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PREFACE

The main objective of this program was to develop a simplified and
efficient method for performing parametric studies on high L/D earth penetrators.
The approach selected showed good correlation with available experimental results
and detailed analytical response data.

This program was conducted by the Avco Systems Division under Contract
DNA 001-77-C-0098 for the Defense Nuclear Agency. The work was performed under

"~ "the direction of Lt. Col. David R. Spangler. The Avco Program Manager for

this contract was Mr. Patrick J. Grady.

The author wishes to acknowledge the contributions to the program made by
Mr. J. Hollowell and Mr. E. Lawlor of the Avco Systems Division.
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A simplified analytical approach to a complex response problem requires
the statement of several assumptions which may affect the accuracy of these
results. Therefore, the simplified approach should be correlated with actual
test events and existing detailed response analyses to ascertain and demonstrate
the accuracy and reliability of the results.

The principal tasks conducted during this program include:

L.

2.

The significant results and conclusions of this study are:

1.

3.

4.

The most significant conclusion of this study is that structural survival
may be improved with increased velocity and angle of attack. This is a result
of the lateral loading environment which contained a characteristic frequency
dictated by the rate of body wetting or load application, which is directly
related to impact velocity. The lateral response of the penetrator is also
frequency dependent (i.e., the fundamental bending model). When these two .
frequencies are similar, a resonant condition occurs and results in the ampli-
fication of the bending stresses. Increasing the impact velocity has the effect
of changing the frequency match and therefore improving the likelihood of
survival in some cases. P

Following a brief summary of the background to this problem, these
phenomena are described in detail.

R R

SUMMARY

Review the existing test data base and detailed analytical study
results. .
Select and generate a simplified analytical approach that would be d
adequate to predict the necessary structural performance character-
istics of a typical earth penetrator impacting and penetrating hard
targets in order to determine the structural survival limits.

Develop computer simulation model.

Conduct response studies with simplified model to correlate with
previous test events which have been analyzed using more sophisti-
cated techniques.

Conduct parametric study of penetrator structural survival limitations.
Idantify significant results and conclusions.

Simplified method developed and demonstrated.

Effects of full body wetting proven significant.

Structural survival of penetrator can improve with increasing
velocity and angle of attack.

Minimal structural survival penalty for increased payload carrying
capacity.
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SECTION 1.0

BACKGROUND

This section presents a brief review of the efforts conducted over the
past several years in support of the Impact and Penetration Technology Program.
This Defense Nuclear Agency sponsored effort commenced in 1974 to establish
and advance the state of the art of impact and penetration. The scope of these
efforts included:

L Development of analytical tools to analyze earth penetration events
for normal impact situations to establish terradynamic trajectory
characteristics.

L4 Investigation of impact events through analysis and testing to
demonstrate the community's ability to predict loading environments.

® Correlation of the subsequent analytical predictions of structural
response through reverse ballistic testing.

Due to program constraints the structural response effort was limited to
the following parametric variations:

Specific designs (i.e., configuration and structural material).
Limited target media types.

Narrow range of impact velocities (1500 - 1800 ft/s).

Two angles of attack (0 and 3°) for the semi-infinite (half space)
target.

SN

Although these efforts considerably advanced the state of the art of
impact and penetration it was evident that additional technology work must be
accomplished to evolve an efficient earth penetrating weapon system. Figure 1
summarizes the earth penetrator design development cycle, and indicates all of
the tasks that comprise the penetrator design development cycle. The efforts
conducted to date by the Avco Systems Division and the other members of the
penetrator community have been in the area of 'Detailed Design and Performance
Studies." A brief summary of the Avco Impact and Penetration Technology Pro-
gram is presented in Appendix A. The principal testing technique is the
reverse ballistic test (RBT) gun shown on Figure 2.

To expand this work and provide more insight for designers, the current
program investigated "Parametric Penetrator Design and Performance Studies."
The generation of simplified analytical models provides the tools that are
required for penetrator design synthesis. As shown on Figure 1, these efforts
fit into the overall penetrator design development history.

The main objective of this program was to define penetrator structural
survival limitations using a first order analytical approximation. To
accomplish this objective a parametric study must be conducted with the
following parameters considered:

™
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® Impact conditions (velocity, angle of attack, etc.).

. Impact media (soft soil to rock).

® Penetrator configuration and design details (which represents
unlimited variations).

