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; We prove that if the second~order sufficient condition and constraint
regularity hold at a local minimizer of a nonlinear programming problem, then

for sufficiently smooth perturbations of the constraints and objective

IR

function the set of local stationary points is nonempty and continuous;

= further, if certain polyhedrality assumptions hold (a5 is usually the case in g

applications) then the local minimizers, the stationary points and the

o o

multipliers all obey a type of Lipschitz condition. Through the use of

generalized equations, these results are obtained with a minimum of notational

O o
.

L I

complexity.
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SIGNIFICANCE AND EXPLANATION
In practical problems from logistics, structural design, chemical

engineering and other areas, it is often necessary to maximize or minimize a
nonlinear function of several variables subject to nonlinear equation and/or
inequality constraints. Since problem data or functional forms may not be
known exactly, it is of interest to know whether a local solution to such a
"i problem will persist under small changes in the data or in the problem
functions. 1In this paper, we show that if two fairly well known "niceness"

conditions are satisfied at a local solution of the unperturbed problem, then

for small perturbations the perturbed problem will have one or more solutions

e

18

Ir

near the original one. Moreover, these solutions will often display good

Vs

continuity properties.
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GENERALIZED EQUATIONS AND THEIR SOLUTIONS, PART Ii:
APPLICATIONS TO NONLINEAR PROGRAMMING

Stephen M. Fobkinson*

Introduction. This paper deals with the stability of solutions and multipliers of

nonlinear programming problems when the data of the problems are subjected to small

perturbations. The problem with which we shall deal may be formulated by introducing
functions f and g from an open convex set & C R to R and R respectively, a

closed convex set C CR' and a closed convex cone Q C R°. The problem of interest is

then
minimize £(x)
subject to g{x) ¢ Q° , (1.1)
x€e C ,

where Q° denotes the polar cone of Q:
9° :={y€le(q,y)§D for each g € Q} . .

If we assume that f and g are Frechet differentiable and that certain regularity

—

conditions are satisfied, it can be shown [17] that with each local minimizer x of (1.1}
there are associated one or more multipliers ue B such that (x,u) satisfy the

necessary optimality conditions

0 € £ (x,u) + 3¢ _(x)
x ¢ (1.2)
0 ¢ -.cu(xm) + 3§»Q{x) '

where [{x,u) := f£(x) + (u,g{x)} is the standard Lagrangian, and whexre the subscript x
——

i
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or u denotes partial differentiation with respect to that variable. f“he notation

™

denotes the normal cone at a point: thus,

{ve Rn!(y,c - x}) £ 0 for each ce C} if x¢ C

ar
<
-~
x
~
.
n
o

9 if x¢cC;
for 2 convex cone like ¢, the description of 3% is even simpler:

{ {v e 0°l{v,u) = 0} if ue ©
3y (u) =

2 ¢ if uédo.

Jr———

Iny point x  which, with some u, satisfies (1.2) is called a stationary point of {1.1);:

there may well exist stationary points which are not local minimizers.

What we shall show here is that if x, is a local minimizer of (' 1) at which f
and g are twice continucously Frechet differentiable and at which certain regularity

——

conditions hold (specifically, the second-order sufficient condition and constraint
regularity), and if f and ¢ are smoothly perturbed, then the set of stationary points

near x,, regarded as a multifunction {multivalued function) of the perturbations, is

-,

{nonempty and) continuous at xge Further, we show that the set of multipliers is upper

semicontinuous, where these continuity properties are as defined by Berge [1]. These

results are proved in Section 3, after a review in Section 2 of the necessary regularity
conditions.

In Section 4, we show that if C and ¢ are assumed to be polyvhedral (as will be the
case in most applications), then even stronger results can be established: the distance
from a stationary point of the perturbed problem to Xpr or from an associated multiplier
to the set of multipliers associated with X5, obeys a kind of Lipschitz condition.
Examples are given, both in Section 3 and in Section 4, to show that certain stronger
statements, although plausible, are not generally true.

In several parts of this paper we use as a device for simplifying and motivating

resuilts the concepc of a generalized eaquation. These obiects, introduced in Part I of this f
r

paper [1%], are relations of the form




-

9 € Flz) + T(z) .,

where F : R® + RF and T is a closed multifunction from RS to itself {often a normal-

:]

cone operator). For example, if we rewrite (1.2) in terms of f anéd g, and use the fact

that aécxg(x,u) = 3$C(x) x 3WQ(u), we obtain the generalized egquation

£ {x} + g'(x)*u
0e¢ + 3% {x,u) , {1.3)

ox
~glx) 2
and this relation will be uzed in several ways in our analysis.
Many papers have already been written about variocus stability cquestions connected with
: : . . k £ L
{1.1), often in the special case in which C = R® and Q= R+ X R {where R+ is tke

non—negative orthant in ). This special case formulates the standard nonlinear

programming problem

mininize £f{x}
subject to gi(x) L0 (i = 1,..4,k) {1.4)
gi(x) =0 (i =k+ 1,000,k +£) .

We shall not attempt to review all of these papers here; rather, we mention only a few
which illustrate the different types of assumptions that have been imposed.

