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The multiobject tracking problem is oneg thav has géined much at-

tention in recent years., The primery Jdiftficuity is.the subproblen of asso-

clating measurements awmong @ several ﬂﬁﬁbﬁfﬁ(pwrha5§¥hnkn0wﬂp of targebs,

In the present, work, a recaontly proposcd eigoritina is wmoditiied uand extended

for application in distributed procaossing passive networks, This is  done

by distributing the neasurament-tarpget ussocistion problem to the individu-

al situs in the network and thea combioniog cach site's reguliing essocia-

tions to form the desired targec tracks., Conpuver simuletions were rua to
desnonsiralbe the capabilities of the prov=durc,
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CHAPTER 1

INTRODUCTION

The need for ever nore sophisticated multi-target algorithms has in-
creased greatly in recent years. In military applicutions, especially, the
need for these vechniques is evident., Recently, there has been increased
interest in distributed tracking systems, in which the tracking problem is
broken down into several smaller problems and distributed to trackers at
several different sites. Such problems, of course, present more challenges

than the more traditional central processing tracking systems.

The basic problem in multi-target tracking is data association. If

there are several (perhazps an unknown number of) targets in un area, meas-

N

urenents cre received from escih of them., There exists an uncertainty in
the true origin of each measurement. Essentially} any multi~target track-

ing procedure should partition the measurements into sets associated with

B SR

each turget before the tracking of that turget can be done,

Several important papers that have appeared in recent years come to
grips with this problem in a variety of ways. Bar-sShalom (3] gives an ex-

cellent survey of recent work in the field. The most important paper for

i ch- ' this work is the one by Donald Reid [8). Reid formulates hypotheses of the
- iﬂ origin of measurcments sequentially, and organizes them in the form of a
3 : ' hypothesis tree. For each hypothesis constructed, a set of Kaiman filters
is constructed to track the targets implied by that hypothesis, The

strength of the hypothesis is Lhen evaluated by comparing the actual neas-

s
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uremeuls with predicted volues obtained from the state estimates of the
filters. A specific formula for this is developed by Reid, and incore

porutes false alarms and new targets.

Reid assumes in his work a central processing systewm - that is, a sys-
ﬁem in which all tracking computations are done at a single site. 7The goal
of this work is to apply Reid's ideas to u distributed processing system.
As we shall see, the data association and target tracking can be separated
quite naturally to fit in the mold of such a system. Our primary example
will be a two node passive system that receives bearings to targets as
measurements. The information signal is uassumed to be acoustic in nature,
which in combination with a desire to track fast moving targets improves

the problems of propagation delay.

Chapter 2 develops the Lheoretical structure of the proposed tracking '

algorithm in great detail. In Chapter 3, we discuss the concept of & Dis-
tributed Sensor Network (DSN), whicih motivates the cnhoice of our primary
exuliple. Chapters 4 and 5 develop the wathematical formulations necessary
for the implementation of the tracking algorithm. Finally, in Chapter O,

we present some demonstrations of the performancz of the algorithm,
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CHAPTER 2

THE ALGORITHH4

In this chapter, we will model the solution of a gencralized tracking
problem, and see how previous work in multi-target tracking fits into this

model,

2.1 SOME DEFINITIONS

Consider a generalized tracking system T. The task of T is to deter-
mine the existence of and track certain objects located in & specified en-~
vironment E. The objects are called targets. The system tracks a target
if it can estimate its position and velocity at any time while it is locut-
ed in E. A tracking system may also -determine’ acceleration and other
higher positional derivatives; however, for our purposes, position and

velocity will be sufficient, This informstion is collectively called the

target state.

To perform its task, the tracking system must obtain information from
the environment. Usually, this information is in a form termed signals.
For exanple, a radar system might use electromagnetic sinusoids, whereas in
sonar, the signals are acoustic, Any place within T that receives signals
is called u sensor. If the received signals originated in T and were re-

flected back, T is called un active systan, If ithe signals origiuvated in

the environment, T is a passive system, It may happen that Lhe systen re-

ceives both types of signals, in wnich case T is referred to as a mixed

- -
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system. Active systems generally obtain more information from the environ-
ment thuan passive systems; howzver, they are also lore susceptible to
detection by the targets themselves. A tracking system can also be classi-
fied by the manner in which it collects signals. OQur attention will focus

on time-sampling systems, which sample signals from all directions at

specified instants of time.

Usually, the received signals in their original form are not very use-

ful ftor tracking. A signal processor in 1 extracts data from the signals

which can be used in tracking. In this work, data obtained in this manner

from signals are termed measurements. leasurements may be scular or vector

in nature. For exawple, a measurement from a radar system might consist of
three position coordinater, A measurement from a passive system, on the
other hand, might simply be a bearing. In time-sampling systems, a scan is
defined as a set of measurements obyained at the sume time-sampling in-
stant. In wmany systems, a signal processer requires signals from several
different sensors to produce & single measurement, HNormally, this set of
! sensors is fixed and is referred to collectively as a node. Since our at-
tention 1is focused on the tracking problem, we will not go into detail the
highly nontrivial problen of signal processing. Hence, all of our work

will refer to measurements and nodes at the lowest level.

2.2 - THE TRACKING PROBLEM

In general, the tracking system must be able to truck several targets

simultaneously. In multi-target tracking, there are really two problems

. e

that wmusl be solved. They are the data association problem and the track

-l -
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association problem. Logically, before a tracker can estimate the state of

a particular target, it must Kknow which measurements to use. Given a
time-sequenced set of scans, the tracker must partition the set of all
measurements into a Set of mutually exclusive subsets. One subset may
correspond to an assignnent to no target at all. The measurements in this

set are called false alarms. The other subsets will correspond to hy-

pothesized targets, The process of forming these subsets is data

assoclation, and each subset of' measurements is celled a data track.
There will be many different ways to perform data association on a given

set. Each such configuration is called a data hypothesis.

We will asssume in our work that scuns are to be processed sequential-
ly. This is reasonable, since in a real-time system, it is usually desir-
able to incorporate new information as soon as possible. Therefore, at any

) given time, the number of possible data hypotheses depends on the nunber of
a priori hypotheses and the number of mecasurements 1in Lhe present scan.

‘The sequential formation of hypotlieses can be organized conceptually

] ; through the use of trees.

The structure of hypothesis trees 1is best illustrated through a

e

specific example. Assumne a priori there are no data tracks., At time t=0,

the tracker receives two measurcements, We make the simplifying assumption

that & particular turget cannot be the source of more than one measurement
in a given scan, although the more general case can still be displayed in

tree form, Thus, each measurement could be from a different legitimate

i e s T - AN —

target or a faulse alarm. This results in tour different data hypotheses,

3 : as shown in Fig. 2-1,

-9 -
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mi and m2 are the two measurements, As can be seen, cach corresponds
to a different level of the tree, The 1locations within the tree

corresponding to the asssignment of meusurements to a data track are called

nodes. (The use of this terms is unfortunate; however, it will always be

clear from context whether we are talking about groups of sensors or tree
structure.,) A sequence of connected nodes is called a branch of the tree.
Each branch of the tree corresponds to a different data hypothesis, as
shown, Thus, hypothesis 1 zssigns m1 to data track 1 and m2 to data track
2, while hypothesis 3 assigns m1 as a false alarm (represented by 0) and m2
to data track 2. We have made the convention of identifying a data track

by the measurement number of its first measurement.

Assume now that we have a second scan with two measurements (m3 and
m4). The number of assignments of w3 and md will depend on which prior hy-
pothesis is assumed. For instance, if hypothesis 1 is ussumed, the possi-
ble assignments fo~ each are data track 1, duata track 2, a new data track,
or a false alarm, with the condition that both cannot be assigned to the
sane legitimate data track. If hypothesis U4 is aussumed, the only possible
assignments are a ney data track or a false alarm, If we expand each
branch ., in this manner, we obtain Fig. 2-2, which represents the total
nunber of ways the measurements in the two scans can be assoclated, given
our assumptions. It is easy to see that the tree expands at an exponential

rate.

The above procedure for the construction of the hypothesis tree 1is

known as a measurcment-oriented approach, because every possible data track

is listed for each measurement. A target-oriented approach would 1list

- 10 -
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evary possible measurement for each data traok. Howaver, 1in taking the
latter approach, {t is conceptually difficult to decide when a new data
track should be hypothiesized, whereas it . former case, new data tracks
uppesar naturally as a part of trec expansion. For this reason, we will use

the measurement-oriented approach,

If there are mul iple nodes in the tracking system, we ocan perform the

data association in two ways. A central processing system would construct

one hypothesis tree, incorporating all measurements from every node in the

system, A distributed processing system would construct a tree for each

aode or a subset of nodes. We can think of nesting the various trees in a
distributed processing system in one another to produce an overall dats as-~
sociation hypothesis tree that is equivalent to the tree constructed in a
central processing system, which contuins all possible data tracks that can
be formed given the received measurcments. With a distributed structure,

we encounter the track association problem.

