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We prove that if the second-order sufficient condition and constraint

regularity hold at a local minimizer of a nonlinear programming problem, then

for sufficiently smooth perturbations of the constraints and objective

function the set of local stationary points is nonempty and continuous;

further, if certain polyhedrality assumptions hold (a3 is usually the case in

applications) then the local minimizers, the stationary points and the

multipliers all obey a type of Lipschitz condition. Through the use of

generalized equations, these results are obtained with a minimum of notational

complexity.
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SIGNIFICANCE AIND EXPLANATION

In practical problems from logistics, structural design, chemical

engineering and other areas, it is often necessary to maximize or minimize a

nonlinear function of several variables subject to nonlinear equation and/or

inequality constraints. Since problem data or functional forms may not be

known exactly, it is of interest to know whether a local solution to such a

problem will persist under small changes in the data or in the problem

functions. In this paper, we show that if two fairly well known "niceness"

conditions are satisfied at a local solution of the unperturbed problem, then

for small perturbations the perturbed problem will have one or more solutions

near the original one. Moreover, these solutions will often display good

continuity properties.
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GENERALIZED EQUATIONS AND THEIR SOLUTIONS, PART MI

APPLICATIONS TO NONLINEAR PROGRAMMING

Stephen M. Robinson*

Introduction. This paper deals with the stability of solutions and multipliers of

nonlinear programming problems when the data of the problems are subjected to small

perturbations. The problem with which we shall deal may be formulated by introducing

functions f and g from an open convex set P -nt n eciey

closed convex set C C IF and a closed convex cone Q C Ifn. The problem of interest is

then

minimize f(x)

Asubject to g(x) e QO (1)

XE C,

where Q0 denotes the polar cone of Q:

Q0 :.{y e R (q,y) <0 for each qe Q)

If we assume that f and g are Frechet differentiable and that certain regularity

conditions are satisfied, it can be shown f 17] that with each local minimizer x of (1.1)

there are associated one or more multipliers u c IP such that tx,u) satisfy the

necessary optimnality conditions

0 f LCxu) + c(x)(12

o C -.C (x,u) + arp (x)

where L(x,u) f~x) + (u,g(x)) is the standard Lagrangian, and where the subscript x
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or u denotes partial differentiation with respect to that variable. The notation R.

denotes the normal cone at a point: thus,

{y RnI(y,c - x) < for each c e C} if x c C
i (x) 

C ¢ if x t C;

for a convex cone like Q, the description of 3- is even simpler:

( {vr C Q~(vu) = 0) if ue C

if u IQ.

Any point x which, with some u, satisfies (1.2) is called a stationary point of (1.1);

there may -ell exist stationary points which are not local minimizers.

What we shall show here is that if xO is a local minimizer of ( 1) at which f

and g are twice continuously Frechet differentiable and at which certain regularity

conditions hold (specifically, the second-order sufficient condition and constraint

regularity), and if f and a are smoothly perturbed, then the set of stationary points

near x0 , regarded as a multifunction (multivalued function) of the perturbations, is

Inonempty and) continuous at xO . Further, we show that the set of multipliers is upper

semicontinuous, where these continuity properties are as defined by Berge [11]. These

results are proved in Section 3, after a review in Section 2 of the necessary regularity

conditions.

In Section 4, we show that if C and 0 are assumed to be polyhedral (as will be the

case in most applications), then even stronger results can be established: the distance

from a stationary point of the perturbed problem to x0 , or from an associated multiplier

to the set of multipliers associated with x., obeys a kind of Lipschitz condition.

Examples are given, both in Section 3 and in Section 4, to show that certain stronger

statements, although plausible, are rot generally true.

In several parts of this paper we use as a device for simplifying and motivating

results the concept of a ueneralized equation. These objects, introduced in Part I of this t

paper [19], are relations of the form
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0 f F(z) + T(z)

kkwhere F R R and T is a closed multifunction from R to itself (often a normal-

cone operator). For example, if we rewrite (1.2) in terms of f and g, and use the fact

that 3CxQ (xu) = cx) x e(U), e obtain the generalized equation

[f(x) + glxl)u
0 -q(x) I + yCxQ(x'u) , (1.3)

and this relation will be used in several ways in our analysis.

Many papers have already been written about various stability questions connected with

k Z k(1.1), often in the snecial case in which C = R and Q = R x R (where Rk is the+

non-negative orthant in R" 1 s is special case formulates the standard nonlinear

programming problem

minim.ize f Cx)

subject to gi(x) < 0 (i = 1,...,k) (1.4)

gi(x) = 0 (i = k + 1,...,k + £)

We shall not attempt to review all of these papers here; rather, we mention only a few

which illustrate the different types of assumptions that have been imposed.

Fiacco and McCormick [3, §§2.4, 5.2] formulated a basic technique for analyzing (1.4)

under the assumptions of strict complementary slackness, linear independence of the

gradients of the binding constraints, and the second-order sufficient condition. This

technique was refined, to deal with general perturbations, in [15] and in 14); the basic

tool, in all three cases, was the standard implicit-function theorem.

