
IiBolt. Beranek. and. Newman. Inc.

j1 Report No. 4068

ADAO0863 40

ARPANET Routing Algorithm Improvements
Third Semiannual Technical Report
E.C. Rosen, J.G. Herman, 1. Richer, and J.M. Mc~uIIlan

ITI

Prepared for: JUL 8 1980?
Defense Advanced Research Projects Agency

I ~andA
Defense Communications AgentyA

Q>. j
AP 0-.

LA-y

S8s0 7 7 026

UNCLASSIM
SRCURITY CLMhSIPIeATto IF u~m, PAGE (noh. 001. 8£er*er

I_~~~RA INSTRUCTIONSEIJSIO N
REPORT DOCUMENTATION PAGE BEFORE_____________FORM

I. REPORT NUMaER GOVT ACCXSNON NO- 3 RECIPIENT*S CATALOG NUMUER

4088 0% 3
Routing Algorithm Imnrovements * SarYEOFuPR a PEmOO CReD

•-• " : 10/1/78 - 4/1/79

4. PERFORMING ORO. REPORT NUMBER
4o88

4. CONTRACT OR GRANýT HUM3R(8)

E..C. Rosen J.M MoQuilla
GHemnI. /RicherF' ~ ~ 37--02~

S. PERFORMING ORGANIZATION NAME AND ADDRESS .--- 1G.[N@AEtZEMENT.PIDJECT;••N TASK

Bolt Beranek and New=an Inc. A4]J yA- rO_)N5 - -e -_
i • 50 Moulton Street, Cambridge, MA 02138'- mnw c n 57"-349 - -

I1. CONTROLLING OFFICE NAME AND ADDRESS '

Defense Advanced Research Projects Agency /p 79
1400 Wilson Blvd., Arlington, VA 22290 168S-: 168

13. MONITORING AGENCY NAME & AODRESS(5I dllfemeau trtm Contrallsg Oafice) IS. SECURITY CLASS. (of thli report)

Defense Supply Service - Washington UNCLASSrIED
Roan 1D 245, The Pentagon IS.. OECLASSIFICATION/DOWNGRAOING
Washington, DC 20310 SCHEDULE

IS. DISTRIBUTION STATEMENT (at th•i Report)

5- 1

U L DSTt~u"~ 5., cuEW21lkabstract .enteed In 8to9W._TrdiI7f

Is. SUPPLEMENTARY NOTES r

IS. KEY WORDS (Continue on reverse side if necee*ey od Identify by block nuniber)

canputer networks, routing algorithms, ARPANET, line up/down procedures,
distributed data base, buffer management, network measurement, network
testing, updating

20, tdTRACT(Continue an revere, side It necossev and 100entii bV block numbet)

This report describes progress made during the third six months of a
contract to make several improvements to ARPANET rcuting. During thisperiod all aspects of the ARPANET's new routing algorithma were implemented,
and the new algorithm was run through an extensive series of tests. The

results of these tests are presented, along with a discussion of our testg
goals, techniques, and tools. A full description of the procedu-es needed
to handle a dynamically changing topological data base is also presented.

DD FJP, 1473 EDITION Or, Nov5 IS OBSOLETE UNCIASSIFIED

SECURITY CtASSFICATION OF T1415PAGE(hoatl7 Vc)

UM
•I i

sCcuRITv CLASSIFICATION OF THIS PAGe (*We* O.,. Eeted)I ~2O~
Measurements on the performiance of the AFRPANE' s new line up/down proto-
col are presented. Lastly, the procedures used in the ARPANET for
managing buffer space are described.

fF

'"J

IEUPT CLSIICTO OFTI I1 We a rd

I vj

I I

A IA

ma

sgur tAsvcro v hSPG Wo aeao

22 1~_ _ _ _ _ _ _ _ _ _

U
il il*

BBN Report No. 4088

ARPANET Routing Algorithm Improvements

Third Semiannual Technical Report

April 1979

SPONSORED BY
DEFENSE ADVANCED RESEARCH PROJECTS AGENCY AND

DEFENSE COMMUNICATIONS AGENCY (DOD)
MONITORED BY DSSW UNDER CONTRACT NO. MDA903-78-C-0129

ARPA Order No. 3491

Submitted to:

Director .'r .
F Defense Advanced Research Projects Agency , '

ls-MV 1400 Wilson Boulevard . .
Arlington, VA 22209

Attention: Program Management i

and to: I.i-."

Defense Communications Engineering Center mist special
1860 Wiehle Avenue
Reston, VA 22090

Attention Dr. R.E. Lyons
I LI

The views and conclusions contained, in this document are those
of the authors and should not be interpreted as necessarily

i 1i representing the official policies, either expressed or implied,
of the Defense Advanced Research Projects Agency or the U.S.

F! Government.

U Ii7

Report No. 4088 Bolt Beranek and Newman Inc°.

TABLE OF CONTENTS

INTRODUCTION iii

1. LINE UP/DOWN MEASUREMENTS 1

- 2. THE S?F TOPOLOGY DATA BASE 6

2.1 Data Base Structure 8

2.2 Requirements for the Data Base Management Module . .. 10

2.3 Dynamic Treatment of the Data Base 16

2.4 Specification of the Data Base Management Module 24

3. TESTING THE NEW ROUTING SCHEME -- GOALS 27

4. TESTING THE NEW ROUTING SCHEME -- TECHNIQUES 39

5. TESTING THE NEW ROUTING SCHEME -- TOOLS 53

6. TESTING THE NEW ROUTING SCHEME --- RESULTS 68

7. BUFFER MANAGEMENT IN THE HONEYWELL 316/516 IMP 97

7.1 Introduction 97

7.2 Description of Buffer Counters 101

7.3 Possible Improvements 107

APPENDIX 1 SAMPLE TEST OUTPUT 109

APPENDIX 2 TRAFFIC TESTS 137

Ii

Report No. 4088 Bolt Beranek and Newman Inc.

APPENDIX 3 INSTABILITY TESTS 145

APPENDIX 4 INSTABILITY/OVERLOAD TESTS 155

SAPPENDIX 5 MODERATE LOAD TESTS 160

-~: I- ii-

Report No. 4088 Bolt Beranek and Newman Inc.

INTRODUCTION

This report covers work performed during the period from

October 1, 1978 to April 1, 1979 on the contract to study,

design, and implement improvements to the ARPANET routing

algorithm.

In September 1978, a new line up/down protocol was installed

in the ARPANET. During the past five months we have been

collecting stamtistics on the performance of the protocol. These

statistics, summarized i-i Chapter 1, show that the protocol is

working well.

The design and implementation of the new routing algo.'ithm

in the Honeywell IMPs is now completed. Chapter 2 discusses the

last part of the algorithm to be designed, the aata base

management procedures. The new routing algorithm requires a data

base which specifies the network's topology. Since the ARPANET

topology changes frequently, ab IMPs are reconnected or even

U• reconfigured, it is important for the data base to be modifiable

on a dynamic basis. That is, when a topological change occurs,

the data base should automatically change to reflect the new

topology, without requiring human intervention. Chapter

discusses the procedures we developed for maintaining the data

base dynamically.

- iii-
41

IJ

- _ __ m--mm mm wm m

Report No. 4088 Bolt Beranek and Newman Inc.

The new algorithm has been installed in most of the network

in parallel with the old algorithum. The old algorithm is still

used ordinarily for operating the network, but the network is

capable of switching over to the new algorithm. During the past

several months we have run an extensive series of tests in which

the network was operated with the new algorithm, and these tests

are discussed in Chapters 3-6. Testing a new routing algorithm

is a complex task, which must be approached systematically, and

with a specific set of goals in mind. Our approach to the

testing is discussed in Chapter' 3. In order to be able to test

the new algorithm in the ARPANET while minimizing the possibility

of disrupting network operations, we had to develop a complicated

series of testing procedures. These procedures are discussed in

Chapter 4. In Chapter 5 we discuss the software tools which we

developed in order to test the new algorithm.

The results of our testing are presented in Chapter 6 and in

the five appendices. Our main results are:

1) Utilization of resources (line and processor bandwidth)

by the new routing algorithm is as expected, and

compares quite favorably with the old algorithm.

2) The new algorithm responds quickly and correctly to

topological changes.

-iv-

Report No. 408t Bolt Beranek and Newman Tnc.

3) The new algorithm is capable of detecting congestion,

and will route packets around a congested area.

4) The new algorithm tends to route traffic on min-hop

paths, unless there are special circumstances which make

other paths more attractive.

5) The new algorithm does not show evidence of serious

instability or oscillations due to feedback effects.

6) Routing loops occur only as transients, affecting only

packets which are already in transit at the time when

there is a routing change. The few packets that we have

observed looping have not traversed any node more than

twice. However, the loop can be many hops long.

S7) Under heavy load, the new algorithm will seek out paths

where there is excess bandwidth, in order to try to

"I Ideliver as much traffic as possible to the destination.

Of course, the new routing algorithm does not generate optimal

routing -- no single-path algorithm with statistical input data

could do that. It has performed well, however, and we are ready

to cut the network over to the new algoritm permanently.

As a prelude to developing improved congestion control

techniques for the ARPANET, we have been investigating the buffer

Si [management procedures currently implemented in the ARPANET.

I v

Report No. 4088
Bolt Beranek and- N-ewman Inc.

These are described in Chapter 7, and some possible improvements
to the procedures are discussed.

I!
I!

~;j

v1

I 22

- vi-U

"Report No. 4088 Bolt Beranek and Newman Inc.

K
f! 1. LINE UP/DOWN MEASUREMENTS

During September 1978 the new line up/down protocol

(described in our previous semiannual reports) was installed in

the ARPANET. In addition to providing better performance than

the old protocol, the new protocol provides greater flexibility

since the parameter values can be adjusted over a significant

range. As a result of measurements made both prior to the actual

installation and during the initial operation of the new

protocol, the following parameter values were selected for the

various types of network links. The notation (k,n) signifies

that if the higher numbered IMP -- the master -- misses k

I-Heard-Yous during n successive intervals, then the line is

brought down; NUP denotes the number of consecutive I-Heard-Yous

needed to bring a line up:

speed type (k, n) NUP interval

50 kbps terrestrial,
satellite (4,20) 60 640 ms. (slow tick)

S230 kbps terrestrial (5 ,5) 60 128 ms.

9.6 kbps terrestrial,

satellite (4,20) 60 1280 vis.

Measurements of the number of line downs were taker over

approximately a five-month period (147 days) from October 1978

through March 1979. Because of the specific implementations of

Ii the protocol and the measurement package, the number of times the

- 1

Report No. 4088 Bolt Beranek and Newman Inc.

master declares a line down is a more accurate indication of the

number of line failures than the number of times the slave

declares the line down. Therefore, except where otherwise

A specified below, the number of line downs refers to the number of

times the master IMPs declared lines down. It is important to

note, however, that this measurement overestimates the actual

number of line failures because a given line failure may cause

! several line down reports, and because other network phenomena

can result in a line being declared down. (A striking example

occurred during a four-week period when IMP 13, GUNTER, had many

power outages; the resulting line downs reported by neighbors of

IMP 13 were excluded from the measurements given below.)

We now discuss the observed performance of the various types

of links. For the 50 kbps terrestrial links, the most common

links in the ARPANET, we observed an overall average interval

between failures on an average line to be 1.8 days. That is, a

"typical" line in the network failed slightly more often than

onca every second day. However, during the first two months of

the five-month measurement period, the average interval was 1.4

days, whereas during the last three months, the average was 2.2

days, a 50% improvement over the first two-month period. Figure

1 shows the weekly measurement data. We do not have an explicit

explanation for this improvement, although it could be the result

of the various topology changes that have been made during the

-2 L

7'F

Report No. 4088 Bolt Beranek and Newman Inc.

past six months. During the most recent three-month period,

three lines (between IMPs 62 and 13, IMPs 62 and 4, and IMPs 59

and 33) accounted for about 18% of the line down reports. On

each of these lines, the average interval between failures was

0.72 days; and for the remaining lines the average interval then

improves to 2.5 days. All the above values were obtained by

dividing the number of lines by the average number of recorded

line downs per day. Since the topology of the ARPANET changes

frequently, the "number of lines" is really an average; also, it

should be noted that Pluribus IMPs were not instrumented toI provide measurement statistics, and reports from test IMPs in

BBN's lab were ignored; thus there were typically about

fifty-three 50 kbps lines on which measurements were taken.

The line between IMPs 15 and 36 is the only 50 kbps

NE satellite link, and IMP 36, HAWAII, is a stub. Thus, if there is

a line failure a report cannot be transmitted from the master.

For this line we therefore examined the number of downs reported

by the slave side: over the five-month measurement period the

average interval between failures was 1.3 days, significantlr

worse than for the terrestrial links.

The average failure interval for the 9.6 kbps terrestrial

line between the LONDON and NORSAR IMPs was 0.62 days (15 hours).

As with the HAWAII line, LONDON is the master and is a stub, so

MI the data is based on reports from the slave.

Report No. 4088 Bolt Beranek and Newman Inc.

o 3.0

z
0
0 •AVERAGE OVER

FLAST 13 WEEKS

OVERALL AVERAGE
W 1.5

z

~ I ~ 1.0-
AVERAGE OVER

~ FIRST 8 WEEKS
•?-i 5 I I II ii It t , I I I... I ii it I i

10118 11/15 12/13 "1/10 2/7 3/7
1978 1979

MEASUREMENT WEEK

Figure 1-1 Line down data for 50 kbps terrestrial links

A

vI-

pME-~ 7

Report No. 4088 Bolt Beranek and Newman Inc.

No data was obtained on the 9.6 kbps satellite channel

linking NORSAR and SDAC because the master (NORSAR) is a stub,

and SDAC, a Pluribus, does not report line downs.

Finally, for a 230 kbps line, which uses different parameter

values from the lower speed lines, the average interval between

failures was 7.7 days. (There are six high speed lines currently

in the network.)

•KJ

Report No. 4088 Bolt Beranek ard Newman Inc.

2. THE SPF TOPOLOGY DATA BASE

The original specification of the data structure for the SPF

routing algorithm assumed a fixed topology data base. No

consideration was given, at first, to the issues of initializing

and maintaining this data base. To test the first few

stand-alone versions of SPF, the network line table and the IMP

connectivity table were pre-assembled into the program.

This is not sufficient for the final implementation. The

ARPANET topology is not fixed. It changes constantly due to

retrunking, as well as the addition, relocation and deletion of

nodes. These activities regularly involve standard sites and

they occur many times a day in the BBN test lab. It is clear

that the data base must be capable of responding to these

_ changes. To deal with the problems of maintaining dynamic

topology tables, we constructed the data base management module,

which detects and handles messages about lines that are not

already part of the data base as well as performing needed

consistency checking. It also implements a mechanism for the

essential garbage collection function.

The following description of the data base management module

will discuss the design choices that were made, as well as

possible alternative approaches. The description starts by

discussing briefly the structure of the data base itself and the

Ii -6-

Izi Report No. 4 q88 Bolt Beranek and Newman Inc.

it!
messages which are used to update it. The major design choices

for the dynamic treatment of the data base are then examined, and

lastly, we give a full description of the module as currently

implemented.

if?

I;

1 i -7-

Report No. 4088 Bolt Beranek and Newman Inc.

2.1 Data Base Structure

The basic element in the data base is a line entry. A line

in this context is the unidirectional trunk between two IMPs.

The reverse direction of a trunk is considered a separate line

entry. . Thus each line has two end points, one of which can be

uniquely designated as the source and the other as the

destination. Associated with each line entry is the information

needed by the SPF computation, such as the delay over the line.

These line entries are grouped into blocks according to

their source IMP numbers, and the blocks are arranged in order of

ascending source IMP number. This is the most logical grouping

for the purpose of the kind of searching that is done during

routing processing. It also allows for a more compact

representation of the line entries, since the source IMP number

does not have to be kept for each line entry. Instead, a table ,

indexed by source IMP number, is kept that contains indexes into

the table of line entries. The index for each IMP points to the

I first entry in the block of line entries for which that IMP is

the source. The individual line entries contain the destination

IMP number for the line they represent as well as other

information associated with the line. The table of line entries

is called LTB and the table of indexes into it is called NTB.

Report No. 4088 Bolt Beranek and Newman Inc.

One useful consequence of this structure is that the number

of line entries for a site can be computed by subtracting its

index from that of the IMP number one greater than it. In the

original specification of the SPF data structure, this

information was explicit).. carried in a separate connectivity

table. Another feature to notice is that nodes which are not on

the network do not have to take up any room in the LTB table,

since t. e NTB table contains the information that a node has no

line entries. The indexes for the site not on the network and

the IMP one greater than it will be the same, indicating that the

site has zero lines. Note in particular that the tables may be

initialized by the simple procedure of clearing call indexes to
zero so that all nodes appear to have no lines.

When an IMP is started, the data base is built up gradually

as routing updates are received. In the course of normal

operation, updates can also cause alternations in the structure

• I of the data base. These updates are generated at each IMP in

response to changing network conditions. They are circulated

throughout the network by the flooding transmission mechanisms

described in Chapter 4 of the second Semiannual Technical Report.

An update message contains the IMP number of the node which

generated it and an entry for every line for which the

originating IMP is the source. These line entries are of the

same format as the ones in the LTB table. As we will see later,

S~-9-

Report No. 4 088 Bolt, Beranek and Newman Inc.

i it is an important requirement of the data base management module

4! that each update from a particular source IMP contain a line

entry for each of that IMP's lines.

2.2 Requirements for the Data Base Management Module

The SPF algorithm makes some implicit assumptions about the

structure and consistency of the topology data base. Insuring

that the dynamically changing data base conforms to them at all

times has been a major source of complexity in the management

module. Some of these assumptions are discussed below.

2.2.1 New line entries must be detected

The module that processes a line update assumes that an

I entry for that line already exists in the data base. The first

step is to compare the current entry against the previously

received one in order to determine if there is a change being

reported. If a change is detected, the signed amount of change

is computed and used to determine which routes should change. It

is possible, however, to receive an update about an entirely new

line that has no entry in the data base. The obvious instance of

this is when a site is reconfigured, that is, when the number of

modems at a site is decreased or increased. The simple

reconnection of IMPs will also cause new lines to appear. During

a reconnection, the number of modems on an IMP does not change,

- but the neighbors to which its lines are connected change. Since

-10 -

4-k2 E

Report No. 4088 Bolt Beranek and Newman Inc.

SLTB +1
20- LTB + 2

0 [_7__ B+

NTB I • 0
NTB +2 2
NTB *3 2
NTB +4 4

36 LT9 +17.
NTB +67 172 43
NTB +68 175 4 LT1+174

DATA BASE TABLE STRUCTURE

NOTE- THERE IS NO IMP 0 OR IMP2 ON THE NETWORK

HEADER
-J

SOURCE IMP

SDESTINATION
~~fi DELAY M

""fI TO 8 LINE ENTRIES

ELYIDESTINATION- '°IMP
UPDATE MESSAGE FORMAT

Figure 2-1

-11 --

I I i

Report No. 4088 Bolt Beranek and Newman Inc.

a line is defined in our data base by its endpoints, without any

reference to the modem numbers involved, connecting an IMP to

another IMP, with which it previously had no connection, will

generate a new line that must be added to the data base.

It is necessary, therefore, for new entries to be detected

and dealt with in some manner. We have chosen ti create an entry

in the data base for the new line which represents the line as

having been dead. This allows the processing module to then

handle the new update in the same manner as any other update

which reports that a previously dead line has come up.

2.2.2 All line entries must be paired

In order for the SPF processing module to function properly,

every line entry in the data base must have a corresponding line

entry describing the reverse direction. For example, if the data

base has an entry in IMP 1's block for a line from IMP 1 to IMP

2, there must be one in IMP 2's block for the line from IMP' 2 to

IMP 1. Since any given update message can only report on one

direction of the line, this requirement is not necessarily met.

It i3 quite possible for an update with a new line entry to

arrive and for there to be no entry in the data base for the

reverse direction of this line. Obviously, one direction of the

line must be processed before the other.

-12-[

Report No. 4088 Bolt Beranek and Newman Inc.

Rather than rewriting the processing module to tolerate an

unpaired line entry, we decided to check for this condition

before processing the line entry. That is, after checking to see

that a particular line entry exists in the data base, we simply

do the same check again with the end points of the line reversed.

If the reverse entry does not exist, it will be treated in the

same manner as a new entry and a dead line entry created for it,

insuring that the original line now has its twin in the data

base. (It will be seen later, when we discuss garbage

collection, that this requirement that all lines be paired

provides further complication of the data base management

routines.)

2.2.3 Detection of implicitly dead lines

It is possible for lines to go dead in the network, and

possibly even be removed entirely, without some IMPs receiving

1 L any updates that declare them dead. A network partition during

1 which some IMP has its neighbors changed provides a situation in

which this can happen. Imagine that a segment of the network

containing IMPs 1, 2 and 3 is isolated from the rest of the

network. Duriig the isolation, IMP 1 has one of its lines

disconnected from its usual neighbor, IMP 2, and reconnected to a

different one, IMP 3. The IMPs in the isolated segment first

receive an update declaring IMP 1's line to IMP 2 dead. They

also should receive an update from IMP 2. Later they will

"-13-

Report No. 4088 Bolt Beranek and Newman Inc.

receive a new update from IMP 1 announcing its new line to IMP 3.

Meanwhile, the rest of the network IMPs do not receive these

updates because they are partitioned from IMP 1. They still

believe IMP 1 has a live line to IMP 2. When the partition ends

and IMP 1 next sends an update, all the IMPs that could not see

it before will create a new entry for the line from IMP 1 to IMP

3. However, they will still believe there is also a line from

IMP 1 to IMP 2, and they will receive no update that will tell

them to declare it dead. Similar situations can arise when IMPs

crash and change neighbors before coming up to the network.

It is possible, however, to detect these lines that should

be declared dead. If every IMP follows the rule that it report

on all its live lines in every update, then any entries in the

data base which are not in the latest update message must be for

lines that are now dead. This means that before processing an

update message, the data base management must take each live

entry in its block for the source of the update and search for it

among the entries in the message. If it fails to find a match,

it must invoke the SPF computation with an update entry declaring

this line dead, thus simulating the effect of an actual update

declaring that line to be down.

In the above example, when the partition is ended and IMP 1

sends its first update, all IMPs will check its contents against

their data bases. Those IMPs which were isolated from IMP 1 will

- 14 -

Report No. 4088 Bolt Beranek and Newman Inc.

detect that there is no entry in the update with a destination of

IMP 2. They will call SPF with an entry showing the line from

IMP 1 to IMP 2 dead and then proceed to process the rest of the

update normally.

Note that with this procedure in effect, routing updates

need never contain entries for lines that have gone down, since

the absence of any entry for a dead line has the same effect as

SI an entry which explicitly declares the line to be dead.