The track association problem can also be inodeled as a hypothesis

tree. Whereas data hypotheses associate measurements, track hypotheses as-

sociate the data tracks of different nodes. Given a track hypothesis and
the data tracks it is conditioned on, we finally can combine the data to

form sets of estimated target states, or target tracks. (This assumes, of

course, that there are a sufficient number of data tracks to make such an
estimation possible; l.e. the system must be observuble). The production
of these turget tracks is the desired goal of the tracking system. Since
the track associution trees are each conditioned on data hypotheses from

the various nodus of the systew, we can nest the former into the overall
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data asdoclation tree of the tracking system. The resulting structure or-
ganizes, in & systemalic way, all possible solutions of the tracking prob-

len,

The prospect of wading through such an lmposing structure is horrify-

ing, at Dbest. In the next sections we will discuss ways of making the

solution more tractable. These methods, of course, produce suboptimal.

results, in the sense that the correct solution may accidentally be dis-
carded, However, they are quite necessary for any vuracticel implementa-

tion,

2.3 — DATA HYPOTHESIS REDUCTION - TREE PRUNIMNG

The use of trees as a problem-solving technique is well knowr in ar-
tificial intelligence. They arc used to systema;ically model the step-by-
step solution of very general problems. As we have sSeen, they fit natural-
ly into the tracking problem. However, in most applications, there i3 a
well-defined "goal state", which will be reached eventually by one of the
branches of the tree., In the tracking problen, there is no "goal state";
the trees are open-ended, Since the trees expand exponentially, we must
impose constraints on tree growth in order to kcep the problem manageable,

Methiods used for this purpose are called tree pruning techniques.,

There are two ways to limit tree expansion. The breadth of the tree
can be limited by retaining no more than a specified muximum muiber Of
branches each time the tree expands, This "pruning" of branches of the

tree may result in one branch of an older scan being singled out., This is

- 14 -
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illustrated in Fig. 2~3. In this case, the scan is said to be identified.
Scans will not always be identified by breadih constraints. Therefore, we
must wlso limit the depth of & tree. Wnen the number of scans in a tree
atiuins a certain maximum allowable number, one branch in the oldest scaﬂ
is singled out and the others are pruned., This scan is thus forcibly iden~
tified. in limiting the depth of a tree, redundant anypotheses muy appear
in the tree, depending on the mechanisin used. A set of redundant hy-
potheses 1in & depth limited tree assign measurements in the same manner,
They may assign measurements to exactly the same targets (in which case
they are termed identical) or there may exist a 1-1 mapping of targets
between the hypotheses., A set of redundant hypotheses may be combined
under the assumption that any past differences which have been dropped off
of the tree are insignificant. This is called hypothesis merging. (A wmore

thorough treatment of the foregoing concepts may be found in [6].)

In order to apply the above uwethods, we must have sSome wmeans of

measuring the strength of the various hypotheses. In other words, we must

define a probability measure on the set of branches of the tree, The par-
ticular definition and evaluation of a probubility measure depends upon the
nature of the tracking system and the types of measuremnents. One observa-
tion can be made here, however., For data association trees, a natural de-
finition of probubility is one thot is monotonically related to thz "close-
ness" of a measurement to the predicted value of a dala track. The closer
a4 measurcment is to & particular prediction, the higher the probability
that the measurecment is associated with the corresponding data track. This

use of predictors, and the fact that we are using sequential processing,

- 15 =
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suggests the use of Kalman filters. A detailed wpplication of this 1idea

appears in Chapter 4,

The definition of this "closeness probability" leads to the concept of
clustering. (See Fig 2-U4). Suppose a threshold is def'ined such that, dur-
ing tree expansion, any branch whose probability lies below this threshold
is pruned. We can think of drawing a "gate" around the predicted vslue of
each data track. The probability of a hypothesis below the threshold is
then equivalent to the present measurement fulling outside the gate., 'By
considering only measurements inside the gate. we have effectively pruned
the ¢tree of hypotheses with probabilities be¢low a certain level, Suppose
now that the gates of various data tracks do not overlap. The scan cun
then be partitioned intn a number of subse¢ts, each subset containing the
measurements falling inside the gate of a different data track. Because
the possible data associations of each of these subsets are mutually ex-~

clusive, we can break up the data association tree into a number of small-

.er, independent trees. This is an enormous simplification, for the sum of

all of the hypotheses in the smuller trees will be much less than the
number of hypotheses in the tree which spawned them., For fixed rescurces,
this amounts to an increase in the number of hypotheses that c¢an be con-
sidered simultaneously, If some of the gates do overlap, we can form one
tree for the cluster of the corresponding data tracks, There is still a
simplification in this case, although not as great. The concept of clus-

tering is important for our later work.

- 17 -




2.4 - TRACK HYPOTHESIS REDUCTION ~ THE DELAYED i-SCAN ALGORITHH

The data ussociution trees of different Lracking systems are usually
quite similar in structure. 7The ccnstruction of track assocliation trees
will vary widely with the tracking system. In some cases, the track asso-
ciastion trees are degenerate, and target state estimates are a trivial
consequence of data association. For instance, take the case of a 3ingle
node, single target tracker that uses position measurements. Initial tar-
get states can be estimsted using only two nieasurements. In fact, the tar-
get state can be usad in a Kalman Tilver to evaluate probabilities in the
tree, This formulation is precisely the "H-scan algorithm" developed by
Singer, Sea, and Housewright ([9]. The term "N-scan" refers to the tact
that the hypothesis tree is deptn-limited to H-scans, and hypothesis merg-
ing 1is done over the past l-scans. A generulization to the multi-target
case was presented by Reid [8J. Here ag;in, carsén states are used for
probability calculations., Reid uses clustering in his algorithm as well as

an N-scan approach.

The generalization of these algorithms to a multi-node active system,
of course, requires the correlation of state estimales from different
nodes, and hence requires trees. However, assuming that node estimates are
independent of one another, and that noise and target density are suffi;
ciently low, ambiguities will resolve themselves fairly rupidly. The case
is different for puassive systems, which are inherently multi-node in na-
ture, Even if it is possible to estimate target state from the measure-

ments of a single, passive node, the covarlance mutrix of such an estimate

- 18 -
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is usuully so large that estimete (s virtually useless. Correlation
between data tracks of different nodes in the system is thus necessary to

obtain good estimates.

Correlution of data tLrucks requires time, and so reduction of track
aSsociation trees is a rather drawn out prozess., It would he desirable to
do as few of these operatiqns as possible. This is the motivation for the
following scheme, called the "delayed N-scan approuch." Instead of con-
structing track association trees for each data associstion hypothesis
under consideration, we delay the construction until data tracks are deter-
mined in an l-scan algorithm on the wata association tree. In other words,
a measurement 1s not used in updating probabilities of track hypotheses un-
til the scan to which it belongs becones identified in the data association
tree. This technique effectively separates the data association and track
association processes. The resulting benefits are the sume as in euploying

clustering, since the track associution trees vere originally nested in the

data association tree. The disadvantage, of course, ig that the incorpora-

tion of measurcments into state estimutes is delayed by the N-scan algo-
rithm on the data ussociution tree. It is the price paid for simplifica-
tion of the problem, This procedure will be used in our application in

Chapter 3.

2.5 - OTHER WORK IN MULTLTARGET TRACKING

Before leaving this chapter, we should summnarize previous work in mul-
titarget tracking and compare it to the approach tuken here, An excellent

survey of wmultitarget tracking methods can be found in &« peper by Bar-

- 19 -
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Shalom (3.

All of the work in the 1literature focuses primarily on developing
techniques to resolve the uncertainty in the origin of received measure-
mentsy i.e., the data association problem. The applications of theSe tech-
niques generally assume that target state estimates can be obtained direct-

ly from given sequences of measurements.

The approaches to the problem can be classified as Bayesian and non-
Bayesian. Non-Bayesian approaches do not take into account a priori infor-
mation. The early work of Sittler [10]) typifies this approach. In his al-
gorithm, data association trecs are formed in a similar menner as in our
algorithm, although this is not explicitly statced. Kalman filters estimat-
ing target states are initiated and updat :d directly by the given measure-
rents., The innovations of the filter of vach branch are used to sequen-
tially compute a likelihood function, ;Targeb tracks whose likelihoods are
below a certain threshhold value are then rejected. A somewhat different
technique developed by Morefield L7] minimizes the likelihood function by
transforming the problem into an integer programming problem, This pro-
duces the most likely set of turget tracks given zll of the data, but is a

batch processing technique,

Two observations can be made., The first is that the state estimates
and covariunces are.conditioned on the corresponding data hypotheses being
true, liowever, no probability value is obtained for the data hypotheses
themselves, This is essentially due to the philosophy of the non-Bayesian

approuch, ‘I'ne second observation is thst, without a priori information, it
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is difficult to apply these slgorithms in a distributed processing system,

because the data associatibn‘and truck association are intertwined.