If the assumption of strict complementary slackness is dropped, then the standard

implicit-fimction theorcm can no longer be used. However, if the linear independence

assumption and a somewhat strengthened form of the second-order sufficient condition are

retained, then one can still show that the stationary point and associated multiplier are

(locally) single-valued functions of the perturbaticns, and that they are locally

Lipschitzian if appropriate continuity assumptions are made on the problem functions. ThisIis shown for the problem (1.4) in [20], as a by-product of a general implicit-function
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theorem for generalized equations. A similar result, without the apschitz

established by Kojima f10, Th. 6.4] as part of his investigation of "strcn .v stable"

solutions of (1.4).

if one weakens the hypotheses still further by dropping the assutri-on of linear

independence, then the appropriate condition to assume in its place is retularitv of

constraints [181 (see Section 2; in the case of (1.4) this is the constraint cualificat'en

of rangasarian and Fromovitz [12]). With this assumption, together with the strenqthened

form of the second-order sufficient condition previously mentioned, Yoji-a '10, 'Th. 7.2*

has shown the existence of a locally unique stationary point which is continuous under

small perturbations. Lnder similar hypotheses, Levitin 111, Th.. 4] stated that if the

minimizer exists for small perturbations then various properties, including Lipschitz

continuity, followed. However, in Section 4 below we give an example which appears to

satisfy Levitin's hypotheses but for which local Lipschitz continuity does not hold.

Finally, Sargent [231 has studied the existence a.d continuity of local minimizers =r-der

constraint regularity; however, his methods are quite different from those of the other

papers mentioned here, and it appears that some of the results in [23] may not be

completely correct.

We begin our analysis, in the next section, by reviewing a -eneralized form of the

well known second-order sufficient condition, and exploring some of its properties.

2. A review of the second-order sufficient condition. The second-order sufficient

condition is a very well known regularity condition in nonlinear proaramin-a. It is

discussed for the standard nonlinear programming problem (1.41 in [3, 62.3]; versions

adapted to problems in more general spaces are given by, e.g., Guignard (6], Maurer and

Zowe [13] and Maurer [14].

In this section we exhibit a form of this condition suitable for the problem (1.1).

Although we have not seen this particular form in the literature, it is not likely to be

* very surprising to anyone familiar with the field. hat may be less familiar, however, is

-4-
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its -motivation in terms of ceneralized equations and its seto n ove ;so.at~on -~ s

like Th.eore= 2.3.

To develop a second-order sufficient condition for (1.1), we return to the

equation (1.3) which formulates the necessary optin-alitv Conditions. We have shur in

E19,20' that important aspects of the behavior of a generalized equation are captured in

its linearization about a given point. To make use of this linearization in the nrese-t

case, we assume that (xo,Uo) is a point satisfying (1.2); the linearized form of (11.2)2

(or equivalently, of (1.3)) at (x0 ,u,0 ) is then

I] ( [lu £tx (Ou 0) £x 0U U0) x -'CO~

Simplifying this expression, we obtain

Z N (X0 , 0  g'(x N x X

LCX 0 1
Examination of the form of (2.1) leads us to the realization that it formulates the

necessary optinality conditions for a certain quadratic prograrxznina problem, namely

minmiz )l ~ )(X x + o.XXx ,uo )(X - xO))
inn~.e f'x X - 00 0(22

subject to g(x ) + g( (

The quadratic programing problem (2.2) is not derived by any straightforward approximation

of the functions i. (1.1) (note that the second-order term in the objective function

contains, not f"(x0 ), but Cx(xo,uo)). However, it has been. found to be an avvrooriate

approximation of (1.1) for numerical purposes [9,25]. Since the derivation through

linearization of (1.2) is straightforward, we shall refer to (2.2) as the linearization, or

linearized form, of (1.1).

if we are looking for a condition to impose on a stationary point (X0,u0 ) of (1.1)

to ensure that xO will be a strict local minimizer of (1.1), an obvious approach to take

is to impose some such conditions on (2.2). In fact, the simolest way of obtaining a



plausible set of conditions is to consider feasible directions of (2.2) at x. and to

place son.e restrict;cn on these. Thus, if we consider vectors h e W" such tnat

x h e C and c(x 0 ) *,(x 0 )h Q0  we know (and can prove easily fr4 the fact that

(x0 ,u0 ) satisfies (1.2); see below) -hat f'{x )h > 0. If 'x r h > 0, then if h is
0 =-

s=nal enou&- the first-order te.- in the obective of (2.2) will be dominant and the

objective value at x. I h will be strictly greater than that at h

i f,(xA)h = " - the only way to obtain strict increase in the objective tunction Is

to resort to the second-order tern and to reauire that (ht'Ix 'h) > 0.

We can now use these observations to fornulate an appropriate set of conditions- 70

co so, we note that the recuirements on h involving the -bective function and the

Lagrancian of (2.5) are independent of the scale of h, but those Involving the

constraints (i.e., that x0 - h C C and g(xn) + g'Xn}h C Q) are not. To si thlie '

latter, we enlarr slightly the class of vectors h considered by, requiring Ihat
hlcTtr (x -A g'v 1,c

he T c{X) ' Qand gC hC v.. _. (xJ), where Tc(xo) denotes the tangent c..e . to

at x0 , and similarly for r*. !te tht since C and are convex, any 1

satisfving the earlier rectire-ents will necessarily satisfy th -latter. For fmall

enough h, the converse is true if C and Q are polyhedral, but generally not

otherwise.

The steps just described therefore lead us to the following general second-order

sufficient conaition:

DFINITION 2.1: Suppose (x ,u 0 ) is a point satisfying 1.2). The seconc-or-der

sufficient condition holds at tx,,u.) with modulus u > 0 if for each h e T
C xr) with

(  g'Cx ~Tt T(g(xt),f'(x0jli 0

one has (ht ( . ) v plh' .