A15

IE

..ij

4'i

4'
I ..

Report No. 4088 Bolt Beranek and Newman Inc.

2.3 Dynamic Treatment of the Data Base

2.3.1 Expanding the data base

In order for the data base to adapt to changing topology, it

must be possible for it to expand to accept new entries. Since

our table structure requires that a new entry be inserted into

the block for its source IMP, it is necessary to shuffle all the

blocks above it up one slot and adjust all the appropriate

indexes.

Although this is a time-consuming procedure, the only way to

avoid ever having to expand the data base would be to allocate

the maximum number of line entry slots to each IMP. Alocating

less than this would not allow for the addition of extra lines

at a site or the reassignment of an IMP number to a now site.

Even allocating the maximum number of slots will avoid the need

for dynamically expanding the data base only if dead line entries

can be reused for new line entries. As will be seen later, the

SPF routine does not guarantee this. More importantly, this

scheme is extremely wasteful of table storage. Since the average

ARPANET connectivity is about 2.5, and the maximum number of

lines at a site is currently 5 on Pluribus IMPs, it would require

twice as many line entry slots as are really needed.

i

S~- 16 -

Report No. 4088 Bolt Beranek and Newman Inc.

2.3.2 Garbage Collection

If the data base is allowed to expand and to aicommodate newI entries, some mechanism must be implemented that garbage collects

dead line entries. Otherwise, the steady stream of network

reconfigurations will cause the data base to grow until it

exceeds the space allocated to it and the IMP would have to

restart. The data base will fill up with defunct entries unless

some method of reusing that space is implemented.

Many choices are available in choosing a garbage collection

strategy, but all strategies follow the same basic opeiration by

reusing the space occuried by dead line entries. However, as

discussed in section 2.2.2, a line must always have its reverse

direction in the data base. This means that a dead line can be

removed from the data base only if its reverse direction entry is

also dead and also removed at the same time. It should be noted

that lines are frequently found to be dead in only one direction

in the data base. If an IMP crashes, the neighbors around it

report their lines to it as dead. But no updates are generated

by the dead IMP, so its lines in the data base rev,?in live,

though the SPF computation will not use them since the node is

unreachable. Similar situations arise during network partitions.

It is necessary, therefore, to construct a routine that

searches for pairs of dead lines and removes them in some fashion

-. 17 -

Report No. 4088 Bolt Beranek and Newman Inc.

from the data base. A choice arises at this point in how to

dispose of the collected entries. The most complicated would be

to compress the data base, comDletely removing the two entries

which are being reclaimed. This would make space for two more

entries available for use anywhere in the data base.

A second alternative would be to simply mark the entries as

unused and allow new line entries to use them, rather than to

cause expansion of the data base. This does not require the

extra program code to contract the data base, but it also does

not make the reclaimed space generally available. Instead, it

only provides free slots in the same blocks in which the

previously dead entries were situated. If new entries arrive

from other source IMPs, and these source IMPs have no free

entries in thei2 blocks, it will be necessary to expand the data

base to accommodate these other entries even though there are

already some unused entries. Thus it is possible for the data

base to completel.y fill up even though there are many unused

slots in i*. If no routine for contracting the tables is

avuilable, then the IMP will have to restart. This could happen

in instances of major retrunking where ths. number of lines at

various sites changes. If only the connections between sites

change, with the number of lines at most site3 staying constant,

then this scheme would be sufficient to keep the data base from

overflowing as long as the garbage collection is done between the

- 18 -

Report No. 4088 Bolt Beranek and Newman Inc.

U •time that the old line goes dead and the time that the new one

appears. This method does have the advantage of avoiding

expanding or contracting the data base, both of which are lengthy

processes that lock out the rest of the IMP while they run.

We now come to the question of when to invoke garbage

collection procedures. Four possibilities present themselves.

Dead line entries can be removed from the data base as soon as

they are processed by SPF. Alternatively, the arrival of new

entries can prompt the search for slots that they can reuse. It

is al3o reasonable to construct some periodic process that

garbage collects the data base when no routing is being

processed. Lastly, we can wait until the table reaches its

maximum size and then shrink the data base back to its minimum

size. Each of these approaches will be explored and their

advantages and disadvantages discussed.

It is certainly possible, upon completion of processing an

~ f] update that declares that a line has died, to check thd line's

reverse direction, and if it is also dead, to remove both entries

from the data base. This test would fail in more than half the

T cases, since one direction of a line must necessarily be

processed before the other. In some instances, as showni in

section 2.2.3, the reverse direction of the line cannot be

declared dead. The major disadvantage of this approach, though,

is that it would mostly result in unnecessary work. The vast

- 19 -

Report No. 4088 Bolt Beranek and Newman Inc.

majority of cases where a line goes dead involve no retrunking.

The dead line will reappear as soon as it comes back up, perhaps

in no more than a minute. If the original entries for the line

are garbage collected as soon as they are both marked dead, then
the updates that later herald the reappearance of the line will

have to be treated as new entries requiring special action. In

other words, the IMP would be spending its time unnecessarily

removing and reinstating the same entries.

A better scheme is to have the arrival of a new entry

prompt a search for a reusable dead one. If such an entry is

found in the block of lines for the source of the new entry, it

can immediately be "usurped". The reverse direction of the

reused entry can either be marked unused or its space compressed

out of the data base. This approach is attractive for two

reasons. First, since most new entries result from aj a

reconnection of sites in the network and not actual

I reconfigurations, it is likely that a usurpable entry will be

S1 found for the current update. The previously existing line will

have been declared dead already, in most cases in both

directions. Secondly, this method allows garbage collected

entries to be reused immediately, thus avoiding the costly

compression of the data base at the same time as avoiding the

need to expand the data base for the new entry. However, if this

is the only garbage collection mechanism used, it is still

1 - 20-

1c
IJ_ __ _ __ _ __ _ __ _

-Report No. 4088 Bolt Beranek and New'man Inc.

possible for the data base to overflow even though there is

unclaimed reusable space in it. Since only the block of entries

where the new entry must be inserted is searched, usurpable

entries in other blocka will not be reclaimed. The success of

this approach thus depends on a correlation between new entries

and usurpable ones.

A periodic garbage collection mechanism is yet another

possibility. It would run when there is no routing work to do

and might search only part of the data base at a time, limiting

the amount of processing done in any one period. The primary

problem with this method focuses on what to do with the entries

that can be removed. As we discussed above, merely marking them

unused does not insure that the data base will not overflow. To

be effective, this method would have to compress the data base as

it removes entries. One pass could be made that identifies and

marks all removable entries, and then a second pass could delete

all marked slots. The problem with this is that every new entry

I that arrives will have to expand the data base so it can be

inserted. This manipulation takes many more instructions than

the job of finding a usurpable entry. The periodic approach has

the further inefficiency of removing lines that are only

momentarily dead.

The last approach we have considered does garbage collection

only when the tables overflow. It would function in the same

-21 -

U1•-

Report No. 4088 Bolt Beranek and Newman Inc.

basic manner as the per'odic mechanism. There are two advantages

to this method. First, no periodic scheduling mechanism needs to

be constructed. Second, since it will be rarely invoked, most

lines which momentarily die in the network will not be garbage

collected. Its main disadvantage is that when it is invoked, it

amust lock out the rest of the IMP while the lengthy compression

is performed. Such a transient may have global network effects.

This scheme also carries the disadvantage of requiring all new

entries to expand the data base.

We have chosen to adopt the method of garbage collecting

when a new entry arrives. The full scheme will be presented in

the next section, but a brief description is given here. When a

new entry arrives we attempt to usurp a dead line for it. If a

Z7i usurpable pair is found, the reverse direction line is marked

ki unused, and the forward direction is used for the new entry. If

0 a usurpable or unused entry is not available, then the data base

is expanded. This scheme is admittedly imperfect, but we feel it

is a reasonable compromise given the present extreme memory

constraints in the Honeywell IMP. It is possible with this

scheme to overflow the data base, at which time the IMP will have

no choice but to restart. We feel it is unlikely that this will

occur for two reasons. First, it is believed that most new lines

represent reconnections and not reconfigurations. This means

g that usurping should work most of the time. Second, we have

-22-

Report No. 4088 Bolt Ber anek and Newman Inc.

I
provided some slack entries in the data base to provide for the

- relatively rare reconfigurations, Also remember that when an IMP

restarts for any reason such as power failures or after

maintenance, its SPF data base starts out completely compressed.

This should provide for an eventual compression in the data bases

around the network. The degree to which our garbage collection

scheme keeps the data base from growing will have to be watched

in the first few months that SPF runs in the network. Only real

experience with the network will show if it is sufficient.

23

ft

Report No. 4088 Bolt Beranek and Newman Inc.

2.4 Specification of the Data Base Management Module

2.4.1 Detect lines that have died

The first step in processing an update message is to look

for lines that are not reported. Take each live line in the data

base block for the IMP that is the source of the update and try

to find a corresponding entry in the update message. If a match

w01 is found, continue with the next data base entry. If no match

can be made, create a dummy update entry for the missing line

that shows it to be dead. Call the SPF processing module with
SIthis entry. Upon return, continue searching the current data

base entries. When finished with this procedure, iterate through

the update message entries, calling SPF for each one. When the

f entire packet has been completed, it can then be marked processed

and another message started.

2.4.2 Insure that entries exist in the data base

Before the SPF module can begin to process an update entry,

a check must be made to insure that entries exist in the data

base for it and its reverse direction. SPF will make a call to

the data base management routine, FNDENT, first for the reverse

direction line and then for the line that it is about to process.

FNDENT returns the index of the line entry currently in the data

base. Now the SPF computation can proceed since it can be sure

that a pair of entries exist in the data base.

-24 -

j]ý '2N4

Report No. 4088 Bolt Beranek and Newman Inc.

2.4.3 FNDENT

This routine performs all the manipulations on the data

base. It is called to locate an entry for a line, and if one

J cannot be found, to create one. As a byproduct, it also performs

garbage collection. It requires two arguments, the source and

the destination IMP numbers for the line it must find.

The first step is to search the source IMP's block for the

appropriate line entry. If such an entry is found, the line

already exists in the data base and FNDENT exits. This is the

result in almost all cases.

If the search fails to find an entry, the line must be new.

FYDENT must now create a new entry in the data base or usurp an

old one. It searches the source's entries again, looking for

dead lines. If it finds one, it checks the destination number.

If it is zero, this is an unused entry which can be immediately

usurped. It does not have a reverse direction. The new

destination number is written into the entry and FNDENT exits.

If the dead entry has a real IMP number in its destination field,

it must be further checked to see if it can be usurped. A dead
'I

line can be usurped only if its reverse direction is also dead.

If this check succeeds, the dead line and its twin are usurped.

First mark the reverse entry unused by zeroing its destination

number. Then change the destination number of the forward

-25-

Report No. 4088 Bolt.Beranek and Newman Inc.

direction entry to the new line's destination. FNDENT can then

exit. If the reverse direction of the candidate for usurping is

not dead, this entry cannot be touched. The search for dead

entries in the source IMP's block must continue until a useable

entry is found or the end of the block reached. If no usurpable

entries are found, the data base must be expanded.

The data base is expanded by the following algorithm. Save

the index of the first line entry for 'he IMP whose number is one

greater than that of the source IMP. This will be the slot where

the new entry will go. Check that there is room for one more

entry in the data base. If not, restart the IMP immediately. If

there is room, lock out the retransmission generation routine

which also uses the data base. Increment by one the indexes for

all IMPs greater than the source IMP, Starting with the last

line entry, move each entry up one slot, makirg sure to copy all

V,. information associated with the entry, including the SPF tree

flags. Stop when the slot whose index was saveu hns been copied.

Initialize the new slot to be dead, not in the tree, and to have

the destination IMP number of the new line. Unlock the data base

tables and exit FNDENT.

-26-

v..-.

Report No. 4088 Bolt Beranek and Newman Inc.

3. TESTING THE NEW ROUTING SCHEME -- GOALS

In a distributed packet switching network, there are many

aspects of the network's design which affect its performance.

None is more important, however, than the routing scheme. It is

the routing scheme which has the major responsibility for

ensuring that packets get delivered to their destination in as

timely a manner as possible. If the routing scheme performs

badly, packets may never reach their destinations at all, even if

there is a free and clear path to the destination. Packets may

be sent into areas of congestion, even if there is a path around

the congestion. Packets may be sent on a long-delay path; even

if a short-delay path is available. Packets may be routed to

dead lines or dead IMPs. Because of the importance of routing to

the general performance of the network, it is not desirable to

change the routing scheme of an operational network (such as the

ARPANET) without first putting the new routing schem,i through an
t extensive series of tests. This is no simple matter. Any

K• routing scheme will have several different modules, each of which

must be tested separately from the others and also jointly with

the others. Measurement tools must be designed and implemented.

Measurement testbeds must be developed. A series of milestones

must be planned, so that the testing can proceed in an orderly

and systematic manner. In this chapter we will discuss the

thinking behind our testing procedures. In the next chapters we

27

Report No. 4088 Bolt Beranek and Newman Inc.

will discuss our testing techniques and tools, and will present

some of the results of our testing.

Any distributed, adaptive routing scheme can be thought of

as having five separate components -- a measurement process, an

updating protocol, a "shortest-path" computation (the quotes are

used because the definition of "short" is relative to a metric

which may bear no relation to any intuitive notion of shortness),

a procedure for managing the data base used by the shortest-path

computation, and a procedure for forwarding packets on the basis

of the output of the shortest-path computation. It should be

noted that the term "routing algorithm" has been avoided here,

because it has been used ambiguously in the past, sometimes

referring to the entire routing scheme, sometimes referring only

to the shortest-path computation. To prevent confusion, the term

"routing algorithm" will not be used here at all. In order for a

W routing scheme to perform well, each ° its components must

perform well, and in addition they must perform well jointly. In

trying to develop a set of testing procedures for the routing

scheme, each component offers a different set of problems;

testing their joint operation offers more problems still. Some

of these problems will be briefly discussed in the following

I paragraphs.

-28-

r _ _ _ - -

Report No. 4088 Bolt Beranek and Newman Inc.
S

Both the new and the old ARPANET routing schemcs are

single-path schemes. That is, the shortest-path computation in

eaeh scheme defines one and only one path betweeni any given pair

of IMPs. The forwarding procedure for single-path schemes is

quite simple. The shortest-path computation generates a table

indexed by destination IMP whose values specify the next

inter-IMP trunk to use for each destination. The actual decision

as to which trunk to forward a packet on is made by a simple

table look-up. Because the new routing scheme uses exactly the

same forwarding procedure as the old, no explicit testing or

evaluation of the forwarding procedure is necessary. However, it

is worth pointing out that other sorts of routing schemes might

require non-trivial forwarding procedures for which extensive

testing would be necessary. Consider, for example, a multi-path

routing scheme. In such a scheme, the shortest-path computation

would define several paths to a given destination and would

specify what fraction of the traffic to that destination is to

flow over each path. In such a scheme, the decision as to which

trunk to transmit a particular packet on could not be made by a

simple table look-up. Rather, making this decision could require

- a computation which might have to be made for every packet. The

effects of having to perform the computation would have to be

carefully considered and tested for. In addition, the forwarding

procedure of a multi-path routing scheme could well defeat the

advantages of such a scheme. The shortest-path computation might

- 9-

U

Report No. 4088 Bolt Beranek and Newman Inc.

say to divtde the traffic to a given destination over three paths

in the ratio 0.17856, 0.25384, and 0.56760. However, it is

unlikely that a forwarding procedure could effect such a division

of the traffic. If not, then the routing scheme might not

perform nearly as well as expected, and extensive testing would

be necessary to determine whether its performance was

satisfactory. However, eince the forwarding procedure in the

ARPANET is simple, and remains unchanged, it shall not beI
considered any further.

The measu-ement process used in the new routing scheme,

however, is quits, different from the measurement process of the

old routing scheme. It is easy 'o see why any adaptive routing

scheme must includt some sort of measurement process. In any

adaptive routing scheme, the output of the shortest.-path

Scomputution is supposed to be sensitive to ýhe state of the

network. In other words, state information about the network

must be provided as input to the computation. So there must be

some sort of process which determines, at eny given time, theI actual values of the state information to be input to the

computation at that time. This process may be dubbed a

measurement process. The measurement process of the old routing

scheme is quite simple. ivery so often, an IMP simply notes hoii

many packets are q'ieued to each of its lines at. that instant.

These queue length measurements serve as the input to the old

M-M3 L

m1

Report No. 4088 Bolt Beranek and Newman Inc.

shortest-path computation. The measurement process in the new

routin3 scheme is much more complex. The average delay per

packet on each network line is actually computed. (For a

detailed discussion of the measurement process used on the new

routing scheme, the reader is referred to our first two

semiannual reports.) In order to test the performance of the new

measurement process in isolation from the other components of the

new routing scheme, we developed the following methodology. We

actually implemented the measurement process in the IMP.

However, the results of the measurement, rather then being input

to a shortest-path computation, were sent to an PDP-10 TENEX

system for inspection and analysis. Our second semiannual report

discusses the results of an extensive series of tests made in

this way. Suffice it to say that the measurement process had

been quite throughlý tested in isolation before being combined

• iwith the other components of the routing scheme.

It is important to realize, though, that a measurement

process which performs well in isolation may not perform well

when combined with the other components of the routing scheme.

When the measurement process is run in combination with the other

components, there are feedback effects which are not present when

it is run in isolation. The inputs to the measurement process

are the actual delays of packets flowing over a line. The output

of the measurement process is the average delay per packet in

31S- 1

Report No. 4088 Bolt Beranek and Newman Inc.

that line. These average delays are the iliput to the

shortest-path computation, whose outputs are the inputs to the

forwarding process. For a particular matrix of offered traffic,

the forwarding process determines how much traffic flows over

each line, and it is this fact that determines the packet delays

on each line. (The word "determines" is being used here in the

sense of "partially determines", rather than "wholly

determines.") So the output of the measurement process at one

time partially determines its inputs at a later time, i.e., there

is a feedback effect. In our second semiannual report we present

some mathematical analysis which shows that under certain

idealized conditions, these feedback effects can cause an

instability in the routing which could make the new routing

scheme perform very badly. One of our major testing goals has

SI been to determine whether any such undesirable feedback effects

SI exist in the operational environment of the ARPANET.

The measurement process is the part of the routing scheme

which is responsible for detecting congestion in the network.

That is, when congestion exists on a particular network line, the

output of the measurement process should be such as to cause

r.ackets to be around that line. It is known that the

measurement process in the old routing scheme could not detect

congestion, and that the old routing would often send packets

into a congested area, thereby making the congestion worse. The

f - 32-

Report No. 4088 Bolt Beranek and Newman Inc.

new routing's measurement process has been specifically designed

so as to be able to detect congestion. However, to tell whether

it actually fulfills this design goal, it is necessary to run all

the components of the routing scheme together. One of our

testing goals has been to determine whether the new routing

scheme really is better at avoiding congestion than the old.

Another aspect of the measurement process (for both the new

and the old routing schemes) is the procedure for determining

whether a line is up or down. The up/down status of each line in

the network is a very important input to the shortest-path

computation. As discussed in our previous two semiannual

reports, the line up/down protocol has recently been changed in

order to make it provide a more meaningful indication of the

usefulness of the line. The way in which this part of the

routing scheme has been tested in isolation from the other

components of the routing scheme has been fully described in our

previous reports. It is worth noting that the line up/down

protocol, unlike the other parts of the measurement process, is

not subject to feedback effects. The decision as to whether to

regard a line as up or down is made on the basis of the error

rate of special protocol packets which are always sent on the

line periodically. This determination is independent of the rate

of flow of ordinary traffic in the line, so it is independent of

the results of the shortest-path computation. Since the line

- 33 -

& •l

Report No. 4088 Bolt Beranek and Newman Inc.

up/down protocol is not subject to feedback effects due to the

other components of the routing scheme, it can be fully tested in

isolation. That is, there is nothing additional to be learned by

testing it in combination with the other components.

Exactly the reverse is true of the updating protocol. It

can only be given a meaningful test in combination with the other

components of the routing scheme. The updating protocol of the

new routing scheme is not only totally different from the

updating protocol of the old routing scheme; it is different from

any other data transmission scheme found in the ARPANET. The

details of the updating protocol and the rationale for its

existence can be found in our previous semiannual reports.

2 However, .n order to formulate our testing goals with respect to

the updating protocol, it is worthwhile to discuss briefly the

role that the updating protocol plays within the routing scheme.

Recall that the input to the shortest-path computation of any

distributed adaptive routing scheme consists of state information

about the lines in the network, which may be called the data base

of the routing scheme. This state information is gathered by a

measurement process, as discussed above. The state of a

particular line can, of course, be directly measured only by the

IMP which transmits over that line. This gives rise to the

following problem: How can each node gain access tc the entire

distributed data base? This problem can be solved in two

£U

All

-34-

SI~mm m m Immunn mmnnmmm m• • U

Report No. 4088 Bolt Beranek and Newman Inc.

different ways. One way is to distribute the shortest-path

computation itself so that each piece of the computation has

direct access to the part of the data base that it needs. This

is the approach taken by the old routing scheme. The

shortest-path computation of the old routing scheme has two sets

of inputs. One input is the locally measured line state

information. The other input is the output of the shortest-path

computation at neighboring nodes. This approach requires each

node to send its immediate neighbors the results of its own

shortest-path computation. Point-to-point communication between

a pair of neighboring nodes does not offer much of a protocol

- 'problem, and the updating protocol of the old routing scheme is

very simple. Despite its apparent simplicity, however, there are

serious problems in any attempt to distribute the shortest-path

L computation. In the old routing scheme, there is no functional

relation between the routing data base at one time and the output

of the shortest-path computation at that time. That is, the

El •output of the computation depends not only on the state of the

lines around the network, but also on the history of the

I' computation, and the order in which certain events occur around

the network. It is this fact which gives rise to many of the

problems of the old routing scheme (such as looping and slowness

to react to changes) which we have discussed in detail in

previous reports.

-35-

41x - -- -

Report No. 4088 Bolt Beranek and Newman Inc.

