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ABSTRACT . .>- - " /

In this paper we consider two-sided parabolic inequalities of the form

(li) < u < 2' in Q ;

(lii) [ - +--- + A(t)u + H(x,t,u,Du)]e > 0, in Q

for all e in the convex support cone of the solution given by

K(u) = {A(v - u) : li <v < ., > 01

) u = 0 , u(.,T) u

where

Q = 0 x (0,T) , = ( 0 (,T)

Such inequalities arise in the characterization of saddle-point payoffs u in

two person differential games with stopping times as strategies. In this

case, H is the Hamiltonian in the formulation. A numerical scheme for

approximating u is obtained by the continuous time, piecewise linear,

Galerkin approximation of a so-called penalized equation. A rate of conver-

gence to u of order 0(h / 3 ) is demonstrated in the L 2(0,T ; H I(.")) norm,

where h is the maximum diameter of a given triangulation.
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SIGNIFICANCE AND EXPLANATION

-.'This paper studies the two-sided differential inequality which charac-

terizes the optimal payoff in a two-person differential game, when the

strategies available to the players are stopping times. By converting the

inequality to an equation via a so-called penalization method, we are able

to apply a standard numerical method for approximating solutions of nonlinear

equations. We obtain new rates of convergence for the procedure.,,,
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CONVERGENT APOXIATIONS IN pARAB3LIC VARIATIONAL

INEQUALITIES II: HAMILTON-JACOBI INEQUALITIES

Joseph W. Jerome

§i. Introduction.

In this note we continue the investigation of the discretization of parabolic

variational inequalities begun in [3). The problem is decidedly more general here

and our approach correspondingly different. As distinct from the one-sided

inequalities defined by linear differential operators such as the heat operator,

studied in [3], we consider here two-sided inequalities defined by nonlinear

operators. Thus we seek a function u satisfying, on a space-time domain

Q = Q x (0,T)

i) 1 < u < 2 ' in Q

(ii) -_u + A(t)u + H(x,t,u,Du) = 0
at

if < u < 2

(1.1) (iii) - u + A(t)u + H(x,t,u,Du) > 0,
at

if u

(iv) - u + A(t)u + H(x,t,u,Du) < 0at

if u 2

Adjoined to (l.li, ii, iii, iv) is a standard homogeneous Neumann boundary condi-

tion and a terminal condition at t = T

(l.lv) au 0 on = a × (0,T) ; u(.,T) = u

The precise hypotheses are stated in section two, where we define a penalized

1/4problem with solution u and demonstrate a rate of convergence of order 0(t
£

in the L 2(0,T ; HI ()) norm (cf. Theorem 2.2). In section three we define the

h
Faedo-Galerkin approximation u of u and demonstrate convergence to u with

the rate of 0(h 1
3
) in the L 2(0,T ; (HI)) norm, if piecewise linear elements

3/4
of maximal diameter h are employed with h = £ (cf. Theorem 3.3).
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The formulation (1.1) arises in stochastic control and two-player differential

game theory, where it is realized as a (double) minimax value of a stochastic

functional (cf. Bensoussan and Lions 121). In contradistinction to the Hamilton-

Jacobi equation, which arises as a (single) minimax value associated with the

Legendre tt'ansformatiol, the inequality (1.1) involves the introduction of an

optimal stoppinq time. For the sake of brevity, we omit the details and instead

refer the reader to (2). Nonetholess, we should observe the nonstochastic applica-

tions of (1.I), such as certain ,<tefan problems (cf. Bensoussan and Friedman 111).

'the methods of this pprr are obviously applicable to the simp ler model discussed

in [3]. We have chosen a (natural) .Neumann boundary condition rather than a

(forced) Dirichlet boundary c_.ondition to simlify the exposition of ',3, since

piecewise linear ,],,ments cfiot vani ;h -n an rbitr,,rv surf,,oc We mention

finally that hinthler rat(s of cornwer(ielci' ire to h( exiocttd if II f , viz.,

( 1112) coniveri, n( - of th, solut i ro of t1" !,,ul I .,,,tjio", and 01

coriverr(n( o' of th, fin t . 1,rwnf r, 'N 11." j i , wit, i ,



§2. The Penalization.