We remark th-t it would not ave changed Definition 2.1 if we had writtE,

f'(x )h C 0, since that inequality i- pies fPCx 0 )h = n --. the presence of -2. To

see this, note that h and -[f'(xo) -'(x 0 )%u0 ] belonq resnectively to the tangent and

no-mal cones to C at x0. Thus,

T-
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Ho0.-wer, since cfx, bel-oncs t't-- mr-mai cone t Q-at u_ '',eoc toth

normal cone to Z'at afx..) [.22, Cor. 23.5.4]. As g' (x 0 P: belongs to --I-

coreoodia an- n cone, we nave ucx)h) < '. ar-' thus f'( )h eaueo

this in what folws --e shall somr4-- lust show-. th-at a vector hi satisfies

fx)-< 0 before anolvine4- Definition 2.1. 1rn for-s th mit asbe

discussed for the standard zroblem (1.4)1 bY Han and 'la--asa-ia-_ w~o bare 5lsfl [,Th

3._54 that for that case it Is eiaeto th 'e standard secod-order sufficient conition

as aiven tin, e.-., [3]. It is thus reasonable to sun-nose that the condit- ofDfnii-

2.1 will enable us to show that some nomsitive definite cuadratic- form =inri'zes thei

ohiecti-e function of (1-1 ) on that portion of the feasible set near xj,, andtaea

o-ufl to flx.) at x0 , since such results have benestablished,- for other forms

of te cndiion(cf [8 Th 2.], 24, Th. 4.43 - [13 7%. 5.2]). Since we shall need

this result in Sectio 3. wz establis ti h o'wr-o'

r~EOfl. .: unos hat (xo,u 0 )l satisfies (1.2). that f and a are

twice Frcht ifferentiable at x, ar.3 that the second-ordler sufficient condition holds

thr with modulus P,. Then- for each c c 10,o) there exists a nejabborhood V of x-

__ suchthati C fl V and c(x) c Q0, then 4f(s) ) f 5 ) x x--~ ,, i ors= -
0 2-

PROOF Sunno-se that for some C 0 C there is a sequience xs C conv-erging; to

- s~~0 with x. * (s.) C ' and f(xJ f(x 0 ) + 4 CIX. - x. o ahi.W n±

showr that C > M. e can sup-pose withouat loss of cenerality that {(x. - MflIX x sJJ

ercstosehCW;eiety TE 1a='h Tc(xn). We have for each i

;'x Q1. =ox ) N + M's)x -x )+ofis- 3O) (23-a0 i 0 i30

so

--ISg(sO~ lb U l xi[gx) ()1 c x,~(gsI

Whave oreviouslw remnarked that in such a case t 's 3 )h > 0, hut since for eahi wre

have

-7-



.1X)+-crX4 - X-1i > f 1x.) fixf - f~x_'"X -_ o(&x. -

it Folo- tznuon division by I'x. - x. anoa oassa;' to teiit that- also

and therefore -_'at h satisfies "he hvpooesis of the. seconc-ordcr suffici - -nlt_-

Hoever, we have fro=- (2.3) and (2.4) that since e'_x)c

f 1 ) + 1 fIX -x 0 1 2 > f Lx, I > £(LI u~

= x'x u E - x "Ix - I
0' 0 - x 0'0

r **4~ A'- 0(X

> fPIx_ + -X. -' xX , x, 'ux. )( otlx -

SuXbtracting f(x 0 ), dividing by _Ex x12 and passinc to t1he we- r4.A t.ilt

£,ht fxru )h)01 1=DW
-~ n'c -

and the theorem no-w follows by contrapos'.-4 '.

Th:eorem 2.2 shows that a stationary oint of (1. 1) satisfying the second-order

suficint ondtio is a strict local minimi4zer. A reasonable cuestio; oaki hte

it is also, an isolated local miiie: that is, wheth-er there is some neicb-rhood o

x0, containing no other local mdinizer oI-f (.*1). As we shall now see. this is nom so,*

eve- for very si=-Ie problems. Consider, for instance, the problem

Minim"ze 12x
2

stje_ to x sir(1'x) 0 . i s~(1/) z=0.

Here C R Q; = e feasible region is (SU{n) in = ±1,±2 ... The sec.-dz--

sufficient condition is satisfied at the origin; ho"wever, the origin is a cluster poi-- o

the feas'ie region and ever3I feasible point, Is a local nini~zer-

Coemigt rplythat such bad behavir! is not very surprising since (2.5)1 iS a bad

nrobem. tai isuite true, and we shall- see that a reut of the type we seek can'-e

be proved if we exclude bad oroblems: that is, if w imose a constraint cualificat ion.

The cualifiaition we shall use is the recui-resent that the cornstraints

cl'x) Qo

xC C



of (1. 1) be recul.ar am x,~ inth sene of 79 101. -

=.e have !mu in tflhat a2 so i- a i n --"t fo ua=-r-.

o=iit-v c--dliios, ar- I... c ..- .te standard 4)teniir

= '...le-- '=o whel-o cunt rairt on li"-at- M= 5s-ra andFu-w-z

We sbalInowsl!--w that if t:- ccn-Sra'nts of (1)are re~at a O-4ni 2-, r =n

to e-ther with- sm sariSfo .) hnx =. .=.. *s-ui~o

-HMU 2. Ass---- that and a are Fre- . CCamr 4

su=nose trthe rec-larity. osof dir.. c-1.1 old tL-ehr. DeC4.I 1*t

satisfi~es (1. .. Possiblv e and sun&-- e that fo sec dod

sufcet-.ssatisfiez at[Z'Z) wth s na-ot
-iv Tho r'- s. e

exists a ne h-oo 1( of xn ru th.at if (x s .- : s I . n 2) a~ x men:

