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In this paper we consider two-sided parabolic 1nnqua11t1es of the form

(1i) LRI Y in 9 ;
.. Ju ,
(1ii) [—a—t+A(t)u+H(xtuDu]e>O, in ¢ ,

for all e 1in the convex support cone of the solution given by

K(u) = {A(v -w) = v, <v <y, » 2>0} 3
(1iii) X =0 , u(e,T) =u ,
v
T
where
Q=ax(0,7) , ) =530x(0,T) .

Such inequalities arise in the characterization of saddle-point payoffs u in
two person differential games with stopping times as strategies. In this
case, H 1is the Hamiltonian in the formulation. A numerical scheme for
approximating u 1is obtained by the continuous time, piecewise linear,
Galerkin approximation of a so~called penalized equation. A rate of conver-

/ . . 1
gence to u of order O(hl'3) is demonstrated in the L2(O,T ; H (1)) norm,

where h is the maximum diameter of a given triangulation.
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SIGNIFICANCE AND EXPLANATION

N
!

\JThis paper studies the two-sided differential inequality which charac-
terizes the optimal payoff in a two-person differential game, when the
strategies available to the players are stopping times. By converting the
inequality to an equation via a so-called penalization method, we are able
to apply a standard numerical method for approximating solutions of nonlinear

equations. We obtain new rates of convergence for the procedure.,
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CONVERGENT APPROXIMATIONS IN PARABOLIC VARIATIONAL
INEQUALITIES II: HAMILTON-JACOBI INEQUALITIES

Joseph W, Jerome

§1. Introduction.

In this note we continue the investigation of the discretization of parabolic
variational inequalities begun in [3). The problem is decidedly more general here
and our approach correspondingly different. As distinct from the one-sided
inequalities defined by linear differential operators such as the heat operator,
studied in (3], we consider here two-sided inequalities defined by nonlinear
operators. Thus we seek a function u satisfying, on a space-time domain

Q=0 x (0,T) :

@ -y amu s aeeuon =0
. if wl U <y,
AN Ju
(1.1) (iii) =~ Y + A(t)u + H(x,t,u,Du) >0 ,
if u = wl ;
. Ju
(iv) - 5t + A(t)u + H(x,t,u,Du) < 0 ,

if u = wz .

Adjoined to (1.1i, ii, iii, iv) 1is a standard homogeneous Neumann boundary condi-

tion and a terminal condition at t =T
(1.1v) g% = 0 on Z =30 x (0,T) ; u(-,T) = o .

The precise hypotheses are stated in section two, where we define a penalized

s . 1/4
problem with solution uC and demonstrate a rate of convergence of order Of(e / )
in the L2(0,T ; Hl(Q)) norm (cf. Theorem 2.2). 1In section three we define the

h

' Faedo~Galerkin approximation u, of u, and demonstrate convergence to u with

3) in the LZ(O,T : Hl(Q)) norm, if piecewise linear elements

of maximal diameter h are employed with h = 53/4 (cf. Theorem 3.3).

the rate of O(hl/
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The formulation (1.1) arises in stochastic control and two-player differential
game theory, where it is realized as a (double) minimax value of a stochastic
functional (cf. Bensoussan and Lions [2]). In contradistinction to the Hamilton-
Jacobi equation, which arises as « (single) minimax value associated with the
Legendre transformation, the inequality (1.1) involves the introduction of an
optimal stopping time. For the sake of brevity, we omit the details and instead
refer the recader to (2]. Nonetheless, we should observe the nonstochastic applica-
tions of (1.1), such as certain Stefan problems (cf. Bensoussan and Friedman [1]).
The methods of this paper arce obviously applicable to the simpler model discussed
in {3]. We have chosen a (natural) Neumann boundary condition rather than a

(forced) Dirichlet bhoundary condition to simplify the exposition of 3, since

piecewise linear ¢lements cannot vanish on an arbitrary surfuce . We mention 3
finally that higher rates of converdence are to he expected if 1 0, viz.,

1/2 . . 172
afg Yy converdence of the solutions of the ronalized ¢ uations and  0(h )

converdaence of the fintte clement o roximations, with h o= o

te Wt




§2. The Penalization.

