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I
This is the second volume of a four volume set describing

the electron beam experiments in support of the TWCP Correla- I
tion Program. The four volumes are:

TWCP Electron Beam Testing Program:

Volume I - Summary

TWCP Electron Beam Testing Program:

Volume II - Preliminary Characterization of the Black-

jack III Pulsed Electron Beam for Material Response Studies

TWCP Electron Beam Testing Program:

Volume III - Material Response Instrumentation for The

Blackjack III Pulsed Electron Beam Facility

TWCP Electron Beam Testing Program:

Volume IV - Electron Beam Tests in Support of The TWCP

Correlation Program

These volumes were compiled and edited by Effects Technology,

Inc. (ETI). Volume I was written by ETI, drawing upon the

material in Volumes II, III and IV which were written by

Corrales Applied Physics Company under subcontract to ETI.
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SECTION 1

INTRODUCTION AND SUMMARY

The principal objective of the tests described in this

report was to characterize the electron beam from the Maxwell

Blackjack III accelerator to determine the feasibility of

using it for material response experimentation. Prior to

testing it was determined that a beam having about a 1-MV

peak accelerating voltage was desired. It was further de-

sired that the beam be characterized in terms of depth-dose

and fluence distribution at two peak fluence levels--approxi-

mately 100-and 200-cal/cm2 .

This characterization was accomplished with eight days

of pulsing between the llth and 22nd of July 1977; a total

of 68 shots were obtained exclusive of calibration pulses.

Table 1 summarizes the overall distribution and nature of

these tests. To accomplish the characterization it was nec-

essary to investigate a number of machine configurations

which utilized various cathodes, anode-cathode gaps, and

The relative desirability of this electron beam condition,
in comparison to other achievable conditions on the Black-
jack III machine, was ascertained from sensitivity analyses
that consisted of determining the relative accuracy of as-
signing numerical values or functional relationships to the
critical model parameters for impulse and stress-time calcu-
lations (expressed usually with respect to deposited energy).
As a sidepoint, peak accelerating voltages in excess of the
present maximum of approximately 1-MV from the Blackjack III
machine would be even more desirable.

7



Table 1. Summary of Representative Operating
Conditions.

Anode- Peak
Shot Cathode Cathode Diode ,
Nos. Diameter Gap Voltage Fluence

(cm) (mm) (MV) (cal/cm2)

1574-1594 25 8.5 0.8 40

1595-1598 13 6.8 C1.9 100

1599-1612 22 10.0 0.7 50
**

1613-1651 10 6.4 1.0 120

Average over 10-cm 2 , anode-calorimeter distance = 65-cm.

Ten pulses (1634-1643) in this sequence were part of
another program.

8
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I
switch gaps, which yielded peak diode voltages between 0.7-

and 1.0-MV. Characterization data were obtained for peak

voltages less than 1-MV, but tt se data are not included in

this report since the 1-MV peak voltage beam condition was

analytically determined to be more desirable for the antici-

pated material response experiments. All tests were per-

formed with a Marx generator charge voltage of 60-kV. The

beam transport between cathode and target was controlled with

a 5-to 30-kG axial magnetic field. It was also necessary to in-

terface and debug beam diagnostics which were new to the Max-

well facility; namely, depth-dose and fluence calorimeters,

a filtered Faraday cup, and a passive momentum gauge (to

measure anode debris impulse).

The characterization data presented in the next section

of this report are based on the detailed analysis of 20 con-

secutive shots taken over a three day period. Machine param-

eters were held fixed during this period in order to evaluate

beam reproducibility. The following average diode character-

istics were obtained:

Peak voltage 1.0 MV

Peak current 560 kA

Total energy 32 kJ

Power pulse width (FWHM) 58 nsec

Mean electron energy 720 keV

t 9



. I
The radial fluence distributions for two levels (174-

and 122-cal/cm2 average fluence over 10-cm 2 ) are shown in

Figure 1, Figure 2 shows the depth-dose characteristic which

was measured at the 122-cal/cm2 level, which is consistent

with transport calculations for electrons incident at 30-de-

grees, and indicates a peak relative dose of 4.2-(cal/gm)/

(cal/cm ) and 0.4-gm/cm2 electron range.

10
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SECTION 2

CHARACTERIZATION DATA

The diode, depth-dose, and fluence data presented here

were obtained on the 20 consecutive shots summarized in

Table 2. The diode current and voltage data from each test

were digitized and used to compute the total diode energy,

deposition time or power pulse width (FWHM), and spectrum.

Diode current and voltage data from a representative shot

are given ir Figure 3, and the resulting typical spectrum is

shown in Figure 4. In general the spectra tend to be simply

shaped and relatively mono-energetic with about 80 percent

of the energy between 0.8-and 1.0-MeV.

The depth-dose calorimeter consisted of disk-shaped

nominally 0.01- and 0.02-inch thick, ATJ graphite elements,

with thermocouples attached at the circumference. An expo-

nential extrapolation of an analytic fit to the first 20 to

30 seconds of the recorded temperature versus time data was

used to determine the temperature of each calorimeter element.