-ans~ton.~'--sthat there is as--e x =-

X. Conv.rqes tox 0 . c- s c that each nx- z 3__adx,- solves '1.2).

Tt Cc T re-- 3.2 p tha - - S - is: -o -- Zvo--z

aona.eof the -n F f oren 3.2 mtakes =s- a--or the tvresec t heoem nor of

any resui onen nc it). ?codicl ith MnO loss oferalitv ue smn-ose tha.t

ix.d. and uiocontinuity and Tre- -isdesof iv_ and wecz=r tmha

(.u)satisfy (1.3). u-t nc .

f-r 1.-3) we find th.;-t for ea Ci (XJ) E 14 en;redna i h

zroof of Torc2.2 wve can estbiflta cxS-*-=n 7(~.? an-d

f 0% lb

Snc 14 2) satisfies (1-51 for eat' _ -r bave

___ *ere we bare- usedA the fact that the ml axe imiforslv hosded. Nomererr sn



and g(x0 ) e QO we have (uig(x0 )) < 0 and therefore

0 _< ( uigg(x)(xi - x0 )) + o(ix i - x01 •

Dividing by Ox - 0 and passing to the limit, we obtain

(u0 ,g'(x 0 )h) > 0 • (2.7)

Now from (1.3) we again have for each i

f'(x I ) + g'(xi)*u i C - cXi(x)

so that

0 > f'(x.)(x - x ) + (u,g'(xi)(x i - x0))
i 3. 0 i i0

and upon division by Px - x01 and passage to the limit we find, using (2.7), that

f'(x )h < 0 and therefore that h satisfies the hypothesis of the second-order
0 =

sufficient condition.

We know that

(x-(Xo,U 4 ) - £xx(XoUi)(xi - xo) + o(ax i  xo1) (2.8)

and

N ac(X0) 9-.x 0 ,U0 ) . (2.9)

Also,

aVQ(Ui) a g(x = g(x0 ) + g(x 0 )(xi - x0 ) - g"()( x(x i - + o(Ix - x0 2 ) (2.10)

and

a PlUO) ( q(xo) . (2.11)

Using (2.8)-(2.11) together with the monotonicity of 3 C and 9Q we find that

0 < (-g'(x 0 )*(u i - u0 ) - £x 0 ,u.)(xi - x0),x. - x0 1 + o(lxi - x0
2 1 

, (2.12)

and

0 < (u. - u0'(x0 i - x0 + g"(x0 )(x - x2 + o(Ix - 12)) • (2.13)

Adding (2.12) and (2.13), we obtain

- 0 < (-£x 0 ,uo)(x. - xo),x i - xo) + o(Ix - x0 1
2

and division by xi - x0 
2  and passaqe to the limit yields a contradiction to the second-

order sufficient condition. This completes the proof.

We have thus shown that when regularity is added to the second-order sufficient

condition, the stationary points x. which, with some u0 s satisfy (1.2), are isolated.

A-10-



It is an easy consequence of this tact that if the conditions of Theorem 2.3 hold in some

compact region of Rn, that region contains only finitely many stationary points (perhaps

none). However, this result says nothing about the behavior of stationary points, or

minimizers, of problems which are "near" (1.1) in the sense that their problem functions

are slight perturbations of those of (1.1). In the, next section, we use the second-order

sufficient condition and the regularity condition to analyze the behavior of such problems.

3. Local solvability of perturbed nonlinear orogramminqproblems. In this section we

shall be concerned with the problem

minimize f(x,p)
(3.1)

subject to g(x,n) C QO

XE C,

where p is a perturbation parameter belonging to a topological space P, and x is the

variable in which the minimization is done. The functions f and q are defined from

n x P to R and lin respectively, where Q is an open set in Rn; Q and C are as

previously. We shall identify (1.1) with the particular case of (3.1) arisinq when p is

A?_ some fixed p0 C P; our interest here will be in predicting, from information in (1.1),

aspects of the behavior of (3.1) when p varies near p0, such as solvability, location

C_ of minimizers, etc. Throughout Sections 3 and 4 we shall make the blanket assumption that

g f(-,p) and g(.,p) are Frechet differentiable on 2, that f, g, f' and g' are

ccntinuous on Q x P, and that f(-,p 0 ) and g(.,n 0 ) are twice Frechet differentiable

at x0, a point 4.n C . which is a stationary point of (3.1) for p = p0 . The

stationary-point conditions for (3.1) are

0 c f'(x,p) + g'(x,p)*u + (X)
C

(3.2)
0 f -q(x,p) + a)Q(a)

and we define U0 = {u e R" I (x0,u) satisfies (3.2) for o = p i. We shall denote the

0

jjA



distance from a point a to a set A by d[a,A) : inf{'a - a'1 I a' C Al (-=

if A 
= 6.

Our first theorem shows that if the second-order sufficient condition holds at a :ncal

minimizer at which the constraints are regular, then that local minimizer persists under

small perturbations.

THEOREM 3.1: Suppose that for p = p0, (3.1) satisfies the second-order sufficient

condition at x0 and some u0 c 10  and its constraints are regular at x0 .

Then for each neighborhood 14 of x0  in P there is a neighborhood N of p0  such

that if p E N then (3.) has a local minimizer in M.