E The analytical tools that the penetrator community has used in the past to make

predictions of specified impact events are generally not efficient and economical
for parametric studies.

The following sections of this report present the Avco approaches for
performing "Parametric Penetrator Design and Performance Studies."

-10-
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SECTION 2.0

APPROACH AND ANALYSES

The first task of this program was to generate a simplified analytical
technique which would adequately define the structural performance of a repre-
sentative earth penetrator and provide an approach for performing parametric
design and capability studies. These postulated goals were not necessarily
compatible and it remained to be demonstrated whether or not a simplified
approach would be adequate, or if more sophisticated analytical techniques were
required for penetrator structural capability studies.

The extensive background of the Avco Systems Division in performing the
analytical procedures and testing, provided the basis for selecting the impor-
tant parameters for modeling penetrator response during impact, Some of these
parameters are:

1. Adequacy of Beam theory represent the structural response of High
Length to Diameter (L/D) earth penetrators. For the past 10 years
Avco has applied beam theory (using primarily the lumped parameter
methods) to several penetrator structural design problems and found
the results to be accurate and relatively economical.

2. The principal structural response of a penetrator is made up of:

a. Axial response: static (or steady state) load and a superimposed
vibratory induced load with a frequency corresponding to the beam
model fundamental free-free axial mode.

b. Lateral response: a vibratory response corresponding to the
beam model free-free fundamental bending mode.

Because the axial and lateral responses are orthogonal (i.e., not coupled),
they can be calculated independently and the resulting axial stresses, from
the axial and lateral response, can be superimposed.

I1f these assumptions are correct, an adequate (first order) solution can
be obtained using a simple and economical approach (a modal analysis with only
a few degrees of freedom). The techniques presently used, i.e., lumped
parameter, finite element or finite difference, are much too complicated,
expensive and time consuming for preliminary design work, and should be
reserved for more detailed design studies.

2.1 PROCEDURE

The analytical approach identified by Avco encompasses the following tasks:

1. Configuration and Impact Definition

Because the simplified analytical approach is intended for parametric
studies, a general method of describing the penetrator geometry and the impact

-11-




conditions is required. The relevant geometry and impact parameters for the
representative high L/D earth penetrator, shown on Figure 3, are summarized
below. The geometry parameters include:

2 Penetrator length

dO Penetrator diameter

di Penetrator cavity diameter

Rg Penetrator ogive radius

g Secant radius offset

Sn A Nose tip bluntness

Mp & My Concentrated masses

ps) Structure density

fp Payload density (the cavity is assumed filled
with a homogeneous payload)

dC Depth of cavity

E Young's modulus

Oy Structure yield strength

*L Allowable plastic elongation

The impact parameters of interest include:

vy Penetrator impact velocity

oy Initial angle of attack

The media descriptive parameters are described in Section 4.0.
Experience in penetrator technology has indicated that the above parameters
are sufficient to describe a representative earth penetrator under typical

impact conditions.

2. Loading Environment

The Avco Dynamic Force Law (ADFL) technique is used to generate the
simplified analytical expressions for the loads on the penetrator during impact
and penetration. TIn the ADFL approach loads are assumed to be uncoupled, i.e.,
rigid body motions are assumed to be the only significant contributions, which
implies that the transient structural response does not effect the loads (not
necessarily correct). Also the first attempt at generating a simplified

-12-




uoneinbyuod (43) J0lenauad yiues aaneIuasasday ¢ ainbiy

Jw}bﬁ\ 7
Y
N
N

jl__l\\\,\p\\\\\\\\\\\\\\\\\\\\\\\/ :
% 1y N/ N\ .
NN W/ //W N// NN
| \\\x\\\\\\\\\\\\i\\\\\\\im

£reL-66

vz
47

i

/7 ]

13-

i iias &

O T TR TV
e ¥ s

-%
w?s
4
-
k g
i
4
:
i
5
5
L4
.
:
A




penetration simulation and specifically the loads development also assumed that
the impact loads (both axial and lateral) acted only on the nose of the penetrator
(nose embedment). This intial assumption proved to be inaccurate, and it was
necessary in the case of the lateral loads to include fully body wetting effects,
i.e., distributed loads along the length of the penetrator.

3. Axial and Lateral Mode Shapes

As a first approximation to the response mode shape a simple harmonic
mode shape was assumed, i.e., half sines and cosines.

