in applied mathematics is the notion of the adjoint of an

operator. Transposes or conjugate transposes of matrices are examples of adjoints.

Knowledge of adjoints can frequently tell us if an equation has a solution. For

example, let Ax = f be an equation phrased in terms of a linear operator A.

Then the equation has a solution only if f is orthogonal to the null space of

A . A concrete instance of this abstract principle is the Fredholm alternative

for integral equations.

Among other things this paper shows in a general way how to compute the

adjoint of an operator restricted by complicated boundary conditions. This techni-

que can be used for example to analyse differential operators such as

(n) (n - 1)a0 y + a y + ... a y restricted by multipoint boundary conditions
a~y n

(j)
(e.g., y (t.) = a., 0 < j < n - 1, 0 < i < k, k > n) or interface conditions

() + (j) -
(Y () t + y ( )(t. ) = a. .

1 1 iJ

> 4ultipoint boundary conditions arise in the theory of beams or plates with

interior point loads, and also the mathematical theory of splines. Interface con-

ditions arise in problems of diffusion through parallel "slabs" with different

properties (e.g., nuclear reactors or the study of shock waves). Adjoints of such

differential operators also are encountered when one attempts to derive Euler-

Lagrange equations for constrained minimization problems.

Our method is very general and is designed to work for partial differential,

integral and functional differential operators as well as differential operators.

Part I presents some of the abstract machinery to solve the problem. Part II will

apply this machinery to concrete and applied problems of the type mentioned above.

A

The responsibility for the wording and views expressed in this descriptive summary
lies with MRC, and not with the author of this report.



NOTES ON GENERALIZED BOUNDARY VALUE PROBLEMS

IN BANACH SPACES, I

ADJOINT AND EXTENSION THEORY

R. C. Brown

§1. Introduction

Suppose X, Y are Banach spaces and A: X - Y is a densely defined closed operator.

Let H be an operator having domain in X and range in a locally convex topological vector

space (l.c.t.v.s.) F. Assume that D(A) n N(H) is nontrivial. Then the system

Ax = f

Hx = r

is called a generalized boundary value problem (b.v.p.). We call the first equation of (1.1)

the operator part of the b.v.p. and the second the boundary condition. H is the boundar'

operator. If r = 0 the problem is said to be homogenous, otherwise it is nonhomogenous.

In the nonhomogenous case, (1.1) determines an operator A : X - Y x F and in the homogenousN

case an operator AH c A: X - Y on

D(AH): = {x E D(A); Hx = 01

In this paper we are going to construct the adjoints AH  and AH  and compare their

structure. Knowledge of A and AH  yield at once statements of Fredholm Alternative

solvability conditions for the original b.v.p. We will also be interested in the followina
* * B* *

extension problem. Suppose A and B: Y - X are 1-1 and B D A. Let K: Y - G

(G a l.c.t.v.s.) be a boundary operator. Then (roughly speaking)

A c A c B K  (1.2)

One can now ask for the structure of all closed extensions of AH which are restriction of

B K In the special case when X = Y = Hilbert space and H = K, AH  is symmetric, and the

%Department of Mathematics, The University of Alabama, University, Alabama 35486.
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problem amounts the determination of all self-adjoint extensions of AH '

Both the adjoint and extension problems for generalized b.v.p. have been investigated in

several recent papers, notably [5], [61, 9]9. In [6] for example A is a linear relation in

X x Y and A H = A n B where B is the preadjoint of a finite dimensional subspace B in
* X*

Y x X Such a representation is always possible if H is continuous on G(A) and F is

finite dimensional. This "subspace" interpretation of A H leads to an elegant construction

of (A P B) and also to a solution of the extension problem when (in our notation)

dim G(BK )/G(AH  <

The contributions of the present paper are twofold. In the first place we extend the

theory by letting F be an infinite dimensional topological vector space. This setting is a

natural one for it allows consideration of problems with infinitely many boundary conditions -

for example, singular differential operators with infinitely many point and/or interface con-

ditions. Secondly (and of equal significance) there is a change in point of view which dis-

tinguishes this paper from [6]. We represent the boundary condition directly in terms of the

null space of the boundary operator given in the problem. Thus we bypass the task of finding

B. Furthermore because much of the theory presented here is an abstraction of ideas in the

writers earlier papers [2], [3) on Stieltjes b.v.p., our technique gives simple formulas and

characterizations which are easy to apply both to this and other types of concrete b.v.p.

We now briefly summarize the paper. Notational conventions and fundamental definitions

are introduced in Section 2.2. Here in particular we discuss the notion of an abstract

boundary condition and prove that every closed restriction of a closed linear relation A is

an "A H " with reference to a certain l.c.t.v.s. F and a boundary operator H. Section 3 is

devoted to the computation of A . F is assumed to be both finite and infinite dimensional;

and significant differences in the structure of the adjoint are pointed out. In the infinite

dimensional case we first assume that G(-A*) is complemented (Theorem 3.6). However, since

this is an inconvenient hypothesis in a non Hilbert space setting we investigate several ways

in which it can be weakened.

-2-



The final result (Corollary 3.14) is an especially simple construction of AH when A

is 1-1. We illustrate this construction by an example. Section 4 solves the extension pro-

blem mentioned above: first in the finite dimensional case and secondly for extensions having

closed range. Finally §5 treats the nonhomogenous case. AH  is determined and its structure

compared w ith A H

Although we occasionally illustrate the theory with examples, most applications to

Stieltjes, and interface b.v.p., to evolution and functional differential operators, and to

calculus of variations and control theory (extending some preliminary ideas already presented

in [3]) will be reserved for the second part of this paper.
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§2. Notation and Preliminaries

If T is a linear operator or relation D(T), R(T), N(T) will stand for its domain,

range, and null space respectively. T denotes the conjugate transpose, dual, adjoint or pre-

adjoint of a matrix, space, or linear mapping according to the context, (we write the transrose

of a matrix M as Mt ). The notation S or the term "closed" signify the weak closure of

a set S c X if X is a dual space; otherwise we are referring to the closure of S in the

topology of X. Similarly, if X is a dual space, S is said to 1e "complemented" in X if