PROOF: By hypothesis, for p = p0 the constraints of (3.1) are regular at x0. By

[18, Th. 1] there are neighborhoods M0 and N0 of x0  and p0  respectively, and a

constant 4, such that for each x e C O M0 and p 6 N0 ,

dfx,F(p)] __ 4d[g(x,p),Q ,

where F(p) := {xe C I g(x,p) c Q'}. Let e be the modulus for the second-order

sufficient condition at (x0 ,u0 ); let £ C (0,C0) and choose a positive 6 so that

(x 0 + 26B) C M0 f' M A V, where V is the neighborhood of x 0 given by Theorem 2.2 for

the chosen c. Sel.ect a neighborhood N0 of p0 with No' C N, and some positive a,

such that if p C NI and if x1 Ix C x0 + 26B with Ix, - x2 I < a, then

If(x1,P) - f(x2,p0)E < c62 /16 : 8. Next, find a neighborhood N of p0 with N C N'

and such that if p e N then

c sup{lg(x,p) - g(x,p0 )I I x C x0 + 6B) _ min{a,6/21

Denote f(x0 ,p0 ) by *r"

Now choose any p C N. If F(p) fl {x I Ix - x0 1 = 6) is not empty, let x' be any

point in it. one has x' e C r) f. + SB) and g(x',p) C Q, so

d[x',F(p0)] C gdtg(x',p 0 ),Q] _ Ig(x',p 0 ) - g(x',p)l

< mina,6/2}

Thus there is some x 6 F(p0 ) with Ix' - x'l < min{a,6/21, and therefore with
0+ 0

Ix x I > Ix - x0I - Ix' - x'Y > 6/2. Accordingly, by Theorem 2.2 we have

-12-in i
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f(X0'p0) > 0 + c(O/2)2 0 + 28. Also, Ix - x0 1 < nI' +

x' - < 6 + 6/2 36/2, so x x0 + 26B; as ix - xi < a we have

f(x',p) - f(x;,P0 )l < 8. Therefore

f(x',p) > f(x,p 0) - |f(x*,p) - f(x;,pn)
;'P ) 3.3)

> + 28 - 8 = + S.

It is also true that

dfx 0 1F(p)] =< Cd[g(x 0 ,p),Q) < 0Ig(x0 ,p) - g(x0,p0 )I

< min{a,6/2}

Accordingly, there is some x" C F(p) with Ix - x"Z < min{a,6/2}. Thus

3f(x",p) - f(x0 ,P0 )I < 0, so

f(x",p) < f(x0 ,P0) + If(x",p) - f(x0 ,P0 )I < + 8 . (3.4)

Putting (3.3) and (3.4) together, we see that a minimizer of the function f(*,p) on the

set F(p) z (x0 + 6B) exists (by compactness and the fact that x" belongs to

F(p) I (x 0 + 6B)), but that no such minimizer lies on F(p) f {x I Ix - x I 6.

Therefore each such minimizer is in fact a local minimizer of f(-,p) on F(p): that is,

a local minimizer of (3.1) which belongs to M. This completes the proof.

Our next results will concern the continuity behavior of local minimizers and of

stationary points of (3.1). For ease of reference, we proceed now to define certain

multifunctions which display these points. Assume that the hypotheses of Theorem 3.1 hold

for (3.1) with p p0 ; then it follows from the results of [161 that there are

neighborhoods M, of xO and N, of p 0 such that for any p 6 N, and any x E M,

satisfying

g(x,p) e Q°
(3.5)

xe C,

the system (3.5) is regular at x.

1-13-



At this point it will be useful to note a nroperty of the multipliers which we shell1

shortly wise. We shall show that if regularity bolds at x 0  for p =p., then the

multipliers in (3.2) are uniformly bounded, and in fact the set of all such multipliers is

an upper semiccntinuous multifunction of (x,p). This extends a result in (113, also given

in[5].

THEOREM 3.2: if the system (3.5) is regular at x. for rpoP, then there exist

neiqhIborhoods m2. 2-f xO Ln- 2 2f. PO such that if U : 42  N N2 -T and

SP :N 2 . are multifunctions defined by

Ubx.p) [u EU 10R (x,u,p) satisfies (3.2)1 for (x,p) C M 2 'N 2 ,

SPtp) :~{x C M4 for some Mx,u,p) satisfies (3.2)) for p f N

the U and Sp are upper semicontinuous.

PROOF: We first show that U is locally bounled at (xo,Po ). Assumie, on the

contrary, that there are sequences {x.i1 C C., and {p.1 C P converging to x0  and p0,

respectively, znd a seauence to )C R with lim ;u.i ; such that for each i the

triple (xijui.p4) satisfies (3.2). With no loss of generality we can suppose that

- au. converges to scme y. For each i, (3.2) innlies that uicE Q (a cone)

and (u-.g(x.,p.)) = 0; dividing by lu i and passing to the limit we find that

y 9and (y,g(x0 ,Po)) = 0. Again from (3.2). we have for each i,

f'(x.,p4 ) + g,(x 4 ) *u. f --, (X)C i

aaain dividing by 'uP and passing to the limit, using the fact that 21, is a closed
i -C

multifunction whose values are cones, we obtain a' (x0 Ip0 * C c(xo). By regulari.ty,

for some e > C there is a point- x e C with g(x0 ,,p0  + g'(x 0 p 0) MX x 0  + CY S 9

Using our information about y, we find that

n-> (y,g(x 0 ,p 0 ) + 9g(Xr.p0 )Mxr - x 0  + Fty)

> Sjv! 
2 

> C

a contradiction. It follows that there rust exist nei,7h-horhoods M2  of x0  in UP and

-14-



N2  of P0 in P, and a compact set K C IF, such that if (x,p) C M, x N, then

U(x,p) C K. Without loss of generality we can suppose that M, and N2 are small enough

so that M2 is bounded and that for (x,p) C 14 x N2 the values lg(x,p), 1f'(x,p)I

and ig'(x,)l all satisfy some uniform bound.