The axial mode was represented by:

m X
@, (x)=A+BCOST

The lateral bending mode shape was initially assumed to be:

= al 1 m X
@, (x) = A + B! SIN —
These mode shape forms resulted in modal frequencies that were too high and
therefore, a polynominal function of the form:

¢y (x) = Al x2 + Bl x*% + ¢l x6 + pl

was then selected. This mode shape allowed the shear at the tip and tail to be
zero as required, and therefore a more accurate modal frequency is obtained.

The constants in the above equation were evaluated by applying the free-free
boundary conditions, and, applying the actual mass distribution of the penetrator,
and, finally the requirement that:

'8
f(ly (x) dm = 0
o

where:
¢y (x) = the mode shape (axial or lateral)
dm = the mass distribution
L = penetrator length

4, Modal Frequencies

Rayleigh's technique (Reference 3) was used to compute the fundamental
axial and lateral bending modal frequencies. This method basically equates the
maximum kinetic energy to the maximum potential energy of the unforced vibratory
modal oscillation, i.e.,

-14-




K. E.max = P, E-max

or

Tmax = Vhax

For modal response, Tpax is proportional to the square of vibration, i.e.
Tmax = Aw2

and we can solve for the frequency of vibration,

\Y
w? = aX

the kinetic energy for both the axial and bending (lateral) modes is:
L
Thax = 1/2002/ m (x) @2 (x) dx
0

the potential energy for the axial mode is:

)
Viax = 1/2_[0 E, ' (%) A, dx

¢ (%) = d{@ (x))

where: Ix

and for the lateral mode,

Viax = 1/2_/;151 (x) [(6" (x)]z dx

2
where: @" (x) = d__[(b_(_x_)_l

dx2

Substituting the mode shapes, mass and stiffness distributions and performing
the integrations numerically, results in the determination of both the axial
and lateral fundamental frequencies.

5. Equations of Motion

The model equations of motion for both the axial and lateral response
are:

Mg z + Kg C = Fg (x, t)

-15-
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where:

Mg = @#2 (x) M, = generalized mass

¢ (x) = axial or lateral mode shape

Mx) = distributed mass of penetrator

z = coordinate of model motion

Kg = Mg wl = generalized stiffness parameter

W = axial or lateral fundamental frequency

Fg (y, £) = ¢(x) F(x, t), the generalized forcing function

F (x, t) = the applied loading environment as a function of wetted
surface area and time. (Section 4.0 describes these
loads in detail.)

6. Structural Response in the Plastic Regime

In view of the fact that an earth penetrator is used only once, the
structural survival design criteria should not be based on yield strength, i.e.,
limiting the response to the elastic regime, The design criteria should be
based on the assumption that the penetrator survive, i.e., perform its intended
mission. By allowing the structure to experience plastic deformation, there are
generally several benefits to be gained, and these include:

a. Weight reduction

b. Generally available and more ductile materials can be used
c. Fabrication costs are reduced

d. More severe impact events can be considered

e. Plasticity has the effect of attenuating loads to the components

It was determined that plastic deformations should be permitted and
incorporated into the simplified procedure.

The equations described above provide the elastic stress/strain response,
therefore the modifications to account for the effect of plastic strains are:

a. Monitoring the maximum (with respect to distribution) combined (axial
and lateral) elastic strains in time.

b. Specifying a material yield strength and an allowable plastic
strain.

-16-




c. At the point in time when the deformations are allowed to continue
beyond the yield point, the analytical model is modified to reflect
effects of local plasticity. This was done simply by computing the
local forces and deformations at the yielded location, which is then
made a constant value, and continuing the dynamic solution until
either a maximum deformation amplitude was achieved, or until the
allowable plastic deformation (eL) was eXceeded.

7. Solution of the Equations of Motion

A computer program was developed to simulate the general penetrator
structural survival problem. 1In this computer code, the above equations of
motion were programmed for the numerical solution. The code is described below
and a block diagram of the subroutines is shown on Figure 4.