Fiacco and McCormick i3, §§2.4, 5.2] formulated a basic technique for analyzing {1.4)
urider the assumptions of strict complementary slackness, linear independence of the
gradients of the binding constraints, and the second-order sufficient condition. This
technique was refined, to deal with general perturbations, in [15] and in {4):; the basic
tool, in all three cases, was the standard implicit~function theorem.

If the assumption of strict complementary slackness is dropped, then the standard
implicit-function theore¢m can no longer be used. However, if the linear independence
assumption and a somewhat strengthened form of the second-order sufficient condition are
retained, then one can still show that the stationary point and associated multiplier are
{locally) single;valueﬁ functions of the perturbaticns, and that they are locally
Lipschitzian if appropriate continuity assumptions are made on the problem functions. This

is shown for the problem (1.4) in [20], as a by-product of a general implicit-function

3=




theorem for generalized eguations. v, was 7

established by Kojima {10, Th. 6.4}

solutions of (1.4). §
If one weakens the hypotheses still further by dropping the assumpiion of linear

independence, then the appropriate condition to assume in its place is rezularity of the

constraints [18] (see Section 2; in the case of {1.4) this 1is the constraint cualificat:ien

of Mangasarian and Fromovitz [12]). With this assumption, together with the strengthened
form of the second-order sufficient condition previously menticned, ¥ojima {18, Th. 7.2.

- has shown the existence of a locally unique statiorary point wzhich is continuous under

small perturbations. Under similar hypotheses, ILevitin {11, Th. 4] stated that

'h
[AA

ke

P

minimizer exists for small perturbations then various properties, includiang Lipschitz
continuity, followed. However, in Section 4 below we give an example which appears to
satisfy Levitin's hypotheses but for which local Lipschi:tz corntinuity does not hold.
Finally, Sargent [23] has studied the existence and continuity of local minimizers under
. constraint regularity; however, his methods are guite different from these of the other
papers mentioned here, and it appears that some of the results in [23] may not be

completely correct.

e

o

We begin our analysis, in the next section, by reviewing a ~eneralized form of the

. 3 well known second-order sufficient condition, and exploring some of its properties.

S 2. & review of the second-order sufficient condition. The second-order sufficient

iy

condition is a very well known regularity condition in nonlinear prograrming. It is

(T

discussed for the standard nonlinear programming problem (1.4} in [3, $2.32}; versions

adapted to problems in more general spaces are given by, e.g., Guignard [6}, Maurer and

Zowe {13] and Maurer [14].

In this section we exhibit a foxm of this condition suitable for the problem (1.1}.
Although we have not seen this particular form in the literature, it is not likely to be

. very surprising to anyone familiar with the field. what may be less familiar, however, is




e

a»

e

its motivation in terms of generalized eguations and its uss to prove
like Theorem 2.3.

To develop a second-order sufficient condition for {i.1}, we return to the genaral:izaid
equation (1.3) which formulates the necessary cptimality conditions. We have shown in
{19,201 that important aspects of the behavior of a generalized equation are captured in
its linearization about a given point. To make use of this linearization in the present
case, we assume that (xo,ugl is a point satisfving (1.2}; the linearized form of (1.2}

{or egquivalently, of (1.3)) at (xg,ua) is then

£x(xo,uo) £xx(x0,ug) LX“(xg,ue} x =%,
0¢€ + + 3$Cxﬁ(x,L} .
1£ﬂ(xo,u0) _ﬁux(xﬂ'uc) -£uu{xe,n§} ¥ - u, J
Simplifying this expression, we obtain
£ (xgug) £ xgmg) gt tx) ] x - %,
0€ R + 3$CXQ(xe,a§} - {2.1}
-g{x } 1 -g'(xo) 4 J 2 -y
Examination of the form of (2.1) leads us to the realization that it formulates the
necessary op&énality conditions for a certain quadratic programming problem, namely
ninimize  £'(xg)lx - x) + 3 (x = XL fxu ) lx = %)) o

subject to g{xn) + g'(xo)(x - xe) € 9° xX€C.

The gquadratic programming problem (2.2) is not derived by any straightforward approximation
of the functions in (1.1) (note that the second-order term in the objective function
contains, not S”(xo), but L {xg,ug}). However, it has beer found to be an appropriate
approximation of (1.1} for numerical »urposes [9,25]. Since the derivation through
linearization of (1.2) is straightforward, we shall refer to (2.2) as the linearization, or
linearized form, of (1.1).