Let Q be a smoothly bounded domain in IR
N 

and let A(t) be a uniformly

coercive, elliptic operator in divergence form:

(2.1) A(t) = - D. a. (*,t)Dj + Y b (-,t)Dk + c(ot)
1' a~ :1 kk k

where D --. a.. E C
I (Q) and bk , c E C ([O,T] ; C()) and

i ax.i ijk1

2
(2.2) at (uu) > coliul 1 c0 >0

for all u E H (Q). Here

(2.3) a t(u'u) = 11lulll2 =  
I (Diu, a . D U)i,j L 

i  
L(2)

+ (bk Dku,u) 2 + (cuu) 2
k L (P) L (Q)

Let H : ( x [0,T] x]R -.- 2 bt a continuous function satisfying, generically,

(i) fH(x,s,v,Dv) - H(x,t,w,Dw) < C[Is - tI + IV - wI + jbv - Dwjl

(2.4)
(ii) LH(x,t,v,Dv)l < h(x,t) + lvi + jDvi

where D = (Dl ..... N ) and h(.,.) is a bounded measurable function; I'i

denotes an appropriate Euclidean norm. Let 1 and i2 be given satisfying

(i) Pi E H2(Q) , i = 1, 2,

(2.5)
(ii) l < 2 in Q

We shall define a class of penalized problems depending on a parameter £ > 0.

These provide both a tool for proving the existence of a solution of (1.1) in the

class

(2.6) X = L 2(0,T ; H2 (M) n H [0,T ; (L2]

as well as defining the base equation for the Faedo-Galerkin approximation of the

next section. This penalized equation is exactly the one introduced in [2].

-3-



We define now the penalized problem, for E > 0,

U) + A~tu + (u ( +H(x,t,u ,Du 0 it

au
(2.7) (ii) - = , on

(iii) u (-,T) =u,
u

+

The functions () and () are the positive and negative parts of the identit',

defined so that

+ -R
1  + -t =t -t- t C ; t ,t > 0

Remark 2.1. It is known that (2.6) possesses a solution u satisfying

2 H2 H2 2

(2.8) u E L 2(0,T ; 2(Q)) n H [0,T ; L2 ()] = 2

if say

-2
(2.9i) u E H (Q)

If, in addition,

(2.9ii) pI(.,T) < u < 2

then one can use the equations (2.7) to prove the existence of solutions u of

(1.1) in the regularity class X1 of (2.6), under the hypotheses described earlier

in this section by the arguments of the proof of Th4oreme 1.1, p. 449, of [2]

(cf. [2, pp. 449-455]). Actually, one can prove the existence of u C X1  satisfy-

inq (l.li,v) and

T

(2.10) f (A(t)u + H(o,t,u,Du) - - , v - u) dt > 0
0 at L

2 
()

for all v r L2 () I1 < v 2' from which (1.lii,iii,iv) follow if 1 and 2

are coincident only on a set of measure zero:

(2.11) meas {0i = ' 2
} 
= 0 (in Q)

Standard methods also give the characterization of (1) of the abstract.

-4-



Remark 2.2. As remarked in [2], there is no loss of generality in assuming that

1 2 2
, defines a monotone mapping from H (Q) c L (Q) into L (M)

(2.12) (H(0,.,v,Dv) - H(.,.,w,Dw) , v - W)2 > 0

for all v, w E HI (). We shall assume (2.1-2.5) and (2.8, 2.9, 2.11, 2.12) for

the sequel. The reduction to (2.12) is achieved by an integrating factor and change

of variable.

Proposition 2.1. The following 'a priori' estimates hold for the solutions of (2.7):

auCi I l 'lul <C H
(i) at" 2 ' "2 1

L2(Q) L (0,T H (Q))

(ii) I UE  2 2

L (0,T H
(2.13)

(iii) + I(u ,2 ) 2 + 2(u2
r : 2 11L 2(Q)1 L 2(Q) C

(iv) L 11 -L (U - +2) 1 L2 'r at 1) L 2 2 )  C

Proof: The estimates (2.13i, iii, iv) are derived as in [2, pp. 449-455]. Estimate

(2.13ii) follows from these and (2.7).

Remark 2.3. These estimates are sufficient to prove the existence of a solution

2u

u of (1.1) in XI . Note that the existence of E was used to obtain the

au 
at

.a priori' estimate of at-E-.