H is complemented with respect to the weak topology (thus in particular the projection

associated with S is weak continuous). Otherwise "complemented" means complemented with

respect to the norm topology. Finally, in the same vein S means either the preannihilator,

i.e.,

{S E X: [s,s'] = 0, s' E S}

or the annihilator of S, i.e.,

{S X: [s,,s] =0, S' E S}

If X is a space and X is its dual [-,.1 signifies the sesquilinear pairing on

X xX given by

, -* -
[x, x I x (x)

If X, Y are spaces and X+  is total on X and Y+ is total on Y we define a pairing on

(X x Y) x (X
+ 

x Y+) by

[(x,y), (x+ , y )]: = [y, y I + (x, x

If X and Y are normed we define a norm as X x Y by

i (xy) 11: -- ii + illi

A linear relation A: X - Y where X, Y are linear spaces is a set valued mapping whose

graph G(A) is a subspace of X x Y. Unless otherwise mentioned all relations are assumed

closed; i.e., to have closed graph. For e E D(A) we denote the image of a in R(A) by

A(s); the notation (a, Aa) will signify an arbitrary element in G(A) such that Aa C A(W).

-4-



It is easily checked that A(0) is a subspace of R(A) and elements , E £ A(u) if and

only if a E a mod A(0); i.e., the induced mapping A': X - X/A(O) is an operator. A

relation is an operator if and only if it is single valued; i.e., if and only if AM0) = 0.

If A is a closed operator D(A) is a Banach space with respect to the graph topology defined

by the norm

1lixli = I1xIIx + LA.lY

A is then a continuous operator with respect to the graph topology. We will also write

B c A if G(B) c G(A); in this case B is said to be a restriction of A and A is called

an extension of B.
2. Dfeintin Te djin *" * X*

2.1 Definition. The adjoint A Y X of A: X -) Y is the relation with graph

{(e,8): [y,o] - [x,a] = 0; (x,y) E G(A) .

B*" * X*

2.2 Definition. The preadjoint of B: Y* - X is the relation with graph

{(a,6): [a,y] - [a.x] = 0; (x,y) E G(B)!

Following the spirit of the policy introduced above, for closures, complements, and

annihilators, A will mean either the adjoint or the preadjoint of A depending on the

context. A more complete discussion of the properties of adjoint and preadjoint relations

may be found in [1] or [6]. We specifically mention here only a generalization for relations

of the classical Banach closed range Theorem for operators (see 16] for the proof).

2.3 Theorem. If A: X - Y is a closed relation then norm closure of R(A) is equivalent to
wa* R(*) * * *

both the norm and weak closure of R(A. Similarly if B: Y - X is a weak closed

relation the norm closure of R(B ) is equivalent to both the norm and weak closure of R(B).

Suppose B is a (closed) restriction of a relation A: X - Y. Define an operator

H: G(A) - (G(B) )
*

by

H(y,Ay) o (a,B) = [Ay,a] + [y,8], (a,S) E G(B)

(G(B) )*  under the weak* topology is a l.c.t.v.s. By the definition of this topology H is

-5-



continuous. It is clear that the nullspace of H is exactly G(B). We fix these ideas with

a definition.

2.4 Definition. Let A: X - Y be a relation and F a l.c.t.v.s. Then an operator

H: X x Y - F such that D(H) :DG(A) is called a boundary operator provided D(H*) is total

over F, and the condition H(y,Ay) = 0 is called a boundary condition.

In terms of Definition 2.4 the previous discussion has showr.

2.5 Lemma. B is a closed restriction of A if and only if B = A,,. The boundary operator

H is continuous with range in a l.c.t.v.s. If A is an operator H can be viewed as an

operator such that D(H) : D(A) which is continuous in the graph topology on G(A).

The importance of Lemma 2.5 is "existential": every restriction of A is determined by

a certain "canonical" boundary condition. In most cases however a boundary operator H is

given a priori; it and the canonical operator supplied by the Lemma may not be the same (only

equivalent in the sense that their null spaces are the same). Indeed the canonical operator

may be hard to find. Therefore the results in this paper will be expressed solely in terms

of an arbitrary boundary operator considered to be given in the problem and Lemma 2.5 will be

used only as a theorem proving tool.

We close this section by mentioning a simple result frequently used in the proofs of this

paper.

2_ . (Linear dependence principle). Let *: X , i = 1. n, and : X - be

linear functionals such that

N( ) n f N(I .)

Then (provided Z 0)

where not all of the constants c. are zero.1

Proof. See [10] p. 62. H

-6-



§3. The Adjoint of A

Let A: X Y be a closed densely defined operator and let H be a boundary operator

for A. In this section we determine AH in terms of A and H

As stated in Definition 2.4, X x Y :)D(H) D G(A). Hence H F * X x Y is in general

a relation (unless H is densely defined) and H (0) is a subspace of

G(-A ): = {(y, - A y))

We have assumed that D(H ) is at least total over F. To see the significance of this

assumption, let (V , U ) denote an arbitrary representative in H (f). Then

• (t)
[H(y, Ay), 4] [(Ay, y), H (f)]

(3.1)

= [Ay, V] + [y, U I

Since F endowed with the weak topology relative to D(H ) is a l.c.t.v.s. (see 110) p. 62)

such that F = D(H ) the above equation shows that H: G(A) - F is now "weakly" continuous.

ihus (provided D(H ) is total) we can assume with no loss of generality that H is con-

tinuous on G(A) by redefining the topology on F if necessary.

3.1 Definition.

D + D(A*) + {V £ F }
H:

+H: D(A*) + 1I(R(H*))

where 71 denotes projection on Y

O(z): = (0: z - V r D(A )}

0z): = {(i' 02 ) E R(H*): z - 1 D(A)

Further, let A H A+ be the relations in Y x X such that
HH

(±)This formally "wrong" inner product can be corrected by either regarding H as defined in

G(A
-
) or by writing [(y, Ay), H*( )] with H ( ) £ G((-A*) . For notational reasons

we wish to avoid either option. We hope the reader will tolerate this slight abuse of

language.