In order to ensure that the output of the shortest-path

a computation at a given time is a function only of the state of

the routing data base at that time, we decided that the new

routing scheme should not have a distributed computation. This

means we had to take an alternative approach to solving the

problem of the distributed data base. The alternative was to

develop a quick and reliable updating protocol for transmitting

changes in the data base to all nodes in the network. Tnis makes

the entire distributed data base (i.e. the output from each of

the local measurement processes) locally available to each IMP,

enabling each IMP to maintain a complete copy of the entire data

base. This permits a purely local shortest-path computation, so

that there is a deterministic relation between the data base and

the result of the computation, thereby avoiding many of the

problems inherent in the old routing scheme. It must be pointed

out, however, that the ability of the new routing scheme to avoid

such problems is dependent on the updating protocol's really

being quick and reliable. (A full discussion of such issues is

presented in our second semiannual report.) Our updating

protocol was specifically designed to ensure quick and reliable

updating under all conceivable network conditions; one of our

major testing goals has been to determine whether the updating

protocol really meets its design goals. The only real means of

determining this is to run the entire routing scheme under

operational conditions, while monitoring the updating protocol to

-36-

_ U'mml uul

Report No. 4088 Bolt Beranek and Newman Inc.

see whether it does or does not get the routing updates around

- the network in a sufficiently timely and reliable manner. There

is no way to get significant results by testing the updating

protocol in isolation from other components of the routing

scheme.

Another component of the routing scheme which is closely

related to the updating protocol is the data base management

procedure (discussed in detail in Chapter 2). This is the

procedure that receives the routing updates from the updating

protocol and uses them to build tables which are suitable as

input to the shortest-path computation. The sorts of problems

which the data base management procedure gives rise to are not

very subtle. If the tables are not built correctly, the

shortest-path computation will probably either halt, or else go

into an infinite loop, giving immediate feedback as to the nature

_ !of the problems. Problems with other components of the routing

scheme, however, are more likely to result in poor or incorrectIi
routing, a condition which is much more difficult to test for

than an infinite loop or a halt. The main problem of any

procedure which builds tables from updates is that any arbitrary

"combination of updates may arrive in any arbitrary order, which

means that the procedure must be completely free of order

* dependencies. It is almost impossible for a programmer to debug

such a procedure without testing it out in a fully operational

- 37 -

Report No. 4088 Bolt Beranek and Newman Inc.

environment (i.e. in combination with the other components of the I
routing scheme), since only in such an environment can one expect

to see enough different combinations of events. One of our major

testing goals was to run the new routing scheme under a wide --

enough variety of conditions to be able to gain confidence in the

data base management procedures.

The final component of the routing scheme is the

shortest-path computation. It may seem odd to discuss this

component last, since most discussions of routing tend to

concentrate primarily (if not exclusively) on the shortest-path

computation. Nevertheless, it is the component which is most

amenable to isolated testing in the absence of tne other

components of the routing scheme. The SPF computation has been

extensively tested as a stand-alone program on a TENEX system, as

well as a Honeywell 316 and a Pluribus. These tests, made with

the use of a test dF.ta generator, were carried out even before

any design work had been done on the other components of the new -

routing schemes. Since then we have run the SPF computations

many times in combination with the other components of the new

routing scheme. In all that testing, no problem with the SPF

computation has ever been discovered. Apparently, all problems

were discovered in the isolated testing.

3i

- 38- II

Report No. 4088 Bolt Beranek and Newman Inc.

:4. TESTING THE NEW ROUTING SCHEME -- TECHNIQUES

In the previous section, we emphasized the need for testing

the new routing scheme in the operational environment of the

ARPANET. However, testing new software in a distributed network

is a complicated procedure, involving different problems than,

say, testing a new operating system for a single computer. To

test an operating system in a computer which supports a user

community, it is necessary to schedule some down-time, during

which users are prevented from accessing the computer. The new

operating system is loaded and put through a series of tests. If

it halts, or goes into an infinite loop, the operator can regain

control of the computer from the console. At the end of the

testing period it is a simple matter to reload the old system.

Testing new software in the ARPANET, however, is nowhere near so
if

simple. For one thing, we are not allowed Lo schedule

~ I "down-time" in the ARPANET. We were able to schedule software

testing periods during the early morning hours. During these

periods we were permitted to disrupt the network, in the sense of

letting the network run in a less reliable manner than usual.

But we were requested to keep the network accessible to users as

much as possible. For another thing, most of the ARPANET's IMPs

run unattended. Should an IMP halt, or go into an infinite loop,

there is no operator present to regain control. To be sure, the

Network Control Center (NCC) at BBN has an extensive set of

-39-

• IReport No. 4088 Bolt Beranek and Newman Inc.

I facilities for controlling unattended IMPs at remote sites.

However, these facilities all make use of the network itself. An
IMP which has halted, or which is running in a tight loop, will

not respond to commands from the NCC; such IMPs are out of the

NCC's control. Furthermore, any software problem which causes

the network as a whole to fail or run in a degraded condition can

cause the network to be non-responsive to the NCC's commands.

Because the ARPANET has been designed for operational robustness,

there are very few problems which can cause the network to fail

as a whole. Unfortunately, failure of the routing scheme is

among these few problems. If the routing scheme fails there may

be no way for cor.gnds to get from the NCC to the IMP. Lastly,

loading the entire network with the new routing scheme is a much

I more complicated operation than merely loading a single computer

with a new operating system. One cannot simply load the new

routing into the IMPs one by one, until all the IMPs bn;,e it.

That would mean that during some period of time, some IMPs were

using the new routing scheme while others were using the old; in

general, the network will not run properly unless all IMPs are

using the same routing scheme. Thus even the process of loading -

the new routing scheme into the net can cause problems if it is

not done carefully.

A partial solution to these problems is to do a lot of

testing in the lab before doing any testing in the field (the

-40 -

Report No. 4088 Bolt Beranek and Newman Inc.

field being the actual ARPANET). In fact we did do a great deal

of testing in the lab,, and we never tried anything in the ARPANET

without trying it in the lab first. Our lab resources, however,

are not well-suited for the testing of a new routing scheme. The

lab contains only two Honeywell 316s for use in testing IMP

software. This may have been sufficient for testing most of the

changes which have been made over the years to the IMP software,

but it is not sufficient for testing a routing scheme. it should

be obvious that the ability of a routing scheme to run properly

in a two-node network has little bearing on its ability to run in

a large distributed network. Such a trivial network just does

not give rise to the sort of problems which apply stress to a

routing scheme, since the rcuting problem in a two-node network

is completely trivial. Fortunately, we were able for a few

months to collect a total of four Honeywell 316s in our lab.

From the perspective of routing, a four-node network is

significantly more complex than a two-node network, and we were

able to do quite a bit of testing in the lab network.

I Nevertheless, a four-node network is much simpler than the

ARPANET, and we would not expect, a priori, that the result of

S.-lab testing would be the same as the result of similar tests done

in the field. So we still had to develop techniques for doing

V ;field testing that would minimize the possibility of major

disruptions of the ARPANET due to failure of the new routing

scheme.

-41-

Report No. 4088 Bolt Beranek and Newman Inc.

One should not get the impression that the NCC is completely

helpless if some major problem does arise during testing of the

routing scheme. A small number of operational IMPs are located

on BBN's premises, and these can be controlled from their

consoles. There is a procedure known as "demand reload" by which

one IMP can forcibly reload its neighbors, even if the neighbors

are not communicating with the NCC. Thus if any major problems

arise in the testing of the routing scheme, a good release can be

easily loaded in BBN's local IMPs, and these IMPs can forcibly

reload their neighbors, one at a time, until all the IMPs in the

network have the good release. In fact, we did have to use this

procedure on two occasions to restore the network to operating

condition after problems developed during our testing of the new

routing scheme. However, though the procedure is an effeotive

way of recovering from problems, it is really something that

6 should be used only as a last resort, not something that should

Sbecome a part of our everyday testing procedures. It was

therefore incumbent upon us to develop testing procedures which,

as much as possible, minimized the chances of a major problem

occurring during our tests of the rew routing scheme.

We decided to use a testing procedure similar to the one we

developed for testing the new line up/down protocol. Recall that

in order to test the line up/down protocol, we created an IMP

release that ran both protocols at once, in parallel. However,

-42-

Report No. 4088 Bolt Beranek and Newman Inc.

at any given time, in any given IMP, one of the protocols was

running in "controlling mode", and the other was running in

"phantom mode." That is, both protocols were always running,

exchanging their own special protocol packets over the line, and

coming independently to a decision as to whether the line should

be declared up or down. The actual operational up/down status of

the line, however, was affected only by the decisions of the

protocol which was running in controlling mode. The decisions of

the protocol running in phantom mode were reported to the NCC for

later analysis, but they had no operational effect on the line's

up/down status. In addition, the NCC had the capability of

switching the protocols from one mode to another in order to test

the new protocol und•r,- a variety of conditions.

. Ki We adopted a similar, though more complex, approach to the

testing of the new routing scheme. That is, we prepared an IMP
software release which contained all the code for both routing

schemes. This release has five different routing states, each

corresponding to a particular degree of parallelism. The five

states are the following:

I) In state I, the old routing scheme is in controlling

mode, and most of the new routing scheme is deactivated. The

Sonly active component of the new routing scheme is the

measurement process. However, even though the packet delays are

always being measured, routing updates are never generated, so

- 43 -

FPeport No. 4088 Bolt Beranek and Newman Inc. LI

none wIf the other qomponents of the routing scheme have any work

to de. This is the state in which the IMPs run when we are not

doing any testing.

IM) State I1 is similar to state I, except that a little

bit more of the new routing scheme is activated in the phantom

mode. The measurement process causes routing updates to be

WH generated; and enough of the updating protocol is activated to

ensure that all the upoates are sent to all the IMJ's in the

network. However, the reliable transmission aspects of the

updating protocol are not activated. In this state, the data

base management procedure and the shortest path computation do

FW not run at all; routing updates created by the new routing scheme

are simply discarded, instead of being processed.

1i III) In state III, the old routing scheme ..s still run in

Ithe controlling mode, but the new routing scheme is fully
activated in the phantom mode. That is, all aspects of the new H

routing scheme are operating just as if the old routing scheme

were not there. However, all ordinary user packets are routed as

specified by the old routing scheme, and the results of the new

scheme do not have any effect on the operation of the retwork.

It is possible in this state to flag certain test traffic so that

it (but not other traffic) ir routed according to the new scheme.
44

I-I4

• P Reporc No. 4088 Bolt Beranek and Newman Inc.

IV) In state IV, the new routing scheme runs in the

controlling mode, and the old routing scheme runs in the phantom

mode. All packets are routed according to the new scheme.

V) In state V, the new routing scheme runs in the

controlling mode, and the old routing scheme is completely

deactivated.

!ach of these states has a greater impact on the network's

cperation than the states preceding it. This makes the states

progressively more dangerous, in that problems arising when the

network is running in the later states are likely to have a worse

effect, and to be harder to recover from, than are problems

arising when the network is ru:ining in the earlier states. So we

attempted to do as uiuch testing as possible in the earlier states

before proceeding to the later ones. Each of the states is

useful for some kind of testing, but not for others. (State I,

•i I!of course, is not. used for testing at all, but only for normal

network operation.) In state III, it is pos3ibl.e to test the

updating protocol, the data base managehient procedure, and the

shortest path computation to see how they perform together.

However, while the new routing scheme is running in the phantom

mode, there is no feedback between the measurement process and

the shortest-path computations, since packets are not routed

according to the new routing scheme. We can generate some

imperfect feedback by sendirng large amounts of special test

U ___4

R•,port No. 4088 Bolt Beranek and Newman Inc.

traffic, and flagging that traffic so it will be routed according

to the new scheme. If the amount of test traffic is much-greater

than the amount of ordinary traffic, state III becomes

indistinguishable from state IV. To do a full test of the

routing scheme, though, with all feedback mechanisms engaged, it

is necessary to go to state IV.

State II has no utility in and of itself, but is very useful

when combined with state III. That is, one IMP can be put in

state III, while all the rest are in state II. The effect of

this is to use the network as a test data generator while

performing a state III test in a single IMP. This does not yield

as thorough a test as would be obtained by placing the entire

network in state III; it is particularly useful, though, if one

is afraid that a bug in the new routing code will cause the IMP

to halt or loop under actual network conditions.

There are two major reasons why it is important to test the

new routing scheme in state V. One reason has to do with the

distorting effect the old routing scheme, by its mere presence,

may have on the packet delays in the network. In our first

semiannual report we discussed the spikiness and high variability

of the packet delays under what would appear to be steady-state

conditions. We argued that some of this high variability may be

due to the presence of the old routing scheme. The old routing

scheme periodically causes long routing update packets to be

46

Report No. 4088 Bolt Beranek and Newman Inc.

transmitted over the lines, thereby causing spikes in the queuing

delay seen by packets. Also, the old shortest-path computation

runs periodically and takes a large number of processor cycles,

causing spikes in the processing delay seen by packets. These

effects are no less present and no less significant when the old

routing scheme is in phantom mode than when it is in controlling

mode. It is possible that when the old routing scheme is fully

deactivated, the characteristics of the packet delays will be

very different. Since the new routing scheme actually measures

the packet delays, any significant change in the characteristics

of the packet delays could have a significant effect on the

performance of the new routing scheme. That is, the new routing

scheme may perform differently when the old routing scheme is

fully deactivated (state V) then it does when the old routing

scheme is running in the phantom mode (state IV). This makes it

important to test the new routing acheme in state V.

The other reason for testing the new routing scheme in state

V" has to do with the integrity of the IMP program itself.

Removing one routing scheme from the IMP and replacing it with

another is not a simple job. The IM? program is a ten-year-old

highly optimized program vjhich has been under continuous

development. It is not implemented according to "structured

programming"; little pieces of the old routing scheme are

scattered around the IMP program. The task is further

- 47 -

Report No. 4088 Bolt Beranek and Newman Inc.

complicated by the fact that other IMP functions have been

piggybacked on various functions of the old routing scheme. For

example, at one time the old routing updates doubled as the Hello

packet of a line up/down protocols. For another example, at one

i time channel acknowledgements were sent periodically in null

packets which were always transmitted immediately after the old

routing updates. Before releasing the new routing scheme,

therefore, it is important to demonstrate that the network can

function with the old routing scheme totally deactivated. This

can be demonstrated by testing in state V.

Operating a network which contains two routing schemes gives

rise to a number of problems which we had to solve before we

would do our testing. The most straightforward problem had to do

with the limited amount of memory in the IMP. When the amount of

code in the IMP program increases, it takes up space that would

otherwise be available for packet buffers. In order to run our'

tests, we had to add code for the new routing scheme, while

leaving in all the code for the old scheme. We also had to add a

significant amount of code for instrumenting and measuring the

performance of the new scheme. In addition, there is a

significant amount of code required to implement the capability

of switching among the five states described above. After adding

all this code, the IMP had only 27 buffers left. We have in the

past run the IMP with as few as 29 buffers without encountering

-48-

Report No. 4088 Bolt Beranek and Newman Inc.

I any problems; yet when we tried running it with 27 buffers, the

network ran in a degraded fashion, producing long delays and low

throughput which was quite noticeable at the user level. We were

able to solve this problem by putting five buffers' worth of new

routing code into a "package", which could be removed from the

network whenever we did not need it for testing purposes. We

still do not totally understand, though, why the difference

between 29 buffers and 27 buffers makes such a big difference to

the network performance.

Other operational problems arise when an attempt is made to

switch between states. Neither routing scheme can be expected to

perform properly unless it is started in a well-defined initial

state. The only way to ensure the proper initialization is to

restart the IMP whenever it Is desired to activate a previously

inactive routing scheme. Furthermore, when a routing scheme is

deactivated it may have control of various scarce resources. If

the IMP is to operate properly after a test period ends, the IMP

must force the release of all scarce resources which were in use

by the scheme which has been lately deactivated. Additional

problems arise when we attempt to switch a routing scheme running

in phantom mode to controlling mode. In order for the network to

operate properly, all the network nodes must be under the control

of the same routing scheme. This can be easily shown, as

follows. Let nodes 0 and N be neighbors, and suppose that in

-49-

Ll

Report No. 4088 Bolt Beranek and Newman Inc.

node 0, the old routing scheme is in controlling mode, while in

node N, the new routing scheme is in controlling mode. It is

possible that, according to the old routing scheme, the best

route from 0 to a destination node D is via N, while according to

the new routing scheme, the best route from N to D is via 0.

Then packets for D may loop between 0 and N without ever being,

delivered to their destination. Since the two routing schemes

operate independently, there is no way to detect and break this

loop. Thus the network cannot be expected to operate properly

unless the same routing scheme is in control of all the nodes.

The problem just described can occur even if the

non-controlling routing scheme is running in the phantom mode.

An even more serious problem can arise if the non-controlling

scheme is fully deactivated. To see this, suppose the network is

divided into two areas. In one~area (the "old area"), the old

N routing scheme controls, and the new routing scheme is

deactivated. In the other area (the "new area"), the new routing

scheme controls, and the old is deactivated. Now if an IMP goes

down or come3 up in one area, the IMPs in the other area have no

way of detecting that fact, since there is no flow of routingE

update information between the two areas. (Note that this would

j not be the case if the non-controlling routing scheme were

running in the phantom mode.) Then the following situation can

t arise. Let 0 be an IMP in the old area, and let M be an IMP in

-50 -

Report No. 4088 Bolt Beranek and Newman Inc.

the new area. Suppose that M was initially down, so that 0

believes M to be unreachable. When M comes up, 0 will not be

aware of the fact, and will still believe M to be unreachable.

However, as long as 0 has a neighbor N which is in the new area,

all the IMPs in the new area will believe that 0 is up. We now

have a situation where M thinks 0 is up, but 0 thinks M is down.

Suppose that M tries to establish a connection with 0. It will

send out control packets to 0 until it receives a reply from 0.

But since 0 thinks M is down, it will never reply to any of M's

control packets. As a result, M will continue sending out

control packets forever, without ever receiving any reply. This

continuous and uncontrolled transmission of control packets can

lead to network congestion. If routing loops have formed, as

discussed in the previous paragraph, excessive re-transmissicns

of control packets can severely aggravate the problem; making the

congestion much more severe than it would otherwise be.

We see then that when we want to put a non-controlling

routing scheme into controlling mode, it is necessary to restart

all the IMPs simultaneously. Otherwise it is impossible to

ensure that the same routing scheme is in control of all the

nodes at any given time. When we began our testing, the NCC did

not have the capability to restart all the IMPs at once (though

it did, of course, have the capability to restart the IMPs one at

a time.) We had to develop such a capability especially for our

-51-

Report No. 4088 Bolt Beranek and Newman Inc.

testing. This is just one of several improvements to the NCC

capabilities that we developed as part of the routing contract.

The operational problems we have been discussing are neither

particularly profound nor especially difficult to resolve. We

have discussed them at such length because of the significant

impact they made on our testing schedule. The technique of

running the two routing schemes in parallel, and of having five

different states (constituting varying degrees of parallelism),

was developed in order to minimize the possibility that our

testing would cause a widespread or long-lasting network

disruption. We believe that we too, a sound approach; but we

wish to emphasize that safety comes at a price. Not only was the

network software made more complex, but we had to develop new

capabilities for the NCC and we also had to carefully refine our

operational procedures. Furthermore, the vast majority of

problems we encountered during our testing were operational in

nature. That is, when a major problem did develop during our

testing, it was much more likely to be due to a flaw in our

procedures than to a problem in the new routing scheme.

-52-

Report No. 4088 Bolt Beranek and Newman Inc.

5. TESTING THE NEW ROUTING SCHEME -- TOOLS

In oder to determine how well the neu routing scheme was

performing, we had to develop various instrumentation and

measurement tools. In general, we opted to keep our measurement

tools very simple. In our experience, when tools of great

complexity and sophistication are used for measuring network

performance, there is great difficulty in interpreting the data

generated by their use. It is difficult to be sure that such

tools are doing exactly what they are supposed to be doing, and

it is extremely difficult to get such tools debugged. When one

is attempting to measure a network's performance, one must be

able to have confidence in the measurement tools and procedures,

so that one can be sure that the measurement results really do

represent particular states of the network, and are not simply

artifacts of the tools. This argues for keeping the tools as

simple and easy to understand as possible.

The most obvious means of testing the performance of a

routing scheme is to create various offered traffic loads and

then see how much of the traffic was routed over the various

alternative paths. To do this we developed a tool known as the

"tagged packet." A tagged packet is just an ordinary packet with

a particular bit set in the host-IMP leader. However, the data

field of a tagged packet is used to carry a trace of the packet's

path through the network; instead of ordinary user data. When a

- 53 -

Report No. 4088 Bolt Beranek and Newman Inc.

tagged packet is first submitted to the network, its data field

does not contain any meaningful information. At each

intermediate node that the packet passes through on the way to

its destination, the packet is "tagged" with that node's IMP

number, and with the delay that the packet experienced in

traveling through that IMP. Thus when the packet arrives at its

destination, it contains a precise record of the path it

traversed, as well as its delay. The value of delay which
ii

appears in the packet tag for a particular node is the same value

which is input to the measurement process at that node.

(Actually, the delay which appears in the packet tags is not

Squite so precise as the delay which is really input to the

measurement process. The latter is measured in units of 0.8

milliseconds, but the former is truncated to units of 6.4 ms., so

that we can fit it into an eight-bit field.)

Figure 5-1 shows the contents of a typical tagged packet.

This particular packet traveled a very long path, 15 hops, from

IMP 43 to IMP 9. (Note that since the tags are created as the

packet is about to be sent on an inter-IMP line, there is no tag

entry for the destination IMP.) The packet did not encounter

much queueing delay on this path -- it was a long packet, and

19.2 milliseconds is its transmission delay on a 50 kbps line.

Only on the lines between 43 and 56, 12 and 47, and 47 and 6 did

it experience a delay larger than its transmission delay. Note

A 54-
__•Uu w

Report No. 4088 Bolt Beranek and Newman Inc.

that the line between 6 and 44 has a speed of 230.4 kbps, so the

delay through IMP 6 is less than 6.4 ms.

MESSAGE 838
IMP: 43 DELAY: 25.6 MS.
IMP: 56 DELAY: 19.2 MS.
IMP: 11 DELAY: 19.2 MS.
IMP: 15 DELAY: 19.2 MS.
IMP: 45 DELAY: 19.2 MS.

IMP: 34 DELAY: 19.2 MS.
IMP: 4 DELAY: 19.2 MS.
IMP: 25 DELAY: 19.2 MS.
IMP: 24 DELAY: 19.2 MS.
IMP: 12 DELAY: 25.6 MS.
IMP: 47 DELAY: 44.8 MS.
IMP: 6 DELAY: 0.0 MS.
IMP: 44 DELAY: 19.2 MS.
IMP: 10 DELAY: 19.2 MS.
IMP: 37 DELAY: 19.2 MS.

Figure 5-1

When many thousands of tagged packets are generated, it is

desirable to have a program which reduces the data to someii

suitable form. We developed such a program, and figure 5-2 shows

some sample output from it. In this example, we have collected

tagged packets from three source IMPs -- 14, 47, and 50. All had

a single destination -- IMP 9. The output shows exactly how many

packets from each source were collected (2672 from IMP 14, 2667

from IMP 47, and 2675 from IMP 50). It also shows the average

delay per packet for the packets from each source (34.94 ms. for

- 55 -

Report No. 4088 Bolt Beranek and Newman Inc.