If we are looking for a condition to impose on a stationary point (x5,ug} of (1.1}

to ensure that x,; will be a strict local minimizer of (1.1), an obvious approach to take

is to impose some such conditions on {2.2). In fact, the simplest way of cbtaining a

-

oW

ity




[
|
"
™ e - o oy
.
)
e g
Y] w w (4] W .: 8
g P S y # |
[ i % ’ . b ,
i Y [+] ' Py [) -
4 ¢y 1 i g P I
" £ 1] W . . it s o ¥ b e o
£ W N ] t 5] L o , ¥ - o i ; X ! ..w
" v} LY el u ol . Bl LY ) ¢ " ) - K |
il o ot oo 4 1 b } 2 " 3o -
£ o I H e wl oo e 4 h o 3 - o ,
@ U m W ] @ oo W ow W . - . - 5. 8
b a9« £ & I ) _ BB g PRI .
B 4o L S E§ B & B A @ wl o i
H p* H g H : E
) Mw —w " mm 4) [~] sl o vl nu 7} u ﬂ & m
" 7] b - H (4} Yo F1) o™ 12} Y - ! & i g
LY [=] ard [Y A 4] O ~t . wt r. W o ﬁ" £ g .
o g 2o~ § 2 & & 0 ) M " TR )
(] - ~ . oY " Fx) 4 4 w ') ] wf ] s " -
R B B A DA B - h “ : 2% 8
M e e P & oo a4 & a8 p v ]
o € £ r o £ o W iy j: o 8 " ¥
LY £ L L] + 4 - 4 el 0 L Lt o - J B J ,
e o L A o 2 : wo 4R
w w5 W PR A S R R { RS ) ™ - oL ,
M b ] L] [P ] ° ] N W - B @
) bt 7] [+ I - SV B o o 3 . ,
i 3 B M - Wi @ ~ b [4] i {tl " o o w
W ﬂ . I (4] .& o m.n o &t Mt S n : 0 o A . ]
0 L4 [ 1 " " ) " : " 4 i) o & |
g 8 ., L & 4y A - £om e o g s
b o g g W 2 I I N 9 P |
" Q Y i " < o ) ) 4 £ Boa
L] £ Al O b Ky 3 ~ X B 1 s
] t 2 ] »v. * 3 5 kS Y . {C b b o] el » -~
a a - Q W. ...Aw. -l Q & M‘“ ° o ) i B. Yy Y ~ [~
] - »
& 5 K o ) " Mooet 0 v 4+ w @ ] q 8 5 7 \
2} m ) e s 1 0w ] 5 ~t el 1] I 4 s
i P - g wow B g £ 8 5§ 8 & 8§ € y o ¥
W g o wo X b8 wou o 9 9w X |
T - E AP o8 % A [ S R
2] ) ] &2 o 5] £l o X H & q [ - i |
1] ] 4 aw 3 &z . + g ,
R T . Y R 0% . F o o b4 ;
W o by ! (% I m,, Yy k] - W [+ ﬂ o - |
2] ) H & [+ W e ) K ¢ " . 1
- « b i m [ . u“ 2 b S !
m._v w .@ N 1 .h" & +) L .ﬁ o E el vl £ el - a |
- LS & § o 0% : @ T
T A L A T A y 3 b 3
2 8§ = T N t e . T &
FY] el LS L Y] ) 2 ¥ * L w "
] * -y S v wl . 4 o [ ] mg H 8 s @
8 b [ [T -] Q . , @ N S B .
7] Q) <] n Q [+ QN W N w. b £ . 5 b b
LTI 11 ] I ¥ ; u b Y -4 A 3w & N
S g 9O g - PR A 4 a3 o Moy o ow
9 GO T A A N $ a2 oy W=y |
’ » " h - h
o H 4] W [ L e ) 4 n " ,
n_; S _m.. ] 4 v |§; ¥ .nn u.. ) «.w au _nw "._ﬁ, 1] E ]
. % & a o w _d % 5 el [ vl ) " i1 "~ L
ur LY a4 [\ L] ) " Wy - N .z.. ] 7 ﬁ 0 o " b oA 5 J:
L) " 4 P . 3 i e v " . ot 3 ! 4 1 ! ,
o a L 1] ~ ) o T _,m Ll o i " g R °
woo&s % @ H | (R S A1 : w6 8 & v X P
wooW o Wb ow oot oW 8 & S o LI . &
- W 8 N mw, WM R W W & 8 BB . m o 2 g |
b +H H ) s H ) 12 -3 '
I v H 0 - 14 ,
.—Su m: 1 £ & P at ® [ u 8 3 7] ,M .?m tu - g wil . M..
2 g o2 on v £ m ved S wo w o @ W 0 . 2 v O
0 " . . " " 1l Py "
- & o = 8 g L®E s 02 e 5 A B £ F o F o
M - H " " 3
P T o ©B 2 o L T o o x w
. -l Q 1Y v 4 0 + [m o 3 £ b " o - o : .
S Q o & 6 =n T TR - -1 ry 5 ™ g
,wm ? ‘o et P ‘B _.w 1 -t o (" q ] “w “ [+] )
' ' ' ' A B U I e 1 | 0 o U DR 40 OB PP I LR S
. , N
o o n s




i

"
nA

i}

is eguivalenr to the standard sacond-order suff

M s

m
[
o
+
e

t is thus reasonable %o opose that th

Suppose thar {x,,u,] satisfies {1.2), that £ and

¥
[T+

ifferentiaklis at Xoe and that the second-ordsr sufficien

there with =odulus p.

oroblen {1.4) Dy Han and Hangasarian, who have s

£ ~
5T ch £ £

"

Suppose that for some € 2

i

SNV and elx) € g°,

a
(.} (x} < £ ! 2 s
¥ 1 R -
g xi € "Xi’ £ -(xg) t 3 aixi ::g for ea
Ye can suppose without loss of generality that {(x -
g B'; evidently ihi=z 1 and X ¢ ';"C(xé}- ¥e have

o° =iz = + ! - -
0% 3 glix. 3} g(xﬁfi gixﬁnxi xs} ooiixi xni) P

i

(]

!