E : The Bayesian approachés to thﬁ multitarget tracking problem attach to

each measurement a probability ¢f being correct, based on a priori informa-

tion, The resulting target state estimates and covariances reflect the un-~

i e s

certainty in the origin of the measurements. In [1], Bar-Shalom and Tse

PR

deal with the single target case. Assuming a target state has already been

initiated, a gate can be formed around the estimated target state. For

each measurement that falls within the gate, a probability of being correct
is computed based on how close the measurement is to the estimate. These

measurements, weighted by their probabilities, are then used to update the

estimate. The resulting filter is called the probabilistic data associa-
@ : tion filter (PDAF)., This approach is target oriented in nature. As such,
” i it is difficult to incorporate initiulization of ﬂaraeb trucks into the
scheme. The PDAF is extended to the multitarget case in [2]. However, the
‘scheme for computing probabilities is very complicated. In addition, the
application of tnese ldeas to a distributed processing system would in-
crease enormously the amount of cumputation required, Because of this, and

our desire to include track initiation, we have rejected this approach.

The work of Uinger et. al. [v] and Reid [6] hnas already bueen men-
tioned. Ve have described the delayed lH-scan algorithm us 4 generalization

of Reid. It is probably more accurate to characterize it as a combination

I arcc SR

of the Bayesian and non-Bayesian opprouches. In the sequ:l, we correlate
! data tracks in the track association trees by computing a liklihood fune-

tion for each track hypothesis., The target stute estimation is conditioned

- 21 -
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on a particular datu hypothesis (or hypotheses) being true. This is exact-

ly the non-Bayesian approach. However, the date hypotheses upon which:

these target tracks are conditionsd are obtained by a "pre-processor" which
employs a Bayesian N-scan algorithm simiiar to Reid's., Thus, although the
target state estimates do not reflect measurement origin uncertainty, they
are based on hypotheses that have been singled out in a Bayesian weading

process.,

2.6 - SUMHARY

In thiy chapter, we have defined some basic terms and constructed a
model for the solution of the trucking problem, \le have considered, in a
general setting, some useful techniques for rendering the model amenable to
practical implementation, and we have s2en how some previous work in track-
ing fits into this model, In the next chanter, wé present an application

of these ideas to a specific tracking systeu.




CHAPTER 3

DISTRIBUTED SEN3OR HETWORKS

The procedures developed in the last chapter are quite general in na-
ture, In order to demonstrate their utility, we need to have a specific
application. 1In this chapter, we will describe a general tracking systenm
called a Distributed Sensor Network. This tracking system will provide the

motivation for the example to which we shall apply our algorithm.

In principle, the more information a tracking system can obtain from
the environment, the better it will be able to track targets. Active sys-
tems are almost always used in situations where maximum target information
is the only criteria or has absolute priority. Host active systems, such
as radar, send u signual into the environqent and receive reflected versions
of those signals, along with clutter from the environment, This operution
of reflection allows an estimation of the time delay beuween transmission
and reception. Since the speed of propagation of the signal is assumed
known, this is equivelent to a range estimale. Pussive systems, on the

other hand, do not have this information, and hence must contain more sen-

sors and nodes than active systenms to obtuin equivezlent information,

In many cases, however, maximuin target informavion 1is not the sole
criteria, nor does it ulways have the highest priority. Active systems
have the property that potential turgets in the environment may be sble to

detect the radiuted signals, In wany cuses, especially in military appli-

cations, this dctectability 18 & major drewback, and the design of passive
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systemy is desirable.

D3N (Distribubed Sensor Network) is a research project of MIT Lincoln
Laboratory. D5 is a muiti-node surveillance system designhed to detect,
locute, vrack, and identify low~{lying uircraft. Although in actual prac-
tice the systemn may be a mixed one, with both active and passive sensors,
it turns out to be more fruitful to study a strictly passive syaﬁem. since
the distributed processing and control problens of large act:ie systems oc-
cur in much smaller passive systems. In addition, in reference to detecta-
bility, it would be desirable for the system to be capable of carrying out
its functions using only passive sensors., Hence, we will view the DSN as

having a solely passive capability.

The new information input to the DSN are acoustic signals. Each uode
of the DSN contains an array of acoustic sensors (probably high quality mi-
crophonzs). Euch sensor samples the incbming sigﬁals at a specified rate
to obtain a digital sample set., After predetermined intervals of time, the
sampled signals from all sensors are input to the signal yprocessing com-
ponent of the node, Fssentially, this component uses high resolution fre-
quency wavenumber analysis to detect phase differences in the signals,
thereby obtaining a direction., The output can be viewed as a curve plot-

ting received signal power vs azimuth, An example plot is shown in Figure

J"1 .

Thes2 power-azimuth curves, produced at given instants of time, are
the input data Lo the ¢tracking system., To keep things simple for our

models to come, we will use only the azimuthal information, The power in-

-2y -
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formation could be useful in resolving ambiguities; however, we shall not

consider this role,

We are thus assuming that each node of the D3N hus available a set of
azinuths and varisnces of those azimuths al disorete instants of time., The
tracking problem 1s to combine the azimuths from the nodes to produce tar-
get trucks. We should keep 1in wmind that the nodes arc geographically
dispersed and that the velocity of signal propagation is comparable to the
speed of potential targets. In addition, the measurement times at dif-
ferent nodes are not necessuarily synchronous. However, for simplicity, we

shall ignore this last observalion,

In a large scale DSN, it is obvious that a distributed processing
schene 18 much more desiruble thun a central processing one. First . all,
the large amounts of informalion Jdictatce that it be hundled in  picces in
order to sort it out., Second, communication is generally much slower than
computution, and so for time efficliency, the cumpulational loud should De
distributed as much as poussible. Communications also radiate power, which

is undesirable it detectability is an issue,

Thus, it secems logical to do as much of the processing at individual
nodes us possible. There is not enough information gathered by the node¢ to
produce independently a relisble target track, However, il is possible for
the node to perform its data e«ssociantion independently of other nodes.
This is why we separated out data associution and track association in our
algoritha. It fits very naturally into the problem of distributing compu-

tationul load in a trucking systen.

- 20 -




To produce the actual tuarget tracks, we can correlate datsé tracks ofA

puirs of nodes to produce target tracks. Target trucks cun thun be ret'ined
at a higher level by comparing various two-tode results, This scheme sets
up a hierarchy similar to multi-site radar, with the exception that the set

of two-node target tracks are not always independent,

The two-node tracking problem is what we intend to study. We will as-
sume that our tracking system consists of two novdes each independently re-
celving azimuth measurements. For simplicity, we will assume that the en-
vironment is two dimiensional und that nodes and targets are dimensionless

points. All nolse in the meavurements is assumed to be Guassian and white,

With the specification of our example, we are now ready to explore
mathematical details. The first order of business is to discuss a defini-
tion of probability for our hypothnesis Lrees. This is the subject of the

next chapter.
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CHAPTEi 4

THE CALCULATION OF HYPOTHESIS PROBABILITIES

In order to apply our algorithm to the two-node system, we first need

to define & probability measure on both the data association trees and the

track association trees, With this we cun evaluate the strength of viarious

ettt Tl

hypotheses and eliminate unlikely ones. In this chapter, we develnp a

é theoreticul basis for calculating the probabilities.

g
?
i ¢
!
)
F
3
k.
3
3
.
%
3
:
;
;

4.1 - DATA ASSQCIATION TREES

We first consider the data association tree at a single node. Sup-
: pose, for the mament, that an estimate of the target state is availeble at

a measurement time ¢, We can then form a prediction of the incoming meas-

-

N

urcment based on this target stute estimate. Intuitively, we would expect

that the closer the measurement is to the predicted valug, the more 1likely

ks e o e

the measurement is assoclated with the target. As is well Known, we can

sequentially forin target state estimates as data arrives through the use of

Kalman filters.