Let Q be a smoothly bounded domain in ny and let A(t) be a uniformly

coercive, elliptic operator in divergence form:

(2.1) A(t) = - IZ' D; a;;(+/e)D, + ) b (+,£)D + cl+,t) ,
1,3 k
where D, = —— @) d b ctro ; c(f
i axi ’ aij € Q) an K’ C € ((o,T] : )} and
(2.2) a,_{u,u) > c,llu ., ¢, >0 ,
t -0
ul (@) °
1
for all u ¢ H {(Q). Here
2.3) agw = flull® = § o, a0,
i3 R R )
+ 7 (b, D u,u) + (cu,u)
PR 2@
= N+1 . . . . .
Let H: Q x [0,T] xR + X be a continuous function satisfying, generically,

(i) {H(x,s,v,Dv) - H(x,t,w,Dw)| < C([s - t{ + {v - w[ + [Dv - Dw[] ,
(2.4)
(i)  |H(x,t,v,DV) | < hix,t) + |v] + |pov]| ,

where D = (D

IR DN) and h(+,*) is a bounded measurable function;

denotes an appropriate Euclidean norm. Let wl and w2 be given satisfying

() ¥ e, i=1, 2,

(2.5)

(i1) Y, < ¥

1 5 ot in Q .
We shall define a class of penalized problems depending on a parameter ¢ > O.
These provide both a tool for proving the existence of a solution of (l1.1) in the

class

(2.6) X, = t?0,7 5 w2@) o wtio,T ;2@

as well as defining the base equation for the Faedo-Galerkin approximation of the

next section. This penalized equation is exactly the one introduced in [2].
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We define now the penalized problem, for ¢ > O,

Ju
() - £+ Amu +iw -y -tw
e € € 2 €

- T+ Lu , =0
pre wl) H(x,t ue Dug)

€

auE
(2.7) (i) —==0 , on T

(iii) u (+,T) =u ,
€

+ - L . . .
The functions (») and (*) are the positive and negative parts of the identity,

defined so that

Remark 2.1. It is known that (2.6) possesses a solution ue satisfying

(2.8) ug € L2(0,T ; Hz(m) n HZIO,T ; LZ(Q)] =

2

if say
X - 2
(2.91) u € H (Q)
If, in addition,
(.IT) ’

(2.9i1) b (D) <u sy,

then one can use the equations (2.7) to prove the existence of solutions u of
(1.1) in the regularity class x1 of (2.6), under the hypotheses described earlier
in this section by the arguments of the proof of Théoréme 1.1, p. 449, of [2]

(cf. [2, pp. 449-455]). Actually, one can prove the existence of u ¢ x1 satisfy-

ing (1.1i,v) and

T

(2.10) [ (attyu + H(+,t,u,Du) - g—‘t‘ FVvmu) At >0
0 L@

2
for all v ¢ L (), wl <V < wz, from which (1.1lii,iii,iv) follow if wl and ;2
are coincident only on a set of measure zero:

(2.11) meas {wl = wz} =0 (in Q)

standard methods also give the characterization of (1) of the abstract.
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Remark 2.2. As remarked in [2], there is no loss of generality in assuming that
: . 2 . 2
H(*,*,*,*) defines a monotone mapping from Hl(Q) c L7(Q) into L (%)

(2.12) (H(e+ov,DV) = H(e,oyw,Dw) , v - W) , >0
LY ()

for all v, w € Hl(Q). We shall assume (2.1-2.5) and (2.8, 2.9, 2.11, 2.12) for
the sequel. The reduction to (2.12) is achieved by an integrating factor and change

of variable.

Proposition 2.1. The following 'a priori' estimates hold for the solutions of (2.7):

| Bue
W 5=l + i <c
3t T2 €' 120,71 ; vl (o)
(1) Ju_ || <c ,
€ 120,15 B @)
(2.13)
. 1 + 1 -
(1ii) = || w_ - v} || + =l - | <c
e e 2 2y F e 1 120
. 1 3 + 1 3 -
vy = g0 - v |l + =yt -up |l <c
/€ at € 2 L2(Q) VE 3t € 1 Lz(z)
Proof: The estimates (2.13i, iii, iv) are derived as in (2, pp. 449-455). Estimate

(2.13ii) follows from these and (2.7).

Remark 2.3. These estimates are sufficient to prove the existence of a solution

82u
u of (1.1) in xl. Note that the existence of was used to obtain the
aue at
‘a priori' estimate of el

Theorem 2.2. The solutions of the penalized problems (2.7) converge to the solution

of (1.1) with order 0(51/4) in the norm of L2(0,T 3 Hl(Q))

T 2
(2.14) [ lu-u
0

Proof: We note that the function re, defined by

-5-




. +
(2.151) ro=u_- (u6 U)o+ - Wl) .
satisfies
2.15i1
( 5ii) wl fr = w2

Thus, from (2.10) we have, using integration by parts,

du
(2.16) (~ e t H(s,t,u,Du) , r = u) 5 + a _(u R u) >0

L@ toe

for almost all t, 0 < t < T, Multiplying (2.7) by r.-u and subtracting (2.16)

from the resultant integrated equation gives
l 4
- — — - + - - )
> ac ]]u usll P at(u o ou =)