"

¥
L]
-
=

§‘
it ouys upon déivision by ix - "«f nd passage ot
and therelore that h satisfles the hypothesis of the second-order sz
However, we have froz= (2.3) and [2.4) that since !y _,cix i} < &,
= -
:‘f;;}é-li‘?‘?-x; > Fix,) > fix =}
et T2 7 00 = TTiT & TMirTel

Subtracting

= 5 - N 1
fixg), dividing by S 1

< _Jgﬁ)h) 2 gini” = >
ard Eh

.
theores now follows by contrapesition.
Theoren 2.2 shows that a stationary point of {1.1! satisfying the second-grder
sufficient condition is a strict local minimizer.
it i

is also an isclated local minimizer: that is, whether there £
*g containing no other lccal =inimizer of {1.1).
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and g(x,) € Q¢ we have {ui,g(xo)} ¢ 0 and therefere

0L (ui,g'(xo)(xi - xe)) + a(éxi - %,

[
-
.

Dividing by HKx; - x # and passing to the limit, we obtain !

(uo,g'(xo)h) 20 . (2.7}
Now from (1.3) we again have for each i
£10(x ) + g'(x; )% ¢ - QQC(xi) ’
sc that
[ - t -
02> f (xi)(xi xo) + (ui,g (xi)(xi xo)) ’
- . and upon division by ﬂxi - xoa and passage to the limit we find, using {2.7), that

f'(xo)h ¢ 0 and therefore that h satisfies the hypothesis of the second-order

sufficient condition.

We know that
!, - = - - — { — .
Svc(xi) 3 =L (% 0m,) Lo (Xgeu,) = L (xm)(x, = x) + olix, ~ x,4) , (2.8)
and
; ; - .9
’ avc(xo) 3 Lx(xo,uo) . (2.2)
Also, [
" = . - “ - 2 - £2 "
) f SVQ(ui) E] g(xi) g(xo) + g (xo)(xi xo) + g (xo)(xi xo) + o(Exi Xq* Y, (2.10)
: and 5

an(uo) E] q(xo) . (2.11)

Using (2.8)~(2.11) together with the monotonicity of awc and an, we find that

0 < <-g'(xo)"(ui - uo) - .Cxx(xo,ui)(xi - xo),xi - xo> + o(!xi - X

2
OE Y . (2.12)

[

and

[

R _ _ 2 _ 2
0 < (ui - u,.9 (xo)(xi xo) + g“(xo)(xi xo) + o(Exi xoa » . (2.13)

Adding (2.12) and (2.13), we obtain

0 ¢ (=L -x 19,

i 1}
and division by sxi - xoﬁz and passage to the limit yields a contradiction to the second-

xx(xo,uo)(xi - xo),xi - xo) + of(fx

order sufficient condition. This completes the proof.

We have thus shown that when reqularity is added to the second-order sufficient !

v

- B condition, the stationary points Xg which, with some LY satisfy (1.2), are isolated.

At AR 1 i s b
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It is an easy consequence of this ract that if the conditions of Theorem 2.3 hold in some
compact reagion of R’, that region contains only finitely many stationary points (perhaps
none)s However, this result says nothing about the behavior of stationary points, or
minimizers, of problems which are "near" (1.1) in the sense that their problem functions
are slight perturbations of those of (1.1). In the next section, we use the second-order

sufficient condition and the regularity condition to analyze the behavior of such problems.

3. Local solvability of perturbed nonlinear programming problems. In this section we

shall be concerned with the problem

minimize f(x,p)
(3.1}
subject to g({x,p) € Q°

x € C,

where p 1s a perturbation parameter belonging to a topological space P, and x is the

variable in which the minimization is done. The functions f and g are defined from
QxP to R and R respectively, where § 1is an open set in R'; Q and C are as
previously. We shall identify (1.1) with the particular case of {3.1) arising when p 1is
some fixed Pg € P; our interest here will be in predicting, from information in (1.1),
aspects of the behavior of (3.1) when p varies near Pge such as solvability, location

of minimizers, etc. Throughout Sections 3 and 4 we shall make the blanket ussumption that
f£(*,p) and g(+,p) are Frechet differentiable on {, that £, g, f' and gq' are

-

ccntinuous on ¢ x P, and that f£(-,p.) and g(-,no) are twice Frechet differentiable

0

at x5, a point in € 72 which is a stationary point of (3.1) for p = py. The
stationary-point conditions for (3.1) are

0 ¢ £'{x,p) + g'(x,p)*u + 3¢C(X)

(3.2)
0 € —qix,p) + ng(d) ’

and we define U, := {u € K" | (x,m) satisfies (3.2) for o =p }. we shall denote the

\

9 0




o

distance from a point a to a set A by dla,Al := inf{fa -~ a'? | a' ¢ A} {-=

if A =6},
Cur first theorem shows that if the second-order sufficient condition holids at & local
minimizer at which the constraints are regular, then that local minimizer persists

[y

small perturbations.