SOURCE: 14 COUNT: 2672 DELAY: 34.94 MS.

PATH: 14-18-10-37- 9
COUNT: 2672 DELAY: 34.94 100%

PERCENTAGE OF LOOPING PACKETS = 0.00%
AVERAGE PATH LENGTH = 4.00 HOPS

SOURCE: 47 COUNT: 2667 DELAY: 32.40 MS.

PATH: 47-55-59- 9
COUNT: 2667 DELAY: 32.40 100%

PERCENTAGE OF LOOPING PACKETS = 0.00%AVERAGE PATH LENGTH = 3.00 HOPS

SOURCE: 50 COUNT: 2675 DELAY: 43.56 MS.

PATH: 50-14-18-10-37- 9
COUNT: 1417 DELAY: 45.62 53%

PATH: 50-29-46-60-58- 9
COUNT: 1258 DELAY: 41.24 47%

PERCENTAGE OF LOOPING PACKETS = 0.00%
AVERAGE PATH LENGTH = 5.00 HOPS

TOTAL MESSAGES FROM ALL SOURCES: 8014
PERCENT LOOPING PACKETS = 0.00%

Figure 5-2

-56-

Report No. 4088 Bolt Beranek and Newman Inc.

IMP 14, 32.44 ms. for IMP 47, and 43.56 ms. for IMP 50). L1.1 the

packets from IMP 14 followed the same path, as did all the

packets from IMP 47. On the ther hand, two different pnths were

used to route traffic from IMP 54. The output shows exactly how

many of these packets (in absolute numbers and percentages)

travelled each of the paths, as well as the delay on each path.

The reduction program also computes the average path length for

each source-destination pair, and counts the number of looping

packets (packets which traverse some IMP more than once) from

each source. The output of this program enables us to see

exactly how packets get routed under a variety of network

conditions.

In order to process the tagged packets, it is necessary

first to collect them on our TENEX system, which is a host on IMP

X 5. However, it is sometimes convenient to experiment with

O ' traffic flows that do not have IMP 5 as their destination. (Note

K that the packets shown in Figures 5-1 and 5-2 were directed to

IMP 9, not IMP 5.) We devised the following procedure to achieve

this. Whenever a raw tagged packet is destined for the discard

fake host at any IMP, it is not discarded; rather it is

forwarded to TENEX without any further tagging. (A "raw" packet

is a datagram, a special kind of data packet which is not subject

to any end-end flow control or sequencing. The "discard fake

host" in each IMP is a special destination which ordinarily

- 57

Report No. 4088 Bolt Beranek and Newman Inc.

serves as an infinite data sink, discarding all packets it

1 receives.)

it is worth pointing out that although the tagged packet

- mechanism is quite simple in concept, it turned out t, be

surprisingly difficult to mplement correctly. It is one of

those things that is easy to design into a network initially, but

difficult to graft into an existing network. One source of

'k difficulties is that the iMP really does not expect the contents

of a packet's d2ta field to change, and a good deal of special

care must be given if this is not the case (as with the tagged

packets). Another source of difficulties is that there are many

special causes to consider. For example, The number of nodes

traversed by the packet may be greater than the number of data

words in the packet (in which case the packet is too small to

contain all the tags), or a packet may first be queued for a

line, then re-routed to another because the first line goes down.
tj•

Nevertheless, once all these difficulties were discovered and

eliminated, the tagged packet provided a very simple and

straightforward means of evaluating the new routing scheme's

performance under a variety of conditions.

In order to use the tagged packet, we had to have a way of

generating variable amounts of tagged traffic. To do this, we

used the IMPs' message generator. Message generator is a fake

host in each IMP. It is capable of transmitting one packet every

-58 -

N•0

Report No. 4088 Bolt Beranek and Newman Inc.

n "fast ticks", where n is a power of two and a fast tick is a

period of 25.6 ms. The size of the generated packets, th.! value

of n, the destination of the packets, and the settings of other

bits in the host-IMP leader field are parameters which have to be

set before the message generator is activated. (Among these

other leader bits are the bits which specify whether a packet is

raw or not, as well as whether it is tagged or not.) We did not

find it necessary to make any changes to the message generators

themselves, but we did make some improvements to the NCC's

capability of controlling the message generator. One improvement

was to extend the functionality of the message generator command

so that it would set all the message parameters at an IMP at

once, and another was to set the same parameters at several IMPs

at once. This sort of improvement may not srem very important,

but it must be remembered that our testing sessions were quite

PE •limited in length. Thus it was very important to be able to

start up our experiments quickly, with as small a probability of

i: •making an error as possible. The improved message generator

command contributed greatly to this.

Another simple and straightforward method of measuring the

performance of the new routing scheme is simply to install a set

of counters in the IMP, each of which counts the number of

occurrences of some important event. We esLabllshed the

following ten counters:

- 59 -

i Report No. 4088 Bolt Beranek and Newman Inc.

1) Updates generated - Each IMP keeps a counter of the

number of routing updates it generated. The number of updates

generated by an IMP depends on the changes in delay on the lines

leading from that IMP -- the more frequently there is a

significant change, the more often there are updates generated.

The delay does not usually change frequently by a significant

amount unless there is a great deal of traffic, so the value of

the counter should be roughly proportional to the amount of

traffic through the IMP. Since it is the measurement process

which decides when to send an update, this counter enables us to

make a simple check on its performance.

2) Update packets processed - Each IMP keeps a count of the

number of routing updates it has processed, so we can determine

if the frequency of routing update processing at some IMP is

Ssimilar to what we expect. Also, since all routing updates are

processed at all IMPs, at any given time this counter should have

the same value in all IMPs. If that were not the case, it would

prove that the updating protocol was failing to deliver all the

updates to all the IMPs.

3) Line updates processed - Ever:, update packet from a

particular IMP contains information on all the lines emanating

from that IMP. That is, every update packet contains several

"line updates", a line update 'being the update for a particular

line. The shortest path computation processes the line updates

-60-

Report No. 4088 Bolt Beranek and Newman Inc.

one at a time, so it is the number of line updates rather than

the number of update packets which determines how often the

computation runs. In order to see how often the computation is

run, the number of line updates is counted. This number should

also be the same in all the IMPs.

4) Average length of routing update queue - When routing

update packets arrive at an IMP they are queued for processing.

The average size of this queue is an indication of how much

computational load is placed on the IMP due to the processing of

routing updates. We measure the average queue length with the

following techniques. Whenever a routing update packet arrives,

the number of routing update packets which are already on the

queue (including any packet which is currently being processed)

is counted, and this count is added to a cumulative counter.

When this cumulative counter is divided by the total number of

it •update packets processed, the result is the average number of

update packets behind which a newly arriving update must wait,

i.e., the average queue length.

5) Maximum length of routing update queue- In order to get

some idea of the variance in the length of the routing update

queue, we also keep track of its maximum length.

6) Number of line updates which report changes - The new

I routing scheme sometimes causes updates to be generated even if

-61-

Report No. 4088 Bolt Beranek and Newman Inc.

there is no change in the line-state information. It is

interesting to know what proportion of the line updates actually

report changes. This number should also be a constant from IMP

to IMP.

7) Number of updates which may cause changes in

shortest-path tree - The shortest-path computation that runs in

each node produces a shortest-path tree of the network with that

node as the root. Certain line updates can never cause changes

in a node's shortest-path tree. If the line update reports no

change, or if it reports on a line which is not in the

shortest-path tree ana that line has not improved, then no change

in the tree can result. Each IMP keeps a count of the number of

line updates it processes which raay cause changes in its tree

(which is not the same as the number which actually do cause

changes in the tree). Since each IMP has a different

shortest-path tree, this number is not a constant from IMP to

IMP. Rather, it gives an indication of which IMPs have to

perform the most computational work to react to changes in

network delay.

8) Old updates - The updating protocol has been carefully

designed to ensure that updates which are received out of

sequence are discarded, rather than being processed out of order.

Each IMP maintains a count of the number of update packets

arriving out of sequence.

-62-

:1

Report No. 4088 Bolt Beranek and Newman Inc.

9) Duplicate current updates - Because of the way the

updating is done, it is possible for an IMP to receive duplicate

copies of some update. The number of such duplicates is counted.

10) Retransmissions of routing updates - The updating

protocol employs a positive acknowledgement retransmission

scheme. An update will be retransmitted on a line if the

acknowledgement for the update is not received within a certain

amount of time. The number of retransmissions made on each line

is counted.

11) Received spurious retransmissions - A "spurious"

retransmission is one which was not really necessary. For

example, if an acknowledgement does not get through, the update

being acknowledged will be retransmitted, although it has already

been correctly received. The same thing will happen if the

retransmission time-out period is too short. All update packets

carry a special bit indicating whether or not they are

retransmissions. This enables the IMPs to count the number of

spurious retransmissions they receive. By comparing this number

with the number of retransmissions sent to the IMP, one can

determine what fraction of the retransmissions are spurious.

It is possible to zero out all these counters in all IMPs

from the NCC at the beginning of each test session. At the end

of each test session, the counters are collected into a TENEX

- 63 -

Report No. 4088 Bolt Beranek and Newman Inc.

file, where they are converted to a human-readable form.

Unfortunately it is not possible to take a network-wide snapshot

of the state of the counters at some instant. It takes about

10-15 minutes to collect the counters, and during this interval

the counters keep on counting. This means that in comparing

counters from different IMPs we must remember that the counters

have not all been collected simultaneously. However, this has

not proven to be a real problem in practice. Appendix 1 shows

the values of these counters after one test session.

It is often useful, when testing the new routing scheme, to

be able to look at the shortest-path tree that has been computed

by an IMP. To facilitate this, we developed a program which

looks into a running IMP (or, alternatively, an IMP core dump),

figures out what the tree is, and prints it out in an easily

readable format. Figure 5-3 shows some sample output from this

program. The "father-son" relation is indicated by vertical

spacing, and the "sibling" relation is indicated by a horizontal

line. This program for displaying trees is a very valuable

software tool. Before it was developed, the only way to look at

the tree in some IMP was to stop the IMP, dump it, and then spend

30 minutes crawling through the dump, trying to reconstruct the

tree. (Any tool which saves a person 30 minutes at a shot is

very valuable indeed!)

-64

Report No. 4088 Bolt Beranek and Newman Inc.

36
15

11------------------- 16 ---- 45
22 ---------------- 56 51 34

52 ------- 48 43 2 21----4
35- 7 62 64 32 25

3 23 13 33----59 24
1 53----17 9 12

54 38 28-19-39 40----58-37 47 ------- 55
26 8 49-63 46 6 14

5 61 31-44 50 ---- 18
30 29-20
66

Figure 5-3

We also developed a set of programs enabling all routing

updates, or only those routing updates from a particular IMP, to

& t be collected on TENEX, where they can be processed. This enables

us to directly inspect the outputs created by the de.Lay

measurement process while the new routing scheme is running. We

have also used the IMP's standard trace package to collect data

on the delays of individual packets.

Before proceeding to the next chapter, where the results of

our testing will be summarized, it is worthwhile discussing

briefly some of the possible software tools which we considered

but chose not to develop. For instance, we did not develop any

-65-

Report No. 4088 Bolt. Beranek and Newman Inc.

instrumentation code for timing the new routing scheme. As a

result, we cannot claim to have measured the amount of CPU £

bandwidth devoted to routing. Since the shortest-path

computation is interruptable by many other processes, attempting

to time it would involve a large amount of IMP code which turns

the timers off whenever the code is interrupted, and then back on

when the code resumes. Additional complications arise from the

fact that pieces of the routing code occur at different places in

the IMP, and at different priority levels. Although it would

have been very desirable to have exact timing information about

the new routing scheme, we were dissuaded by the complexity of

the task. Not only would it have required an excessive amount of

programmez time, but it would have caused us to violate the rule

I thsat all measurement tools should be simp~le.

In our first semiannual'report, we described the Snapshot

Measurement Package, a software package which can be loaded into

the IMP and used to evaluate the performance of a routing scheme

under extremely heavy loads. Unfortunately, we have not been

able to use this package recently for the simple reason that it

will not fit into the IMP al)ng with the two routing schemes.

As discussed previously, each IMP counts the number of line

updates which may result in changes to its shortest-path tree.

It would have been more desirable to count the number of updates

which do cause changes, and to measure to magnitude of these

-66-

Report No. 4088 Bolt Beranek and Newman Inc.

changes. Unfortunately, there is no single)oint within the

shortest-path computation at which one can tell whether a change

has been made. During the computation, the shortest-path tree

may be transformed several times, but there is no simple way of

knowing whether any of these transformations will survive to the

end of the computation, or whether they will be transformed

again, possibly back to what they were initially. The only way

to tell whether a routing change has been made in the course of a

particular instance of running the shortest-path computation is

to save a copy of the initial tree, so it can be directly

compared with the tree which exists after the computation is

done. The memory and processing expenses to do this (especially

the former) are too great to make it worthwhile.

As described previously, we have the ability to display the

shortest-path tree in any IMP. This enables us to do some

spot-checking but it does not give us a means of systematically

• Fexamining the way the trees change in response to particular

events. We considered the possibility of implementing an

event-driven routine which would write a representation of the

shortest-path tree into a packet, which could then be transmitted

to our TENEX system. In order to do this, the IMP would have to

run with interrupts inhibited for as long as it takes to copy the

tree. This is clearly undesirable, so we decided not to

implement the feature.

67

Report No. 4088 Bolt Beranek and Newman Inc.

6. TESTING THE NEW ROUTING SCHEME --- RESULTS

In this chapter we present selected results from our testing

of the new routing scheme. It is not our intention here to

discuss all our tests nor to present all our data. Rather, we

present rerults which we believe to typify the performance of the

new routing scheme. For presentation purposes, we divide our

tests into five categories: topological stress tests, resource

utilization tests, updating protocol tests, traffic flow tests,

and packet delay tests. This way of categorizing our tests is

purely a matter of presentation, and does not correspond to any

chronological or operational categorization.

1. Topological stress tests. A routing scheme must be '

to react quickly and correctly to sudden changes in the topology

of the network (a line or a node coming up or going down.) The

routing scheme must not only be able to respond to single

topological changes, but also to multiple simultaneous changes,

including those sets of changes which lead to network partitions.

One way to stress the routing scheme is to induce such

topological changes, both singly and in combination. This puts

stress on all the significant components of the routing scheme.

When a line goes up or down, the measurement process must detect

that immediately, and cause an update to be sent. Determining

whether this actually works is more complicated than it may seem,

since there are many situations that may bring a line down, and

68

Fepor

Report No. 4088 Bolt Beranek and Newman Inc.

the measurement process must detect all of them. When lines go

up and down in rapid succession, a great deal of stress is placed

on the data base management procedures. Applying topological

stress is the best way to detect any incorrect order-dependencies

which exist. Inducing topological stress also tests the

reachability algorithm of the shortest path computation. When

the topology changes, the shortest-path computation must be able

to determine which IMPs are unreachable. Topological changes

also stress the updating protocol. In our second semiannual

report, we discussed the way in which partitions of the network

can cause the IMPs to get out of sync with each other. The

updating protocol was carefully designed to avoid any such

problems, but only by actually partitioning the network could we

determine whether our design really worked. Also, the presence

of topological changes puts greater than normal stress on the

part of the updating protocol which attempts to ensure that no

I updates are processed out of order. Ordinarily, updates from a

I given IMP must be separated by at least 10 seconds (the

measurement period). However, if a line at some IMP goes down or

comes up, two updates from that IMP may be sent with an

arbitrarily small interval between them. This makes it much more

likely that the updates will arrive at some other IMP out of

order, and thus it exercises the part of the updating protocol

that detects out-of-order updates.

-69-

Report No. 4088 Bolt Beranek and Newman Inc.

We caused lines to go up and down using five different

methods:

a) Altering a particular memory location in the IMP. This

causes the line to go down, and then to come back up as

soon as possible (i.e. one minute later).

b) Looping and unlooping lines by command from the NCC. A

line looped in this way stays down until it is unlooped

by another command. 2

c) Looping and unlooping lines by pressing a button on the

modem simulator box. (This could only be done at IMPs

located on BBN's premises, which used modem simulators

rather than real modems and phone lines.)

d) Physically pulling out and inserting cables into a modem

simulator box.

e) Physically pulling out cables and re-connecting the,.. in

a different configuration. Thus not only does a line go

down, but when it comes back up, the IMPs it is

connected to have different neighbors over that line

than they did before.

To induce IMPs to go up and down, we sometimes restarted them by

command from the NCC (which causes the IMP to go down and then

come back up within several minutes), and we sometimes halted

-70!i *4

Report No. 4088 Bolt Beranek and Newman Inc.

them manually by means of the console switches. We have induced

partitions by various combinations of these procedures; and have

experimented with partitions of various sizes and durations. In

addition, during many of our field tests, lines and/or IMPs went

up or down due to "natural causes", providing further unplanned

topological stress tests.

These tests turned up both program bugs (mostly in the data

base management procedure) and design bugs. It is interesting to

note that we were not able to detect all these bugs by testing in

the lab. We found additional bugs when we tested in the ARPANET,

with all IMPs but one in state II, and a single IMP in state III.

We found more bugs yet when we tested the whole network in state

III. After these correctic's, it appears that the new routing

scheme does respond correctly and quickly to topological changes.

Such changes do cause immediate transmission of routing updates.

These updates are processed correctly, and the correct changes

are made in the shortest-path tree. Nodes are considered

unreachable by the new routing scheme when, and only when, they

really are unreachable. The network recovers correctly from

partitions, without loss of update synchronization. When a lot

of traffic is being routed over a line which goes down, the

traffic is re-routed without creating a network disturbance.

When a line comes up, immediate use is made of it, whenever

possible. Since we have put the new routing scheme through a

- 71 -

Report No. 4088 Bolt Beranek and Newman Inc.

large variety of topological stress tests, we are confident of

its ability to withstand the topological stresses that are placed

on it under operational conditions.

2. Resource utilization. Several of the counters described

in the previous chapter have enabled us to draw conclusions about

the utilization of resources by the new routing scheme. These

are reported on in this section. All measurements reported here

were taken while the network was running in state V.

a) Length of routing queue. When measured over a period of

about an hour, most IMPs show a maximum routing queue

length of 2. That is, at most IMPs, there was at least

one routing update which arrived during the hour thst

had to wait on the queue while two other routing updates

were processed first. Many IMPs show a maximum queue

length of 3. Once in a rare while, a maximum queue

AK- length of 5 is detected, and maximum queue lengths of 1

are not uncommon. The average queue length, on the

other hand, has never been observed to be qbove 0.05 in

any IMP, regardless of its maximum queue length.

Typical values of the average queue length are 0.02 and

0.03. This means that almost all routing updates are

processed as soon as they are received; it is very rare

for a routing update to have to be queued.

-72-

WI

C- -~ ____________-___-_j-__ ____ _ _ -- -

Report No. 4088 Bolt Beranek and Newman Inc.

b) Total number of updates generated. The number of

updates generated at particular IMP varies greatly.

Lightly loaded IMPs generate updates at close to the

minimum frequency (once every 50 seconds), and heavily

loaded IMPs at close to the maximum frequency (once

every 10 seconds). Several one-hour measurements taken

during our testing periods have shown the total number

of update packets processed by each IMP to be about

5000, or about 1.4 up•ate packets per second. If we

assume that every update packet contains 2.5 line

updates (actually the average update packet seems to

contain about 2.2 - 2.4 line updates) then the total

line bandwidth due to routing updates (assuming that no

updates are retr3nsmitted, and that all updates flow on

all lines) is 246 bits per second. This is 0.5% of a 50

kbps .ine, and 2.6% of a 9600 bps line. This compares

favorably with the 3 ' 15% used by the old routing

scheme.

c) Fraction of the updates which report changes. Since

routing updates are always sent at least at some minimum

frequency, even if there is no change in delay, not all

line updates report changes. The fraction of line

updates which do report changes has been observed to

vary from as little as U.26 to as much as 0.56, with

- 73 -

Report No. 4088 Bolt Beranek and Newman Inc.

0.45 a more typical value. The fraction of line updates

which may cause changes in some IMP's shortest-path tree

varies greatly from IMP to IMP, but is typically about

one-third. (That is, if 45% of the line upoates report

changes, about one third of these, or 15%, may cause

changes in the shortest-path tree of an average IMP.)

These figures indicate that the amounts of processor and

line bandwidth taken by the new routing scheme are quite modest,

well within our expectations, and present no problem. It must be

pointed out, however, that our testing periods are generally

during early morning hours, when the network is quite ligvtly

loaded.

3. Updating Protocol. The average number of

retransmissions of routing updates per line varies considerably,

depending on network conditions. During a fairly typical

one-hour measurement, we found the average number of

retransmissions per line to be 66 (with a standard deviation of

,118). Since there were about 5000 update packets sent on each

line during that period, the average increase in line bandwidth

due to retransmissions is about 1.3%. However, the peak increase

due to retransmissions approaches 15%.

Almost all of these retransmissions have been unnecessary.

That is, in most cases, the number of retransmissions madp on

- 74 -

Report No. 4088 Bolt Beranek and Newman Inc.

lines leading to a given IMP is exactly the same as the number of

spurious retransmissions received by that IMP. We have, however,

observed small numbers of IMPs (about 5) receiving small numbers

(fewer than five) of non-spurious retransmissions. It must be

pointed out, however, that our measurements have been made during

Searly morning test periods when the network was quiet.

Significantly different results may be obtained when measurements

are done during network busy hours.

Only a tiny number of routing updates have ever been

observed to arrive out-of-sequence.. In one one-hour measurement,

a single IMP received 17 out-of-sequence updates. In another,

each of five IMPs received a single out-of-sequence update.

Each IMP also counts the number of updates it receives

J 1which, although they are in proper sequence, have already been

seen (i.e. are duplicates). The updating protocol sends all

updates on all lines, so each IMP necessaril; ,ees each update n4[times, if it has n lines. So if there are a to,_ of m update

packets, each IMP must see at least m*(n-1) dur-licate updates.

I Any receivec spurious retransmissions are also counted as

duplicates. When the expected duplicates and the spurious

retransmissions are subtracted from the count of duplicates, we

found during a one-hour measurement that each IMP received. an

average of 193 duplicate updates (with standard deviation of

161). When retransmissions and duplicates are taken into

-75-

S-- • <••• • • • • , z• • • •

Report No. 4088 Bolt Beranek and Newman Inc.

account, the average line utilization due to routing updates is

0.53% of a 50 kbps line and 2.7% of a 9600 bps line.

4. Traffic tests. We performed a number of" tests to see

how the new routing scheme reacts to particular offered traffic

loads. One of our goals was to determine how well the new

routing scheme does at routing traffic around congested areas.