+ (H(',t.ue,DuE) - H(e,t,u,Du) , u - u)

¢ L2
(2.17)
< (A(t)u ~ éﬂ (u -y )~ - (u =~ )+) + (H(*,t,u_,Du ) - H(*,t,u,Du)
- 3t ! € 1 £ 2 2 M e !
L (Q)
( IS R v
u - - (u_ -
! 2 1w
where we have used (cf. [2, p. 209])
- u - u) . >0 w -u) e -w >0
u, 1 (r, - u) > U N ro-u >

Integration of (2.17) over (0,T), together with (l.1lv), (2.4i), (2.7iii), (2.12)

and the elementary inequality,

(24189 ol < Lol ? s el
yields
T -~ : +
fo a e =, u-uadte < cf i - vl 2o + il = w Tl 2 i
+ Il(uE - ) 20 + ,MuE vy i L2(O)]

and the proof of (2.14) is concluded by use of (2.13iii).

6=




§3. Continuous Time Finite Element Approximations.

For h >0, 1let T  be a triangulation of the given domain Q. Thus,

h
(3.1) Q= u 1
reTh
where 1 1is a typical (closed) element in the simplicial decomposition Th; in
particular, we permit nonsimplicial elements near the boundary. Let M denote

h

the linear space of continuous piecewise linear trial functions determined by Tk:

(3.2) Mh = {X e C() : Xl is linear ¥t € Th)
T

Let Eh be the Ritz-Galerkin HI(Q) projection defined by

(3.31) (E. ¢, X) = (¢, X) , for all X e M ’
h 1
Q) it o) h
. 1
for each fixed ¢ ¢ H (); here we use
s 1

(3.3i1) e, ) = (g, 7¢) = Je [ .
1 2 “H
H(Q) L (Q) Q 2

which defines a norm equivalent to the standard Hl(Q) norm in the usual way

(cf. [4]). Let Ih denote the interpolation operator. We shall assume:

(3.4) Uy 2L v S T, 2,

Roughly speaking, (3.4) asserts that W1 is smooth and convex and wz is smooth

and concave; indeed, these assumptions guarantee (3.4). We make the standard
finite element assumptions (cf. [5])
- 2-3 . 2
(3.5) liee —ell o -~ el . 3 =0,1, ¢ ¢ H(Q) ,
w3 () HO()

for Fh = Eh and for Ph = Ih .

We are now in a position to define the finite element approximation via a

standard Facdo-Galerkin method based upon (2.7).




. - . . h . .
Definition 3.1. The finite element approximation uE ¢ [0,T] - Mh is the unizue

element in

X1 = Hl[O,T ; LZ(Q)] n LZ(O,T ; Hl(Q))

satisfying

h
(3.61) (J () , x>)=0 , for all X e M '
€ € h

(3.6ii) uh(',T) =1 u
€ h

Here, J€ is the map,

g+ x »t2o.7 ;5 e
€ 1

defined by the pointwise relation on (0,T)

oy

{3.61i1) (JE(¢) ;U = (- 3t + G(e,¢,wl,w2) )] 5 + at(¢,w) =0 ,
L7(Q)
where
. - £ . . Z
(3.61iv) G(E,\P,l‘)l'wz) = e g(‘Plerwz) + H(e,*,¢,D¢) r ,
(3.6 ) = - )~ -yt §
-6v) Wy rby) = =l =)+ 0 -, .

Remark 3.1. The existence of a unique solution of (3.6) is standard and may be

achieved via the theory of pseudomonotone operators.

Proposition 3.1. The following 'a priori' estimates hold for the solutions

{uh} of (3.5):
1 € ern
3
* au: 5
, (i) Ha_t” ) ¢ h/e+c, .
L -
a- ‘
(3.7) (ii) Hu: ” 2 1 < C '
L (0,T ; H (O
A 1 h
(iii) = lga e v ] ¢ .
/e SRS Lz(Q)
f
. where C, Cl' C2 are independent of € and h.
b -8- ¢
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Proof: Select X = uh - I wl in (3.6i). Then, we have

i € h
4 2
d h h 1 h -

H -2 e +a (u ,u) += fl@ -w) ]
2 2 2
: dt € Q) € € € 1 L2
3 (3.8)

3 h h h

< (=z-u I Y) +a (u_, I_ %)+ (H) , I o)
It € h "1 L2(Q) t € h "1 € h "1 L2( )