THEOREM 3.1: Suppose that for p = p,;, (3.1) satisfies the second-order sufficient

condition at Xg and some u, € UO and its constraints are reqular at

Xg.

Then for each neighborhood M of Xg in 9 there is a neighborhood % of p, such

<
—

that if pe N then (3.i) has a local minimizer in M.

PROOF: By hypothesis, for p = pg the constraints of {3.1) are regqular at Xge By
{18, Th. 1] there are neighborhoods Mg and N, of x; and Py ragpectively, and a

constant I, such that for each xe¢ CN My and pe€ Ny,

dalx,Flp)} £ zdlgix,p),Q°} .
where F(p) := {xe C | glx,p) € g°}. Let €4 be the modulus for *he second-order
sufficient condition at (xo,uo): let ¢ € (O,eo) and choose a positive & so that
(x0 + 26B) C MO N MNV, wvhere V is the neighborhood of x5 given by Theorem 2.2 for

the chosen €. Select a neighborhood N& of Py with Né c NO, and some positive a,

such that if p € Na and if Xqe¥y € Xg ¥ 26B with lx1 - le £ @, then
If(x,;p) - f(xz,po)l < 652/16 =: B. Next, find a neighborhood N of pg with N <

and such that if pé€e N then
¢ sup{2g(x,p) - glx,p )t | x € x, + 88} < min{a,8/2} .
Denote f£(x,.p;) by ¢0.
Now choose any pe€ W. If Fip) N{x | Ix - xol = §} is not empty, let x' be any
point in it. One kas x' e ¢ N {xﬁ + 8B} and glx',p) € Q°, so

afx',F(py)] ¢ galgl(x'.py),Q°) ¢ ghglx',p,) - glx’,p)l

< min{a,6/2} .

Thus there is some xy € Flpg) with Ix' - xt g min{a,8/2}, and therefore with

Ixa - xol > Ix' - xol - Ix' - x&! 2 8/2. Accordingly, by Theorem 2.2 we have

-12- .
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- H 1 2 _ . [
: f(xa,pg) 2 ¢0 + 3 €(8/2)" = ¢0 + 28. Also, lxo xgi < Ix 411 +

iIx' - xél < § +48/2 = 38/2, so x6 € X, + 28B; as ix

iIf(x',p) - f(xa,po)s < 8. Therefore

P S

£(x',p) 3 flxg,pg) - VE(x',p) - £(x},p,)1

3 3.3}
7 >4t 28 -B=09, +8
It is also true that
dixy,F(p)] £ gdlg(x,.p),Q°) < Lig(x,,p) = glxg,py)E
& min{a,8/2} .
Accordingly, there is some x" € F(p) with lxo - x"1 < min{e,8/2}. Thus
if(x",p) - f(xo,p0)§ < 8, so
£(x",p) ¢ f(xo,po) + H(x",p) - f(xo,po)! < *0 +8 . (3.4)

Putting (3.3) and (3.4) together, we see that a minimizer of the function f£(*,p) on the
set F(p) N (xo + §B) exists (by compactness and the fact that x" belongs to
5 F(p) O (x, + §8)), but that no such minimizer lies on F(p) N {x | Ix =~ x 1 = 8},
Therefore each such minimizer is in fact a local minimizer of f£{*,p) on F(p): that is,
- a local minimizer of (3.1) which belongs tc M. This completes the proof.

Our next results will concern the continuity behavior of local minimizers and of
stationary points of (3.1). For ease of reference, we proceed now to define certain
multifunctions which display these points. Assume that the hypotheses of Theorem 3.1 hold
for (3.1) with p = py; then it follows from the results of [16] that there are
neighborhoods My of x5 and Ny of p; such that for any p ¢ N; and any x € M,

satisfying

gix,p) € Q°
(3,5}

X € L,

i

the system {3.5) is regular at x.

L™

-13-
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At this point {t will be useful to note a property of the multipliers vhich we shall

o

shortly use. We shall show that if regularity holds at Xg for p = pg,, then the
multipliers in (3.2) are uniformly bounded, and in fact the set of all such multipliers is

an upper semiccntinuous multifunction of (x,p). This extends a result in {11}, also given

in {5).

THECREM 3,2: If the system (3.5) is regular at Xe for p = Pge then there exist

neighborhoods My of Xp and ¥, of bpg, such that if U : M, x N_ =+ & and

SP : N, + M_ are multifunctions defined by

vixz,p) = {u € | (x,u,p) satisfies (3.2)} for (x,p) € M_ x N

2 2’
SPtp) := {x € », | for some u,{x,u,p) satisfies (2.2)} for p ¢ L

then U and SP are upper semicontinuous.