'71; In a more general setting, we assune phat the measurements are the
output of a linear system plus an additive noise term., As is well known,
we can formulate a state variable description of the system in many dif-
ferent ways by choosing different detinitions of the state variables of the
system. For the moment, let us assume we have settled on a particulur de-

finition for the stute of the system., We may write the (linear) state

USRS T Ty T T
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equation and measurement equation as

Xx(ke1)

L

FOROX(K) + Gk wlk)

2(k) = HOKX(K) + v(k) (4.1)

x(k) is the state of the system at time k and z(k) is the measurement at
time K. We assume that w and v are independent Gsussian white noise se-
quernces with
E(w(k)w (k)] = Q(K)

ELv(K)v' (k)] = R(K) (4.2)
Define R(kil) to be the linear least squares estimates of x(k) given data
up to time 1 and P(kil) to be the covariance matrix of this estimate. We
can obtain f(kik) and P(klk) through the use of the discrete time Kalman

filter equations as follows:

R(kik) = R(kik=1) + K(K)[2(k) -~ HUOR(KkiKk=1)]

RU+T1K) = FCRKIK)

P (i k=1)HT () LHCK)P (kT k=BT () + kG

K(K) =
P(kik) = [I = K(KIH(K)IPCkIK=1)[I = KCKH(K)T + KG)RGKIKT ()
P(ke11k) = FCRIPCKIKIFY (K) + GCKIQ(K)GT (i)

(4.3)

Using these equations, we can sequentially update the state estimate
as measurements arrive. One quantity that will be of interest to us is the

so-culled innovations sequence

¢, = 2(k) = HOOR(Kkik-1)

-2y -
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It can Le shown (e.g. [11]) that Vk is a Guassian white noise sequence

glven our previous assumptions with

zwkc/;fj =B, = HOOP (K K=1)HT(K) + R(K) (4.4)

We are now ready to derive our result concerning the calculation of
probabilities of hypotheses. Our deviation follows closely the work of

Reid [8]. Although Reid assumes that x(k) is the actual target state, the

results are valid for our more general definition of x(k).

Let ;

2(k) = {gm(k) , m=1,2, .00 ,M )

K

denote tiie measurements received at time k and
Z% = {2(1),2(2) ..., 2R}

denote the cumulative set of measurements through time k., Also, define

k kK

b LR {I'i . i=1.2,....1k}

B T

to be the cunulative set of hypotheséé just éfter tine k. Each I'?

corresponds to a brunch on the hypothesis tree,

How, define

e o o A e B AN A 7,

k _ k, .k
Pi_PWi.Z) |
that is, P: is the probubility at time K of the branch I'? of the hypothesis

tree given the data Lhrough time k (ZK). In actuulity, this is equivalent

to the conditioned Joint probability of the prior hypotiesis T' :_1 and the

data hypothesis for the current measurement <et wh. Dropping the depen-
dence on past data for notational simplicity, we can use Bayes' equation to

write th2 relationship
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- k=1 , 1 oy K=1 k-f
{ 8 '*h i 2(k)) = r’P(Z(k) i I'g .vn) X P(vh } I'g )

' (4.5)
The term 7y is & normalizing factor given by

- » ] k-1 1 ] k"'1 k-‘
4-§§Pu%)-rg W) X POy 4T T x P

If we can find expressions for the first two terms on the right hand side
of (4,5), we will have a recursive relationship for calculating probabili-

ties.

The first term is the probability density function of the current set
of measurements Z{(k) given the prior hypothesis 1'2-1. and the current data
hypothesis ¢h. Assuming that each measurement gm(k) in Z(k) is condition-

ally independent, we have

M

'wh> = II. P(}-m(l
=1

pnm):r?‘

X
3

.&h) _
(4,0)

Suppose that ph assigns gm(k) a8 either a false alarm or a new data
track. In either case, there 1is no a priori information to determine
whether one set of possible measurements is more 1likely than another.
Hence, in these two cases, we will assume that it azppears as a uniform dis-
tribution

PE o rpen
m g = .v_
(4. 7)

V is the volume (or area) of the part of the enviromment covered by the

node.,

If neither cusc above holds, then g, assigns zm(k) to cither a previ-

ously established vata truck (confirmed truck) or Lo a data track whose ex-

im e o s
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k-1
g
tiated when a new data track is hypothesized in the course of expansion of

istence is inplied by T (tentative truck)., Tentative tracks are ini- ?

the duta association tree. A tentative track becomes confirmed if it still

S N P

%

!

f exists when the scan in which it is initiated is identified.

i

: If a Kalmgn filter is running on the assigned data track, we have

avallable a ourrent estimate R(kik)sR . Since this estimute does ot

{ depend on the current measurement, we have

BT P S S

K1 y 1y k=1
P(g_m(k) ! I'g ) = P{_zm(k)---ﬂ(k)_sgk i I'S o} -(4,8)

h
The last is the conditional density function of the innovations of the

filter, which has a normal distribution. Hence

[)
"nll
where n is\£§5wéimgﬁsion of the innovation vector x.

t k-1 ' - . k
. Pz (k) | I'g W) = NEz (K)-H(K)R, \B] (4.9)
i with '
B = HOO)PIKONTIK) + R(K)
i exp(-%(/TP"w (4.10)
l N(V,P) =
N

The second term on the right hand side of (4.5) is the probability of
the current data association hypothesis vh given the prior uypothesis 1'2-1.
Y has three items of information:

€) MHumber - the nunber of measurements ussociated with prior data

tracks (NDT(h)). false alarms (NFT(h)) and new data tracks (NNT(h))'

b) Configurotion - the particion of the set Z(k) into three subsets
corresponding to prior targets, false tergets, and new targets,

c) Assignment - the assignment of each medsurement associoted with

prior data tracks to the specific source.

- 32 -
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In addition, the prior hypothesis gives NTGT(g), the total number of

duta tracks, confirmed and tentative, implied by that hypothesis. Thus if

g e —

#N implicitly assumes that measurements were not recceived from

Npr#lzgre ¥n
some of the prior data tracks.

k=1 .
\J R . o “
To find the probability of the numbers ND" “FT and NNT giveu I g ° we

make the following assumptions, First, the probability that a target will

Tl

generate a measurement which is actually received by the node is a constant

PD (called the probability of detection). In other words, the reception of

f a measurement can be deseribed in probabilistic terms as a Bernoulli trizl.
If we further assume that the detectability of each target is independent'
of the others, and that each target can only generate one measurement in a

X ? given scan, then we see that NDT is a Bernoulli process and its distribu-

A : tion is binomial.

Second, we assume that the number of false alarms follows a Poisson

el S Sattas i
T e i

" distribution, This 1is an assumption often mede in tracking problems. It
‘ makes intuitive sense, because while the appearance of fulse alarms is ran-
dom, in many cases they huve a constant average rate of appearance over

reasonably lengthy periods of time. We will also assume the number of new

L targets follows a Poisson distribution. The assumption is imuch harder to

; *ffj , justify. In order to muke it reasonable in actual practice, the average
3 ¥'?, rate of new target appearances must be adjusted much more often than the

F;,; rate for false alarms.

¥With these assuamp-ions, we have

e
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TGY (Noporurn=H o)
) k-1, _ TGT™ DT
P(NDT'NNT’”FT i T g ) = I (1—PD)
DT
x Fy  (BooVIF,  (f5.V) (4.11)
Np PFTT TN PNT

where

4
”

probability of detection

density of false alarns

= density of previously unknown

Ts
=
-3

[

targets that have been detected

Xne"x

F, (0 =

Now, the total number of measurements is

Hk ] ”DT + NFT T

The number of different partitions of the Hk measurcnaents, givenu the

+I“

numbers NDT' NFT' and NNT is
Mk Mk'NDT

Npr\ Npr

Assuming that each configuration is equally likely, the conditional proba-

bility of a specific configuration is

+ 3 [] -
P(Configuration | NDT‘NFT'NNT) =

(4.12)

Given the configuration, the number of possible assignments of the NDT

measurenents to the ”TGT prior data tracks is

3 MTGT\'
,,.! e ————
(NTM'A)DTB\'




Assuming that cach such assignment is equally likely, we have

(=N )
— (4.13)

TGT

P(Assignment | Configuration) =

The Jjoint conditipnal probability of NDT' NFT‘ “NT' the configuration, and
the assignment is the product of (4.11), (4.12), (4.13), and is also the

conditional probability of wh. Thus we get

peu, ¢ ¥y o SEr Mrt Nor o Uigrtipy)
h'%g 7 HI D D
X Fy  (BeVF, (o) (4. 1)
M PETY T P

If we now substitute (4,6), (4.7), (4.9) und (4.14) into (4.5) we obtain

] -
T T Sl oot Mreror?
iy M ! b
X Fy (BprV)Fy By
g PFTY? Fics By
!
pT
K kg 1 k-1
x II N[z (K-HKRY , BK) —1_——
m=1 - =i m VIFT+N“ g (4.15)

The measurements have been implicitly ordered in the above so that the
first NDT of them correspond to those assigned to prior data track$ by vh'
Substituting into (4.15), simplifying, and incorporating constanté

in n, we finally get

ok 1 "01(1 e )(NTG"'“ ) Nep Byp
i *q'p Ber Pur
N
DT
X I Nz, (K-1GORS | 85 PZ”’
=1 (4.16)

Hote that this is independaent ot V.
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As wmentioned by Reid, this equation 1is essily implemented in the

framework of tree expansion. Prior to expansion, all prior probabilities

Not \l
are multiplied by (1-P.) lGl. Then, as each bdranch 1is created for a

D

specific ineasurement assignment, we multiply tne probability of the prior
. . . . X k.

hypothesis by either Bep Bur» or PDn[ﬁm(k)—H(k)gm . BmJ/(l—PD). depending

on the assignment. The probabilities can be normalized after tree expan-

sion, although this is not strictly necessary since only the relative pro-

babilities are important.