Dose was computed from the following relationship: E =fCpdT

where the ATJ graphite specific heat capacity is:

-4 -7 2 -03Cp = 0.150 + 7.82x10 T - 7.51x107 T2 + 2.78x10-10T

with Cp in cal/g-OC and T in 0C.

13
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Table 2. Data for Twenty Consecutive Pulses

Mean Peak Peak Average Anode
Shot Depo. Diode Electron Diode Diode Fluence -Target
No. Time Energy Energy Voltage Current 10 cm2* Distance

(nsec) (kJ) (keV) (MV) (kA) (cal/cm2 ) (cm)

1614 56 33 670 .93 580 174 55

1615 56 28 720 1.00 490 FFC 55

1616 54 26 700 1.06 510 170 55

1617 57 29 760 1.00 560 FFC 55

1618 58 30 750 1.03 540 DD 55

1619 56 30 760 1.02 520 179 55

1620 60 31 730 .94 600 121 65

1621 44 22 740 1.11 520 DD 65

1622 63 31 680 .86 600 125 65

1623 44 28 740 1.01 58 FLU 65

1624 63 40 730 1.07 600 110 65

-1625 63 34 750 .98 560 DD 65

1626 55 29 690 1.01 520 115 65

1627 65 34 690 .92 580 DD 65

1628 61 33 750 .92 540 133 65

1629 62 35 750 1.03 550 DD 65

1630 66 35 720 1.04 540 120 65

1631 60 34 680 1.01 580 DD 65

1632 63 34 720 .94 580 BFD 65

1633 60 37 710 1.01 600 131 65

.
FFC - Filtered Farady cup, DD - Depth-dose stack,
FLU - Fluence calorimeter (no data obtained),
BFD - Anode debris gauge.

14
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2
An approximately 3-cm aperture was used to block anode

debris and prevent breakage of the first thin calorimeter

2
element. Some tests also used a 0.03-gm/cm graphite cloth

filter to prohibit element breakage.

Selected depth-dose data are given in Figures 5 and 6.

The electron transport code ELTRAN was used by the AFWL to

compute the depth-dose profiles in graphite from the electron

spectrum as determined from the diode data for each shot.

Best agreement with the measurements was obtained for a 30-

degree incident angle as indicated in the figures.

A Faraday cup with multiple internal filters was used

to determine the transmitted charge versus depth. This diag-

nostic technique has been recently developed for character-

izing high dose pulsed electron beams.* Four points on the

charge deposition profile are measured on a single test and

used in conjunction with the spectrum determined from diode

'I data and Monte Carlo electron transport calculations (i.e.,

ELTRAN) to determine the mean (or effective) angle of elec-

tron incidence. The energy deposition profile is then com-

puted using the transport code and appropriate spectrum and

incident angle.

.
K. Childers and J. Shea, A Faraday Cup with Multiple Internal
Filters and a Primary Current Monitor for Characterizing High
Dose Pulsed Electron Beams, AFWL-TR-76-132, Physics Interna-
tional Co., San Leandro, CA (1976).

17
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Some difficulty was encountered in debugging this new

diagnostic technique; however, reasonable data were obtained

cn several shots, one set of which is shown in Figure 7. In-

tegration of these current-time data yields the transmitted

charge at each filter depth as given in Figure 8. Also shown

in the figure are three transport calculations utilizing the

spectrum determined from diode data for this test assuming

incident angles of 20-,30-,and 40-degrees. Note that the

transmitted charge data are plotted relative to the computed

transmitted charge at Fl.

Figure 8 illustrates the major difficulty in using the

Filtered Faraday Cup technique to resolve depth-dose profiles

for I-MeV beams with relatively low incidence angles; that is,

poor resolution of the effective angle from charge-depth data.

Also, one places heavy reliance on the transport computer

code (which incorporates over simplified transport physics

with errors in the spectrum determination from diode data) to

compute the depth-dose profile. The peak dose implied by the

transport calculations shown in Figure 8 varies by + 10 per-

cent as the angle varies + 10-degrees.

The fluence calorimeter consists of an array of nineteen

0.5-cm diameter cylindrical ATJ graphite elements placed in

and thermally isolated from a graphite equilibrator. One

element is on the beam axis and four elements each are on

1-cm, 2-cm, 3-cm, and 4-cm radii. Thermocouples are attached

220
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Figure 7. Transmitted Current Data.
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Figure 8. Transmitted Charge Data.
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to brass pins pressed into the rear of each element, and the

element temperature is determined by an exponential extrapo-

lation of an analytic fit to the cooling curve (temperature-

time). The fluence is determined from the temperature via

the C relation previously given for ATJ graphite (with a

small correction for the brass pin) and the effective element

area (0.25-cm 2).

Fluence data were taken at two axial positions (anode-

calorimeter distances), namely: 55-cm for the higher level

and 65-cm for the lower level. Representative data for the

low and high fluence levels are given in Figures 9 and 10,

respectively.