-7-



+ *

G(AH) {(z, A (z - V ) - U ): ' z)

G(A H ) {Z, A *(z - Ci
) 

- 02 (4' 42)  z) }

3.2 Lemma. The following is true:

+
(1) AH is well defined modulo representives (V, U ) in H*(¢)

+ *

(2) DH = D(A*) +{V: 4'EF}

A* + -+

(3) Ac A c AH

% H

(4) AH (0) = A*(V4 ) - U4 : 4' 4(0)}•

HA+ (0) = A 0+

{A (4'i) - 42: (4l' 42
)  

E 4(0)}

Proof. We demonstrate only (1) since (2) - (4) are immediate from the Definition. Suppose

(V, U), (V', £H Since

(V - V ' , U - E' ) H * (0) = G(-A

it is clear that

U - UO = A (V -v

and

A (z - VI) - U' - (A (z - V ) - U ) =

A*(V - V' ) - (U - U ) = 0 .

3.3 Theorem. A* = AH.

+ • +* A**

Proof. Since A D A , AH  c = A. Thus if (y, Ay) E G(A *)
H H H

[Ay, zi - (y, + z] = [Ay, z] - [y, A*(z - V) - UI

= [Ay, V] + [y, Ut]

-- [Hy,0

S0 I

. -8- .......- I".V M~ u



*+

Since D(H*) is total, Hy 0 and y D(A H). Thus AH  C AH. However if E D(A1)
= = AH

(so that Hy 0), the above computation shows immediately that A - A

H H

3.4 Theorem. If F is finite dimensional AH = AH.
* +

Proof. In view of Theorem 3.3 it is only necessary to prove that G(A ) c (A) . Let
H

(a,5) F G(A ). Define the functional @aB: G(A) - by

B (x): = [Ax, a] - [x, S]

Since

N( ) a G(AH ) = N(H) n G(A)

it follows by Lemma 2.6 that

[Ax, a] - [x, B] [H(x, Ax), €]

= [(Ax, x), H

= [Ax, V ] + [x, U

F***

for some 0 in F. Transposing we conclude that a - V E D(A ) and B = A*(a - V) - U.-

We now consider the case where F is infinite dimensional.

* H+ * •*

3.5 Lemma. If G(-A ) is complemented there exists an operator H F C C-A ) such that

[Hy, = [(Ay, y), H+]

Proof. Let

+ *
H : (I - P)H (3.2)
W* • M

where P is the projection of Yx X* onto G(-A ). That an element of H )satisfies (3.1)

is obvious. If (V U (V U H (4) then it follows from (3.1) that

+ + +' +) ,

Since

+ 4-' + +' ,
(V -V ,U -U ) G(-A*)

by (3.2),
+ +- + +'

v=v ,=u =u

-9-
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* * ~+-
3,6 Theorem. If G(-A ) is complemented A H  A H

* +

Proof. By Theorem 3.3 and the standard theory of adjoints A = A . Thus it suffices to
H -H

show that A+ = A H  To this end suppose that (z2) is a net in D H converging to z in
H H nHy *

the weak* topology of and that n r A zn  is the general term of a net converging to

in the weak topology of X . Using Lemma 3.5 we write
++

(v, U) (V , U + ) + (VN, U

where

+ + ,*

(V U ,) = (1 - P) (V, 0) U G(-A )

(v U ) P PN, U G(-A*)

Since

_ + *

z -v + D(A*)
n n

n

and

A* ( n * +@n +an E A (z - V ) - U = A (z - V - U +

n n n n n n n

(c.f. Lemma 3.2 (i)),

(z - V + - (Bn 
+ 

U )) G(-A*) (3.4)n 4n' n n :

Adding (3.3) and (3.4) we obtain (zn, - 3n). Hence

+ +

(V+ U+ (I - P)(z , - Sn) (3.5)

n n

(z - 1  ( + U )) c G(-A

i.e.,

-10-



+~

(Z, 8) E G(AH

and thus A,, C A

To show the reverse inclusion, suppose (y, Ay) E G(AH) and

(z, A (a - 1) - c) G(A . Since

lAy, z - = [y, A (z -
)

it follows that

[Ay, z] - [y, A (z - IP) - 2
] = [Ay, l

] + y, 2 ]

1 2 A,1] 2

Since (01, ,2 ) E R(H ) and weak closed sets are also closed, given E > 0 there exists

(V , U ) such that

- V-  /(IiAyll + Ilyll)
F

2  U I C/(I)Ayll + 11ylj)

Consequently

I[Ay, z] - [y, A*(z - *) - 1 <_ (37)

I[Ay, i - V ] + [Y' 2 - U
1 

<

(recall that [Ay, V I + ly, U ] = 0 for y in D(A ) It follows from (3.7) that

[Ay, z] - [y, A z] =0

proving that

~+ * +
AH : AH =AH

~+ *
3.7 Corollary. A = AH

Proof. Immediate from Theorem 3.6 and the fact that A H AH

3.8 orola. If R(H) is a Banach space AH AH =A1 .

Proof. By Theorem 2.3 R(H ) ig cospH and the assertion is immediate from Definition 3.1.

-1i-



If X and Y are Hilbert spaces G(-A*) is trivially complemented. But almost nothin

seems known about this concept in other spaces. (It is not even clear for example if the fact

that G(A) is complemented implies that G(-A) is complemented). We can however demonstrate

the following sufficient condition that G(-A ) be (strongly) complemented in general Banach

spaces.

. r If A is a generalized Fredholm operator; i.e., N(A) and R(A) are comple-

mented spaces in X and Y, then G(-A*) is complemented.