Now let

hlx,p,u) : f + g(xp)u
-g(x,p)

we note that there is some compact set L such that if (x,p,u) C M2 x x 2 x K then

h(x,p,u) C L.

Now denote by G the graph of the multifunction 3C x U , and define
C YQ

H := t(x,p,u,v)I(x,p) C M2 x N , (x,p,u,v) f graph h, (x,u,-v) C G)

The continuity assumptions and the properties of C and *G imply that H is closed
m Rn+m.

in M x 2 x R X R However, if (x,n,u,v) C H then (x,p) c M x N2 and (x,u,p)

satisfies (3.2), so that u C K and therefore v C L. As K and L are compact it

*follows that the projection of H on the space of the first three, or of the first two,

Scomponents of (x,p,u,v) is closed. The first of these projections is the graph of the

multifunction U, and the second is that of SP. Thus U and SP are closed; however,

as the image of U is contained in the compact set K and that of SP in the precompact

set M2 1 It follows that U and SP are actually uprer semicontinuous. This completes

the proof.

Our main result on continuity of local minimizers and stationary points is given in

the next theorem. For the multifunction SP and the set %3 in the theorem, SP .l M3

denotes the multifunction defined by (SP - M3)(p) := SP(p) M3 .

THEOREM 3.3: Suppose that for p = p0 , for some x0 f Q and each u C U(x0,p0),

(3.1) satisfies the second-order sufficient condition at (x0 ,u), and that its constraints

are regular there.

F-15-



Then there exist neighborhoods 3 of x0  and N., of ., such that if

multifunction IM : N3 * M3  is defined bv

I.M(p) := {x 'Ix is a local minLizer of (3.1)1

then SP ) M3  is continuous and for each p o " one has 0 1n) Z n .P- .

PROOF: Let M2 and w be the neighborhoods of x. produce-! by Theores 3.2 a-A.

respectively; define M3 := 1 2 n W; suppose in additi.: that x3  .s bounded and !s -al.

enough so that for some neighbor.hood N4  of p0' ary p "Z%4 and any x C ., sat-s.---7

(3.5), the system (3.5) is regular at x. Let !.2 be the neichborhood of p, c ivenh":

Theorem 3.2; let N5 be the neighborhood obtained by annlvina Theorem 3.1 to (3.1) w-th

M = M3 , and define N3 := N2  N4  N5 . Define Lm as in (3.6).

We shall first show that L'M and SP r) M3 are lower semicontinuous at L". y

e 2.A = also, for any p c -3 i4 x C LM(p) then sinceTheoem .3,S~0) 
, M3 .O ,  

. -

regularity of (3.5) is a sufficient constraint qualification [17] vv have x E SPip) 3

Thus if p e N3 then 0 * IM(p) C SP(p) . M . However, since x 0 e TUM(pD) by Theorem.-

2.2, we actually have LM(p SP(p0 ) 'M = ix. let S be an oven set In V, with

S A 1M(p0 ) 0 ; then obviously (SP . M3 )(P0 ) C S. Now by applying Theorem 3.' to S we

can find some neighborhood N6  of p0  such that C N-3 and if p e N6- then

LM(p) 'I S t 0. Hence LM is lower semicontinuous at p., but since Lu. C SP B ml

and LM4(p0) = (SPA 4M3 )(P0), we see that SB A H3  is also lower senicontinucus at PO"

But SP is upper semicontinuous from N2 to H2 , so SP M3  is upper seicontinuous

from N3 to M3 , and thus SP 
- M- is actual!v continuous at v0" This conoletes the

proof.

Theorem 3.3 shows that that portion of the set of stationary points near xn is

continuous at p0 , but it gives no measure of how it depends on p. In the next section,

we show that if the sets C and Q are polyhedral then the dependence of SP and U

upon p can be measured by the dependence of the problem functions and their derivatives

o - upon p: in particular, if the latter are Lipschitzian then SP is "upper

-Lipschitnan. In the meantime, however, w present an exa.n-re, taken from :210-, to show

20 FA
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that UM -ay not be single-valued near p0  and that the inclusion of 12M in SP may be

strict.

Consider the quadratic programming problem

minimize - 2 x 2 nX
2 -1 2 1

subject to -x + 2x2 < 01 2=

- 2x < 0

where n is the parameter. For n = 0 this problem has a unique minimizer at the origin;
2

for any positive n it has local minimizers at - n(2,±1) and a saddle point at (-,0).
3

Thus in this case LM is multivalued and is strictly contained in SP whenever n > 0.

4. Upper Lipschitz continuity in the polyhedral case. Throughout this section we

shall assume that C and Q are polyhedral convex sets, and we shall see that in this

case we can prove stronger results than we did in Section 3. Specifically, we shall prove

that the solutions and multipliers of (3.1), regarded as multifunctions of p, are locally

upper Lipschitzian at pO under appropriate continuity assumptions on the problem

functions. We recall that if F is a multifunction from 0 to Rm , F is said to be

locally upper Lipschitzian at z0 e le if there are a neighborhood Z of z0  and a

constant 3uch that for each z e Z,

F(z) C F(z 0 1 + Xiz - ZIB,0 0

where B is the unit ball in TV. We showed in [21] that any polyhedral multifunction

(one whose graph is the union of finitely many polyhedral convex sets) is locally upper

Lipschitzian everywhere with a uniform constant.