The input parameters consist of the penetrator geometry, material
properties and impact description. The code performs several interim compu-
tations, including the penetrator mass and stiffness distributions. The
numerical solution of elastic model equations of motion provides the response
to the applied loads as a function of time. At each calculated time step, the
loading environments and the response motion are determined. From the latter
calculation and for the penetrator station with the maximum deflection, the
combined yield stresses (or strains) are computed, and compared to the material
yield criteria. The solution cuntinues using either the elastic or plastic model
until a maximum deformation or the plastic elongation criteria has been exceeded.
The output of the computer code consists of the strain time history of the
structural response.
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SECTION 3.0

TEST DATA REVIEW AND CORRELATION

The principal assumption upon which the simplified analytical approach is
based, is that the primary or first mode is the significant contributor to the
penetrator structural response. In order to check the validity of this assump-
tion, a review and correlation of past test data was conducted. Examined in this
data review were the fundamental frequency obtained from several impact experi-
ments which were then compared to a simple lumped parameter beam theory predic-
tion of the fundamental modal frequency.

The test data base available for review included the following:

® P-2 half scale earth penetrator (E.P.) reverse ballistic tests
(FY 1975). The target media consisted of nine inches of concrete
plus one inch sand in an aluminum media container. Impact velocities
were on the order of 1500 ft/s with angles of attack from 0 to 10
degrees. (Reference 1)

® DNA 0.286 scale E.P. reverse ballistic tests (FY 1977). Sandstone

target media impacting at 1500 ft/s, and 0 and 3 degree angles of
attack (Reference 2).

® Maverick Alternate Warhead (MAW) penetrator. Tested against various
concrete targets. The nominal impact velocity is 1600 ft/s and
a normal obliquity test was chosen as a check on axial response.

The strain gage response data was evaluated for all of these tests. A sketch of
all of these instrumented penetrators is shown on Figures 5, 6 and 7.

Prior to the above test program a pretest prediction of the structural
response was made. The pretest analyses consisted of detailed loading history
calculated with the Avco 2-D Impact and Penetration computer code and then a
lumped parameter structural response analysis. Some of the correlation of
the predictions and test results are shown on Figures 8, 9 and 10. The excellent

agreement is indicative of the accuracy with which predictions can be made using
this type of analysis.

To generate a simplified structural response analysis procedure, the
principal assumption that the fundamental mode was dominant in the response
had to be verified. Because the lumped parameter analysis method is based on
beam theory, the structural response predicted consists primarily of fundamental
mode response. This is also evident from the close agreement found between test
data and analytical predictions. A detailed study of all of the test data response
indicates that the contributions of the higher response frequencies is less than
10 percent of the total response.

The test data review provided the following conclusions: (1) Treating E.P.'s
structurally via beam theory is a valid approach. (2) First mode response is the

primary element of structural response. Thus the simplified analytical procedure
has been verified. -19-
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Figure 7 Instrumented Maverick alternate warhead
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Figure 8 Test data/prediction comparison — P2 Half scale earth penetrator
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SECTION 4.0 n

LOADING ENVIRONMENT

The determination of the impact loading environments and the simulation !

of the general (rigid body) impact and penetration event is based on the Avco
Impact and Penetration 2 and 3-Dimensional Computer Codes. The analytical

i techniques employed are a differential force law and a system of target media
classification based on various physical characteristics of the media. This
approach provides the basis for the classification of many different target
media ranging from loosely packed sand to concrete and steel. Previous analyti-
cal and experimental correlation studies indicate that this technique is ac-
curate for predicting penetration trajectories and also reasonably accurate
in determining the loading environments during impact and penetration. The
latter results, when coupled with a lumped parameter analysis, provide an
accurate prediction of the structural response of the penetrator.

-

The approach taken in developing the loading environment was to modify
the Avco (2-D) code in order to reduce the computational time, but still main-
tain a reasonable degree of accuracy. The model for the 2-D code considers
the earth penetrator (E.P.) as several discrete elements. The loads are cal- :
culated for each of these elements using the differential force law and the !

Ak A -

resulting distributed loads are then integrated to provide the total loading ]
environment. The rigid body motion of the E.P. is controlled by the loading !
environments. f

The assumptions made for the first iteration in the loading environment .
determination are: i

® Single target media, normal obliquity, with angle of attack.

® Nose loading is of primary importance. '

® The E.P. can be treated as an element with axial and lateral loading
applied to the nose. Pe

® Rotational rigid body response motion does not greatly effect the t
subsequent loading environment.

Both the axial and lateral loading was applied to a location on the pene-
trator, two-thirds of the length from the nosetip. The peak loading occurred
at full nose wetting and then attenuated as a function of the E.P. velocity
decay. The application of this procedure indicated good agreement for the
axial loading, but the lateral loading was significantly in error. This is
evident on Figure 11 which shows the lateral loading produced from a reverse
ballistic sled test at a = 39 and is compared with the 2-D code prediction.