Figure 6-1a shows the shortest-path tree at node 30 before one of

30
63
140

149 ------------------- 9
5 58 --------- 37 ------------------ 59

60 10 12
146 44-18 24 ---------------- 55
29 6 25 47

19------.50 4
26-17 14-20 34

38 28-13 45 ----------- 21
53 62 15 2

48 36-16 ---- 11 51-32
22 ---- 56 43
52 33

35-7 1
23

Figure 6-la

our experiments. (The network was running in state V at this

time.) Note that node 24 has a rather large subtree, consisting

of 21 nodes. After displaying the tree, we turned on a message

-76-

Report No. 4088 Bolt Beranek and Newman Inc.

generator to send traffic from node 24 to node 25. The generator

was set to its maximum rate. Figure 6-1b shows node 30's tree

-4 30
63
40

49 ---------------------- 9
5 58 ------------- 37 ------- 59

60 10 12 ---- 33
46 44-18 24-55 1
29 6 25 47 23

19 ------------- 50 7
26---- 17 14-20 52
38 28 ------- 13 35
53 62

48
22
11

15 ---- 56
36-16-45 43

51 34 32
4 2

21

Figure 6-lb

after the generator was turned on. Note that the size of node

24's subtree has been reduced to 1. That is, before the

generator was turned on, node 30 was willing to use the line

:" between 24 and 25 to send traffic to any of 21 IMPs; after the

generator was turned on, node 30 was willing to use that line

only for traffic destined for node 25. Figure 6-Ic shows node

30's tree after the generator was turned off. The subtree of

node 24 has now been enlarged to 10 nodes. This shows that the

new routing scheme was able to detect the load placed on the line

between 24 and 25, and react to it properly.

- 77

Report No. 4088 Bolt Beranek and Newman Inc.

30
63
40

9 ---------------- 49
59....-.------------- 58 ---- 37 5

12 ------- 33 60 10
24-----.55 1 46 18-4425 4723 29 14 6

4 7 19 ----- 50
34 52 26-17 20

21 ---- 45 35--22 38 28
2 15 !1-48 53

51-32 16-36 56 13
43 62

Figure 6-Ic

2l We also performed experiments in which we deliberately

SIinduced severe congestion in order to see how the new routing

scheme would react. We prepared a special software patch which,

when placed in an IMP, would cause that IMP to refuse to

acknowledge a specifiable percentage of the packets which arrive

over a particular line. These packets then have to get

retransmitted by the neighbor, causing the delay on that line to

get very large. We placed this patch in IMP 59, causing it to

refuse to acknowledge packets from its neighbor IMP 64. Packets

from other neighbors of 59 were not affected by this patch. We

Si - 78-

Li f

Report No. 4088 Bolt Beranek and Newman Inc.

sent 20 packets per second (each packet being 1192 bits long)

from 64 to 59, in order to induce a high delay on the line

between 64 and 59. Then we sent tagged packets from IMP 43 (a

neighbor of 64) to IMP 9 (a neighbor of' 59). The min-hop path

for such packets is 43-64-59-9. However, because of the

congestion on line 64-69, we would expect at least some of the

packets to travel alternate routes of greater hop length. We

performed six experiments. The results of these experiments are

shown in Appendix 2, along with a map of the ARPANET as it was

when these experiments were done. The reader should refer to

this appendix while reading the discussion below.

a) For our first experiment, we set node 59 to reject (i.e.

to fail to acknowledge) 80% of the traffic arriving on

its line from 64. We sent tagged packets from 43 to 9

at the rate of 10 packets per second, with each packet

containing 1192 bits (including all overhead and

framing). The results shown in Appendix 2a indicate

that all the traffic from 43 to 9 avoided the min-hop

path, travelling over five longer alternate paths.

Close inspection of these five paths shows that there

are really only two disjoint paths used, the other three

being minor variants of the first two. The traffic from

43 divides almost equally over their two paths, with

slightly more traffic using the path which is slightly

-79-

1 1.4

Report No. 4088 Bolt Beranek and Newman Inc.

shorter. This is the best result that can be expected

from a single-path routing scheme.

It is worth noting that this sort of performance would

not be possible witn the old routing scheme. Note that

some packets traveled a 12-hop path, even though a

(badly congested) 3-hop path was available. The old

routing scheme assigns each network line a "delay" which

is between 4 and 12. Thus the highest possible delay on

a 3-hop path would be 36, and the lowest possible delay

on a 12-hop path would be 48. Since 36<48, the old

routing scheme would always use the 3-hop path, no

matter hoew badly congested it was. The new routing

scheme shows much greater adaptability.

b) In our second experiment, whose results can be found in

Appendix 2b, we set node 59 to reject only 67% of the

packets arriving on the line from 64. This causes line

64-59 to have a lower delay than in the first

experiment. We see now that 28% of the traffic from 43

to 9 did use the min-hop path, experiencing a rather

large delay. The other 77% of the traffic traveled over

altern'ate paths. As can be seen from the results, the

amount of traffic on an alternate path is inversely

related to the delay on that path.

!8o

i ii.4----- - . - - -- .- --

~ L

Report No. 4088 Bolt Beranek and Newman Inc.

In comparing experiments a and b, we see that the new

routing scheme has a tendency to gravitate to min-hop

routing unless there is a very strong reason to avoid

it.

It is also worth noting that of 2010 packets collected,

only one looped.

c) Our third experiment was just a repeat of our first,

except that the amount of traffic from 43 to 9 was

doubled to 20 packets per second. Here 2% of the

traffic from 43 traveled the high-delay min-hop path,

and the other 98% split evenly between variants of the

two disjoint alternate paths. What is interesting to

note here is that the number of variants of these paths

has increased from 5 to 7. This illustrates an

interesting property of the new routing scheme. As the

offered traffic load increases, there is a tendency to

look for paths where there is excess bandwidth, and to

try to make use of the excess.

d) Our fourth experiment is a repeat of the second, with

the traffic rate from 43 increased to 20 packets per

second. (Or it may be considered as a repeat of the

third experiment with the pe'rcentage of packets from 64

rejected by 59 decreased from 80% to 67%). The results

- 81 -A

Report No. 4088 Bolt Beranek and Newman Inc.

are similar to those of the second experiment. A

significant proportion of the traffic traveled the

15 min-hop path, and the remainder is divided over variants

W5 of the two disjoint alternate paths. The number of

non-looping variants is only 4, but there are 10 paths

which contain loops. The percentage of looping packets

is less than 1%; these packets were already on their way

across the network when a routing change was made

causing them to backtrack and change paths. In none of

these loops is any node traversed more than twice. This

indicates that the loops are a purely transient

phenomenon occurring during a period of adaptation,

rather than a long-term phenomenon due to some problem

with the routing scheme. However, it must also be noted

that some of these loops contain a large number of hops,

and packets which loop do have a significantly larger

end-end delay than do other packets.

e) Our fifth experiment was a duplicate of the first,

except that we also sent tagged packets from node 56 (a

neighbor of 43) to node 9. Both 43 and 56 sent at a

rate of 10 packets per second. Virtually no traffic

traveled over the min-hop path. Node 43 sent about 60%

of its traffic along the "northerly" alternate path, and

40% along the "southerly" one. Node 56 split its[•traffic in the opposite proportion.

-82-

N i

S.

Report No. 4088 Bolt Beranek and Newman Inc.

This last routing pattern is interesting, and deserves some

discussion. One might have expected, a P.iori, that node 56

would have sent all of its traffic on the southerly route, while

43 would have sent all of its traffic on the northerly route.

These are the respective minimum delay routes, and use of these

routes would prevent traffic flows from the two source nodes from

interfering with each other (until they actually reach their

destination). However, this sort of reasoning must be used with

extreme caution. It is true that the traffic from 43 which went

north experienced a smaller delay than the traffic that went

south. But is simply does not follow that it would have been

better had all the traffic from 43 gone north. This is

especially true since we have no way of knowing what other

traffic flows existed in the rest of the network at the time we

Ii did our experiment. It is interesting, though, to compare the

delay from 43 to 9 which we observed in the first experiment with

that which we observed in this experiment. Other things being

equal (which might or might not have been the case), this will

enable us to see how the introduction of the traffic flow from 56

to 9 impacted the delay of the traffic flow from 43 to 9.

In the first experiment, the average delay of packets from

43 to 9 along the northerly path (43-32-2-21-34-4-25-24-12-59-9)

£ was 312.3 ms., or 31.23 ms. per hop. The corresponding delay in

-T the fifth experiment was 333.87 ms. or 33.39 ms. per hop. This

-83-

Report No. 4088 Bolt Beranek and Newman Inc.

is an increase of only 2.2 ms. per hop. In the first

experiment, the average delay from 43 to 9 over all paths was

317.51 ms., or 28.66 ms. per hop. The corresponding delay in the

fifth experiment is 33.12 ms. per hop. This is an increase of

less than 4.5 ms. per hop. The new routing scheme treats the

per-hop delays in quantized units of 6.4 ms.; increases of less

than this value would not be expected to cause a large change in

the routing patterns.

Another interesting fact about the fifth experiment is that

the average delay from 56 to 9 along the southerly path is almost

the same as the average delay from 43 to 9 along the northerly

path. That is, there are a pair of neighbvrs who see

Sapproximately equal delays along a disjoint pair of paths to a

common destination. Under the old routing scheme, this sort of

situation tends to cause the formation of long-lasting ping-pong

loops between the pair of neighbors. Under the new routing

scheme, no such loops are formed, and the only penalty is a small

increase on the average per-hop delay (though it must be admitted

that there is a larger increase in che variance of the per-hop

delay.)

In many of these experiments, paths were used which are

slight variants of the main paths. These variants tend to be

very similar to the main paths, but have a few more hops.

Examining these variants shows an important property of the new

-84- :4

Report No. 4088 Bolt 3eranek and Newman Inc.

routing scheme, namely that it shows a tendency to seek out and

use paths en which there is excess bandwidth, as long as these

paths do not diverge too greatly from the paths of least delay.

Under conditions oi overload, the paths with thq fewest number of

hops fill up quickly, and the new routing scheme has been

observed to try to use all possible paths in order to deliver the

packets to their destination. That is, under overload

conditions, the new routing scheme can attempt to fill the whole

net with traffic. This is appropriate from the perspective of

routing, but it illustrates the need for improved flow control

and congestion ccýntrol techniques to prevent the network from

overloading.

In our second semiannual report we presented sore

mathematical analysis which purported to show that the new

routing scheme would enter an unstabl- state under certain

conditions. When in this state, the traffic in the network would

oscillate wildly from one bad path to another, never settling

down to a good path. This sort of oscillation was predicted to

be especially bad when the network consists of a loo1 topology.

We engaged in an extensive series of tests to determine whether

instability could be a real problem for the new routing scheme as

implemented in the ARPANET. Appendix 3 contains the results of

* some of the experiments which we did in our lab. We set up a

four-node loop network at the lab, and gave it a stub connection

- 85 -

-Wg

Report No. 4088 Bolt Beranek and Newman Inc.

to the ARPANET (so that we could use the ARPANET to collect data

from our lab net) - this network is pictured in Appendix 3. The

experiments are discussed and described below.

a) In our first experiment, we had each of nodes 60, 61,

and 66 send 10 packets per second to node 30, with each

packet being 1192 bits long. Nodes 61 and 66, the

immediate neighbors of 30, each sent 99% of their

traffic to 30 over the single hop path. Node 60 split

its traffic over the two possible paths. If routing

oscillations were present, we would expect that 61 would

send half its traffic via 66, ard 66 would send half its

traffic via 61, but this has not occurred.

It is interesting to note the behavior of the traffic

from node 60. Rather than splitting 50-50 over the two

possible paths, it splits 60-40. Furthermore, the delay

on the path via 66 is only half the delay on the path

via 61. Our explanation for this is as follows. In

node 30's internal numbering scheme, the line to node 66

is line 2, and the line to node 61 is line 3. If

packets arrive simultaneously on both lines, the packet

from the line with the smallest number is processed

first. Therefore, if both lines are heavily utilized, a

greater delay is seen on the line from 61 to 30 than on

the line from 66 to 30. This sort of "unfairness" was

observed very frequently in our lab tests.

86

Report No. 4088 Bolt Beranek and Newman Inc.

b) Our second experiment was a repeat of the first, except

that we doubled the rate at which packets were

transmitted. We see that although the delays are much

higher than in the first experiment, there is little

change in the traffic patteris. The only difference is

a slightly greater tendency for packets to enter 30 via

"66. The routing does not show oscillation or

instability.

The mathematical work presented in our second semiannual

report suggested that, if oscillations did occur, they

could be dampened by the use of a bias. A bias is a

value which is added to the actual delay on a line

before the shortest-path computation is done. Our

experiments have all been done without the use of any

explicit bias. However, it must also be pointed out

that the new routing scheme will never report a delay of

0 on any line. (If it did, long-term routing loops

might form.) The smallest reportable delay is 1 unit,

or 6.4 ms. It is worth noting that when we repeated our

experiments with a unit of 0.8 ms., we obtained the same

results.

c) In our third experiment, we sent 10 packets per second

from 60 and 66 to 30, but no traffic from 61. The

packets were 1192 bits long. Again, no instability is

-87-

Report No. 4088 Bolt Beranek and Newman Inc.

noted. Node 66 sent all its traffic on the one-hop

path, while node 60 split its traffic almost evenly,

with slightly more traffic traveling on the path with

slightly less delay.

d) Our fourth experiment duplicated the third, but with

double the amount ot traffic. The delays are much

longer, but there is no significant change in the

traffic pattern.

e) For our fifth experiment, we added another line, between

61 and 66, to our lab network in order to introduce a

more complex topology. Each of nodes 60, 61, and 66

sent 10 packets per second to node 30. Comparing the

results of the experiment with those of our first

experiment, we see that although the delay from node 60

is slightly better, the delay from nodes 60 and 61 is

significantly worse. Node 66 sent 15% of its traffic

over the cross-link, while node 61 sent 13% of its

traffic over the cross-link, even though the delay of

the traffic which used the cross-link was much worse

than the delay of the traffic that did not. This seems

to be due to the attempt of node 61 to take advantage of

the fact that the delay on the line 66-30 is less than

the delay on the line 61-30. That is, it makes sense

for 61 to send some proportion of its traffic on the

S- 88

iH
Report No. 4088, Bolt Beranek and Newmanr Incý.

two-hop path (61-66-30), and that is the sort of

"performance that would be expected of a multi-path

routing scheme. However, in a single-path routing

scheme, there is no way to control the exact proportion

of traffic which uses the two-hop path. As a result,

"too much" traffic is sent over the two-hop path,

causing the delay on that path to get too high; at the

same time, the delay on the one-hop path gets too low.

When this happens, 61 switches back to using the one-hop

path; which is correct. However, the routing scheme

seems to overcompensate by causing some of the traffic

from 66 to go on the two-hop path via 61. It is

interesting that while the delay on the path 66-61-30 is

twice the delay on the path 61-66-30, the latter path

causes twice the traffic of the former path. This

indicates that the more sub-optimal a path is, the
• V sooner it is removed.

S3j] Appendix 4 shows the results of an experiment done in the

real network to test the stability of the routing it. a

topological loop under conditions of overload. We sent traffic

ii from nodes 13, 53, 38, 26, and 17 to node 19. We removed the

line between nodes 13 and 62 so that this traffic could not get

to 19 by heading west, out of the loop. Nodes 26, 38, and 17

sent 10 packets per second, while nodes 13 and 53 sent 20 packets

89

f Report No. 4088 Bolt Beranek and Newman Inc.

4 per second. All packets were 1192 bits long. This amounts to

, 83.4 Kilobits per second of traffic. Since this is too much

traffic to be sent to TENEX, we were not able to collect tagged

packets from all five sources at the same time; rather, we

collected tagged packets from two sources at a time. Therefore,

I we should not attempt to compare the absolute numbers of packets

sent from each source but only the percentages.

It is easy to see that there is no way this 83.4 kbps can be

delivered to node 19 without overloading the neighboring IMPs.

Node 19 can receive traffic over two 50 kbps lines. However, if

53, 38, and 26 all sent their traffic into 19 over the same line,

there is 48 Kilobits per second on a single line, not counting

any user traffic, or retransmissions on that line. This is more

traffic than can be handled. (This is especially true since the

line from 26 to 19 is 19's line number 3, i.e., it is the least

favored of 19's three modems.) But any other routing pattern

results in more than 50 kbps of traffic on a 50 kbps line.

The results are quite interesting. Node 17 sent almost 100%

of its traffic to 19 on the one-hop path (99.88%, to be exact).

Node 26, the other neighbor of 19, sent only 94% of its traffic

on the one-hop path, and 6% going around the loop the long way.

The next neighbors, 38 and 13, each split their traffic in about

an 80/20 ratio, with the majority of the traffic taking the

min-hop route. Node 53 split its traffic in a 68/32 ratio, with

ii - 90 -I _

Report No-. 4088 Bolt Beranek and Newman Inc.

the majority taking the more lightly loaded path, which was also

the path with less delay. The most interesting result of this

experiment is the fact that the routing was such as to equalize

Sthe average amount of our test traffic on the lines leading

towards 19. The line from 26 to 19 carried 41.4 kbps of traffic,

while the line from 17 to 19 carried 42.4 kbps. The line from 38

to 26 carried 33.1 kbps of traffic, while the line from 13 to 17

carried 33.6 kbps of traffic. Thus it appears that under heavy

load, the new routing scheme tends to equalize the average line

loading over the long term.

Appendix 5 contains the results of two experiments designed

to show how the routing behaves under more moderate loadings.

These are described below.

J_ a) In this experiment, nodes 38, 26, 13, and 17 were each

L set to send 19.5 kbps of traffic to node 19. This

results in a flow of 78 kbps to node 19, which is quite

, a high load for the ARPANET. Nevertheless, all traffic

traveled in the min-hop routes.

b) In the second experiment, each of nodes 45, 34, 21, 16,
I 51, and 2 sent about 2500 bits per second to node 15.

All traffic was min-hop, except for that from 21, which

split about evenly between the 3-hop path and the 4-hop

path. It is interesting that the 4-hop path from 21

- -91-

Report No. 4088 Bolt Beranek and Newman Inc.

contains a 230.4 kbps line, the line from 16 to 15.

This experiment shows that the new routing scheme is

able to take advantage of lines of differing speeds. It

also shows that routing tends to be min-hop under light

loads.

The results of these traffic tests can be summarized as

j follows:

i) The new routing scheme is capable of detecting

congestion, ana will route traffic around congested

areas.

ii) Routing loops only occur as transients, and packets

never travel any node more than twice. However, the

actual size of the loop can be many hops, resulting in a

long delay for packets whioh do loop.

iii) Traffic tends to be routed rain-hop in the absence of any

special circumstances.

iv) Under heavy load, the new routing scheme does not give

optimal routing (which would be impossible for any

single-path algorithm). However, it does not oscillate

wildly between bad routing patterns.

5. Characteristics of individual packet delays. In our

first semiannual report, we presented data showing that the

-92-

LE

aReport No. 4088 Bolt Beranek and Newman Inc.

delays of individual packets traversing a line are much more

* variable than would be expected. In particular, even when enough

traffic is placed over the line to saturate it, many packets

still show very low delays. We could not explain why the delays

were so variable, but we speculated that much of the variability

might be due to various side-effects of the old routing scheme.

Now that we have the ability to turn the old routing off, we have

gathered some more data on packet delays to see if turning off

the old routing causes any major change in the characteristics of

the packet delays. It does not. Figures 6-2 and 6-3 plot packet

delay vs. time on the line between IMPs 12 and 24, and between 24

Sand 25, respectively. These plots were obtained by sampling

every tenth packet through the IMP. In each plot, we first

sampled only the ordinary user traffic for several minutes, then

H turned on a message generator to saturate the line, then turned

it off again after about 10 minutes. (Full details of the

experimental technique can be found in the first semiannual

{ report.) Even though the old routing was turned off during these

experiments, the extreme variability in delay remains. We still

L!• do not kncw whether this variability can be explained by queueing

theory, or whether it is due to some sub-optimality in the IMP

V protocols or software. We are currently investigating this

phenomenon by simulation, and will continue to look for the

correct explanation.

i1
1 ~93

lk-

Report No. 4088 Bolt Beranek and Newman Inc.

00

Ln

LU

(M~

0, U, .. ., . :C\I

in

f I.

VI.

3OW NI HiBO

U - 94 -

'Lil
he-port No. 4088 Bolt Beran'--k and Newman Inc.

in

In

Ur)

N N

CM

A in

I -qA

M MM

1-4 ..) to U

.SW NI* **.4*3.

*~.d~W% **~~.* .*J . .95~'

Report No. 4088 Bolt Beranek and Newman- Inc-.

To summarize, the new routing scheme seems to be working

about as expected. While it does not result in optimal routing,

it does perform well, and is successful in eliminating maiy of

I the problems associated with the old routing scheme. We have not

encountered any unforeseen problems with the new routing -- its

overhead is low, it results in good routing patterns, and it does

not suffer from undesirable feedback effects. We are now ready

to operate the network with the new routing scheme, removing the

old routing for good.

Sjo

I

-96-

Ni]

Report No. 4088 Bolt Beranek and Newman Inc.

7. BUFFER MANAGEMENT IN THE HONEYWELL 316/516 IMP

7.1 Introduction

Many congestion control schemes work by dividing the buffer

pool into several smaller pools, and associating each of these

pools with a particular function. By setting a lower limit on

the size of a pool, one can ensure that there are always a

certain minimum number of buffers available to serve the

associated function. By setting an upper limit on the size of a

pool, one can ensure that no more than a certain maximum number

of buffers are devoted to the associated function. The way in

which these maximum and minimum values are chosen determines the

relative priority of the various functions. That is, if several

functions are competing for a lim:.ted number of buffers, the

competition is arbitrated by the maximum and minimum sizes of the

H •various pools. As a prelude to considering congestion control

• Ischemes for the ARPANET, we have investigated the current buffer

management scheme. The purpose of this chapter is to describe

that scheme.

The IMP maintains four buffer counters, each of which

specifies the number of buffers currently dedicated to specific

functions. The counters are:

1) Free- the free count is just the number of free

Ii (unused) buffers.

-. 97-

Report No. 4088 Bolt Beranek and Nawman Inc.

2) Store-and-forward - this counts the number of buffers in

use by the modem-out process, which includes:

a) Buffers which are queued for transmission on an
inter-IMP trunk.

b) Buffers awaiting acknowledgement over an inter-IMP

trunk.

c) Buffers currently in transmission on an inter-IMP
trunk.

d) Buffers which were formerly queued for transmission
on an inter-IMP trunk which went down.

It is, however, possible for a buffer to be in one of

the above categories witiout being counted as

store-and-forward. This shall be discussed later.