Theorem 2.2. The solutions of the penalized problems (2.7) converge to the solution

of (1.1) with order O(e / 4 ) in the norm of L 2(0,T ; H ())

T 2

(2.14) f u - u 1 dt < C 1/2

0 H (0)

Proof: We note that the function r E defined by

-5-
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(2.15i) r C£ - (u - 2
)
+ + (u

satisfies

(2.15ii) <  
< 2

Thus, from (2.10) we have, using integration by parts,

(2.16) (-L + H(',t,u,Du) , r - u) + at(u ,r -U > 0
: L2 (P) £ --

for almost all t, 0 < t < T. Multiplying (2.7) by r - u and subtracting (2.16)

from the resultant integrated equation gives

2 dt 2I d u- u 2 + a (u-u u-U2dt L2 (Q)

+ (H(',t,u ,Du ) - H(',t,u,Du) , u - u)£ F: : L2

(2.17)

< (A(t)u - ,U (u E -2u ) 2 + (H(-,t,u ,Du ) - H(,t,u,Du)
S L (2 ) L 2(

(u - i) - (u E 2 ) + )  
2

where we have used (cf. [2, p. 209])

- (u - (r - u) _ 0 , (u E 2 (r - U) > 0

Integration of (2.17) over (0,T), together with (l.lv), (2.4i), (2.7iii), (2.12)

and the elementary inequality,

(2.18) (f,q) 2 + n-l11 gl 2)

yields
T

f a t (u - u . , u - u )d t C [ l(u - tP ) f l 1 2  
+ 1(u , - ) + 

1 2 ( r)F L () L )

2 2

+ Ii(u - )-1! 2( + 11(u - ,2)+!1 2
LL (Q)

and the p roof of (2.14) is concluded by use of (2.13iii).

-6-



§3. Continuous Time Finite Element Approximations.

For h > 0, let Th  be a triangulation of the given domain Q. Thus,

(3.1) = u T
"TETh
TTh

where T is a typical (closed) element in the simplicial decomposition Th; in

particular, we permit nonsimplicial elements near the boundary. Let Mh denote

the linear space of cc-ntinuous piecewise linear trial functions determined by Th

(3.2) Mh = {X C C() : X is linear T c Th

Let Eh  be the Ritz-Galerkin HI () projection defined by

(3.3i) (Eh' X) 1 ('PX) 1 for all X MhH (P) HI ((2)- h

for each fixed p c H (2
)
; here we use

(3.3ii) ) 1 (V ,V ) + -- P I ,
H 22 ((2) 1 2 2

which defines a norm equivalent to the standard H
I 
(Q) norm in the usual way

(cf. (4]). Let Ih  denote the interpolation operator. We shall assume:

(3.4) Oi 
<  

h I 
-
l2 

<  
2

- h ~ h '~2-

Roughly speaking, (3.4) asserts that @i is smooth and convex and 02 is smooth

and concave; indeed, these assumptions guarantee (3.4). We make the standard

finite element assumptions (cf. (51)

(3.5) F h; - '; I{ 10 Ch2-j H 2 , j =  2, , H 2 (Q)
SH

3 
(2.( H

2 
(12) I~I2 ~ j=0 ,~~H(2

for F Eh  and for F I

h = h 4 h h

We are now in a position to define the finite element approximation via a

standard Facdo-Calerkin method based upon (2.7).

-7-
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Definition 3.1. The finite element approximation u : [0,T] - Mb is the unique
Ch

element in
1 2 L2

XI = H [0,T L 2()] n L (0,T H I (f)

satisfying

(3.6i) (J (u
h
) , x) = 0 , for all X E M

£ E£

h h

(3.6ii) uh (,T) = I u
Ehu

Here, J is the map,

S X1 - L 2 (0,T H ())

defined by the pointwise relation on (0,T)

(3.6iii) (3 ( p) ' = (- + G(r' 'pl'J2) ' () 2 - at( 'w) = 0
' t1 2 L2 (Q€ L (0)

where
1

(3.6iv) G(riI 2 ) = g(,( 1 ,i 2 ) + H(,,p,Dp)

(3.6v) g(,iP 1 ,i 2 ) = -(6 - 1) + ( -6P2 )

Remark 3.1. The existence of a unique solution of (3.6) is standard and may be

achieved via the theory of pseudomonotone operators.

Proposition 3.1. The following 'a priori' estimates hold for the solutions

{u of (3.5)-:£ E,h

auh 2
(i) V1-'t"n 2 C1 h 2 +C,

L2 
(Q)

(3.7) (ii) fluh l< C

L (0,T H ())

(iii) -i- g( ,,h,i 2  2 < C
L (Q) <

where C, C, C2  are independent of c and h.