Proof. It is well known (e.g. [4]) that if A is a generalized Fredholm operator then so is

A and that the class of generalized Fredholm operators is equivalent to the class of opera-

+
tors admitting a generalized inverse, in other words, a bounded linear operator A+: Y - X

satisfying the relations

+
AAA = A

A+AA + = A+

* A* + +

Hence there exists a generalized inverse A for A- in fact A*+  A+ . Let J be the

operator defined by J(x) -x. Define A*+: Y* X by

~*+ *+ * *+
A :=A JAA

Now
* -. + ** *+ * *+

(-A*)A (-A* )(x) = JA A JA A JA (x)

= JA*A*+ J2A*(x)

=-A x

Also

*+ A* *+) *+ * *+ * *+ *A*+
A (- ) =A JA A JA A JAA

*+ J*A*+j2A*A*+

*A

Thus -A is a generalized Fredholm operator. Let Q be a projection on R(-A ) (e.g.,

*A *+ * * * a* p-A*)A A . Let S be a projection on NC-A ) = N(A ) . Define P: Y X - G(- by

~, -~-



* * ~*+ * * *

P(y ,x ) = ((I-S) A Q x + Sy , Q x

P is obviously continuous and onto since

* * * * A'*)

P(y,- A y )=(y ,- y

Furthermore,

2 * *-~.

P (y ,X ) = P((I-S) A*+Q x + S y , Q x

= ((I-S) A*+ Q2 x + 0 + S 2y
* )

P(y , x*) I!

The inconvenience of Theorem 3.9 is that it requires that R(A) is closed at least if

Y is a general Banach space. Since we do not know any other sufficient condition, it seems

worthwhile to explore ways in which the hypothesis that G(-A ) be complemented can be weak-

ened. We devote the remainder of this section to this task.

The next theorem and its two corollaries are generalizations of Theorem 3.9; while

Theorem 3.13 and Corollary 3.14 represent a new approach.

3.10Theoe. If G(- (A + XI) ) is complemented for some X then AH

* ~+* *

Proof. Let A = A + XI. Then by Theorem 3.9 A = A H. But A H AH  + I. Therefore

A* ~+ - I (3.S)
H AH

Now

[Hy,f] = [Ay + Xy, V ] + [yUlI

= [Ay,V ] + [y,U ]

Hence
0= [Ay,VI - VO] + [y, AV +U -U]

4 4 4

And so

VX -VO E D(A)
(3.9)

AVXO +U -U = A (V -V

-13-



From (3.9) we conclude that
+ +

D = D

Further

A H (z): = A (a - V) + X(z- V) - U

= A (z - VAO +V - V) +

X(z - VXO + V - V) - UX

= A (z - V ) + A (V - V ) +

(z - V) + (v - v ) - 0

= A (z - V) + XV + U - UO

+ X(z - v) + xv - xv - Uo -

UA4

= A (z - V ) + Xz - U

+z + z

Since

AH + XI A H~ + TI+ + -+

it follows from Theorem 3.8 that AXH = A H + XI. By (3.8)

A =A+
H H

3.11 Corollary. If A + Xl is a generalized Fredholm operator for some A and X, Y are

reflexive or if A + XI is Fredholm then

* -+

A = A -

3.12 Corollary. Suppose A is a differential operator. Then if A has a nonempty essential

resolvent

* ~+

AH = AH

-14-



Proof. If A has nonempty essential resolvent p(A), A + XI is Fredholm for X E p(A) (cf.

[81 Ch. VI.). i

3.13 Theorem. Suppose N(A ) is complemented in Y* and H = MoA. Assume that D(m), is

complemented in Y and that D(M*) is total over F. Define A;, , A as in Definition

3.1 (taking V t M (W), U = 0). Then

* A+ -+

H H H
* +

Proof. It is readily verified that A + A and that A+lZ) is independent of the choice

* + -+
V in M (Q). It remains to check that kH = AH Since the technique is the same as in

the proof of Theorem 3.6 we only sketch the main steps. Note first that

G(A*) + (PR(M*), 0) (3.10)

where P is the projection on N(A ) is a direct sum. Let (z n ) be net converging weak to

z in D 
+
H Let (n) be a net such that 8n E A H and 8n converges 8 weak* to 8. Let

Q be the projection of Y onto (D(M) )'. Then QM* c M*() and is an admissible V

Now

(Zn , 
8n ) = (zn - (I - P)QM*0n- PQM O

n
'

+ (PQM* n0)

Since the first term of this expression is in G(A ) it follows by (3.10) that

PQM = R(zn  8n )
n

where R is a weak continuous projection in X to ((NA*) , 0). Therefore the nets

(PQM4) ) and ((I- P)QM*) ) converge weak. Hence QK - in R(M ). II
n n n

3.14 Corollary. Suppose A is 1-1 and N(A*) is complemented. Let A Y - X satisfy

A + A I. Assume further that D(HA ) is complemented and D(HA ) is total over F. Let

VE (HA )(4), U = 0. Then

*
AH =A

-15-



(

A =A
H H

Proof. Let M = HA
+
. Then the hypotheses of Theorem 3.13 are satisfied.

Corollary 3.14 shows that in the case of 1-1 operators A the hypothesis that (-A

+ +

is complemented can be replaced by weaker conditions. Moreover HA and (HA+) are usual!.*

+

easy to calculate (A can often be identified with a Green's function).

The following example is intended to illustrate some of the ideas in this section with

special reference to Corollary 3.14.

e Let A: L [0,-) - L [0,-) be given by y" on

0: {y E L [OA'): y(0) = y (0) = 0; y is

absolutely continuous and y" E L [0,-)}
+

Let F be the space of sequences C. Let F be the space CO0  of sequences

with finitely many nonzero terms. Define a pairing on C x C0 0  by

[a,] ii, a E C, E COO

+ ~*+
Then F

+  
is total. Under the weak and weak topologies F and F

+  
are l.c.t.v.s. such

F* F+

that F= F and F =F.