3) Allocated -- This counts the number of buffers which

have been pre-allocated by the source-destination

protocol. An allocated buffer also counts as free until

the packet for which it was allocated arriies.

4. 4) Reassembly -- This counts the number of buffers

correctly in use by all other functions.

It is also possible for buffers to be uncounted. There "s a

period of time after a buffer is no longer free, but before the

IMP has decided lwat to do with it.

This is illustrated in Figure 7-1. When a packet arrives

from a neighboring IMP, the "modem in" process gets a free buffer

-98-

Report No. 4088 Bolt Beranek and Newman Inc.

REEEHost

FREModem UN- T ES Host"R"• ~COUNTE'''r' SEM&L Y Ok. .t

i ,

Modem STORE-FORWARD Modem FRE

out out

BUFFER MANAGEMENT IN THE 316/516 IMP

Figure 7-1

- 99 -

I Report No. 4088 Bolt Beranek and Newman I-nc-.

for it, and places the buffer on the queue for the TASK process.

The buffer is uncounted until TASK looks at it and determines how

it should be counted. However, not all buffers on the TASK queue
are uncounted. When packets are queued for transmission on a

line which then goes down, these packets are replaced on the TASK

queue for forwarding over a live line. These packets are always

counted as store-and-forward even while they are on the TASK

queue. Buffers which contain input from a real ot iie host, or

SI which contain end-end control packets, are placed on the TASK

queue so TASK can decide how to forward them to their

destinations. These packets are counted in reassembly while they

are on the TASK rueue.

A packet which is removed from the head of the TASK queue

must either be sent to a neighboring IMP, or not. In the former

case, it must be counted as store-and-forward; in the latter case

as reassembly. However, there is a maximum value above which

TASK is not allowed to increase these counters. If TASK cannot

process a packet without increasing some counter above the

maximum, TASK will refuse the packet. In the case of a packet

j which has arrived from a neighboring IMP (i.e., an uncounted

packet), the packet will be dropped without acknowledgement,

L Jcausing the neighboring IMP to send it again later. When other

j! types of packets are refused, they are held in the IMP and

resubmitted to TASK later.

-100-

i i _ _ _ _ w ~ m ~ m mmm mmmmm mm

Report No. 4088 Bolt Ber'inek and-Nýewman In-c.

7.2 Description of Buffer Counters

7.2.1 Allocated

Buffers which are allocated by the source-destination

protocol are counted Ls follows. When the allocate request is

granted, the allocate count is increased by 1 or by 8, as

appropriate. However, the allocated buffers still count as free,

not as reassembly (and they remain on the fret queue.) When the

first packet of the allocated message arrives, the allocate count

is decreased by 1 or 8, and the reassembly count correspondingly

increased. However, the free count is only decremented as each

individual buffer is removed from the free queue, as each

individual packet of the allocated message arrives.

7.2.2 Store and Forward

Let m be the number of modems (i.e. inter-IMP trunks) at a

-i particular IMP. Then the most buffers which can be in use by

FI modem-out at any one time (call it SFMAX) is 6 + 2m, if there is

no 16-channel satellite line. if there is a 16-channel line,

SFMAX is 13 + 2"(m+I). (The assumption is that a 16-channel line

is entitled to 8 extra buffers for output and one extra buffer

for input.)

There is also a minimum number of buffers which must be

available for use by modem-out. That is, this number of buffers

1

- 101 -

Report No. 4088 Bolt Beranek and Newman Inc-.

(call it SFMIN) cannot, under any circumstances, be counted as

•! reassembly or allocated. SFMIN is usually 3m, but there is one

exception. Let B be the total number of buffers in the IMP. If

(B-SFMIN) mod 8 = 0, then SFMIN is set to 3m-1. The reason for

this will become apparent later. Note also that with both SFMIN

and SFMAX, m is never taken as less than 2, even if the IMP is

actually a stub.

The actual mechanism for adjusting the store-and-forward

count is controlled by two parameters in the IMP known as MAXS

and MINF. MAXS = SFMAX - m. MINF is set to a constant 3. When

TASK processes a packet, and determines that the packet needs to

go out a particular modem, it checks to see whether any oiher

packets are either queued for, in transmission on, or awaiting

acks on that modem. If not, then the packet is queued for the

modem, and no adjustments are made to the store-and-forward

count. This ensures that at least one packet can always be

transmitted on each line, no matter how many packets are being

transmitted on the other lines. (Failure to guarantee this can

lead to direct store-and-forward lockup.) However, this means

that one buffer per line is uncounted. If at least one other

packet is either queued for or awaiting acks on that modem, then

the following two checks are made:

a) Is the difference between the free count and the

allocate count greater than MINF? (i.e are there MINF

free buffers which have not been allocated?)

-102-

Report No. 4088 Bolt Beranek and Newman Inc.

b) Is the store-and-forw'ard count less then MAXS?

If both these questions are answered affirmatively, then the

packet can be queued for the modem (if certain other checks are

passed, such as availability of a logical channel.) If it is

queued for the modem, then the store-and-forward count is

incremented by one.

When a packet is acked, its buffer is freed, and the

store-and-forward count is decremented by one. There is one

exception. If the time comes to free a buffer, and at that time

there are no other buffers queued for that modem or awaiting

acknowledgement over that modem, then the store-and-forward count

is not decremented. This special case is necessary since one

buffer on each line is uncounted.

If a line goes down, so that all the packets transmitted on

it or queued for it have to be re-routed, the store-and-forward

count is incremented by one. This ensures that each re-routed

buffer is counted as store-and-forward, even if it was previously

uncounted.

In summary, the purpose of these mechanisms is to ensure

that:

a) A certain minimum number of buffers are always available

for modem-out.

- 103 -

Report No. 4088 Bolt Beranek and Newman Inc.

§ b1) A certain minimum number of buffers are never available

for modem-out, so that modem-out cannot lock out other

processes.

c) It is always possible to have at least one packet in

flight on each inter-IMP line, regardless of the IMP's

buffer utilization condition. This prevents direct

store-and-forward lockups.

7.2.3 Reassembly

p The reassembly count is controlled by the parameter MAXR.

At initialization time, MAXR is set to B - SFMIN. Note that MAXR

cannot be a multiple of 8, because of the way SFMIN is computed.

Any process requesting a buffer which would have to be counted as

reassembly must specify a parameter p. The following two checks

must be made.

a) Is the sum of the allocate count and the reassembly

count less than the difference between MAXR and p?

b) Is the difference between the free count and the

allocate count less than the sum of MINF and p?

Only if these two questions are answered affirmatively can a

reassembly buffer (or an allocate buffer) be obtained. When the

two questions can be answered affirmatively, that means that the

number of free buffers is at least MINF+p, and that at least p of

those can still be taken for reassembly, if that should prove

necessary.

- 104

Report No. 4088 Bolt Beranek and Newman Inc.

The value of p that is used by a particular process when

trying to get a buffer establishes that process's priority in

obtaining buffers (i.e., a process which uses p=O can get the

last buffer, subject of course to the MAXR check). The processes

which need reassembly buffers, and the values of p they u-?: are

as follows:

1) Creating control packets: p=O

A process which needs to send an end-to-end control

packet is allowed to take the last reassembly buffer.

2) Ordinary host input: p=2

The IMP will not accept a packet from a host unless two

free buffers remain in the reassembly pool.

3) Unallocated single packet messages, including raw

packets: p=2

The IMP will not accept unallocated single packet

messages for host output unless two free buffers remain

in the reassembly pool.

14) Allocated single packet messages: p=1

The IMP will not pre-allocate a buffer for a single

packet message unless one free buffer remains in the

reassembly pool.

5) Allocated multi-packet messages: p:9

The IMP will not pre-allocate a buffer for a

multi-packet message unless there are enough free

buffers available for the reassembly pool to hold all

105

Report No. 4088 Bolt Beranek and Newman Inc*.

eight packets of the message, plus an additional free

buffer.

6) Packets to be sent to the teletype in the NCC: p=8

When a packet has a checksum error, it will be sent to a

special diagnostic teletype in the NCC, as long as there

are still eight free buffers in the reassembly pool.

7) Packet core message received from a dead IMP: p=2

"Packet core" is the name of a special protocol used for

communication between the NCC and an IMP which is in its

loader/dumper.

8) Packet core message to be sent to a dead IMP: p=O

7.2.4 Uncounted

Ordinarily, the receipt of a packet on one of the IMP's

lines causes a buffer to go from "free" to "uncounted". There

is, however, one exception. When a packet is received, it is

ordinarily placed on the TASK queue. However, before this is

done, the IMP tries to get a free buffer to use for receiving the

next packet. If there are no free buffers, then the buffer will

not be placed on the TASK queue. Rather, it will be retained for

the next input. The effect of this is to discard the packet

without acknowledgement, causing the neighboring IMP to

retransmit it at a later time.

- 106 -

II

Report No. 4088 Bolt Beranele and Newman Inc.

7.3 Possible Improvements

Whenever a packet is received from a neighboring IMP, any

acknowledgements which have been piggy-backed in that packet

should always be processed, since processing of the

acknowledgements may enable the IMP to free some of its

store-and-forward buffers. However, when a pzcket arrives, and

takes the last free buffer, the packet is discarded, and its

piggybacked acknowledgements are not looked a'.. This may cause

buffers to remain occupied when they could be freed. That is,

the time when it is most important to free buffers az soon as

possible is the time when buffers are least likely to be freed.

There does not seem to be any reason not to process the

acknowledgements, and failure to do so degrades the IMP's

performance unnecessarily. Furthermore, it is not clear that the

packet should be discarded at all, even after its

acknowledgements are processed. Presumably, the reason for

discarding the packet is so that its buffer can be re-used to

receive the next input, which otherwise would be lost due to lack

of buffers. However, there seems to be little point to throwing

away one input so that the next can be received.

When TASK checks the buffer counts to see whether it is

permissible to "move" a buffer into store-and-forward or

reassembly, it does not check to see how the buffer is currently

j counted. Rather, it assumes, falsely, that all buffers in the

-107-

Report No. 4088 Bolt Beranek ard Newman Inc.

TASK queue are uncounted. This leads. to two sorts of problems.

Recall that TASK will almost always refuse a buffer if there are

not 3 free buffers in the IMP. The apparent assumption is that a

refused buffer will be freed, bringing the free buffer pool

closer to its minimum acceptable value. This assumption is true

in the case of uncounted buffers, which will be freed if they are

refused by TASK, but it is not true in the case of buffers which

are already counted in store-and-forward or reassembly. These

buffers will not be freed if refused. Rather, they will simply

be held and resubmitted to TASK later. Refusing such buffers

therefore actually delays their being freed, which is exactly the

opposite of what is intended.

A related problem arises if the store-and-forward count has

already reached its maximum value. Then TASK will refuse all

buffers which have to be forwarded to a neighboring IMP (except

in the special case where no packet is queued for or in flight to

that IMP.) TASK will refuse a buffer for this reason, even if

the buffer is already counted in store-and-forward. Again, this

is a counter-productive strategy. Accepting a buffer which is

already counted in store-and-forward cannot possibly increase the

store-and-forward count, so there is no reason to refuse it.

Since buffers on the TASK queue which are already in

store-and-forward are only those buffers which had to be

re-routed due to a line failure, this problem causes the network

to be slower to respond to a line failure than is necessary.

S1o8

-108

Report No. 4088 Bolt Beranek and Newman Inc.

APPENDIX 1 -- SAMPLE TEST OUTPUT

In chapter 5 we discussed certain measurements which were

Smade by keeping counters in the IMP. This appendix contains some

sample computer output generated after collecting these counters.

These measurements were made while the network was running in

state V (see chapter 5), and they cover a period of slightly more

than one hour. The meaning of each measurement is discussed in

chapter 4. The interpretation of the text labels is as follows:

DUPL CURR UPDATES -- number of routing update messages

received which, although current, are duplicates of

previously received ones.

RCVD SPURIOUS RTS -- number of spurious retransmissions

received.

UPDATES GENERATED -- number of routing update messages

generated by this source IMP.

RETRANS n -- number of retransmissions of routing update

messages from this IMP to IMP n.

I DELAY CHANGES-- number of line updates which report changes

f - in delay.

POSS. TREE CHANGES -- number of line updates which may cause

changes in this IMP's shortest-path tree.

LINE UPDATES -- total number of line updates received.

- UPDATE PACKETS -- total number of update packets processed.

-109-

Report No. 4088 Bolt Beranek and Newman Inc.

AVERAGE QUEUE -- average length of routing update queue when
new update arrives.

MAX QUEUE -- maximum length of routing update queue.

FRACTION OF DELAY CHANGES -- number of delay changes divided

by number of line updates.

FRACTION POSS. CHANGES IN TREE -- number of line updates

which may cause changes in tree divided by total number of

line updates.

LINES PER PACKET -- number of line updates divided by number

of update packets.

The output is ordered by IMP in decreasing order of

distance from the NCC.

36. HAWAII

DUPL CURR UPDATES 34757
RCVD SPURIOUS RTS 33664
UPDATES GENERATED 137
RETRANS 15 963
DELAY CHANGES 5235
POSS. TREE CHANGES 2013
LINE UPDATES 11479
UPDATE'PACKETS 4975
AVERAGE QUEUE 0.03457286
MAX QUEUE 2
FRACTION OF DELAY CHANGES 0.456050172
FRACTION POSS. CHANGES IN TREE = 0.175363704
LINES PER PACKET 2.307336568

-110-

Report No. 4088 Bolt Beranek and Newman Inc.

15. AMES15

DUPL CURR UPDATES 49980
RCVD SPURIOUS RTS 1033
UPDATES GENERATED 118
RETRANS 16 21
RETRANS 45 29
RETRANS 36 33913
RETRANS 11 9
DELAY CHANGES 5240
POSS. TREE CHANGES 1940
LINE UPDATES 11503
UPDATE PACKETS 4986
AVERAGE QUEUE 0.01965503
MAX QUEUE 2
FRA2TION OF DELAY CHANGES 0.455335408
FRACTION POSS. CHANGES IN TREE 0.168578378
LINES PER PACKET 2.308062553

45. MOFFETT

DUPL CURR UPDATES 5129
RCVD SPURIOUS RTS 40

SUPDATES GENERATED 94
RETRANS 15 7
RETRANS 34 6
DELAY CHANGES 5245

LPOSS. TREE CHANGES 1949
LINE UPDATES 11517
UPDATE PACKETS 4992

I AVERAGE QUEUE 0.02944711
MAX QUEUE 2
FRACTION OF DELAY CHANGES = 0.455413728
FRACTION POSS. CHANGES IN TREE 0.169228091
LINES PER PACKET 2.307091236

SI

g I

L9

I [!

- 111 -

Report No. 4088 Bolt Beranek and Newman Inc.

34. LBL

DUPL CURR UPDATES 10302
RCVD SPURIOUS RTS 129
UPDATES GENERATED 98
RETRANS 21 17
RETRANS 4 51
RETRANS 45 11
DELAY CHANGES 5257
POSS. TREE CHANGES 1911
LINE UPDATES 11574
UPDATE PACKETS 5016
AVERAGE QUEUE 0.03189792
MAX QUEUE 2
FRACTION OF DELAY CHANGES 0.454207703
FRACTION POSS. CHANGES IN TREE = 0.165111452
LINES PER PACKET = 2.307416200

21. LLL

DUPL CURR UPDATES 5180
RCVD SPURIOUS RTS 44
UPDATES GENERATED 94
RETRANS 2 9
RETRANS 34 13
DELAY CHANGES 5268
POSS. TREE CHANGES 1836
LINE UPDATES 11608
UPDATE PACKETS 5031
AVERAGE QUEUE 0,02663486
MAX QUEUE 2
FRACTION OF DELAY CHANGES 0.453824937
FRACTION POSS. CHANGES IN TREE 0.158166781
LINES PER PACKET 2.307294726

I

-12

i1_

SIs

Report No. 4088 Bolt Beranek and Newman Inc.

16. AMES16

DUPL CURR UPDATES 5173
RCVD SPURIOUS RTS 48
UPDATES GENERLTED 92
RETRANS 15 26
RETRANS 51 6
DELAY CHANGES 5273
POSS. TREE CHANGES 1890
LINE UPDATES 11626
UPDATE PACKETS 5039
AVERAGE QUEUE 0.03076007
MAX QUEUE 2
FRACTION OF DELAY CHANGES 0.453552380
FRACTION POSS. CHANGES IN TREE = 0.162566654
LINES PER PACKET = 2.307203769

51. SR151
DUPL CURR UPDATES 5160

RCVD SPURIOUS RTS 16
UPDATES GENERATED 83
RETRANS 16 29
RETRANS 2 28
DELAY CHANGES 5278
POSS. TREE CHANGES 1820

. LINE UPDATES 11630
UPDATE PACKETS 5043
AVERAGE QUEUE 0.02716636

, MAX QUEUE 3
FRACTION OF DELAY CHANGES 0.453826308
FRACTION POSS. CHANGES IN TREE 0.156491830
LINES PER PACKET 2.306166887

|I-

i - 113 -

Report No. 4088 Bolt. Beranek and Newman Inc.

2. SR12

DUPL CURR UPDATES 10311
RCVD SPURIOUS RTS 84
UPDATES GENERATED 89
RETRANS 51 11
RETRANS 32 11
RETRANS 21 27
DELAY CHANGES 5283
POSS. TREE CHANGES 1767
LINE UPDATES 11671
UPDATE PACKETS 5059
AVERAGE QUEUE 0.01858074
MAX QUEUE 2
FRACTION OF DELAY CHANGES 0.452660426
FRACTION POSS. CHANGES IN TREE = 0.151400901
LINES PER PACKET = 2.306977629

32. XEROX

DUPL CURR UPDATES 5255
RCVD SPURIOUS RTS 53
UPDATES GENERATED 90
RETRANS 2 47
RETRANS 43 1
DELAY CHANGES 5292
POSS. TREE CHANGES 1744
LINE UPDATES 11711
UPDATE PACKETS 5077
AVERAGE QUEUE 0.03210557
MAX QUEUE 2I FRACTION OF DELAY CHANGES 0.451882839
FRACTION POSS. CHANGES IN TREE 0.148919813
LINES PER PACKET 2.306677103

11

- 114 -

Report No. 4088 Bolt Beranek and Newman Inc.

56. SUMEX

DUPL CURR UPDATES 5229
RCVD SFURNOUS RTS 41
UPDATES GEWEr.'ATED 93
RETRANS 433
RETRANS i I
DELAY CHANGES 5299
POSS. TREE CHANGES 1857
LINE UPDATES 11717

UPDATE PACKETS 5081
AVERAGE QUEUE 0.01574493
MAX QUEUE 2
FRACTIUN OF DELAY C;IANCES 0.452248356
FRACTION POSS. CHANGES IN TREE : 0.158437662
LINES PER PACKET = 2.306042075

43. TYMSHhRE

DUPL CURR UPDATES 10386
RCVD SPURIOUS RTS 63
UPDATES GENERATED 78
RETRANS 32 42
RETRANS 33 11
RETRANS 56 30
DELAY CHANGES 5302
POSS. TREE CHANGE6 707
.LINE UPDATES 11733

UPDATE PACKETS 5089
AVERAGE QUEUE 0.01434466

MAX QUEUE~ 2
- I L FRACTION OF DELAY CHA.'GES 0.451887831

FRACTION POSS, CHANGES IN TREE 0.145487084
LINES PER PACKET 2.305560946

115

Report No. 4088 Bolt Beranek and Newman rno.

11. STANFORD

DUPL CURR UPDATES 10569
RCVD SPURIOUS RTS 59
UPDATES GENERATED 98
RETRANS 15 49
RETRANS 22 159
RETRANS 56 11
DELAY CHANGES 5310
POSS. TREE CHANGES 2010
LINE UPDATES 11806
UPDATE PACKETS 5120SAVERAGE QUEUE 0.04472656
MAX QUEUE 2
FRACTION OF DELAY CHANGES z 0.449771299
FRACTION POSS. CHANGES IN TREE 0.170252412
LINES PER PACKET 2.305859327

22. ISI22

DUPL CURR UPDATES 10865
RCVD SPURIOUS RTS 211
UPDATES GENERATED 98
RETRANS 11 35
RETRANS 48 31
RETRANS 52 277
DELAY CHANGES 5328
POSS. TREE CHANGES 2041
LINE UPDATES 11831
UPDATE PACKETS 5130
AVERAGE QUEUE 0.01968810
MAX QUEUE 2
FRACTION OF DELAY CHANGES 0.450342312
FRACTION POSS. CHANGES IN TREE 0.172512888
LINES PER PACKET 2.306237697

I

Ii

- 116 -

S•• -- • • --- •

Report No. 4088 Bolt Beranek and Newman Inc.

35. ACCAT

DUPL CURR UPDATES 155
RCVD SPURIOUS RTS 87
UPDATES GENERATED 68
DELAY CHANGES 5336
POSS. TREE CHANGES 2029
LINE UPDATES 11854 SUPDATE PACKETS 5141
AVERAGE QUEUE 0.03676327
MAX QUEUE 3
FRACTION OF DELAY CHANGES 0.450143396
FRACTION POSS. CHANGES IN TREE = 0.171165846
LINES PER PACKET = 2.305777072

52. ISI52

DUPL CURR UPDATES 10536
RCVD SPURIOUS RTS 41
UPDATES GENERATED 92
RETRANS 7 29
RETRANS 22 16
RETRANS 35 87
DELAY CHANGES 5345
POSS. TREE CHANGES 2017
LINE UPDATES 11894
UPDATE PACKETS 5160
AVERAGE QUEUE 0.02403100
MAX QUEUE 2
FRACTION OF DELAY CHANGES 0.449386239

÷ FRACTION POSS. CHANGES IN TREE 0,169581294
LINES PER PACKET 2.305038690

117

f

Report No. 4088 Bolt Beranek and Newman Inc.

7. RAND

DUPL CURR UPDATES 5361
RCVD SPURIOUS RTS 67
UPDATES GENERATED 89
RETRANS 23 23 '
RETRANS 52 14 L
DELAY CHANGES 5351
POSS. TREE CHANGES 1933
LINE UPDATES 11932
UPDATE PACKETS 5176
AVERAGE QUEUE 0.03265069
MAX QUEUE 2
FRACTION OF DELAY CHANGES 0.448457926
FRACTION POSS. CHANGES IN TREE = 0.162001334
LINES PER PACKET = 2.305254936

23. USC

DUPL CURR UPDATES 5355
RCVD SPURIOUS RTS 45
UPDATES GENERATED 86
RETRANS 7 38
RETRANS 1 10
DELAY CHANGES 5357
POSS. TREE CdANGES 1821
LINE UPDATES 11951
UPDATE PACKETS 5185
AVERAGE QUEUE 0.03529411
MAX QUEUE 3
FRACTION OF DELAY CHANGES 0.448247000
FRACTION POSS. CHANGES IN TREE 0.152372181
LINES PER PACKET = 2.304917931

[IJ

Fi

-118

Li
-11-_

L , -

Report No. 4088 Bolt Beranek and Newman Inc.