We begin by formulating a general continuity result for nonlinear generalized

equations. It says that if a certain condition is satisfied by the linearizations of the

nonlinear problem, then the latter has, at least locally, an upper Lipschitzian inverse

(which, of course, may not be single-valued and might even be empty). As in Section 3, for

* a set S and a multifunction F, we define the multifunction F n S by

-17-
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(F ) S)(x) := v'xI - S. Th- norm on a product scace is taken to be the nax-4um of the

norms of the component spaces.

TH-OREM 4.1: Le F be a Frechet differentiabl- function from an onen set P C R

to R . Let R be any. olvhedral multifunction from Rn to Rn , and define H := F * R.

For 0 c and x e Z define

LFx0 := F(x 0  - % F0 )(x - x0

SuPPose there is soe compact set X0 C P such that

i) For each xn and x, in X0 , the restrictions of LF.--0 and LFX 1 t° X0  are

the same.

ii) For some positive y and each x 0 f X0,
xy -1(o

X A (LF + R) = X0,Y x 0
where Xy := X0 * yB.

iii) F' is continuous on X0 , and there is a function 9 : R + with

lim 9(t) = 0 = 6(0), such that for each x c X and each x0 C Xn,

IF(x) - LF (x)W < ix - x19(Ix- x 1).

x0 0

Then there is some nositive 6 such that the multifunction H X6  is locally

unoer Lipschitzian at 0, with (H- 1 A X )(0) = X0 .

We remark that (iii) is satisfied in particular if 9 is convex and F' is

Lipschitzian there.
1

PROOF: For x0 C XO, define TX, to be (LFX0 + R). Let := Y. We first

show that there exist a constant X and some positive n such that for any x0 C X0 ,

T n X is upper Lipschitzian on nB with modulus X. Choose any x0 C X0; then the
x0

sum LF + R is polyhedral and by (21, Prop. 1] there are a constant A(x 0 ) and a

positive ni(x ) such that T0 is upper Lipschitzian on n(x )B with modulus X(x0), If
0 xO 0 0

we take n(x ) small enough, it follows from the fact that (T ,A X )(0) = X0 that the
0

multifunction T0 A X is upper Lipschitzian on rI(x0 )B with modulus )dx0). Now, using
x0 0 0

the continuity assumptions, choose a neighborhood N. of x0 small enough that for any Uo

x e X N,

0-1o-
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a) X(x 0)F'(x) - F'(x 0 ) <;,
1

b) For any x' c X , 1LF (x) -
(x '  <

Choose any x C X0  1 1:0, and any q c I n(x )B. if w C (Tx x )q) then w f X and

--s any x c X e 2 A C C

also

q C LF (w) + R(w)-x

so

q + LF x(W) - LF(W) LF X(w) + R(w)

and thus

w C (T ' X,)a + LF (w) - LF (w)
x x

0  0

However,

lq + LF (w) -LF (w)l < 1a| + 1LF (w) -LF tw)1
x x - xn x

< (xo) + .1'(xo) = nx)

so by the upper Lipschitz continuity we have

w X0 + X(x 0}Iq + LF ) - LF )iB

0

Now let x, be a point -f X. with djw,X0 ] = 1w - x 1 1. By hypothesis, since x0 , x

and x, are in X0 , we have LFx (x1 ) = LFX(xi). Therefore
"0

-LF (w) - LF (w)l = ILF (x LF (x + F'(x o ) - F'(x)i(w - xll
x x x 1 xl

0 0

< fF'(x I F(x)Itw -xI
- 0

and thus

d[w,X X(x )gal + X(x )F - F*(x)Ilw -X1
0 = 0 0 )I~ 0

< :< x )iql + d[wX
- 0 2 0

Therefore
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Af. I t= - 2i(x ) - ,

and so

(T n X )(c) C (T I 2A(x (9a )i

w is upper Upschitzian sn (x)- with modulus 2x.

which proves that Tx z- -....- - 2 ".

elementary compactness argument now shows that for some . and some . > 0, for an-

S0 X£ i, upper Lipschitzian on nB with modulus .

Choose a positive 6 < mintc,ni so that if Q = 6 then .tax.iAB(3 <
2. -1

ae 2nB and let x e (H r) X.)(q). Them q e Flx) -R(xV so if x. c wth

x X I = xX we have

q + Ir (x) - F(X) E LF (x) * R(X)
- x 1lx

and therefore x C (T(x .f X )[q + LF xl(X) - F(x)l. However,

Zq +LF x) - F(x)I < El + B(Ix - xli)Ix - 1 1

so by upper Lipschitz continuity of T(x )n X
1

dfxl~ o < i-,d -1 ~x~ o
-~IP 1 110 d(x1 XO

implying

d(x1 Ix , 2AIa

Hence

(H 1 -f X )(q) C X0 + 2)Iq.IB0I1
for each ae - IB.

- 2

.ow let x. e x0 . By hypothesis

0 c F Xo + R)(x O) F(x O) + R(xO ) H(x,)

0a

so X C (H n XY)(0). on the other hand, by applying (4.1) with a = 0 we see that

I0
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(H X.)(0) C X,, so that (H XJ)(0) - X_ and HS u-nmr

nB wit-h modulus 2X. This cmoletes the procr.