Define H: D - F by

Hy: = (y(n))

t

A+: = f (t-s)(.)ds
0

A is obviously 1-1. It is known, see [81 Ch. VI, that A : L [0,-) - L [0,-) is given by

z" on

D = {Z E L [0,-): z is absolutely continuous and

Z" £ L [0,0); lim z(t) y (t) - z(t) y(t) = 0, y E DIi t-

Then on R(A), A+A = I and

n
HA+w = (f (n-s)w(s)ds), w t R(A)

o 
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Since N(A ) is finite dimensional it is complemented. Also

I -1
D(HA

+
) =R(A) = N(A*)

This discussion shows that the hypotheses of Corollary 3.14 are satisfied. It is easily veri-

fied that D(HA+ ) = C and that R(HA ) consists of the space of piecewise linear functions

of compact support with corners on a finite subset of Z . A simple limiting argument (see+*

[3] §5.5 for similar reasoning) implies that R(HA ) consists of piecewise linear functions

in L [0,] with infinitely many corners.

Application of Definition 3.1 and Corollary 3.14 now gives the following characterization

of A .

H'

D(A = {z E L [0,): z is absolutely continuous on (n, n+l), n E X+;

- ' I~ (z( , '.-)' 0,yED
has jumps on Z+ lim(z(t) y t) - (z t) + H z(n) - z(n-)) (t) 0), y DAH

n<t

AH  is given by z" on D(A H).

Note further that since

[Ay, z] - [y, AHz] = [Hy, 0]
H

H (and also HA +): D - F is continuous if D is given the graph topology and F the weak

topology defined above.

It is easy to show that R(A) is dense and not surjective in L [0,-). Hence by

Theorem 2.3 R(A ) is not closed. Further R(A H = R(A*). Applying the closed range theorem

again we see that R(A H ) is not closed either, so that the closure of R(A) is not affected

by the perturbation H. Obviously this fact can be generalized to give the following result.

3.16 Corollary. Let the hypotheses of Theorem 3.6 or Theorem 3.13 be satisfied then R(AH

is closed if and only if R(A) is closed.

-17-



§4. Extension Theory

* * B*
Suppose A: X - Y and B: Y X are densely defined operators such that B D A. If

,

H: X - F, K: Y * G are boundary operators for A and B then

A HCACB cB K

The purpose of this section is to determine the structure of all relations between AH  and

B.
BK"

We make the following assumptions concerning AH  and BK:

(1) N(A*) and N(B*) are complemented spaces.

(2) H = M o A, K = N o B where D(M) : R(B*) and D(N) : R(A

(3) D(M ) and D(N*) are total over F and G.

-- ± -1

(4) D(M) and D(N) are complemented spaces.

* ~+* ~++*

It follows from Theorem 3.13 that AN = AH and BK = BK . In A i c R(M) and = 0.

BH in KH
Similarly for B E K e R(N), i2 

= 
0. (To avoid confusion we write in as "Ti"

when we are discussing AH and BK at the same time).

We consider first the case when dim G(B K)/G(A ) . Two preliminary lemmas will be

required.

4.1 Lemma. Suppose S: X - 4n and T: X * 4 m are operators such that N(T) = N(S). Then

T = MS where M is a m x n matrix. If furthermore the component functionals of T are

linearly independent, m < n and M is of full rank.

Proof. Let n. be the projection onto the i
th  

coordinate of 4n or m. Since

ker 1i(T) D N(T) D N(S) = n ker TTi(S)

it follows by Lenrma 2.6 that

7i(T) =c itS, i = ,.-m, cit rn
1 1
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Choose M to be the matrix

ct t

Suppose the component functionals 7.(T) are linearly independent. If the rows of M are
1

not linearly independent there exists d e such that d tM = 0. Hence

d tT = d t(MS) = (d tM)S = 0

contradicting the independence of the component functionals of T. Thus rank M m and

since row rank = column rank m < nil.

* X*

4.2 Lemma. (A generalized Green's Identity). Suppose that A: X Y, B: Y X are rela-

tions such that A c B and

dim G(A )/G(B) = G(B )/G(A) = n < . (4.1)

Then there exist an n x n nonsingular matrix B and continuous operators J: G(B*) tn.

J: G(A) t 4n with linearly independent coordinate functionals such that

[B*y, z] - [y, A*z] = J(z, A'z)* B J(y, B'y)

on G(A ) x G(B ). Moreover in a Hilbert space setting (X = Y a Hilbert space, B = A

and A symmetric) then B is skew-hermitian.
1*

Proof. By Lemma 2.5 G(B) is the nullspace of a functional 3: G(A) -, (G(B) ) , Now
* )*

(G(A )/G(B)) G(B)±

By (4.1)

(G(A)/G(B)) (G(A)/G(B))

Hence (G(B)')*

-19-



The components of I must be independent; for otherwise it would Le equivakrt to

functional with range of dimension < n. The existence of J follows Yh) a s:imnlar ar2Z.

Fix an element (a, ) in G(A*). Then

[B y, ol - [y, ]

determines a functional whose nullspace contains N(O). By Lemma 4.1 there exists

k(a, ) E n such that

[B y, a] - [y, B] = k(a,6) J(y, B'y)

Since the component functionals of J are independent k(oS) is unique. A simple calcula-

tion verifies that k: G(A*) - n is linear. If j(.,B) = 0, k(a,3)*J(y, A y) = on S().

Since I is onto, k(.,B) = 0. Hence N(J) c N(k). Applying Lemma 4.1 again we find that

k(aR= SJ(a,S) where B is a n x n nonsingular matrix.

We now show that B is skew-hermitian if A = B z A and is defined on a Hilbert

space H. To see this note that (4.1) becomes

[A'y, z) - ly, A*z] = J(z, A*z)SJ(y, A'y)

Taking conjugate transposes and interchanging y and z gives

[y, A z] - [A y, z] = J(z, A*y)B*J(y, A y)

Hence

J*BJ + J B J = 0

which implies that =-B-IJ

4.3 Remark. Note that if A and B are Fredholm operators then (4.1) is always true; for

if K denotes the index of an operator, then

G(A )/G(B) = D(A )/D(B) = e(A) - K(S)
(-4.g

= ~K(A) + e(B*) D(B )/D(A ) = G(B )/G(A)

(See [81 Theorem IV. 2.3)). (4.2) als holds if A and B have a nonem}ty Fredholm rerclxw:t.