We can take the negative logarithm of (4.16) to obtain a recursive
likelihood equation which is additive rather than nultiplicutive. We can
write this recursion as follows:

1) To each prior hypothesis T 2"1. add to its likellihood

-l d -
JTGT(s)ln(1 PD)

2) As each measurenent is assigned we add A, where

;-lnﬁFT for false alarms
- -
A= ; lnpNT for new data tracks
11,17 =1 n 1 It
iEV B ¢+ 21n2" + 21n.5. - lnPD + ln(1—PD)

for prior data tracks

We sce, then, that we necd to specify three items of information 1in
order to use this definition on the ddla association trees:

a) The stute variable representation (4.1)

b) Thg false alara density ﬁFT

¢) The new target density ”NT
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We next consider track association trees,

4,2 - TRACK ASSQCIATION TREES

Track assocliation trees behave somewhat differently than data associa-
tion trees. Here we hypothesize various combinations of datu tracks from
different nodes to produce possible target tracks. Assuming that each such
combination produces a unique target track, we see that these trees have
constant depth. Wnen a new data track appears, new nodes are crcated by
correlating tha new treck with existing tracks from other nodes. The pro-
cess is a breadth expansion, rather than Jepth because the new hypotheses
are not conditioned on the hypotheses ulready in existence. There is no
necd to consider false alarms or new targets at this level; these have al-
ready been determined at the data associution level. Ve thus need only a
method of distinguishing those combtnations of data tracks that correspond

-to real targets. Those thut do not corraspund to real targets are termed
ghosts.,
The problem in setting up & general definition of probability here |is

that the probability of each node must be evaluated over a time interval.

This differs considerably from the nodes in datu assocliation trces, whose

probabilities eare evaluated at points in time, It new nodes are added to
an existing tracic associavion tree, then the probabilities of the hew nodes
will be evaluated over different time intervals than the older ones. The

question then becomz2yg one of comparing thuese probubilities,

Lo .)l "' -
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Instead of computing probabilities, we will compute a likelihood func-
tion for each track hypothesis, Supposes we are using the data tracks from
n nodes to form @ track hypothesis. Define z(k) to be the augmented meas~
urement vector, consisting of the measurement vectors of the n nodes, Ve

can model the problem as follows:

x(k+1)

AUDXGO + BUOWK)

2(k,0) = C(K)x(k) + v(k)

x(k) here is the target state. The parameter © denotes the dependence of z
on the track hypotheses, To find the most likely hypothesis, we need to

maximize the likelihood function for 8,

The problem in this form resembles the multiple model identification
problem (see Van Trees [11]). Using the model, we can obtain a recursive
relationship for the log likelihood fundtion of ®. The result is

L(B,k+1) = L(8,K) + 2¢(k,8)B™ (k,0)¢" (k,0)
where V(k,0) is the innovations at time k obtained from a Kalman filter as-
sociated with the track hypothesis identified with 8, and B(k,8) is its co-
variance. With this relationship, we have a4 meuns of choosing the most

likely track hypothesis.

The Initiazlization of a track hypothesis occurs when a new data track
appears out of the data association process at some node., The initializa-
tion becomes somewhat complex when the measurements are time delayed, In
some cuse8, 1t may not be possible to initizlize the correct track hy-

pothesis. For instence, consider the situation in which a target is closer

‘teo - a-nde A Lhan anothier ncde B, Because of the signal propagatior ‘aEy,
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the meusurements at A will be more recent than those at B. Presunably,

node A will detect the target first., If we atteumpt to correlate the new

Jdat: track with exiscving data tracks at DB, we see that the correct corrcla-

tion will not be formed, since B hus not yet detected the target.

With this in umind, we present the follqwing scheme for the construc-
tion of truck association trees, Vhen a node initiates & new data track
th.ough its data association process, a new track association tree is &also
created. We attempt to .initialize correlations with existing data tracks
from the other nodes for a given length of time, After this period, no
more attempts at initialization are¢ made. In this manner, the correct
track hypothesis should be formuleted with the last node to detect the tar-
get. In order to compare hypotheses on different truck associution trees,
we shall use time averaged values of likelitoods computed in the manner

described above; i.e. we shall use L(k,d)/AL, where At is the

The utility of the above method will, of course, depend on the track-
ing system. In some cases, it may turn out that differentiating between
ghosts and targets is virtually impossible., We then must either bring to
bear other information in the system to distinguish the real targets, or ve

must continue to track the ghosts as targets. These issues will appear in

our discussion in the next chapter.

4.3 - SUMHARY

In this chaprer, we have presentec a formulation for the calculuation

of probabilitles of hypothases on the data associuation trees and the track

- 3G -
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association trees. Armed with this knowledge, we van now proceed with the
application of the algorithm to the two-nocde systen. The necessary

mathematics are developed in the next chapter,
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CHAPTER 5

STATE SPACE MODELD FOR THE TWd MODE SYSTEH

In order to apply the formulation presented in Chapter 4, we need to
develop state variable representations to implement the necessary Kalman
filters, Our goal in this chapter is to 'develop the appropriate state
space nodels for both the data association process und the track associa-
tion process., Although we wish to obtain filters that perform reasonably
well, we do not wundertuke o thorough c¢xamination of these state space
modeis. As a consequence, some important issues are left unexplored. How=-
ever, our wmain purpose is to dJumonstrate the tracking algorithm developed
earlier; we do not propose to derive the optimum vracking filters for the
specific tracking system under.considera;ion. Hgnce. we content ourselves

with a less detailed, vut adequate, anzlysis focused on the data assoclia-

tion aspect of the problen.

5.1 - STATE SPACE MODEL : THi DATA ASSOCIATION FILTER

The most natural way to define a state variable for this problem 1is
the target state as defined in chapter 2. It is easy to sce how the meas-
urements are related to the turget stute. In Figure 5-1, ¢ is the noise-

less mewusuruvnent (the acoustic azimuth) at time k. Because the speed of

sound is finite, this means that 6 corresponds to u target position at time

t sometime iIn the past. (This is called the &acoustic target position to

distinguish it from the true farget position «t time k). The relationship

Fa A
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between kK and ¢ is

K .
kat«+ S 5.1)

where B is the range to the acoustic target position ( the acoustic raunge)
and ¢ is the speed of sound. liow, let B be the acoustic uzimuthl (at time
ko) when the acoustic target position is at the closest point of approach
(CPA). The time the target is actually at CPA is ¢

00
around CPA - that is the angle between the line to the upparent target po-~

Let Y be the angle

. sition P and the line to the CPA. We see that

6=+, -g <7« % - (5.2)

Let us assume that tne veloeity v and the heading is constant. The dis-
tance between P and CPA is
d = v(t-to) (5.3)
A negative distane implies the target is spproaching CPA., We also have
d = rtény . (5.4)
where r is the distance Lo CPA. Thus
v(t-to) = rtan) (5.5)

or, substituting for L and to.

R r )
vik - s - K. + 3) = rtan)y

0
vR v v
tany + or = F(k-ko) + <

But R = rsecY, and so
v v , v
tuany + csecy = r(k-ko) 3

Solving for Y, and substituting into (5.2), we finally obtain

- U3 -
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Jlkk ) + % 1 4\ e ﬁ(k-lc )2 + gﬁ(k-k )
r 0 c r2 0 re 0
6=p+ ~ v2
1 - = .
c2 (5.6)

The quantities ko %. %. andfy provide full knowledyge of the target state,
1]
Hence, we could choose these to be the state variables for the system

model

There are two major difficulties in using a state model in this form,
First of all, it is difficult to obtain an estimate of 3 until past CPA.
Becuuse the governing equation (5.6) is nonlinear, we must resort to

linearized version of the Kalman filter (called the extended Kalman filter

or EKF). The quantity |3 is crucial for un accurate linearization. The
y

best way to obﬁain an estimate of |5 is to set up u bank of filters, each

conditioned on a different value of |j. Based on the performance of these

filters, we would then apply some sort of decision criteria to selsect the

'best filter. This has been done by Hebbert [$] for the case of a single

target, no system noise, and an infinite signal propagation speed. In our
case, there will already be seversl Kalmaan filters running, and replacing
each of these with a bank of filters increases thc memory and computation

ehormously.

The sccound major difficulty Iin using the full target state in our
mocel is the resulting wesk observability of the system. Theoreticd': we
can obtain information about cvery state variable from any given measure-~
inent , However, we get a relitively large amount of information about a

particular state variable only at the expense of the other state variables.
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Essenticlly, the azimuth 8 glves one position coordinate in a two dimen=
sional system. Ve would expect, then, that we could not obtain substuntial
reductions in the uncertainty of both position coordinates is shown clearly
in Figure 5-2(a-d). x is defined as the position coordinate purallel to a
given target's trujectory, and y to be position coordinate perpendicular to
the trajectory. Vx and vy are the velocities in the x snd y directions

respectively. Figures 5-2(a-d) displuy the square root‘or the variances of

X, Y, V and vy as & function of time for a typical target trajectory.