L . . h
where we have used (3.4) after an addition and subtraction, have written H(ur)

for the last term in (3.6iv) and have noted

O A B SO
Now integrate over (t,T). Integrating the first term on the r.h.s. of (3.8} by
parts, applying (2.4ii) to the third term and estimating the first, the second [
and part of the third term by the inequality (2.18) we obtain, for appropriate
choices of n ,

2
h
lugceor 1l 5

T
h h 1 h -
+ [ fa, s u += [l =v }dt
L2 ¢ t e € € 3 2

(3.9)

T o h
' <c +c, [ Al at
1720 e iy

Gronwall's inequality applied to (3.9) yields, in particular,

2 2
1 -
(3.10) i, L rr el ewpTll, sc
L (0,T ; H (@) L (Q)
‘_ A parallel argument, with X = u: - Ih wz, yields
; 2 2
3 1
] (3.11) a1, L ot el ey, e
L7(0,T ; H (Q)) L (@
Clearly, it remains only to show that
) 2 |
(3.12) v <C h/e v, . ;
E ot Lz(Q) 1 2 ]

-9-
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du

ay
Setting X = - 7;? in (3.6i) we have, after adding and subtracting e and
integrating over (0,T) , «
aug 2 1 h _ 2
vl +afu (+,00,u (*,0) += |[{u'(-,00 ~ p (-,00 ||
It LZ(Q) € € 3 € 1 L2(Q)
(3.13)
1 oy _ h Bu};
<= I _u-y (7)) , =) + a(u,u) + (H(u) , =)
£ h it L2(J) € ot LZ(Q)
However, by (2.9ii},

(I, u = (T = (I, u

+ (Ih wl(-,r) - wll',T))
h wl(',T) - wl(-,T))
(3.5), and (2.18) we obtain from

=(I
Thus, by (2.51),

(3.13),
Su: 2 h2 -
(3.14) HT“ < C (= +a(uu) +C , .
At 2 -~ 1 €
L (3}
from which (3.12) follows and the proof is concluded.

Corollary 3.2. There is a constant C, independent of € and h,

such that
(3.15)

o ™ | < ct’se + ne + nl
£ £ P -

where F denotes the dual of Hl(Q).

Proof: Let v - Hl(ﬂ). Then, by (3.3), we have
h h
(Je(ue) , V) = (Ja(ue) , Vo~ Eh v)
auC h
= (-'32~ + G(e.us,wl,wz) A - v)
50 that

~10~




h ~ h
”Je(uc) | = sup ~ |(J€(u€) , v
v 1 =1
H () .
(3.16)
2
< ¢ (h/e + 1/¥e + C,) sup [lv-E v .
! v, 1 P
H(Q)
Now (cf. (5]),
p v~ vl < ¢h
Vi, = AT
H(Q)

so that (3.15) is immediate from (3.16).

Remark 3.2. We are now prepared to state the major result of the paper.

Theorem 3.3. There is a constant C, independent of ¢ and h, such that
h T h 2 1/2
(3.17) HuE - I, 1 <cif ]|J€(ue) I aer ]
L (0,T ; H (Q)) 0 F
In particular,
3 . h 3 ~ 4
(3.181i) ffa = u_ i, 1 < Clh/e + h/ve + Vel .
) L (0,T ; H (Q))
! If the choice h = 53/4 is made then
1
‘ (3.18ii) [lu - ul I, 1 <Ch /3,
] £ L0, s H ()
Proof: 1In light of Theorem 2.2 and Corollary 3.2, it suffices to prove (3.17).
Using the monotonicity of q(-,wl,wz) and (2.12) we have,
E h h h h
at(uE - u€ pu - uc) 5_(J€(u€) - Je(uc) Pu ue)
=@, u - uh
[ € €
h h
< Mo o -y
F H (Q)
! so that (3.17) follows.

~11-
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Remark 3.3. If H = 0, then (2.13iii) can be strengthened so that Ve is
replaced by ¢. This leads to a rate of convergence in Theorem 2.2 of order v+ é
(cf. the proof in the case of one obstacle in [2, p. 224)). The 'a priori'

estimates of §3 remain unchanged and the choice £ = h leads to a convergencr

3
rate of vh, replacing vh in (3.18ii).
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K(u) = {A(v =) : ¢

(liii) du =0 , u(*,T) =u ,
v
X
where
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Such inequalities arise in the characterization of saddle-point payoffs u in
two person differential games with stopping times as strategies. 1In this
case, H 1is the Hamiltonian in the formulation. A numerical scheme for
approximating u is obtained by the continuous time, piecewise linear,
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