This may be demonstrated by reasoning similar to Corollary 3.11.



Suppose

dim D(B )/D(A) D(A )/D(B) n

B**

By Lemmas 2.5 and 4.2 A = B and B = A where J, J are boundary operators with rar
A* B*

n. Since A and B are operators J and J can be viewed as continuous orlorators wit.

respect to the graph norms on D(B ) and D(A ). Thus we will write Jv instead of J(-,

If z E D and P e p(z) we write z for z + z. Similarly if y £ D - mear.s
H z Kz

y + ny for some fy £ n(y). In terms of this notation we have the following generalized

Green's identity extending Lemma 4.2.

+ 
+4.4 Lemma. For all y in DKZ in D,_ -y'__nd z

[Bky, z) - [y, AHz] = (iz) 8Jy

+ [ny, A z] - (B y, z
]

Proof. By Lemma 4.2

[Bky, zi - [y, A zi =(Jz)8y
kH

since BY:= B y and A Z = A z. Adding [ny, A z] - [B y, 
] 

to both sides gives thue
kHz y Z-

result. 1

4.5 Theorem. Suppose A, B are relations such that G(B)/G(A) = n < -. Then A c C - 5 if

and only if there exists a k x n (k < n) matrix D of full rank such that

G(C) = N(V(J) n G(B)

where J is a boundary operator for A.

Proof. Suppose A c C c B. Then G(C) is the nullspace of some nonzero boundary operator q:

G(B) - k, k < n. Since N(H) D N(J) H = DJ by Lemma 4.1 where D is a k \ matrix of full

rank. The converse is trivial since DJ is a boundary operator. i

It is sometimes convenient to give a "parmetric" rather than a boundary operator descril-

tion of extensions C between A and 8*.
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4.6 Corollary. C is a relation between A and B if and only if there exists a subspace

P of n such that

D(C) = {y , V(B ): J(y, By),$) 0; P . (4.3)c

Proof. Let P = R(D ).
c

We now turn to the description of C . We introduce the following notation: if S is

a finite dimensional space let [S] signify a matrix whose columns form a basis of S.

B* * *

4.7 Theorem. If A c Cc B then B C c A and

G(C) = {(y, A y): [N()] B J(y, A V) = o (4.4)

Proof. We consider only the last statement. Let (a, A a) : G(C ). Then by Lemma 4.1

J (a, A a) is a functional on G(A ) whose null space includes N(VJ(')). Hence on all of

G(A)

J*(o, Aa)BJ= *DJ

where C
n 
, k < n. This implies

B *J(:,A* ) c R(D*)

Equivalently

[N(D)] BJ(,A a) = 0

On the other hand if (a, A A) satisfies (4.4)

(7 (A,A A) B J(y, By)) J (y, B y) B (a, A a)

J (y, B y) V*

(VJ(y, B y))

=0

So that (a, A a) F G(C*).I]

4.8 Corollary

G(C ) = {(y, A y): [B J(y, A y),e] = 0 for all 0 c P
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*m

4.9 Corollarj. Suppose A is a symmetric relation (i.e. A c A*) defined on a Hilbert space

H and

dim G(A )/G(A) = n <

Let J be the boundary operator for A. Then A c C c A is self-adjoint if and only if

there exists a k x n (k < n) matrix of full rank V such that

D = IN(D)] B

or equivalently

DB-D= 0

where 8 is the skew-hermitian matrix of Lemma 4.2.

Proof. Apply Theorems 4.5 and 4.7. It is clear that rank D must be less than n. H

If we can find boundary operators J, J determining AH and BK as restrictions of

BK  and A , Theorem 4.5 - Corollary 4.8 can be applied verbatim to determine all extensions

between AH  and BK  and their adjoints. Let us assume that D(H), D(J) D G(B K). Then

J )

where K, H are boundary operators determining B and A as restrictions of B and A

Clearly the only novelty is the determination of K and H.

k n
4.10 Lemma. Suppose R(K) = C and R(H) = C . Then

Y(y, BKy) = 10y, ER(NoB)1): = [R(NoB)1 ey (4.5)

H(z, A H z( R(:,oA) I (4.6)

Proof. By definition K is an operator on G(Bk*) whose nullspace is exactly G(B*). If

e is the i
th  

row of [ R(NoB)] , choose z. D(B) such that
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NoBz =.
i 1

Define

K(y, BK y):= [B KY, zi -
[y
, Bz]

By Lemma 4.4

,(y, BK y) = IEny, Bzi

= l[ , NoBzy

= [I ,JR(NoB)f]

(Note that K is well defined since n - c ' R(B) = N(B*)). If [ ,[R(NoB)n =,
y y

e c R(NoB) L R(B) C N(B
y y

(y, B K y) c G(B

So that N(K) c G(B ). The reverse inclusion is trivial. This rroves (4.5).

(4.6) is similar and will be omitted.

4 JL__ h rem. If C is a closed relation between A an B then
H- k

K\
G(C*) =NEN()]*) 3 J *(A

(H
H



Equivalently

K
DIC )= z: ZE PC: R(

where B is the n + m + k X n + m + k nonsingular matrix given in Lemma 4.2 taking

"A = A* "8"" = B*Ht K

H, K.
" .I! "J =

K ;Hj

4.12 Example. For fixed 1 < p < -, and I an interval let

wP i)

W (I): = {y y is absolutely continuous, y C L (I):

wIP (I): = (y . w'P,(I): y(a) = y(b) = 0}

Define A on WI'P[0,1] by Ay: = -iy and B don W ,0 ], + 1, b., Bz: =-iz.
0 0 p q

Then A is given by -iz on Wl[0,1] and B is given by -iy on W I[01]. Furt,.zr

A c B and B c A*. Let G = F = 4: and define

H: W 
1
'p[0,1 1 W

1
'p (1,1]-1 4 by Hy: = y1-+)

2 2

Similarly let K: Wl'q[0, 2 S W tl] - . be given by Ky = y(!- By the methods of

* *
Section 3 (cf. Example 3) it is readily shown that A and B are given by -iz -1%"H K

on wl'q[0,j) 0 wl'q(I)] and WI'P[0,
1
) Wl 'p(!)] respectively.