X'
The variances are the diagénal elements of the error covariance mnmatrix of
an EKF tracking x, vy, Vo and vy. The filter was always linearized about
the exact trajectory. The mecsurement noise and the system noise in this
filter were set to U (i.e., Q=R=0), and the initisl covariance was set to a
very large value. The filter thus starts off with ossentially no a priori
information, and all reductions ot the QQVarianCu.are solely due to the in-
coming measurements. The covariance matrix obtuined is known as the
Cramer-Rao lower bound, which implies thut no tracling scheme can attain
mean square errors less than those shown here, AS can be seen, there is a
rapid reduction in the variance of vy while the target is still far from
CPA (which occurs at ts45 seconds)., The variunce of . stays relatively
high until the target approaches CPA. Thus, in the region approaching CPA,
the full state tracker is at best weakly observable. The large uncertainty
in 4l least on2 coordinate in this region could result in a poor lineariza-

tion and filter dJdivergence. Since we wish to perform data associuation in

this arca, we musi reject the full targel state #s a model.
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We thus must define our stute variables in another way. One mebtlyod is
make a Taylor series approximation for ¢, i,e.,

6(k+T) = B6(k) + Td'(k) + 3—6"(k) * E—é"'(k) + ven (5.7)

Our problem is to determine the appropriate number of terms to retain in
the expansion. A typical plot of the acoustic azimuth vs. time is shown in
Figure 5-3. Obviously, a linear approximation is not very good over the
entire range, so the term 4'' should 2t least be retained. On the other
hand, retention of too many terms can lead to a rather sluggish filter with
a relstively high aversge error covariusnce, In addition, computation and
memory requirements increase with the number of state variusbles., There-

fore, we restrict our attention to two possibilities: the thiree-state vec-

6(k)
X, (k) = (8" (k)
él!(l
6(k)
' (k)
iu(k) PRI
'”(k)

X(keT) = Fx(k) «+

tor

and the four-state vector

Our system model is

0 | Wwix)
§

Wl “(5.4a)

where
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(5.8b)
lie assume that w(k) is a scalar, zero-mean, white Guassian noise process
with variance Q. HNoise is entered only through the highest derivative for
simplicity. The measurement equation for the systen is

z(k) = Hx(k) + v(k) (5.94)
with

X, ()

b o o] La(k)

H = “1 0 0 U_J o x(k) (5.9b)

58(4)
v(k) is a scalar, zero -mean,white Guassiun noise p&pgess independent of

w(k) with variance R.

The above model does heve a serious drawback, however. When the ratio
% is large, correspe ding to small range and high velocity, the actual
f-curve approaches a step function, and its derivatives approach singulari-
ty functions. The model is very poor in these situations., In fact, the
filter will not react as fast as the changes in these derivatives, and it
may well lose the data track., Our solutionh to this difficulty is to bypass
it, pointing out that it is casily detected from an azimuth histqry. and

helice  special mechanisms, which w4ill not be developed here, can be invoxed
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to deal with it. Thus, we will ¢ .18ider only target trajectories with rea-

sonably =mall values of %.

In order to properly choose & good model, we test & number of possible
; values of Q in both the 3-state unu the Ud-state filter over a range of typ-
ical ;rajectorics. The trajecories were produced by varying the velocity

and the distance to CPA, the two controlling parameters. Figure 5-3 shows

the various combinations that were used. For each hypothesized model, a

f set of data from each targel was produced by adding measurement noise of a

standard deviation of 3° to the oxact acoustic szimuths., The Kalman filter
: A ; corresponding to. the model was run separately on each data set, and an
average squared error (ase) between the true acoustic azimuth and the
% filter westimate was computed for eacih track. An overall ase was compubed

for each filter.

3 The results of the above Monte Carlo simulwtion are saown iu Figure

54, It turned out that filter runs from two of the trajcctories produced

average squared errors that blased those computed from other trajectories,
o The first . ible shows the results if these runs were retained, The second
o ; run gives ‘ac computations if these runs are eliminated from consideration.

As can be seen, the model with the minimum squered error is different in

AT AT T MNETI SToNTY TIRLey
-

each table., The erfbrs are close, however, indicating that there are

several models that will give nearly the same performance, We choose the

model indicated by the second table, because all of our example target tra-

Sl<

Jectorics will have < .1, Thus, we choose the threz state filter with

S Q=0.001 us our datu sssociation filter,
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.03
01
.003
.001
.0003

.0001

6.03
9.08
10.64

.0001
.00003
.00001
.000003
.000001

.0000003

n.72

.85
6.30
6.65
8.86
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One lust iten to consider is t .2 initialization procedure for the Kul-
man  filter based on (5.8) and (5.Y)., Assuning tne model is reusonibly obe-
servable, the filter will be relatively insensitive to tﬁe initisl state,
Howaver, we ocan suggest @ natural procedure. Far from CPA, the acoustic
azimith will change very slowly., Therefore, we initialize the first ocom-
ponent of the state to the first measurement received. The other com=
ponents, which are derivatives of the first, are set to 0. The initial er-
ror covariance can be chosen somewhat more arbitrarily, since error covari-
ance approaches a steady state value relatively quickly, with small values
of Q and R, For the model as determined above (R=9.0.Q=d.001). it turns
out the covariance reaches steady stute after approximately n measurement

updates,

With the above systém model and initializastion procedure, we can con-
struct the Kalman filters necessery to implement the recursive probability
forrula developed in the chapter 4. ‘This, in turn, gives us an implementa~
tion for the data association trees. We now turu to the problem of con-

structing system models for use in the track association filters,

5.2 - STATE 3PACE MODEL : TARGET TRACKING FILTER

Developing a system model that produces a good filter to estimate the
full target state from the data tracks of the two ncdes is a much more dif-
ficult task. Conceptually, we can track the target state in two ways, We
can track the acoustic position and velocity, or we can track the true po-

sition and velocity., We shall iuvestigate the former method first.
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Consider Figure 5-5, Assume that the target has u constent velocity
and constant - heading. The node receives measurement 61. at tinme k,.
corresponding to a true target position at time t1. The relationship

between k.I and t, is given by (5.1):

1
R,
ky =ty + 5

R1 is the range to the acoustic target position. At time k2’ the node re-

ceives the measurement ‘2' and we have

R
- 2
k2 = t2 + 5
Thus,
RZ_R1
k2-k1 2 t2_t'1 * = (5.10)

Even if we choose k2-k1. the sampling period, to be constant, the time
difference between consecutive acoustic positions is constantly changing in

a nonlinear fashion. Thus the system equation is nonlinear, even though

“the target trajectory is perfectly linear.

It turns out that the equations of the EKF for this model are very
complicated., They turn out to be very sensitive to linearization. We can
get an idea of this by reasoning as follows. While the target is approach-
ing CPA (during which, it is hoped, the target will be acquired), the
acoustic range decreases., According to (5.10), this means the time differ-
ence between acoustic positions is greater than the time difference between
the corresponding measurements. How, since the system equation describes
the time evolution of the state, its nonlinearities will affect the time
update equations of the EKF. One would expect, then, thut the effects of

these nonlinearities would be worse than expected for a constant (known)
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update period, at least while the target is approuching CPA, Indeed, it
turns out that the filter {s not only very sensitive to linearization, but
that enhenced time difference between acoustic positions causes the error
covariance matrix to ‘shrink prematurely, reducing the influence of the ;

current measurements, }

Another difficulty in this approach is in the incorporation of the

P S I

measurements intc the filter. As discussed later, it turns out that the

best method for imeasurement update enters measurements from each node in-

Ceme e Cumel

dependently into a single filter., At any given sampling time, howaver, the
measurement from one node will not correspond to the same acoustic position
as the measurement from the other node., W& thus have the difficult task of

performing two time updutes, corresponding to each pair of measurements,

Our second approach is bto track the true target stute., In this case,

the system model for a linear trajcctory is also lincar:

1

x(k+T) =

o o o

equal Lo the sampling period.