1. UCLA

DUPL CURR UPDATES 5569
RCVD SPURIOUS RTS 266
UPDATES GENERATED 84
RETRANS 23 22
RETRANS 33 15
DELAY CHANGES 5358
POSS. TREE CHANGES 1706
LINE UPDATES 11958
UPDATE PACKETS 5187
AVERAGE QUEUE 0.02024291
MAX QUEUE 2
FRACTION OF DELAY CHANGES 0.448068231
FRACTION POSS. CHANGES IN TREE z 0.142665997
LINES PER PACKET 2.305378794

33. NPS

DUPL CURR UPDATES 11692
RCVD SPURIOUS RTS 631
UPDATES GENERATED 79
RETRANS 43 59
RETRANS 1 256
RETRANS 59 323
DELAY CHANGES 5363
POSS. TREE CHANGES 1665
LINE UPDATES 11973
UPDATE PACKETS 5194

H AVERAGE QUEUE 0.03754331
MAX QUEUE 3
FRACTION OF DELAY CHANGES z 0.447924494
FRACTION POSS. CHANGES IN TREE 0.139062888

~J ULINES PER PACKET 2.305159687

I11

L I

- 119 -

Report No. 4088 Bolt Beranek and Newman Inc.

48. AFWL

DUPL CURR UPDATES 5861
RCVD SPURIOUS RTS 304
UPDATES GENERATED 90
RETRANS 22 36
RETRANS 62 225
DELAY CHANGES 5372
POSS. TREE CHANGES 2079
LINE UPDATES 12024
UPDATE PACKETS 5218
AVERAGE QUEUE 0.03583748
MAX QUEUE 3
FRACTION OF DELAY CHANGES = 0.446773111
FRACTION POSS. CHANGES IN TREE 0.172904185
LINES PER PACKET 2.304331064

4. UTAH

DUPL CURR UPDATES 5693
RCVD SPURIOUS RTS 200
UPDATES GENERATED 88
RETRANS 34 110
RETRANS 25 72
DELAY CHANGES 5376
POSS. TREE CHANGES 2029
LINE UPDATES 12041
UPDATE PACKETS 5225
AVERAGE QUEUE 0.03502392

LMAX QUEUE 2
FRACTION OF DELAY CHANGES = 0.446474537

jFRACTION POSS. CHANGES IN TREE = 0.168507598
LINES PER PACKET 2.304497599

-120-

Report No. 4088 Bolt Beranek and Newman Inc.

25. DOCB

DUPL CURR UPDATES 5768
RCVD SPURIOUS RTS 238
UPDATES GENERATED 84
RETRANS 4 150
RETRANS 24 70
DELAY CHANGES 5381
POSS. TREE CHANGES 2033
LINE UPDATES 12070
UPDATE PACKETS 5237
AVERAGE QUEUE 0.03532556
MAX QUEUE 2
FRACTION OF DELAY CHANGES 0.445816069
FRACTION POSS. CHANGES IN TREE = 0.168434128
LINES PER PACKET = 2.304754614

24. GWC

DUPL CURR UPDATES 5705
RCVD SPURIOUS RTS 184
UPDATES GENERATED 88
RETRANS 12 35
RETRANS 25 169
DELAY CHANGES 5389
POSS. TREE CHANGES 1879
LINE UPDATES 12080
UPDATE PACKETS 5241
AVERAGE QUEUE 0.03186'414
MAX QUEUE 2
FRACTION OF DELAY CHANGES 0.446109265
FRACTION POSS. CHANGES IN TREE 0.155546352
LINES PER PACKET 2.304903626

- 121 -

Report No. 4088 Bolt Beranek and Newman Inc.

62. TEXAS

DUPL CURR UPDATES 5600
RCVD SPURIOUS RTS 250
UPDATES GENERATED 84
RETRANS 13 15
RETRANS 48 25
DELAY CHANGES 5400
POSS. TREE CHANGES 2056
LINE UPDATES 12118
"UPDATE PACKETS 5260
AVERAGE QUEUE 0.01806083
MAX QUEUE 2
FRACTION OF DELAY CHANGES: 0.445618078
FRACTION POSS. CHANGES IN TREE = 0.169664956
LINES PER PACKET 2.303802251

13. GUNTER

DUPL CURR UPDATES 8111
RCVD SPURIOUS RTS 219
UPDATES GENERATED 157
RETRANS 62 34
RETRANS 53 87
RETRANS 17 55
DELAY CHANGES 5411
POSS. TnEE CHANGES 2623
LINE UPDATES 12154
UPDATE PACKETS 5276
AVERAGE QUEUE 0.05079605
MAX QUEUE 3
FRACTION OF DELAY CHANGES = 0.445203214
FRACTION POSS. CHANGES IN TREE 0.2158137t8
LINES PER PACKET 2.303639054

- 122 -

|r

Report No. 408 Bolt Beranek and Newman Inc.

53. EGLIN

"DUPL CURR UPDATES 5726
RCVD SPURIOUS RTS 185
UPDATES GENERATED 152
RETRANS 13 10
RETRANS 38 105
DELAY CHANGES 5423
POSS. TREE CHANGES 2616
LINE UPDATES 12186
UPDATE PACKETS 5290
AVERAGE QUEUE 0.03440453
MAX QUEUE 2
FRACTION OF DELAY CHANGES 0.445018872
FRACTION POSS. CHANGES IN TREE = 0.214672572
LINES PER PACKET = 2.303591609

28. ARPA

DUPL CURR UPDATES 179
RCVD SPURIOUS RTS 84
UPDATES GENERATED 95
DELAY CHANGES 5434
POSS. TREE CHANGES 2554
LINE UPDATES 12232
UPDATE PACKETS 5312
AVERAGE QUEUE 0.04442770
MAX QUEUE 2

_ FRACTION OF DELAY CHANGES 0.4442445r3
FRACTION POSS. CHANGES IN TREE O.L08796598
LINES PER PACKET 2.302710771

-123 -

Report No. 4088 Bolt Beranek and Newman Inc.

17. MITRE

DUPL CURR UPDATES 11127
RCVD SPURIOUS RTS 82
UPDATES GENERATED 129
RETRANS 13 194
RETRANS 19 11
RETRANS 28 85
DELAY CHANGES 5441
POSS. TREE CHANGES 2515
LINE UPDATES 12258
UPDATE PACKETS 5322
AVERAGE QUEUE 0.04998120
MAX QUEUE 3
FRACTION OF DELAY CHANGES 0.443873375
FRACTION POSS. CHANGES IN TREE 0.205172128
LINES PER PACKET 2.303269386

38. BRAGG

DUPL CURR UPDATES 5817
RCVD SPURIOUS RTS 230
UPDATES GENERATED 152
RETRANS 26 11
RETRANS 53 97
DELAY CHANGES 5452
POSS. TREE CHANGES 2604
LINE UPDATES 12290
UPDATE PACKETS 5336
AVERAGE QUEUE 0.05284857
MAX QUEUE 3
FRACTION OF DELAY CHANGES = 0.443612679
FRACTION POSS. CHANGES IN TREE 0.211879573
LINES PER PACKET 2.303223371

- 124 -

3t

Report No. 4088 Bolt Beranek and Newman Inc.

26. PENTAGON

DUPL CURR UPDATES 5668
RCVD SPURIOUS RTS 80
UPDATES GENERATED 124
RETRANS 38 123
RETRANS 19 2
DELAY CHANCES 5462
POSS. TREE CHANGES 2495
LINE UPDATES 12329
UPDATE PACKETS 5354
AVERAGE QUEUE 0.04650728
M3X QUEUE 2
FRACTION OF DELAY C'!AdGES 0.443020507
FRACTION POSS. CHANGES IN TREE = 0.202368393
LINES PER PACKET = 2.302764177

19. NBS

DUPL CURR UPDATES 10941
RCVD SPURIOUS RTS 28
UPDATES GENERATED 106
RETRANS 17 28
RETRANS 29 22
RETRANS 26 69
DELAY CHANGES 5476
F ')SS. TREE CHANGES 2388
LINE UPDATES 12348
UPDhLTE PACKETS 5363
AVERAGE QUEUE 0.04586984
MA; QUEUE 2
FRACTION OF DELAY CHANGES = 0.443472623
FRACTION POSS. CHANGES iN TREE 0.193391636
LINES PER PACKET 2.3024142550

.i12

tL -- 1 5-

Report No. 4088 Bolt Beranek and Newman Inc.

12. DTI

DUPL CURR UPDATES 11105
RCVD SPURIOUS RTS 98
UPDATES GENERATED 110
RETRANS 59 11
RETRANS 24 I12
RETRANS 55 30
DELAY CHANGES 5476
POSS. TREE CHANGES 1829 U

LINE UPDATES 12367
UPDATE PACKETS 5371
AVERAGE QUEUE r.01582573
MAX QUEUE 2
FRACTION OF DELAY CHANGES 0.442791298
FRACTION POSS- [•ANGES IN TREE G.147893585
LINES PER PACKET • 2.302550673

55. ANL

DUPL CURR UPDATES 5691
"" RCVD SPURIOUS RTS 94

UPDATES GENERATED 107
RETRAYS 47 96
RETRANS 12 23
DELAY CHANGES 5482
POSS. TREE CHANGES 1936
LINE UPDATES 12384
UPDATE PACKETS 5378
AVERAGE QUEUE 0.02975C83
MAX QUEUE 2
FRACTION OF DELAY CHANGES 0.442667946
FRACTION POSS. CHANGES IN TREE : 0.156330741
LINES PER PACKET 2.302714705

- J

II-126 IL

Report No. 4088 Bolt Beranek and Newman Inc.

47. WPAFB

DUPL CURE UPDATES 5741
RCVD SPURIOUS RTS 128
UPDATES GENERATED 108
RETRANS 14 68
RETRANS 55 65
DELAY CHANGES 5489
POSS. TREE CHANGES 2031
LINE UPDATES 12409
UPDATE PACKETS 5390
AVERAGE QUEUE 0.03302411
MAX QUEUE 2
FRACTION OF DELAY CHANGES 0.442340224°
FRACTION POSS. CHANGES IN TREE 0.163671523
LINES PER PACKET = 2.302226305

14. CMU

DUPL CURR UPDATES 11134
RCVD SPURIOUS RTS 114
UPDATES GENERATED 128
RETRANS 47 33
RETRANS 50 18
RETRANS 18 47
DELAY CHANGES 5497
POSS. TREE CHANGES 2089
LINE UPDATES 12429
UPDATE PACKETS 5401
AVERAGE QUEUE 0.01870024

SMAX Y'>.UE 2
FRACTION OF DELAY CHANGES = 0.442272096
FRACTION POSS. CHANGES IN TREE 0.168074660
LINES PER PACKET 2.301240444

11

I -127-

Report No. 4088 Bolt Beranek and Newman Inc.

18. RADC

DUPL CURR UPDATES 5665
RCVD SPURIOUS RTS 84
UPDATES GENERATED 109
RETRANS 10 47
RETRANS 14 25
DELAY CHANGES 5508
POSS. TREE CHANGES 1992
LINE UPDATES 12459
UPDATE PACKETS 5412
AVERAGE QUEUE 0.03215077
MAX QUEUE 2
FRACTION OF DELAY CHANGES 0.442090049
FRACTION POSS. CHANGES IN TREE = 0.159884415
LINES PER PACKET = 2.302106380

10. LINCOLN

DUPL CURR UPDATES 11086
RCVD SPURIOUS RTS 62
UPDATES GENERATED 102
RETRANS 44 44
RETRANS 18 37
RETRANS 37 11
DELAY CHANGES 5511
POSS. TREE CHANGES 1832

|LINE UPDATES 12485
UPDATE PACKETS 5423
AVERAGE QUEUE 0.01512078
MAX QUEUE 1
FRACTION OF DELAY CHANGES 0.441409677
FRACTION POSS. CHANGES IN TREE 0.146736077
LINES PER PACKET 2.302231192

- 128 -

Report No. 4088 Bolt Beranek and Newman Inc.

44. MIT44

DUPL CURR UPDATES 5584
RCVD SPURIOUS RTS 44
UPDATES GENERATED 79
RETRANS 6 36
DELAY CHANGES 5513
POSS. TREE CHANGES 1859
LINE UPDATES 12497
UPDATE PACKETS 5428AVERAGE QUEUE 0.03389830
MAX QUEUE 2S FRACTION OF DELAY CHANGES 0.441145867

FRACTION POSS. CHANGES IN TREE = 0.148755699
LINES PER PACKET = 2.302321195

6. MIT6

DUPL CURR UPDATES 108
RCVD SPURIOUS RTS 36
UPDATES GENERATED 72
DELAY CHANGES 5519
POSS. TREE CHANGES 1857
LINE UPDATES 12525
UPDATE PACKETS 5441
AVERAGE QUEUE 0.02297371
MAX QUEUE 1
FRACTION OF DELAY CHANGES = 0.440638720
FRACTION POSS. CHANGES IN TREE 0.148263469
LINES PER PACKET 2.301966547

- 129 -

Report No. 4088 Bolt Beranek and Newman Inc.

20. DCEC

DUPL CURR UPDATES 208
RCVD SPURIOUS RTS 111
UPDATES GENERATED 97
DELAY CHANGES 5525
POSS. TREE CHANGES 2290
LINE UPDATES 12539
UPDATE PACKETS 5450
AVERAGE QUEUE 0.036(9724
MAX QUEUE 2
FRACTION OF DELAY CHANGES 0.440625235
FRACTION POSS. CHANGES IN TREE = 0.182630188
LINES PER PACKET = 2.300733923

50. DARCOM

DUPL CURR UPDATES 11205
RCVD SPURIOUS RTS 27
UPDATES GENERATED 134
RETRANS 14 23
RETRANS 29 11
RETRANS 20 111
DELAY CHANGES 5534
POSS. TREE CHANGES 2263
LINE UPDATES 12578
UPDATE PACKETS 5466
AVERAGE QUEUE 0.04024880
MAX QUEUE 2
FRACTION OF DELAY CHANGES 0.439974546
FRACTION POSS. CHANGES IN TREE = 0.179917313
LINES PER PACKET = 2.301134228

- 130 -

Report No. 4088 Bolt Beranek and-Newman Inc.-

29. ABERDEEN

DUPL CURR UPDATES 11204
RCVD SPURIOUS RTS 63
UPDATES GENERATED 143
RETRANS 46 30
RETRANS 19 18
RETRANS 50 8
DELAY CHANGES 5544
POSS. TREE CHANGES 2290
LINE UPDATES 12625
UPDATE PACKETS 5486
AVERAGE QUEUE 0.01239518
MAX QUEUE 1
FRACTION OF DELAY CHANGES = 0.439128711
FRACTION POSS. CHANGES IN TREE = 0.181386135LINES PER PACKET = 2.301312327

46. RUTGERS

DUPL CURR UPDATES 5705
RCVD SPURIOUS RTS 62
UPDATES GENERATED 110
RETRANS 29 30

L RETRANS 60 17
DELAY CHANGES 5551
POSS. TREE CHANGES 2144
LINE UPDATES 12644
UPDATE PACKETS 5496
AVERAGE QUEUE 0.03074963
MAX QUEUE 2

OR FRACTION OF DELAY CHANGES = 0.439022451
FRACTION POSS. CHANGES IN TREE 0.169566586
LINES PER PACKET 2.300582170

-131

Report No. 4088 Bolt Beranek and Newman Inc.

60. CORADCOM

DUPL CURR UPDATES 5707
RCVD SPURIOUS RTS 46
UPDATES GENERATED 123
RETRANS 46 32
RETRANS 58 11
DELAY CHANGES 5557
POSS. TREE CHANGES 1957
LINE UPDATES 12660
UPDATE PACKETS 5502
AVERAGE QUEUE 0.02653580
MAX QUEUE 2
FRACTION OF DELAY CHANGES 0.438941538
FRACTION POSS. CHANGES IN TREE = 0.154581353
LINES PER PACKET = 2.300981402

58. NYU

DUPL CURR UPDATES 5759
RCVD SPURIOUS RTS 85
UPDATES GENERATED 128
RETRANS 9 17SRETRANS 60 29

SDELAY CHANGES 5565
SPOSS. TREE CHANGES 1725

LINE UPDATES 12685
UPDATE PACKETS 5513
AVERAGE QUEUE 0.02122256
MAX QUEUE 2
FRACTION OF DELAY CHANGES = 0.438707128
FRACTION POSS. CHANGES IN TREE = 0.135987386
LINES PER PACKET 2.300925016

S- 132-

M&
747

Report No. 4088 Bolt Beranek and Newman Inc.

37. DEC

DUPL CURR UPDATES 5700
RCVD SPURIOUS RTS 58
UPDATES GENERATED 105
RETRANS 10 15
RETRANS 9 5
DELAY CHANGES 5573
POSS. TREE CHANGES 1659
LINE UPDATES 12713
UPDATE PACKETS 5525
AVERAGE QUEUE 0.01520361
MAX QUEUE 1
FRACTION OF DELAY CHANGES 0.438370168
FRACTION POSS. CHANGES IN TREE = 0.130496338
LINES PER PACKET 2.300995469

59. SCOTT

DUPL CURR UPDATES 12459
RCVD SPURIOUS RTS 504
UPDATES GENERATED 105
RETRANS 12 41
RETRANS 9 135
RETRANS 33 642
DELAY CHANGES 5579
POSS. TREE CHANGES 1639
LINE UPDATES 12737
UPDATE PACKETS 5536
AVERAGE QUEUE 0.02366329• iMAX QUEUE 2

FRACTION OF DELAY CHANGES 0.438015222
FRACTION POSS. CHANGES IN TREE 0.128680221
LINES PER PACKET 2.300758600

S- 1i33 -

Report No. 4088 Bolt Beranek and Newman Inc.

9. HARVARD

DUPL CURR UPDATFS 17132
x RCVD SPURIOUS RTS 150

UPDATES GENERATED 98
RETRANS 40 26
RETRANS 58 75
RETRANS 37 47
RETR!NS 59 150
DELAY CHANGES 5584
POSS. TREE CHANGES 1482
LINE UPDATES 12750
UPDATE PACKETS 5542
AVERAGE QUEUE 0.02959220
MAX QUEUE 2
FRACTION OF DELAY CHANGES = 0.437960773
FRACTION POSS. CHANGES IN TREE 0.116235293

ff LINES PER PACKET = 2.300613403

63. BBN63

DUPL CURR UPDATES 208
RCVD SPURIOUS RTS 133
UPDATES GENERATED 74
RETRANS 40 1
DELAY CHANGES 5586
POSS. TREE CHANGES 1423
LINE UPDATES 12769
UPDATE PACKETS 5550
AVERAGE QUEUE 0.01675675
MAX QUEUE 1
FRACTION OF DELAY CHANGES 0.437465727
FRACTION POSS. CHANGES IN TREE 0.111441772
LINES PER PACKET 2.300720691

-134-

Report No. 4088 Bolt Beranek and Newman Inc.

40. BBN40

DUPL CURR UPDATES 11353
RCVD SPURIOUS RTS 22
UPDATES GENERATED 78
RETRANS 49 23
RETRANS 9 1
RETRANS 63 133
DELAY CHANGES 5594
POSS. TREE CHANGES 1419
LINE UPDATES 12783
UPDATE PACKETS 5556
AVERAGE QUEUE 0.03779697
MAX QUEUE 5
FRACTION OF DELAY CHANGES 0.437612444
FRACTION POSS. CHANGES IN TREE = 0.111006803
LINES PER PACKET = 2.300755858

49. RCC49

DUPL CURR UPDATES 5656
RCVD SPURIOUS RTS 19
UPDATES GENERATED 72
RETRANS 5 124
DELAY CHANGES 5596
POSS. TREE CHANGES 1396
LINE UPDATES 12791

W UPDATE PACKETS 5559
AVERAGE QUEUE 0.03004137
MAX QUEUE 2
FRACTION OF DELAY CHANGES 0.437495112
FRACTION POSS. CHANGES IN TREE 0.109139237
LINES PER PACKET 2.300953388

I i~1"

S1 1

S~- 135 -

Report No. 4088 Bolt Beranek and Newman Inc.

5. RCC5

DUPL CURR UPDATES 196
RCVD SPURIOUS RTS 123
UPDATES GENERATED 73
RETRANS 49 1
DELAY CHANGES 5602
POSS. TREE CHANGES 1403
LINE UPDATES 12805
UPDATE PACKETS 5566
AVERAGE QUEUE 0.02317642
MAX QUEUE 1
FRACTION OF DELAY CHANGES 0.437485352
FRACTION POSS. CHANGES IN TREE 0.109566573
LINES PER PACKET 2.300574898

iJ

- 136 -

BN I
Report No. 4088 Bolt Beranek and Newman Inc.

APPENDIX 2 -- TRAFFIC TESTS

This appendix contains the results of 5 experiments

performed on 1/4/79. The experiments are discu3sed in chapter 6.

In all of these experiments, node 64 was sending 20 packets per

second to node 59, with each packet containing 1192 bits. Node

59 was set to refuse to acknowledge a certain fraction of the

traffic ai'riving from node 64. Modes 56 and 43 sent tagged

packets to node 9.

a) In this experiment, node 43 sent 10 packets per second to node

9, with each packet containing 1192 bits. Node 59 was set to

reject 80% of the traffic arriving from node 64.

SOURCE: 43 COUNT: 1836 DELAY: 317.51 MS.

PATH: 43-32- 2-21-34- 4-25-24-12-59- 9
COUNT: 879 DELAY: 312.30 48%

PATH: 43-56-11-22-48-62-13-17-19-29-46-58- 9
COUNT: 801 DELAY: 316.80 44%

PATH: 43-56-11-22-48-62-13-53-38-26-19-29-46-58- 9
COUNT: 75 DELAY: 358.07 4%

PATH: 43-56-11-15-45-34- 4-25-24-12-59- 9
COUNT: 80 DELAY: 342.64 4%

PATH: 43-32- 2-51-16-15-45-34- 4-25-24-12-59- 9
COUNT: 1 DELAY: 423.20 0%

PERCENTAGE OF LOOPING PACKETS : 0.00%
I AVERAGE PATH LENGTH =11.08 HOPS

A " 3

• • •-':o• •L• •'• • • •_ •-•-• •, •Tr-T•'•.• :-•d•;• •.•
• ,• Report No, 4088 Bolt Beranek and Newman Inc.

i i•,°1"' • • r• •, 9-•I

! ° •

• --1 i

) •' -- I

• -, . T• "•

• • •.- p..