PROCF: We first show that U is locally bounded at (xo,pﬂ). Assume, on the

contrary, that there are sequences {x.} T ¢

and {p } C P converging to x, and p,

i
respectively, xnd a sequence {ul} ¢ B with 1lim 'iuié = +o, such that for each i the
i
triple (x;,uy,p;) satisfies (3.2). With no l;ss of generality we can suppose that P
uilsuié converges to scme y. For each i, {3.2) implies that uy € 9 (a2 cone)
and (ui,g(xi,pi)} = 0; dividing by %uié and passing to the limit we find that .

¥y £ Q and (y,g(xo,po)) = 0, 2gain from (3.2), we have for each i,

f'(xi,pi) + g‘(xi,pi)‘ui € -3$C(xi) H

again dividing by %uié and passing to the limit, usinc the fact that E%C is a closed

multifunction whose values are cones, we obtain g'(xo,pg)*y € -5$C(xe}. By regularity,

for some £ > 0 there is a point x_ € £ with g(xo,pg) + g'(xg,po)(x" - xo) + gy € Q%
& EA

Using our information ahout y, we finé that

f

v

(y.elxg.pg) + §'(x g (x, = x0) + €y)

v

a contradiction. It follows that thers rust exist neighhorhoods M, of x, in 2 and

-14-
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L

X, of p; in P, and a compact set XK TR, such that if (x,p)€ M, x N, then

U{x,p) C X, Without loss of generality we can suppose that M, and X, are small enough
so that M, is bounded and that for (x,p) € M, x Nz the values fgi{x,p)f, ¥£'(x,p)?

and fg'(x,p)? all satisfy some uniform bound.

£'(x,p) + g'{x,p}*u
hi{x,p,u) :=

-

~g(x,p)
we note that there is some compact set L such that if (x,p,u) € Mz x 52 x K then

h{x,p,u) € L.
Now denote by G the graph of the multifunction 3$P x 3¢Q, ané define

H := {{x,p,u,v)i{x,p) € ¥, x N_, (x,p,u,7) € graph h, (x,u,~v) € G} .

2 2

The continuitv assumptions and the properties of a¢c and 3&6 imply that H is closed

m n+m .
M, x Nz x B x R . However, if (x,p,u,v) € H then ({x,p) € MZ x ﬁz and (x,u,p!

satisfies {3.2), so that u € X and therefore v € L. A5 X and L are compact it

n

Jou

follows that the projection of H on the space of the first three, or of the first tvo,
components of {x,p,u,v) 1is closed. The first of these projections is the graph of the
rmultifunction U, and the second is that of SP. Thus U and SP are closed; however,
as the image of U is contained in the compact set K and that of SP in the precompact
set M, st follows that U and@ SP are actually uprer semicontinucus. This completes
the proof.

Our main result on continuity of local minimizers and stationary points is given in
the next theorem. For the multifunction SP and the set Mg in the theorem, SP My

denotes the multifunction defined by (Sp© ¥3)(p) := SP{p) ¥ Mq.

THEOREM 3.3: Suppose that for p = Pgr for sone xg € % and each u € U(XO’PO}'

{3.1) satisfies the second-order sufficient condition at (xo,u), and that its constraints

are yegular there.

—-f5-




multifunction IM : N, » M is defined by

3 3
M(p) := {x t Ix is a local minimizer of {2.1)} .,
=
then SP N M, is continuous g and for each p € ¥; one has

il

1

PROOF: lLet M, and W be the neighborhoods of x, produced by Theorems

respectively; define My := M, 71 W; suppose In additic: that Mg

enough so that for some neighborfood XN, of Pg, ary © & N, a

{3.5), the system {(3.5) is regular at =x. Let 32 be the neighbort

Theorem 3.2; let Ng be the neighborhood obtained by a

M=

i

£3 .= NS
M3, and define b3 : hz
We shall first show that I¥ and SP N My are lower senmicor

Theorem 2.3, SP(po) N = {x

3 - :
%, N also, for any pe€ ¥y if x ¢

regularity of {3.5) is a sufficient constraint qualification (17}

Thus if p € Ny then ¢ # LM(p) € SP{p) 7 Ms

. However, since x, € LM(pe)

2.2, we actually have LM(po) = SP{p.) Y M_ = {x }. Iet § e any open

8 3
S N IM(p,) # 6; then obviously (s? 7 M4){pg) C S, ¥ow by appl

Tx

can find some neighborhood N of py such that X Ny and 1

-
=

vin

e

IM(p) " S # ¢. Hence LM is lower semicontinuous at p., but since

wls

and IM{p,) = (sP o M3)(pg), we see that SP 0 My 1s also lower serdconti

But SP is upper semicontinuocus from ¥, to My, so SP

from N3 to My, and thus SP 7 %. is actually continucus at

-
-

proof.