0
1
0
0

'

—

C - O

- O ¢

0

x(1) + Gw(k)

(5.11)

Because of this and the

fact the equation is linear, we do not have the sensitivity in the time up-

date as we did in the previous model,

We should point out that the derivation of the current measurements
from the current Larget state does involve a degree of approximation, as
the actual signal received «t time k was produced by the target at time

k-2
c*

In the casase of no process noise, (i.e,, no target deviations from a
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constant course), this is not a formal difficulty as the statc variables

|
i

{ contuln enough informsetion to allow a position to be extrapolated backwards

e Rir s enZaent

in time. Formal difficulties arise when the process noise is assumed (as ;
it must be in this case for practical reasons), but the approximation that |
current measurements can be derived from the current state is minor com-
. pared with other approximations; e.g., ignoring altitude, multipath signal

effects, ete, @

Q ' We now turn to consideration of the measurement equation for the sys-

; | tem (5.11). There are three ways to incorporate the measurements into the.
: filter, One way would be to combine the azimuths in some fashion to form
i position measurements, This procedure is called crossfixing, «nd we would
: have & linear measurement equation, As discussed in the next section, how-
k- ever, the crossfixing is not always successful, and we could thus lose in-

formation for updating target state ustimutes.

The other two mcthiods use the given measurcements from the nodes in-
dependently. The first method would identicelly initialize two filters,
and then run each filter on a different node's measurements. The estimates

of each filter could then be combined, taking into account the common ini-

tialization. The second method would be run one filter and incorporate

both  measurenents, Theoretically, both  approaches should produce
equivalent results, As pointed out in th¢ last section, however, we do not
obtain much of & decrease in the variance of the position coordinate per-
pendicular to the trajectory. This implics that this coordinate is rela-
tively unobservable., e wil thus obtuin large crrors in tile estimation of

this conmponent, wiich will in turn give poor linearization, Without a good
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lineurizatlions, the EKF becomes unstable. For thess reasons, we will use @
single tracking filter that incorporates me:surements from both nodes in-

dependently.

We now derive the measurament equation for the system (5.11), Con-
sider the Figure 5-6. U is the true target position with coordinates (x,
y) and P is the acoustic position with coordinates (xP.yP). Y is the true
target uzimuth and 6 is the acoustic azimuth from node &. lNode S has coor-
dinates (xs.ys). Let t be the time difference between P and U. Then the
distance between these two points is vt, where v is the Qelocity of the
target.. In wddition, t must also be the travel time of the signsl from P
to 8. Hence, the distance between these points is ct. The angle 6 is as
shown, and is easily seen to equal &-y, where € is the heading of the tar-
get. By the law of cosines we see that

(ct)? = (vt)2+Q%—2vupcosﬁ
where @ is the true target range. bolving for v we get

T T T
¢ = —Oveost+ \{Pacaﬁp‘sined
- 2 2
¢y

(5.12)

Now, let vx be the velocity in the x direction, and vy be the velocity in

the y direction. Tnin we have

X=X,
-1 X%
$ = tan -
=B
(5.13)
-1 Yy
X = tan v (5.14)
Y

Since O=p-&X, we can derive the following using trigonometric ldentities:

|
e —:m!-!d}k)ﬁ;ﬁw.‘-j«s’”ﬁ\ﬁ
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XV_-yv
sin® = --é—v--—’ﬁ (5.16)

(5.16)

cos8 =

Substituting into (5.12) and simplifying, we get

-(xv_+yv )+\.92o2~(xv -yv yé
xJ'y Ty Y .
t = (501,)
02~v2 .

Since @ and v are functions of x, y, v, and vy. (5.17) gives t completely

X
in terms of the true target state, We now have

XP = x-th
yP = y-nvy
and
X ) SEATS .
g = te;m'"1 £ tan_ —tv‘ (5.18)
p . Iy
Thus, our measurement equation is
-1 x(k)-t(k)vx(k)
z(k) = tan + wik) (5.19)

y(k)—t(k)vy(k)

where w is the noilse term and t is givea by (5.12).

Since this equation is nonlinear, we will have to use an EKRF, For

this, we need the vector derivative

do
— _ \d6 d6 d8 I -

The equations for the above purtial derivavives can be derived by straight-

forward though tedious, calculus, The results are

LA S
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o




f . _ at
36 . yP+( yvx+xvy)3;
ax R
i p*yp
1 at
; . %2 . -xP+(-yvx+xvy)3;
g : y 2 2
: Xp+¥p
Ea» dt.
; ‘ o ~typ+(-yvx+xvy)3;;
‘ , I 2 2
i X Xp+Yp
X . at
E z 3o txP+(-ny+xvy);E;
: Xty
i Y PP
where
2 .
: ? b v e Xu +vy(;vx xvy)
) X
o9x - 28
8 2
' ye +vx(xvy—yvx)
! ot “Vy * D
dy 22
y(xv —yvx)
g T L ae
X
dvx ca_va
. x(yvx-xv )
f; at -y + __LD + évyt,
| avy cd-va
S
o
D = . R
'@eca—(yvx-xvy)z ((5.22)

The equations for the EKF arc of exactly che same form as (4.3), except that hure

the meusurement wmatrix is

. M) = 88

o

)
113
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The only thing left to specify here is the initializatlion procedure,
We will initialize the position and velonity of the filter ut one point in
time. This will be done using the smoothed estimutes of the azimuths and
their derivatives at each node. Tne procedure involves crossfixing, which
is the topic of the next section. A poor initizlization can cause problems
in two ways. If tha filter is initialized when the target is far from CPA
of both nodes, the trajectory will be unaffected by the measurements for a
relatively long period of time. The errors in initialization will thus
grow with time. 1In addition, if the estimated target position is much
closer to one of the nodes than the true target position, the filter will
give greater weight to the measurements from that node than it should.

These effects cascade, resulting in filter divergence,

With these points in mind, we formulote the following restrictions on
the initializotion procedure. First of all, we use two azimuths to calcu-
late u position only if their difterence is greatver than 60°. This ensures
that we do not initialize when the acoustic position is too far away.
Second, we artificially adjust the initial heading so that it points toward
the midpoint of the line segment joining the two nodes, This helps keep
the initiul position away [rom either node. This procedure, of course,
works well only for trajectories that pass between the nodes. However,
this is not much of & limitation if we consider the Lwo nodes as part of a
lurger network. In such a system, it is rewsonuble Lo essume that the in-
teresting targels will cventually pass between sowme poir of nodes., In  ad-
dition, u node puir wmay receive an initial stuate for a target that is being

tracked by other nodes, This procedure, called turget handoff, is impor-

- 08 -
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tant in a system with & large number of nodes, In these systems, initiali-~
zation is required only if data tracks cannot be associated with a priori
targets. This reduces the number of initislizations a node puir must per-

fornm,

5.3 - CROSSFIXING AND NON-CLASSICAL GHOUSTS

As wmentioned in the last section, crossfixing is the procedure for ob-
taining position measurements from the wazimuth measurements of the two
nodes. For time-delayed measurcments, the process is . more complex than
simple triangulation, Suppose that time targec position is further away
from node A than node B. The signal will thus reach B first. We cannot
obtain a position wusing this measurement at B because the corresponding
measurement, at A has not yet arrived. OJn thz other hand, if we use the
current uwessurement of A, ths corresponding neasurement of B is a past
measurement, Thus, crossfixing cun only produce acoustic positions
corresponding to measurements from the node farthest away from the target.
Given the current measurement from one node, we can Jdivide the crossfixing
operation into two steps. The first step Jdetermines the measurement and
its time of reception at Lhe second node that corresponds to the sane
acoustic position as the given measurement. The second step is standard
triangulation, Since the first stcp is the real problem here, we will in-

vestigate it here, Thne derivation follows [4].

Consider Figure 5-7, Suppose thal we receive, abt time ‘B the azimuth

6u at node B, Ve wish to find the measurenent d‘ reccived by node A at
L

time tA that corresponds to the same acoustic position os 68. Letl
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6t = fy=ty (5.23)
and define nP to be the ime at which the true target position was the same

a8 the deslred acoustic pc -ition P, Then

8t = (tg=t,)=(t,~t,) (5.24)

Now, tB-tP is the travel time of the signal betwsun P and B, while tA P

the travel time of the signal between P and A. From the geometry of Figure

5-(, the following is evident:

1 = h . _h
z ;s -
A sindA cosdA (5.25)
1 = h __.h
= - =
B sinéB cosdB (5.26)
{ Remember éB is a negative quantity in this figure). Also,
lA
tA-tP =5 (5.28)
lB
tB_t‘P = -c—‘ (5-29)
From (5.25) and (5.26) we gel
coséA
1, 21, ————— (5.30)
B A sin(éA-éB)
Substituting this into (5.27) and solving for lA' we get
d coséB
l B et — (5031)
A sin(bA-da)
Also,
d cosd
' ® St”t”ﬁ-éB’
(5.32)

Using (5.20), (5.28), (5.29), (5.51), and (5.32), we finally get

J. COSdp ~ cosd

Su s 3 e
' LB
- 67 -
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(5.33)

Althiough we have used a reostricted geometry here, the result is more gen-

eral, The equation is valid, of course, only in the range where the meas-

urements ﬁA and 65 intersect; nauely,

n " w
1. -3 < dB < 3 68 < 6A < 5
i n
II. "l < ﬁB £ -W . 3 < 61.\ 4 2"+ﬂB

n n
III. 5 <8 , <8, <4y

For éB = :g. the acoustic position is indeterminate.