, i t• ,m• '•i '.• • ,.•=I I.'.-!

S- 138 -

Report No. 4088 Bolt Beranek and Newman Inc.

b) In this exeriment, node 43 sent 10 packet& per second to node

9, and node 59 was set to reject 67% of the traffic arriving from

node 64.

SOURCE: 43 COUNT: 2010 DELAY: 499.68 MS.

PATH: 43-64-59- 9
COUNT: 557 DELAY:1103.97 28%

PATH: 43-32- 2-21-34- 4-25-24-12-59- 9
COUNT: 772 DELAY: 247.20 38%

PATH: 43-56-11-15-45-34- 4-25-24-12-59- 9
COUNT: 320 DELAY: 272.36 16%

PATH: 43-56-11-22-48-62-13-17-19-29-46-5
8 - 9

COUNT: 324 DELAY: 3U3.74 16%

PATH: 43-56-11-22-48-62-13-53-38-26-19-29-46-58- 9

A COUNT: 36 DELAY: 347.82 2%

PATH: 43-32- 2-32-43-64-59- 9
COUNT: 1 DELAY: 522.4OLOOP 0%

PERCENTAGE OF LOOPING PACKETS = 0.05%
AVERAGE PATH LENGTH 8.61 HOPS

- 139 -1'-

Report No. 4088 Bolt Beranek and Newman Inc.

L
a) In this experiment, node 43 sent 20 packets per seoond to node

-9 and node 59 was seu to reject 80% of the traffic arriving from

node 64,

SOURCE: 43 COUNT: 3798 DELAY: 422.02 MS.

PATH: 43-64-59- 9
COUNT: 84 DELAY:2140.69 2%

PATH: 43-32- 2-21-34- 4-25-24-12-59? 9

COUNT- 1192 DELAY: 387.08 31%

PATH: 43-56-11-15-45-34- 4-25-24-!2-59- 9
COUNT: 573 DELAY: 386.76 15a

PATH: 43-56-11-22-48-62-13-17-19-29-46-58- 9
COUNT: 1310 DELAY: 358.25 34%

PATH: 43-56-11-22-48-62-13-53-38-26-19-29-46-58- 9 I
COUNT: 525 DELf4: 409.79 14%

PATH: 43-64-33- 1-23- 7-52-22-48-62-13-17-19-29-
46-58- 9

COUNT: 82 DELAY: 505.93 2%

PATH: 43-32- 2-51-16-!5-45-34- 4-25-24-12-59- 9
COUNT: 29 DELAY: 440.19 1%

PATH: 43-32- 2-51-16-15-11-22-48-62-13-17-19-29-
46-58- 9

COUNT: 3 DELAY: 433.60 0%

PERCENTAGE OF LOOPING PACKETS = 0.00%
AVERAGE PATH LENGTH =11.40 HOPS

- 4f

I - 140-

I ---

j Report No. 4088 Bolt Beranek and Newman Inc.

d) In this experiment, node 43 sent 20 packets per second to node

9, and node 59 was set to reject 67% of the traffic arriving from

node 64.

SOURCE: 43 COUNT: 4151 DELAY: 531.07 MS.

PATH: 43-56-11-22-52- 7-23- 1-33-64-59- 9
COUNT: 79 DELAY:2015.56 2%

VATH: 43-32- 2-21-34- 4-25-24-12-59- 9
COUNT: 1751 DELAY: 272.28 42%

PATH: 43-56-11-22-.52-22-48-62-13-17-19-29-46-58- 9

COUNT: 1 DELAY: 380.8OLOOP 0%

IPATH: 43-56-11-22-52- 7-23- 7-52-22-48-62-13-17-19-
29-46-58- 9

'.OUNT: 1 DELAY: 480.OOLOOP 0%

PATH: 43-56,-11-22-52- 7-23- 1-23- 7-52-22-48-62-13-
17-19-29-46-58- 9

TLI COUNT: 4 DELAY: 913.60LOOP 0%

IL' PATH: 43-64-59- 9
COUNT: 787 DELAY:1223.5O 19%

i -I
PATH: 43-56-11-22-48-62-13-17-19-29-46-58- 9

COUNT: 778 DELAY: 367.79 19%

PATH: 43-56.-11-15-45-34- 4-25-24-12-59- 9
COUNT: 717 DELAY: 317.14 17%

PATH: 43-32- 2-32-43-64-59. 9
COUNT: 2 DELAY: 640.80LOOP 0%

PATH: 43-56-11-22-52- 7-23- 7-52-22-48-62-13-53-
38-26-19-29-46-58- 9

- 141

Report No. 4088 Bolt Beeanek and Newman Inc.

COUNT: 8 DELAY:2820.OOLOOP 0%

PATH: 43-56-11-22-52- 7-23- 1-23- 7-52-22-48-62-13-
53-38-26-19-.29-46-58- 9

COUNT: 7 DELAY:3164.91LOOP 0%

PATH: 43-56-11-22-52- 7-52-22-48-62-13-53-38-26-
19-29-46-58- 9

COUNT: 1 DELAY:2482.40LOOP 0%

PATH: 43-56-11-22-52- 7-23- 1-33- 1-23- 7-52-22-
48-62-13-53-38-26-19-29-46-58- 9

COUNT: 6 DELAY:3726.40LOOP 0%

PATH: 43-64-43-32- 2-21-34- 4-25-24-12-59- 9
COUNT: 8 DELAY:1875.20LOOP 0%

PATH: 43-56-11-56-43-64-59- 9
COUNT: I DELAY:1712.80LOOP 0%

SPERCENTAGE OF LOOPING PACKETS = 0.94%
AVERAGE PATH LENGTH 9.32 HOPS

1

1 -142 -

Report No. 4088 Bolt Beranek and Newman Inc.

e) In this experiment, nodes 56 and 43 each sent 10 packets per

second to node 9, and node 59 was set to reject 80% of the

traffic arriving from node 64.

SOURCE: 43 COUNT: 2673 DELAY: 357.01 MS.

PATH: 43-64-59- 9
COUNT: 4 DELAY:1933.60 0%

PATH: 43-56-11-22-48-62-13-17-19-29-46-58- 9
COUNT: 892 DELAY: 378.25 33%

PATH: 43-32- 2-21-34- 4-25-24-12-59- 9
COUNT: 1572 DELAY: 333.87 59%

PATH: 43-56-11-15-45-34- 4-25-24-12-59- 9
COUNT: 162 DELAY: 412.83 6%

PATH: 43-56-11-22-48-62-13-53-38-26-19-29-46-58- 9
COUNT: 43 DELAY: 405.30 2%

Z PERCENTAGE OF LOOPING PACKETS = 0.00%
AVERAGE PATH LENGTH =10.78 HOPS

14,ji - 143 -

Report No. 4088 Bolt Beranek and Newman- Inc.

SOURCE: 56 COUNT: 2673 DELAY: 352.32 MS.

PATH: 56-11-22-48-62-13-17-19-29-46-58- 9
COUNT: 16311 DELAY: 325.54 61%

PATH: 56-43-56-11-22-48-62-13-17-19-29-46-58- 9
COUNT: 4 DELAY:5269.60LOCP 0%

* PATH: 56-43-64-59- 9
COUNT: 3 DELAY:6365.33 0%

SPATH : 56-43-32- 2-2 1-34- 4-25-24-12-59- 9

! COUNT: 89 DELAY: 397.29 3%

PATH: 56-11-15-45-34- 4-25-24-12-59- 9
COUNT: 903 DELAY: 353.33 34%

Hi PATH: 56-11-22-48-62-13-53-38-26-19-29-46-58- 9

COUNT: 43 DELAY: 376.82 2%

PERCENTAGE OF LOOPING PACKETS = 0.15%

AVERAGE PATH LENGTH =10.69 HOPS

TOTAL MESSAGES FROM ALL SOURCES 5346

PERCENT LOOPING PACKETS 0.07%

°1i4

- 144 -

i Report No. 4088 Bolt Beranek and Newman Inc.

APPENDIX 3 -- INSTABILITY TESTS

This appendix contains the results of 5 experiments

performed on 11/21/78. The experiments are discussed in chapter

6. They were performed on our lab network, pictured in Figure

A3-1.

+ TO
ARPAwET

Figure A3-1

a) For this experimens, nodes 60, 61, and 66 each sent 10 packets

per second to node 30. Each packet contained 1192 bits.

L145

Report No. 4088 Bolt Beranek and Newman Inc.

SOURCE: 60 COUNT: 1331 DELAY: 108.96 MS.

PATH: 60-61-30
COUNT: 525 DELAY: 145.19 39%

PATH: 60-66-30COUNT: 803 DELAY: 74.86 60%

PATH: 60-61-60-66-30
- COUNT: 3 DELAY:2897.07LOOP 0%

PERCENTAGE OF LOOPING PACKETS = 0.23%
AVERAGE PATH LENGTH 2.00 HOPS

SOURCE: 61 COUNT: 1317 DELAY: 63.04 MS.

PATH: 61-30
COUNT: 1310 DELAY: 57.30 99%

PATH: 61-60-66-30
COUNT: 7 DELAY:1135.77 I%

PERCENTAGE OF LOOPING PACKETS = 0.00%
• jAVERAGE PATH LENGTH 1.01 HOPS

U6

Z 146-

Report No. 4088 Bolt Beranek and Newman Inc.

SOURCE: 66 COUNT: 1349 DELAY: 55.58 MS.

PATH: 66-30
COUNT: 1339 DELAY: 51.53 99%

PATH: 66-60-61-30
COUNT: 10 DELAY: 598.72 1%

PERCENTAGE OF LOOPING PACKETS = 0.00%
AVERAGE PATH LENGTH = 1.01 HOPS

TOTAL MESSAGES FROM ALL SOURCES = 3997
PERCENT LOOPING PACKETS 0.08%

-

lu

IR

H -147-

Report No. 4088 Bolt Beranek and Newman Inc.

b) For this experiment, nodes 60, 61, and 66 each sent 20 packets

per second to node 30. Each packets contained 1192 bits.

SOURCE: 60 COUNT: 372 DELAY:1555.02 MS.

PATH: 60-66-30
COUNT: 243 DELAY:1386.86 65%

PATH: 60-61-30
COUNT: 124 DELAY:1841.39 33%

PATH: 60-66-60-61-30
COUNT: 1 DELAY:1913.60LOOP 0%

PATH: 60-61-60-66-30
COUNT: 4 DELAY:2803.20LOOP 1%

PERCENTAGE OF LOOPING PACKETS = 1.34%

AVERAGE PATH LENGTH = 2.03 HOPS

SOURCE: 61 COUNT: 493 DELAY: 643.88 MS.

PATH: 61-30
COUNT: 464 DELAY: 563.89 94%

PATH: 61-60-66-30
COUNT: 29 DELAY:1923.70 6%

PERCENTAGE OF LOOPING PACKETS = 0.00%
AVERAGE PATH LENGTH 1.12 HOPS

- 148 -

Report No. 4088 Bolt Beranek and Newman Inc.

SOURCE: 66 COUNT: 594 DELAY: 438.29 MS.

PATH: 66-30
COUNT: 592 DELAY: 436.79 100%

PATH: 66-60-61-30
COUNT: 2 DELAY: 881.60 0%

PERCENTAGE OF LOOPING PACKETS = 0.00%
AVERAGE PATH LENGTH = 1.01 HOPS

TOTAL MESSAGES FROM ALL SOURCES 1459
PERCENT LOOPING PACKETS 0.34%

it•

- 149 -

Report No. 4088 Bolt Beranek and Newman Inc.

c) For this experiment, nodes 60 and 66 each sent lu packets per

second to node 30. Each packet contained 1192 bits.

SOURCE: 60 COUNT: 1197 DELAY: 50.60 MS.

PATH: 60-66-30
COUNT: 586 DELAY: 52.15 49%

PATH: 60-61-30
COUNT: 611 DELAY: 49.12 51%

PERCENTAGE OF LOOPING PACKETS = 0.00%
AVERAGE PATH LENGTH = 2.00 HOPS

7!*
SOURCE: 66 COUNT: 1192 DELAY: 25.06 MS.

PATH: 66-30
COUNT: 1192 DELAY: 25.06 100%

PERCENTAGE OF LOOPING PACKETS = 0.00%
AVERAGE PATH LENGTH = 1.00 HOPS

TOTAL MESSAGES FROM ALL SOURCES 2389
PERCENT LOOPING PACKETS 0.00%

-150- L

Report No. 4088 Bolt Beranek and Newman Inc.

d) For this experiment, nodes 60 and 66 each sent 20 packets per

second to node 30. Each packet contained 1192 bits.

SOURCE: 60 COUNT: 885 DELAY: 820.94 MS.

PATH: 60-66-30
COUNT: 481 DELAY: 729.95 54%

PATH: 60-61-30
COUNT: 389 DELAY: 906.83 44%

PATH: 60-66-60-61-30
COUNT: 8 DELAY:1148.OOLOOP 1%

PATH: 60-61-60-66-30
COUNT: 7 DELAY:1926.40LOOP 1%

PERCENTAGE OF LOOPING PACKETS = 1.69%
AVERAGE PATH LENGTH = 2.03 HOPS

SOURCE: 66 COUNT: 893 DELAY: 371.48 "S.

5- PATH: 66-30
COUNT: 849 DELAY: 336.34 95%

V PATH: 66-60-61-30
COUNT: 44 DELAY:1049.60 5%

PERCENTAGE OF LOOPING PACKETS = 0.00%
AVERAGE PATH LENGTH 1.10 HOPS

TOTAL MESSAGES FROM ALL SOURCES 1778
"PERCENT LOOPING PACKETS 0.84%

151

Report No. 4088 Bolt Beranek and Newman Inc.

e) For this experiment, we used the network pictured in Figure

A3-2. Nodes 60, 61, and 66 each sent 10 packets per second to

node 30.

I

16

iI

TO

ARPANET

Figure A3-2

152

Report No. 4088 Bolt Beranek and Newman Inc.

SOURCE: 60 COUNT: 1051 DELAY: 104.66 MS

PATH: 60-61-66-30

COUNT: 60 DELAY: 148.91 6%

PATH: 60-66-30
COUNT: 719 DELAY: 72.19 68%

PATH: 60-61-30
COUNT: 196 DELAY: 138.25 19%

PATH: 60-61-60-66-30
COUNT: 3 DELAY: 364.80LOOP 0%

PATH: 60-66-61-30
COUNT: '(1 DELAY: 277.93 7%

PATH: 60-66-61-60-66-30
COUNT: 2 DELAY: 616.OOLOOP 0%

PERCENTAGE OF LOOPING PACKETS = 0.48%j AVERAGE PATH LENGTH = 2.14 HOPS

SOURCE: 61 COUNT: 1034 DELAY: 77.34 MS.

PATH: 61-66-30
COUNT: 293 DELAY: 112.17 28%

PATH: 61-30
COUNT: 715 DELAY: 60.17 69%

IT PATH: 61-60-66-30
COUNT: 26 DELAY: 157.17 3%

I" PERCENTAGE OF LOOPING PACKETS = 0.00%
AVERAGE PATH LENGTH = 1.33 HOPS

- 153 -

Report No. 4088 Bolt Beranek and Newman Inc.

SOURCE: 66 COUNT: 1051 DELAY: 80.58 MS.

PATH: 66-30
COUNT: 879 DELAY: 44.34 84%

PATH: 66-. 130

vOUNT: 134 DELAY: 272.53 13%

PATH: 66-61-60-66-30
COUNT: 3 DELAY: 514.13LOOP 0%

PATH: 66-60-61-30
COUNT: 35 DELAY: 218.56 3%

PERCENTAGE OF LOOPING PACKETS = 0.29%
AVERAGE PATH LENGTH = 1.20 HOPS

TOTAL MESSACES FROM ALL SOURCES 3136
PERCENT LOOPING PACKETS = 0.26%i!

if

-15J4 -

L Report No., 4088 Bolt Beranek and Newman Inc.

APPENDIX 4 -- INSTABILITY/OVERLOAD TESTS

This appendix contains the results of an experiment done on

2/27/79. Nodes 26, 38, and 17 each sent 10 packets per second to

node 19. Nodes 13 and 53 each sent 20 packets per second to node

19. All packets were 1192 bits long. Puring this experiment,

the line between nodes 13 and 62 was removed from o-pration. The

network, as it was during our experiments, is pictured in Figure

A4-1.

1

i I

L-.

~ I ~=-~- 155 -

Report No. 40)88 Bolt Beranek and Newman Inc.

4 9
a. A

..... ..

Pq tx

CL <

I<

-156-

Report No. 4088 Bolt Beranek and Newman Inc.

SOURCE: 13. COUNT: 3503 DELAY: 357.75 MS.

PATH: 13-17-19
COUNT: 2869 DELAY: 186.07 82%

PATH: 13-53-38-26-19
COUNT: 634 DELAY:113 4 .63 18%

PERCENTAGE OF LOOPING PACKETS = 0.00%
1, AVERAGE PATH LENGTH = 2.36 HOPS

j SOURCE: 26 COUNT: 2084 DELAY: 219.85 MS.

PT:26-19
COUNT: 1950 DELAY: 121.12 94%

PATH: 26-38-53-13-17-19
COUNT: 130 DELAY:1690.02 6%

PATH: 26-38-26-19
COUNT: 4 DELAY: 567.20LOOP 0%

PERCENTAGE OF LOOPING PACKETS 0.19%

AVERAGE PATH LENGTH 1 .25 HOPS

SOURCE: 17 COUNT: 2536 DELAY: 86.24 MS.

PATH: 17-19
COUNT: 2533 DELAY: 85.89 100%

, PATH: 17-13-53-38-26-19
COUNT: 3 DELAY: 382.40 0%

1 PERCENTAGE OF LOOPING PACKETS = 0.00%
Ii AVERAGE PATH LENGTH 1.00 HOPS

I - 157 -

Report No. 4088 Bolt Beranek and Newman mnc.

SOURCE: 53 COUNT: 3878 DELAY: 555.83 MS.

PATH: 53-38-26-19
COUNT: 2630 DELAY: 471.59 68%

PATH: 53-13-17-19
COUNT: 1225 DELAY: 729.06 32%

PATH: 53-13-53-38-26-19
COUNT: 17 DELAY:1049.27LOOP 0%

PATH: 53-38-53-13-17-19
COUNT: 6 DELAY: 718.40LOOP 0%

PERCENTAGE OF LOOPING PACKETS = 0.59%
AVERAGE PATH LENGTH 3.01 HOPS

\

S- ~158 -

Report No. 4088 Bolt Beranek and Newman Inc.

SOURCE: 38 COUNT: 1471 DELAY: 515.56 MS.

PATH: 38-53-13-17-19
COUNT: 286 DELAY:1387.12 19%

PATH: 38-26-19
COUNT: 1178 DELAY: 297.89 80%

PATH: 38-26-38--53-13-17-19
COUNT: 2 DELAY: 373.60LOOP 0%

PATH: 38-53-38-26-19
1 i COUNT: DELAY:1793.07LOOP 0%

PATH: 38-53-13-53-38-26-19
COUNT: 2 DELAY:2315.20LOOP 0%

PERCENTAGE OF LOOPING PACKETS = 0.48%
AVERAGE PATH LENGTH 2.40 HOPS

I1.

(I

*1

II) -159

Report No. 4088 Bolt Beranek and Newman Inc.

APPENDIX 5 -- MODERATE LOAD TESTS

This appendix contains the results of two experiments, one

performed on 3/1/79 and the second performed on 12/21/78.

a) For this experiment, nodes 38, 26, 13, and 17 each sent 20

packets per second to node 19. Each packet contained 1112 bits.

Only the data from nodes 38 and 17 are shown here. During this

experiment, the line between nodes 13 and 62 was removed from

operation. The network is pictured in Figure A4-1.

SOURCE: 17 COUNT: 2437 DELAY: 35.60 MS.

PATH: 17-19
COUNT: 2437 DELAY: 35.60 too%

PERCENTAGE OF LOOPING PACKETS = 0.00%
AVERAGE PATH LENGTH = 1.00 HOPS

SOURCE: 38 COUNT: 2481 DELAY: 55.50 MS.

PATH: 38-26-19
COUNT: 2481 DELAY: 55.50 100%

Sk,

PERCENTAGE OF LOOPING PACKETS = 0.00%
SAVERAGE PATH LENGTH 2.00 HOPS

TOTAL MESSAGES FROM ALL SOURCES 4919
PERCENT LOOPING PACKETS 0.00%

-160-

I Report No. 4088 Bolt Beranek and Newman Inc.

Ii

b) For this experiment, each of nodes 2, 16, 21, 34, 45, and 51t
sent approximately 2.5 packets per second to node 15. Each packet

contained 1192 bits.

SOURCE: 2 COUNT: 937 DELAY: 45.52 MS.

I •PATH: 2-51-16-15
COUNT: 937 DELAY: 45.52 100%

PERCENTAGE OF LOOPING PACKETS = 0.00%
AVERAGE PATH LENGTH = 3.00 HOPS

SOURCE: 16 COUNT: 949 DELAY: 7.13 MS.

PATH: 16-15
COUNT: 949 DELAY: 7.13 100%

PERCENTAGE OF LOOPING PACKETS = 0.00%
AVERAGE PATH LENGTH = 1.00 HOPS

L SOURCE: 21 COUNT: 937 DELAY: 73.77 MS.

r L PATH: 21- 2-51-16-15
COUNT: 453 DELAY: 71.27 48%

PATH: 21-34-45-15
P NCOUNT: 484 DELAY: 76.12 52%

PERCENTAGE OF LOOPING PACKETS = 0.00%
AVERAGE PATH LENGTH 3.48 HOPS

I - 161 -

Report No. 4088 Bolt Beranek and Newman Inc.

SOURCE: 34 COUNT: 938 DELAY: 48.94 MS.

PATH: 34-45-15
COUNT: 938 DELAY: 48.94 100%

PERCENTAGE OF LOOPING PACKETS = 0.00%
AVERAGE PATH LENGT" = 2.00 HOPS

SOURCE: 45 COUNT: 945 DELAY: 23.27 MS.

PATH: 45-15
COUNT: 945 DELAY: 23.27 100%

PERCENTAGE OF LOOPING PACKETS = 0.00%
! AVERAGE PATH LENGTH = 1.00 HOPS

SOURCE: 51 COUNT: 941 DELAY: 33.66 MS.

PATH: 51-16-15
COUNT: 941 DELAY: 33.66 100%

I- PERCENTAGE OF LOOPING PACKETS = 0.00%
AVERAGE PATH LENGTH 2.00 HOPS

TOTAL MESSAGES FROM ALL SOURCES 5647
PERCENT LOOPING PACKETS 0.00%

k16

1~- 162 -