* M3 is upper semiconiinuou

Theorem 3.3 shows that that portion of the set of stationaryv points near

continuous at pg, but it gives no measure of how it derends on

In the next

we show that if the sets ¢ and ¢ are polvhedral ther the dependence of

upon p can be measured by the dependence of the problem functions and ¢

upon p: in particular, if the latter are Lipschitzian ¢}

Lipschitzian™. In the meantime, however, we present an

W

W

-




that I¥ may not be single~valued near Py and that the inclusion of LM in SP may be

L

strict.
§ Consider the quadratic programming problem R

2

c e 2 2
minimize (_x1 - x2) - nx

B |

1

subject to Xy + 2x2 < 9

X, - 2x2 < [

where n is the parameter. For n = 0 this problem has a unigue minimizer at the origin;
P for any positive n it has local minimizers at % n{2,%1) and a saddle point at (n,80).

Thus in this case IM 1is multivalued and is strictly contained in SP whenever = > 8.

4. Upper Lipschitz continuity in the polyhedral case. Throughout thic section we

shall assume that C and { are polyhedral convex sets, and we shall see that in this i}
case we can prove stronger results than we did in Section 3. Specifically, we shall provs

that the solutions and multipliers of (3.1), regarded as multifunctions of p, are locally =
upper Lipschitzian at Py under appropriate continuity assumptions on the problem ;
functions. We recall that if F is a multifunction from R' to K, F is said to be

locally upper Lipschitzian at Zy € R® if there are a neighborhood 2 of 2z, and a

constant such that for each z € 2, :

F{z) C F(zo) + ilz - 2 1B , z

0
where B is the unit ball in R'. We showed in (21) that any polyhedral multifunction
{(one whose graph is the union of finitely many polyhedral convex sets) is locally upper

Lipschitzian everywhere with a uniform constant.

We begin by formulating a general continuity result for nonlinear generalized

equations. It says that if a certain condition is satisfied by the linearizations of the :

nonlinear problem, then the latter has, at least locally, an upper Lipschitzian inverse

(which, of course, may not be single-valued and might even be empty). BAs in Section 3, for §

¢ a set S5 and a multifunction F, we define the multifunction FN S by i

-i7=




{(F 7 8){x) := F{x} ™ S. The norm on a product Space is taken to be the naximun of the

W

| norms of the component spaces.

-

THEOREM 4.1: Let F be a Frechet differentiabl~ function from an open set 2 C R” t
) i . i T

20 R°. let R be any nolvhedral multifunction from R® to R°, and define H := F + R.

For %,€ % and x¢€ R 4define

2L g 222

LF o(x )
0
*a

Suppose there is some compact set x0 € & such that

i) For each x, and x; in X, the restrictions of IFf, and LF,  to X, are

the same.

ii) For some nositive Y and each ¥y € Xq,

-1
[ F $ =
xY (L~x9 + R} (0) xo '
where XY 1= xo + Y&,

iii) F' is continuous on Xge and there is a function 8 : R+ + R+ with

1im 9(t) = 0 = 8(0), such that for each x € XY and each x4 € X4,

30

§P{x) - LF ({x)% ix - x i5(ix - x I).

1 Xy = [4] 0 7
- -1

Then there is some positive § such that the multifunction ¥ 7 Xg is locally

upper Lipschitzian at 0, with (8 @0 Xg)(0) = X .

we remark that {(iii) is satisfied in particular if {1 4is convex and F' |is

Lipschitzian there.

. PROOF: For xy € X, define T, to be (LF, + R)™!
0

1
%q +« Let g := 2 Y. We first

show that there exist a constant X and some positive n such that for any xg € Xgs

. Txo n xe is upper Lipschitzian on nB with modulus A. Choose any Xg € Xg: then the
' z sun L?xo + R is polyhedral and by {21, Prop. 1] there are a constant A(xo) and a
i % positive n(xo) such that Txo is upper Lipschitzian on n(xo)B with modulus A(xo). if
é we take n(xc) small enough, it follows from the fact that (Txo{} XS)(O) = x0 that the !
i : ; multifunction Txg 52}5 is upper Lipschitzian on n(xo)B with modulus A(xo). Now, using :
: ‘ the continuity assumptions, choose a neighborhood Ng of Xy small enough that for any 4-

n ¥
X € XO hn,

x:
-ig-




Bl BB b A

T

™

L]

a) i(xo)EF'(x) - F'(xo)5 <3
1
b) For any x' € X_, ILF_ (%'} - LF (x'}% £ 3 nix.} .
€ X x =2 g
0
~ . . 1 = -~ oy .
Choose any x € X, a Ky, and any g ¢ 3 q(wg)s. If w € (-x o s)(q} then w ¢ ks and
also
q € LFx(w) + R{w) ,
so
- S 1IF Ex3
q + LFx {w) LFx(u) € LF {w) + R{w)
o ]
and thus
o ¢ f 1 wl - LT {5
w € (Tx 0 Xs)gq + h?x {w) Lix(g}} .
0 1]
However,
g + LFxo(w) - LFX(W)5 S Egf + 8 ’xﬂiw} - IF_(w)i
LI + 1 -
$ 3 alxy) + 5 nlxy) = alxg)

so by the upper Lipschitz continuity we have
X + 4 v} = L £B .
w e *0 X(xQ)Eq + LFx {w} Fx(wl B
9
Yow let x4 be a point ~f X, with d!w,xa} = iw - x1§. By hypothesis, since X3, %

and x4 are in X5, we have LFxo(x,) = LFx(xi). Therefore

L] A " - ! L - 3 h -
aLFxo(w, LFx(u)S !LFXO(x.') LE‘x(x1) + [F {xgl Fr{x)i{w x1)!