2 2 2 2

Clearly -y = y(+) - l) and a boundary operator J: D(BK defining A as

a restriction of B is
K

1' + 1- 
\,

iY(.. ) - ( ,

y(O)
J= y(1) /
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Similarly BK C AH is determined by

z( i+) -z

z(0)

Jz = z (1)

1+

A short calculation reveals that B is the skew-Hermitian unitary matrix

/0 0 -0

0 i 0 0

0 0 -i 0

k-i 0 0 0/

Thus if

1 0 1 0\'

0 2 0 1/

N(V) is spanned by

:-1) \l
/1 0 -i

and application of Theorem 4.7 gives the adjoint boundary conditions

( + z - z( ) 0-(z(- ) - z(-) - --)

i+
- z(l) + z(! ) = 0

2

for C

If G(B K )/G(A ) is not finite dimensional the foregoing extension theory breaks down

because the linear dependence principIl is not available.

We conclude this section with a new approach which works in the infinite dimensional case

for extensions with closed range, and a new characterization of self-adjoint extensions in

Hilbert space.
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4.12 Lemma. Let S be subspace of Y and N be a closed subspace of N(B ). Let
c

D(C)- = {y E (D(B*) n N(B*) ) + N : [B y, 9] = 0, E S}. (4.7)c

Define G(C) by B on D(C). Then C is closed.
* * B*y

Proof. If Yn y and B Y * z y E D(B ) and z = B y since B is closed. Further
* I

[B y, 91 = 0 V y E S by the continuity of the pairing and y must lie in the closed set

N(B) + Nc.11

* * R*)
Let S be a subspace of R(N ), S a closed subspace of R(M, N a closed subspacec c c

of N(B ) and N a subspace of N(A*). Define
c

D(C): = {y E (D(B) n N(B*) + N) - SC:
c c

B y I S + N } (4.8)c C

G(C): = {(y, B y) : y C D(C)}

We call C the relation determined by Sc , Sc Nc and N c Clearly AH c C c B and

G(C) = G(C) - (QScO) (4.9)

where C c B is defined relative to N and N(B*) + N by (4.7) and Q is a projection
c c

on N(B ) . Since G(C) is closed by Lemma 4.12 and (4.9) is equivalent to a direct sum,

C is closed. This proves the following result:

4.13 Theorem. Let the hypotheses of Theorem 3.13 hold. Let S, S N and N be sub-
__ __ c -- c - c

spaces of R(M*), R(M*), N(B*) and N(A ) such that S and N are closed. Then there

exists a unique closed relation between A and B determined by Sc,_Sc,_N and N

The following is a partial converse to Theorem 4.13:

4.14 Theorem. Suppose C is a closed relation between A H and BK  then there exist closed
* N* * * * R(*)

subspaces N N(B ), c N(A ), S c R(M ) and S c R(N such that
ba-7c c-
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S = y: D(C)
c

N (C) S + N
C C

tN(c) = S + N
c c

Moreover if C has closed range C is determined by Sc, S c "c and .

• I (*) * R(C) * *

Proof. Set S = R(C) Rl , N R (C , )(A , S = (C) R(N C, =
c c c C

Since C c B , Sc = : D(C). Clearly R(C) S c + Nc and :(C) - S :: r

AH c C and C c BK

• iJ - + * *

R(C) c R(A C = N(A ) = R(M ) + N(A )

* R(*) *

N(C) C N(B = R(N + N(B

Applying the definitions o S , N , S and N gives the reverse-inclusions..'

C has closed range. Let C be the relation determined b. Sc, Nc, Sc and".

to Theorem 3.13. Obviously C C C. Since

R(C') = R(C)
±

= S , "*
C c

and R(C) is closed, R(C = R(C). Thus R(C = K(C). From (4.8) an-- (4.12 , =

Let (a,6) EGC C. Then there exists ,, L D(C) such that (',2 G(C C. HunCc-

- E' N(C ) = N(C). Thus a C D(C) and E C(,).''

4.15 Theorem. If C is a relation with closed rance between AH and BK , C is a

with closed rance between BK _and A and C is determined by S* 
=  

* -

N *=N and N*= N
-c--c c c

Proof. We verify only the last statement

(4.)
p: D(C): = (C z C D(C)}.z

-28-
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=I

S * N(C *) n R(M*) = R(C)
± 

n R(M*) = S*
c c

* 4 *

S: = R(C*) * l R(N*) = N(C) n R(N ) = S
c c

N *: = N(C*) n N(A*) = R(C) In N(A*) = 11
C c

N*": R(C*)' n N(B*) = N(C) n N(B*) = N.
c c

The following result is an alternate characterization of D(C*) without the space c*

that is available if A is a finite dimensional restriction of B

4.16 Corollary. Suppose dim D(B )/D(A) < -. Then

D(C ) = {z H : z E Sc  A z I S c

(4.11)

(Jz) SJy= 0, y in D(C)}

* S*

Proof. If z E D(C ), z E S and A z I.S by Theorem 4.15. If y E D(C), by (4.8)

y E D(C) for any n. Similarly by Theorem 4.15 and (4.8) if z F D(C*) z e D(C ). Since

C and C are mutually adjoint by Lemma 4.4 (Jz)*BJy = 0 (taking q, = D). Therefore

D(C ) satisfies (4.11) . Conversely if z satisfies (4.11) , application of Lemma 4.4 and

the definitions of S and S givesc c

[BK y, zi - [y, AH z] = 0

for all y in D(C). Hence z E D(C

4.17 Remark. The analogue of (4.11) can in the same way be proved for C, i.e.,

D(C) = fy c DK: S B y i Sc

(Jz) BJy = o, V z E D(C

We turn now to the characterization of self-adjoint extensions in a Hilbert sp§ace settir-:.