-8



hm

Proof: Select X u h I in (3.6i). Then, we have

2 2
d jh 11 h I h 1 (h -_+a u u)L2 l (u -y1  1-r2()

dt L (Q) L 2

(3.8)
<--(_ -a gh, h II)2

(Q  
+ at(uh' ih 41 + (1(uh), ih >I)2

(

h

where we have used (3.4) after an addition and subtraction, have written H(u h

for the last term in (3.6iv) and have noted

(u h h 
+ 

> 0

Now integrate over (t,T). Integrating the first term on the r.h.s. of (3.8) by

parts, applying (2.4ii) to the third term and estimating the first, the second

and part of the third term by the inequality (2.18) we obtain, for appropriate

choices of n

2 T 2
auh  

+ a (u u ) + 1 (u -
-

dt

t 2 + t 1
L (2) t L (0)

(3.9) T 2

<C 1 + C2 f Hu h 11 dt
t L (2)

Gronwall's inequality applied to (3.9) yields, in particular,

uh 2 1 h 2(3.10) 1lu H 2 1 + I u - *l)  2 -
L (0,T H (Q)) L (Q)

A parallel argument, with X = u - h 2' yields

2 1 h + 2

(3.11) IiH 1 + (u - 2 ) 11 2
L2 (0,T ;H ()) L2(Q)

Clearly, it remains only to show that

h
DU 2

(3.12) 11- '- 2

-9-



aua 1

Setting X - C in (3.6i) we have, after adding and subtracting - - and

integrating over (0,T)

Su h  
2 h2

6 11 + a(u,(.O),u (,O)) + 1 (-O))I~ L 2(Q t £ £ -l~h' o  
- 1('o) 2

Lt 2 
L (M)

(3.13) hr, u h

)L2,ui~ ,T)- - - h -E )2Q
u - ,T) + a(u,u) + (H(u ) ,

- t 2 at 2

However, by (2.9ii),

(I h  (T)) h u -
1
h 1(-,T)) + (Ih  I (-,T) -

h 
1(,T)

Thus, by (2.5i), (3.5), and (2.18) we obtain from (3.13),

hh
3u h22

(C( + a(u,u) + C)
(3 1 ) 1t' 2 1 E

from which (3.12) follows and the proof is concluded.

Corollary 3.2. There is a constant C, independent of c and h, such that

(3.15) IIJ (uh) 11 Ch3/c + h/V'r + h]
p

where F denotes the dual of H1 ().

Proof: Let v H 1I('1). Then, by (3.3), we have

(JF(u h  ,v)= (J (u h )  
v - Eh v

h h

au h
- a- + G(c,uh,OI, 02) , V - Eh V)

so that

-I0- &



Ili (u h 11 = sup I( (u
h  )  

l
Eu F jI 1 =1 u

H (c?)

(3.16)

< C1 (h
2/E + l/V'E + C2 ) sup 1lv-Eh v 2

Ilv 1 .l =1 L (2 )

NOW (cf. [5]),

SUP 1 VU - h 2 11 < ChIL, IV 11 M L (Q) -

so that (3.15) is immediate from (3.16).

Remark 3.2. We are now prepared to state the major result of the paper.

Theorem 3.3. There is a constant C, independent of £ and h, such that

T 2 1/2

(3.17) ILu - uh  2 < C0[( IiJ(u h) II dt 1

S L 2(0,T ; HI ()) 0 F

In particular,

h 3 ,- 4
(3.18i) fiu - u

h  
2 1 < Cfh /E + h/vC + 7c]

L (O,T H ((2))

If the choice h = E is made then

(3.18ii) Iu - u CL 2 (0,T  1 _ C h

Proof: In light of Theorem 2.2 and Corollary 3.2, it suffices to prove (3.17).

Using the monotonicity of g(.,*,1 4 2) and (2.12) we have,

h h h h
a (u u , u -u ) < (J (u ) (U ) -U
t (u E C C F F E

(u
h h- 

U h=(J( ) , u€

< IiJ(u h 11 flu uh1F C H (1)

so that (3.17) follows.

-ii-



Remark 3.3. If H E 0, then (2.13iii) can be strengthened so that /7 is

replaced by c. This leads to a rate of convergence in Theorem 2.2 of order v

(cf. the proof in the case of one obstacle in [2, p. 2241). The 'a priori'

estimates of §3 remain unchanged and the choice c h leads to a convrqrnc.,

3
rate of h, replacing h in (3.18ii).

-12-
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ABSTRACT (Continued)

K(u) = {X(v - u) i v < -2 X ? > 0)

(liii) L = 0 , u(,T) u

where
Q = 0 x (0,T) , = (0,T)

Such inequalities arise in the characterization of saddle-point payoffs u in
two person differential games with stopping times as strategies. In this
case, H is the Hamiltonian in the formulation. A numerical scheme for
approximating u is obtained by the continuous time, piecewise linear,
Galerkin approximation of a so-called penalized equation. A rate of conver-

gence to u of order 0(h1/ 3 ) is demonstrated in the L2(0,T ; H ( )) norm,
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