[

5?'(X0) - F'{x}ifw - x_ % ,

1
and thus
alw,X;) < Mxg)Eqi + AMx VEF (%) = FH{x)Hlw = x, ¥
1
< A(xo)iqf 3 é!s,xoi -
Therefore

—15-
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a 9
and SO
™ Ny ot oax M + 33 1igin b
(T, ..e)(q} i.x )sg)")) ..A(xg igiz , $
. - : s A 1 = 5 . Sre - -
which proves that SN xe is upper Lipschitzian on 3 H{x, 12 with modulus 2x7x. 1. =

elementary ccompactness argument now shows that for some 2 and socme 3 > 0,

X € Xg, 'E‘x n xe iz upper Lipschitzian on nEB with modulus .

Choose a posizive & < min{eg,n} so that if

A
tx

A
o

fe <vpgsa 1 s ton
ther aaxi1,428(5) ¢ % . Iow le:

T
fis]

1 -1
€3 nB and ler x € (H N xs){q). Then gq € F(x) -~ R{x}, so if x, € X, wizh

ix - x1€ = d{x,xe} we have

g + LF_ {x} - Fi{x} € LF_ (x) + Rix} ,
%, x,

and therefore =x € {T(x1) A xs){q + LFx {x} = F{x)}. However, :
1 .

wyow

fg + LF (%) - F{x}f < §gf + 8(¥x - x_5}ix - x_¢§
= x1 = = 1 1

e

[TLN
(ST

ngrn, i

1
- —
T3

$0 by upper Lipschitz continuity of 'i‘(x1) o xe,

“lp

1 h 3
d{x1,xg} £ Mgt + 3 d[x1,}:g;

implying

g afx, %1 g 2Mgi .

- s Hence

1

W n Xg)1@) C X, + 2AigiB

oy
o
o

0

1
for each qe¢ 3 NB.

ARG o e

¥ow let X5 € Xg. By hypothesis

0¢€ (I.Fxo + R){xu} = F(xo) + R(xo) = H{xg} ’

Wy

-
S0 xOC (H 0 Xs}{(}'). On the other hand, by applying (4.1) with g = 0 we see that

o
[

- 0—-




; 3 iaxpschaezian 2o
¥ t 3 Sisplaces=ent in a statignary peint x  ang

multipliers
we measure of diss
case in which the invels I : i p. In what foilows, we write
.
1]
THEQRZH 4.2: Assume the hyvpotheses of Theorem 3.3, and suopose alss thazr € and 2
Y hedral. Then tt b4 _neichborhood X ocf p and a constant u  such 4hat
are polyhedral. Then there are a neichborhood ¥, of p, 2 tant that
for each pe ¥, each x ¢ SPip} and each u € Hix,p},
a{x,ul,{x,} Byl £ uiF(x,u,p) - Flxu,pli
= where
£ {x,p} + g'ix,pl%u
F{xyﬁi?} o .
-g{x,p)
PROOF: e shall apply Theoren 4.1 to the function Fix,u) given by Fix,u,p,). =e
< = = g
take R to bs QF;,OcQ' and as a candidate for X, we take the ser ix ! x E, . B3ecause of
d 2 =
L 4 the special form of ¥gs it is clear that F* is continvous there; the rest of hypothesis

s bounded.

[
ke

{iii) feollows from the differentiability assumptions and the fact thas

For {i), we have to show that if petty,tty € Uy then

(u2) (’.223 .

F = LF .
{xs'“s} (ng‘:—’}

However, an algebraic computation shows that each of these guantities is ezual %o

] 14 -
£ fxo.po) + g (xg,gﬁ} u,

-g(xo .po)

so that (i) is satisfied. For hypothesis (ii), we suppose that ug € U, and that for

o
"

4 . * - T i ior aint, ar
some x and u, D€ (L?(xg'uﬁ} gé’ch”x'“} Then x is a stationary po ., and u

an associated multiplier, for the guadratic programming problem {cf. {2.21):

-t~
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L W

= r? I = i a a 1.z Bofsae
Let C =R Q =R, and P—{(p1,p2)€R§G§p‘é1, !’z‘ééni" Befire
1 2
£{x,p) = 3 Exd
and
1 .
g{x,p) = ~(A + pll)x 3 (2 + p1)a i S
where

It is easy to check that the hy thrses of Corollary 4.3 are satisfied. However, for

any p € P the unique minimizer of the probiem {3.1) with the above data is given by

a if p = (0,0)

|-

x(p) =
-4 .
a + P, p2b if p# (0,0) ,

(ST

and x(+¢) is obviously not locally Lipschitzian at (0,0), although it does satisfy cthe
bound (4.4). This example also shows that the continuity result of Kojima {10, Th. 7.2}

for the case of regular constraints cannot be strengthened to prove Lipschitz continuity.
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