To assess the shot-to-shot variations in fluence, the

data from three consecutive shots are compared in Figures 11

and 12 for the low and high fluence positions, respectively.

In these figures, for each shot, the data are averages at each

radius. The relatively good agreement of the data indicates

good average shot-to-shot reproducibility and suggests that

the scatter in the data for a single shot is due to local

"hot spots" in the beam. (The calorimeter element area is

20.25-cm 2 .)

For general characterization purposes, the fluence data

from each test are described by the average fluence over the

2central 10-cm circular area (see Table 2). This fluence

was determined by integration of an analytic fit to the data

23
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at 0-,l-, and 2-cm radii over a 10-cm2 area. The mean fluence

over 10-cm 2 during the 20 shot series was 122-cal/cm2 for

the low fluence level (average of 7 shots), and 174-cal/cm2

for the high fluence level (average of 3 shots).

2A passive momentum gauge with a 10-cm exposure area

was used to make the anode debris measurements given in

Table 3. A conical indentor and foam witness plate were

used to measure the displacement of a pendulum. The pendulum

axis was horizontal and perpendicular to the machine axis,

and its mass was distributed such that it was inertially

balanced for background motion along the machine axis (i.e.,

frdm was equal above and below the pendulum axis). For mate-

rial response tests an active impulse gauge would be mounted

to an inertially isolated platform which would eliminate the

machine vibration problem. Calibration tests proved the

gauge to be sensitive to about 20-taps, with a resolution of

+ 20-taps to 200-taps. Figure 13 displays calibration data

for three impact test masses in which the indentor penetra-

tion is measured by rotation of a 32 pitch screw. The gauge

sensitivity is 36-taps/turn.

Even though an attempt was made to inertially balance

the pendulum, a background "impulse" of 60-taps was measured

as a result of the test chamber motion with a graphite beam

stop in front of the gauge. In order to determine impulse

from the anode debris, this 60-tap background was subtracted

from the measurements yielding an anode debris impulse of

about 70-taps (see Table 3).

28



Table 3. Anode Debris Impulse Data

Shot Anode Impulse
(taps)

1632 1/4 mil mylar 60

1646 1/4 mil mylar 70

1649 1 mil titanium 70

A 60-tap background impulse (measured on
shot 1648) was subtracted from the measure-
ment to obtain the anode debris contribution.

I
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Figure 13. Impulse Gauge Calibration Data.
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SECTION 3

CONCLUSIONS

Electron beams with peak accelerating potentials between

0.7-to 1.0-MV were characterized. The spread in peak poten-

tial was indicative of the several machine configurations in-

vestigated. The most consistent beam having the desired 1-MV

peak accelerating potential was obtained with a 4-inch diam-

eter cathode. After emission, the beam was magnetically com-

pressed and was then adiabatically expanded in a decreasing

axial magnetic field (peak field 24-kG). When expanded to

2the low fluence level (122-cal/cm ), an effective electron

incidence angle of 30-degrees was determined by fitting elec-

tron transport calculations to measured depth-dose profiles.

This result is consistent with simple theory which predicts

a maximum angle of 40-degrees for this (3.3:1:2.3) compres-

sion and expansion. An average peak relative dose of 4.2-

(cal/gm) / (cal/cm2) was measured. At the higher fluence

level (174-cal/cm 2 , 3.3:1:1.5), a maximum angle of 55-de-

grees is calculated and an effective angle of 40-degrees

estimated. Based on ELTRAN calculations, this increased

incidence angle results in a 10 percent increase in the peak

Young, T.S.T. and Spence, P., "Model of Magnetic Compres-
sion of Relativistic Electron Geams," J. Appl. Piy. Letters,
29, 464 (October 1976).
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relative dose. Electron incidence angles much greater than

40-degrees are generally undesirable for material response

applications because of their high peak dose, and difficulty

in characterization. The significance of this is that

fluences greater than about 200-cal/cm 2 should be obtained

via another machine configuration (e.g., smaller cathode) in

order to maintain low incidence angle (i.e., cooler beam

temperature or lower transverse energy).

Extremely good beam reproducibility was achieved over

a twenty shot series as indicated in Table 4. The average

deviation in peak diode voltage was five percent.

Complications result in the characterization of the steeper-
angle electron beams for a variety of reasons, among which
are the properties of a bigger gradient or sharper drop-off
in the energy deposition profile and the relatively high
peak dose being too close to the surface.
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Table 4. Summarized Statistics for Twenty
Sequential Pulses, (1614-1633).

Mean

Average Deviation

Peak Diode Voltage .99 MV 5%

Peak Diode Current 560 kA 5%

Total Diode Energy 32 kJ 10%

Power Pulse Width (FWHM) 58 nsec 8%

Mean Electron Energy 720 keV 4%
Fluence* (3 shots at 55-cm) 174 cal/cm2  2%

Fluence (7 shots at 65-cm) 122 cal/cm2  5%

* 2

Average over 10-cm
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