Now, suppose ihat we have the past nistery of received measurements at

node A (i.e., the azimuth vs time curve for A) as in Figure 5~b, Using

(5.32) we cun convert the single obscervation bB at node B into a curve of

possible 6, Vs §t and plot it on the saue scele (Figure 5-9). This curve

is called the reflected observation curve. The intersection of these two

e

curves gives the desired meusurenent ﬁA and its reception time tA'

It turns out that multiple intersections of the two curves is possi-

ble. This occurs when the target trajectory passes between the two nodes.

emn o arop s e i 2 e Mo e P

Figure 5-10 shows an examplce. At time instants one second apart we have

taken the noiseless measurements at B, and obtaln all possible acoustic po-

sitions assuming a full past history of noiseless measurements at A, The
ri target velocity was 150 meters per second at a heading of 135 degrees from
north, and the distance between A and B is 000 meters. In the figure, the
E real acoustic trajectory is obvious. The fulse positions form a track that

tlies from the perpendiculuar bisector of the line segment joining A and B

- 08 -
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to node A. This behavior is exhibited by all sush fulse trucks, and they

ovccur only on the incoming path. We call cthese traocks non~classical

ghosts, to distvinguish them fron the ghosts of Chapter U,

A heurestic procedure can be developed which eliminates, for noiseless

neasurements, most traces of ghost tracks, Looking agaln at Figure 5-10,

we dee that the ghost track is8 concave douwnward. (The truack begins st the
biseator und heads toward A). Since ths target heading is 135 degrees, the
acoustic azimuth increases with time. However, succeeding positions alony
the ghost track requires the acoustic azimuth to decrease with time., Thus,
the measurements of A that determine the ghost track forms a sequence that
goes backwards in time. At each point in tims, then, after crossfixing has

been completed, we eliminate the post history at A that occurs prior to the

earliest crossfix, then the rest of the ghost truck will be eliminated. If

it is not, the ghost track remair . Figure 5-11 shows the raesults for this

example. As can be seen, only part of the ghost track is eliminated,

We can eliminate the rest of ithe ghost by observing that this portion
of the ghost track must correspond to the luter crossfix, else it would
have been eliminated. We thus keep only the earliest crossfixes, which

correspond to the real acoustic positions, The result, with a few minor

ad justnents that need not concern us here, are shown in Figure 5-12, Note
that the procedure makes one expected error —- the first point at which the

ghost is the earliest crossfix.

In the noisy case, deghosting is somewhat more difficult, primarily

becuuge crossfixing is not alway3 successful., An imporiunt thing to notice
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in Figure 5-12 is the gap that occurs in the region where the ghost track
and the target track intersect, In this region, the reflected observation
curve is almost tangential to the azimuth time curve; the intersection
points are close together. This is shown in Figure 5-13 . In cases like
these, it is very difficult to detect the intersection points, - This is why
the gap appears in Fig. 5.12; tﬁe gurves were almost tangentinl and the
crossfix failed. The situation is even worse when the measurements are
noisy. The gaps can be many time-sampling periods long. In addition to
this, the noisy data can cause random crosfixing failures anywhere along
the path, Because of this loss of information, we choose not to use posi-
tion measurements as updutes to our filters. We will, however, use

crossfixing in initialization.

5.4 - SUMMARY

In this chapter, we have developed state vuriable deseriptions neces-
sary for the construction of Kalman filters for both the data association
trees and track association trees. We also discussed the operation of
crossfixing and non-clessical ghosts., In chapter 6, we shall present some

results for this implementation of our tracking slgorithm,

.
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CHAPTER 6
RESULTS

In this chapter, we presesnt demonstrations of the filters develcped in
Chapter 5 and their application to the tracking algorithm. It should be
pointed out that these examples only highlight busic churacteristics, In
order to evaluate the strength of the filters, Honte Carlo simulations
should be conducted over a wide range of target scenarios, and performance
stutisticy wust be Jefined and computed to facilitate the evaluation, Un-~
fortunately, due to Lime constraints, we were unable to give a really
thorough performance evaluation. We will, however, present some resulis

that illustrate the characteristics of the filturs and the algorithm.

All of the demonstrations in this chapler wers done by cotputer sinu-
lation, The simulations, us well as the algoriviim itsgelf, was written in

the C language and run on a PDP-11 computer,

In the first example, a Monte Curlo simulation was run on the data as-
sociation filter to provide some information on its performance. The
parameters of the example trajectory ure those of Target 1 in Table 6-1,
The node A at which the data association is carriced out is positioned ut
the origin., A set of nolscless acoustic azimuths wes generated for A, as-
suming & sampling period of one second., Only azimuths that corresponded to
angles around CP\ that were betwecn -70° und ?Uo were reteined, From this
azinuthal  sct, %0 sels of noisy Juta were generated by adding white Guas-

sian noise with a gtandard deviation of jo, The data association filter
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was run separately on each set of data, For each point in time, an average
mean  square  error was calceulated over the 50 data sets. The results are
shown in Table 06-2. Cleurly, the filter perfornatice is best far from CPA,
when the azimuth-time curve is practically linear. As the acoustic duta
approuches the CPA angle, however, the azlmuth derivetives are in flux, and
perfornsnce degrades, Still. the overall average squared error was reason-

able, about half the variance of the measurement noise.

The next example i3 an excellent denonstration of the capabilities of
the data association process in a two-target environment, The trajectories
are those of Target 1 and Targel 2 in Table 6-1. Again, the reference node
A is at the origin. Figure 6-1 shows thne exact acoustical data generated
by these trajectories. Note that ths curves intersect twice, and that the
angles of interssction are soumewhol smill, Tnese regions are potential
trouble spots for the data associction p;ocess in the presence of noise.
The node must be able to distinguish Loe noisy data so thuat they can be
tracked. Otherwise, the target tracking process will not be good, Figure
6-2 shows the noisy data after the dute associavion, while Figure 6-3 plots
the filtered estimates. Although a few measurements around the curve in-
tersections points are mixed up, the pruceus munages Lo lock onto and tLrack

separately the Lwo sets of data,

The next cxample demonstrates the target tracking filter, A sccond
node B is placcd at the point (5000, 0)., HNoisy sets of data are generated
for both A and B from the trajectory of Targev 1, The resulting target

trick, combining the two dsbta tracks, is shown in Figure 6-4, Because of

the restrictions imposed in Section %.2, tiwe targev was well along the

- 76 -
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trajectory before the track was initialized, Thc plot is & bit misleading,
in that the poiﬁts of the track do not lie in Sequential order following
the true trajectory. This because the estimate of the current target state
is wupdated by current measurements, whicih correspond to earlier states of
the target. There always exists an uncertainty in the time of occurence of
vhe earlier states; hence, one would expect consecutive estimates would not

necessarily follow a sequentially follow the true trajectory.

Our last example demonstrates track association with the datu tracks
of the second exaaple. Figure 6-5% shows the results. The ghost tracks
(i.e., the incorrect truck associations) turned out to be tnot much of a
problem. One ghost did not even initiulize a track. The other ghost in
dug course surpassed the speed of oound, and bLhe algorithm automatically

rejected iv,

The peculiar behavior of the track of Targel 2 is casily explained in
terms of the initialization procedurce outlined in chapter . The initial
trajectory was set to head towards the point (2500,0). The track uore or
less held this direction until the target approached CPA., Then the meas-~
urements from both nodes began to have effect, and the track was subsc-

quently pulled back around the actual Lrajectory,

As we mentioned earlier, the examples only nighlight the major charac-
teristics of the tracking algorithm in the two-node systewm, We did provide
some statistics on the performance of the data association filter, pointing
out ity weaknusses, and demonstrated its success in resolviung long term am-

biguities, We ulso demonstruted the full target stote filter and the track

-7y -
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association process. Howaever, much work still rcmainsg to be done in order

to fully test the tracking alporithm. easureuents of performuhce of the
full state trucker need to be evaluated. 2iso, the performance of the data
association fileer as a function of tha rate of false wlarns should be in-

vestigated tc provide o measure of robustness.

The application of these ldeas to léarger distributed networks is also
a further area of .e:.. ~2h that must be investigated. This would probably ;
require a theoretical structue that combined various 1local target tracks
into gzlobal tracks suitable for the users of the tracking system. The ef-
fecet of communications, problems with maneuvering targets and target han-
doff procedures are other areas that will require carceful research, Firal-
ly, we mention the importance in testing tha algorithm in a real world sys-

tem to investigate ils reaul utility.

What we have attempted here is to shouw tinst our -tracking algorithm
dogs perform reesonably well in tracking nultiple targets and resolving am-
biguities in datus associations., It is hoped that it will be a useful tool

for fulure investigat.ion into distributcd processing tracking systems,
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