Here the hypothesis that C has closed range is no longer needed, the next two theorems ilvc

simple necessary sufficient conditions for the existence of a rich supply of self-adjoint

extensions between AH and AH *.
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4.18 Theorem. Let A be a symmetric operator defined on a Hilbert space H. Then if A has

a self-adjoint extension C, for each closed subspace S of R(M ) there exists a self-

adjoint extension C of AH  such that

D(C) = {y C D(C) - S: A y ± S}

(4.12)

G(C s ) = {(y, A y): y C D(C }

Proof. Let A H c Cs c A H be the relation determined by (4.12). Then

[Cs y,Z] - [Y,Csz] = [A y,z] - Iy,A zi

(4.13)
- [A*Y, ] + 'f ,A z]

z y

where = y + , z = z + -z and q z £ S. By (4.12) and the self-adjointness of C the

r iuwing that C is symmetric. Now suppose (, ) £ u(c*
s s

C* * ,

Since C AH = A a. Further

(Csy,a] - [y,A*o] = 0

[A y,a] - [y,A U) - (4.14)

[A y,, ] + [n ,A al]
y

Since
4 4 )± *

E N(Cs ) r R(M ) R(C ) R(M*)

= S

and

tly E S c N(Cs) = R(C )

the last two terms in (4.14) vanish and hence

(u,A (u) F G(C ) = G(C)

Thus a F D(C) - S. Since n y is arbitrary in S, A a ± S. We conclude that (a,8) £ G(C s

and that C = C
s 3

-30-



49T .m Let A be a symmetric operator defined on a Hilbert space H. Suppose C is

a self-adjoint extension of A H . Then A has a self-adjoint extension C. Moreover if

S: - R(C), C is the self-adjoint extension C determined by C and S given by Theorem

4.18.

Proof. Define C by

= ((y, A y): y c D(C)}

Obviously by C > A. It follows at once from (4.13) that C is symmetric since ny

z c N(C) I R(C). Suppose (et, A *.) c G(C*). Let c 0: D(C). Then by (4.13) again

[Cy, U-Ip - (y, A a]: [ny Aca

Hence

ICy, s-] - [y, A *Ci = 0

so that

(a-0, A U) c G(C = G(E)

We conclude that a - £ D(C), (C(, A %) F . Thus C* c C and C is self-adjoint.

Since R(C) = R(C) and R(C) c N(A*) = R(M ), S is a closed subspace of R(M*). By

Theorem 4.18 there exists a self-adjoint extension C determined by C and S. By (4.12)s

E= Cs. 11

4.20 Coro llary. Suppose A is a symmetric operator on a Hilbert space H with equal defi-

ciency indices. Let R(H) be a Banach space and let the hypotheses of Corollary 3.14 be

satisfied. Further let S be a closed subspace of R(H). Then AM has a self-adjoint

extension determined by the boundary conditions

[HA+(A*z),l , S

where C is a self-adjoint extension of A.

Proof. Since A has equal deficiency indices there is a self-adjoint extension C of A. By

Corollary 3.8 AH = AH . By Corollary 3.14 M = HA
+
. Now apply Theorem 4.18.
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4.21 Example. We use Corollary 4.20 to find self-adjoint extcnsions of I.. i xar: ]. 4.

when p = 2. Here

t
A i r (')ds

0

on L 2[0,1]. Further 1

2
(HA zfl =i f zdt

0

1
= z i} (t) dt
"0 [0,11

so that (HA ) = -iX (t) . Since z = z + (HA+)*% is absolutely continuous

2
(1i+) - (1- an1ban : + 1-)

z( ) and we obtain i(z(-2) - z(- . Moreover
2 22 2

1 1-

zz(14)- z(
I

- 0 <t<
2 2 2

z() t 2
2 2

Z1
2

and 1
2

HA+Az z ds

0

=z(-) _z(0)
2

Thus if S 4 applying Corollary 3.20 we find that one boundary condition is z(i- z

Since self-adjoint extensions C of A satisfy the boundary condition z(0) = z() ,v

also

z(0) + z(!. z(- ) = z(l)
2 2

1+so tat z() = z(1). On the other hand if S is trivial the boundary conditions ar,
2

z(l) = z(0) and z ) - (z - ) 0.
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The same boundary conditions for this simple example could have been determined .', a

straightforward integration by parts argument. Our method however is a general one and car, L

applied to more difficult examples which we will consider systematically elsewhere.
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- I,

. end t!' .. " ". adjoint theory of (1.1) when r P 'I.

-. F and A+: D+- F* - X be given respectively byHH

.. a:. - (z,;) = A z where z).
H -H

M+

it is trivial that A and A+ are densely defined operators.
H H

5.-2 Lemma. [A y, (z,,)] = A(z,')] on D(A) 1: D(A
H' H 'H

Proof. Immediate from Definition 5.1, Theorem 3.3, and the definition of an inner product on

(Y x F) × (Y x F ) (see 52).

The main result of this section is the following:
• + +

5.3 Theorem. A =A and A = A
-H H H H'

Proof. ByLe a 5. A+ A and A A suppose c C,), Then
H H H H . .. .. Then

lAy, cc] + [Hy, ] = [y,S] (5.1)

On the other hand * E 1(z) for some z in DH. By Lemma 5.2

[Ay,z] + [Hy,0] = [y,A zI (5.2)

Subtracting (5.2) from (5.1) we find that

[Ay,a-z] [y,S-A z]

Thus --z t D(A), a F D H and

= A z + A (A-z)

=A (h)

• +

We conclude that G(A ) c G(A ). Since H is continuous on G(A) when F is endowed with
H H

the weak topology, A H is easily verified to be closed. Hence A H = AH.ll

5.4 Remark. Note the adjoint theory for nonhomogenous b.v.p. is much simpler than for A
H

is that A are always closed operators and that there are no analogues of A
H H
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