This :esflt will allow us to =easure the cisoaczent in a stationary noint x ann

multipliers u in terms of rerturbations in the mrohl- functions and tneir "vatves.

We show tb-is next, and then proceed to develon a simnier measure of dismlace ent frt --k.

case in which the functions involved are Lioschitzian in o. In what fol!r-n, we Wr:te

U0  for U(x0 ,p ).

T'-HOR -- 4.2: Assume the hvnotheses of heorem 3.3, and sunoose also -*at C and Q

are oolvhedral. T1hen there are a neiahborhood o of p., and a constant u s-uh that

for each P E N7 , each x c SP(p) and each u c Uex,vl,

d[(x,u}l#{x) UI IS =IF(x,u,pj - r(x,u,p) , (42)

-where

F(x,u,p) [f: (xsP)+ ;(x ,P)*U

PROOF: We shall apply Theorem 4.1 to the f.unctlon F(x,u) given b. F(x,u,p 0 ). -e

take R to be and as a candidate for X. we take the set Ix. x Because of

9 the special form of X0 , it is clear that F" is continuous there; the rest of hypothesis

(iii) follows from the differentiability assumptions and the fact that t. is bounded.

For i), we have to show that if uO,u 1 1 u 2 C U0 then

(xI,u) 2) (u)(0 U0 C2) Li(ot#i1

eHowver, an algebraic computation shows that each of these quantities is eual to

-- ~-g( xo P

so that i) is satisfied. For hypothesis (ii), we supDose that u0 C 6O and that for

some x and u, 0 c ( xou + 3*C Q)(x,u). Then x is a stationary point, and u is

an associated multiplier, for the quadratic programming problem (cf. (2.2)):

-21-
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..- X-.- I- x L(X__ u,,'M)x -_

subject to c''x I - (x v IIX - 1 E 0

xE CC

HoweVer, (4.31 sartsfes the seco---der sufficient condition fat x, an- a.v nulinlier

the ndeendnt f -e =~tiiie), ad -s cnstains ae r-guar;both of

tfleba properties follow: fro= the~s~ndn pror-erties of the-olr _

AnOlV..flc ~--2.3 to (4.3) w- c--iude that thnere is some neichborbood M. of X_ suc=

that x4M or x = m. Ifwe K . tob!e sall'.eno;.h, that x- IrrT-_ M, then If

(x,u) c x we must have x e M-, hen.ce x = x0 , eneuC I0 byv inspecion. Thus

h-ypothesis (ii! of TIheorem 4.1 is satisfied, and we can coniclude that fo.r so osxitn-e

0and sor-e nelotborhood W of the orig-i in .I "ifun-ction

[Sa(, ,*o13 )1 0 Xa) 1: f.c W, X

-0 0~

Le heuperrLivschitz modulus be u.

Since SP and U are uersemicontinuous at n,- by Theorem 3-. we can. find

ne-'ghborhoods N yp 0  and M 5 ('x0 ) su-ch that AB .. 6 and

(a) For x E MSand p c -7,~ U(x,p) C-W A.B

(b) For uE c N, SP~n) Ms

(c) For xEX3M an! E-!7 1 nav' Ux)

r1 5 u',p0) F(x.) cW

Let po c1 -; let x CSP(p) a-4  "c U(x,D). "-he' (x') c X, by (a) an.d (b). Also, ve

h-ave by (3.2)

2 e(x,u,p) +0 f X .)

so that

F~x~~p, - (x'u'p) c Flx'urp,=J +- a (x'n);

that is,

'-0 ~cQ ljw
where
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r -r F(x.

Zhe bcp -a 4 .)=0----m -e h

-z . votsns af -.. ~n that P -is a m -f

a iner snare, az-t V, c and c~are niiao .Thnf -

canstantmm ' bo'__-A 44=--cn ~

we- hav.l t r M-na --

Ix

=-,-, I F=

-A - as isn_ nO- Mea W find that f4:r Z-=

b-n the Cr x---~ toteM- _ !.

- t&. I Se I4.c, tot:: a~-

S t --i a -' =L ta disanb i sh:x.,anro

tahe sr (- e nioet scb a :- ir anc o wrh e 'areade aas

V 4 - -xt c.-a-3ondmm __- a:M came'-r

the asam ion of renniarire v a ccnsiderat-l strncer 5enio-cr

the st anard nolnar,:4renobat linmear indevendence of the =a'-e--e- of the

inc-=--a='mts . t- this can im-deed he &dse. and a lfraneurk faran- o

%rMS aeve=- oi.-ener. toth resast Case Vw cannot estab lo

l-- sr tes inthe neorn-v a co±4ect-re of Oxniel '12. and aim avpearsz t-- cZa~c

reru -5 rad by- le-t 4 4i4.



Let C=R 2 , = 2 a.a - I(p." 2 e R'!0 < K 1, 2. .

P (1 '2) = = - -

f(x,p) 
xj 1x

2

and

g(x,p) -(A + p I)x - (2 + p )a + p.b
1 2 1 2

where

A:1, a 1 , b : ]

It is easy to check that the hj t1ises of Corollary 4.3 are satisfied. However, for

any pe P the unique minimizer ol the problcm (3.1) with the above data is given by'
I a if p = (0,0)

x(p) =
a + p if p * (0,0)

and x() is obviously not locally Lipschitzian at (0,0), although it does satisfy the

bound (4.4). This example also shows that the continuity result of )ojima [10, Th. 7.2]

for the case of regular constraints cannot be strengthened to prove Lipschitz continuity.

- A
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