The 2-D code prediction showed that for full body penetration events sig-
nificant lateral loading occurs along the entire E.P. body. Thus, the

L ——
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Figure 11 2-D Code/simplified analysis loading comparison — initial version
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assumption that nose loading governs the event is true only during nose wetting.
In addition, rigid body motion, particularly pitching motion, can significantly
alter subsequent lateral loading. In the axial direction, the assumption of
nose loading only holds true since at the time of full nose wetting the total
axial cross-sectional area is encountered and further increases in the loading
do not occur.

In the lateral response case, these results led to a second iteration in
the generation of a simplified loading environment analysis procedure. The
assumptions made for the revised loading model are:

® Single target media, normal obliquity, with angle of attack.

¢ Axial loading reaches peak at approximately full nose wetting. Sub-
sequent decay resulting from velocity reduction.

® Lateral loading is applied on four sections of the E.P.

® Level and direction of lateral loading in all four sections based on
local cone angle, angle of attack, and instantaneous lateral motion.

® Rigid body motion is fed back into axial and lateral loading
calculations.

These assumptions were included into the analytical loads determination
and the sandstone impact event was again simulated. A comparison of the
lateral loading environment calculated from the simplified analysis and the
2-D code prediction are shown on Figure 12 and it is apparent that this pro-
cedure yields excellent agreement.

The final form of the force law is presented below:

cos O, 1
FaxiaL = [n |1+ fc oo ) 30 v2 (Cp sin? 8¢ + C; cos? 6¢) | sin 6. Ac
sin c
4
F ATERAL = 2 : f{ATERAL (1)
iel
£ = 1 2 o3 :
LATERAL ~ n+35p Cp Ve sin (8, + a)) sin (0, + )

- <n + %-o Ch vZ sin (0 - a)> sin (8; - a) Acl(i) (0.8)
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Figure 12 2-D Code/simplified analysis loading comparison — final version
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n,fc,0,Cp,C; - are media dependent variables describing respectively; re-
sistance to penetration, friction coefficient, density,
normal and tangential accommodation coefficients.

v - local velocity magnitude

Ye - local cone angle

a -~ local angle of attack

A, - axial cross-sectional area
ACL(i) - lateral cross-sectional area

The axial loading is applied at the midpoint of the nose section and the in-
dividual lateral loadings are applied at the midpoints of their respective
sections. The total loading of an element is treated as a ratio of the wetted
area to the full wetted area. The local velocity and angle of attack is cal-
culated from the rigid body motion and the distance from the penetrator c.g.
to the sectional midpoints. For the nose section, the cone angle is assumed
to be approximately:

= tan-1 R
Yepose tan <1.2 LN>

where:

R = E.P. radius

]

Ly nose length
The axial force and distribution of lateral loading are used to determine the
rigid body motion.

This procedure and the assumptions upon which it is based provide a
simple, fast, and reasonably accurate method of loading environment determina-
tion. The following section will show in more detail the potential of this
simplified analysis technique to predict loading environments and structural
response in several example cases.
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SECTION 5.0

CORRELATION STUDIES

In order to demonstrate the capability of this simplified approach to
predict structural response, two test conditions were simulated. The tests
selected for this correlation study are:

Case 1  Avco reverse ballistic tests.
V = 1500 ft/s, o = 5°, 10° (Reference 1)
Case 2 Avco/Sandia reverse ballistic sled test. %
V = 1500 ft/s, a = 3° (Reference 2)

These tests were selected since they provide a check on both the axial and
lateral response prediction capabilities.

A two step procedure was initiated to check the accuracy of the simpli- ‘
fied analysis procedure. The two steps are: 1) a comparison of the generated ‘
loading environments and 2) a comparison of the subsequent structural response.
In the first case, the loading environments from the simplified procedure were
compared against the 2-D Impact and Penetration computer code prediction. In
the second case, the structural response was compared with both strain gage
data from the tests, and detailed lumped parameter response predictions based
on the 2-D code loading environments. It was shown in the preceding section
that the 2-D code/lumped parameter analytical results correlate closely with
the test data.

X

The penetrator geometries for the two tests described above are shown on
Figures 5 and 6. In the case of the P2 half scale E.P. (Reference 1) only
3,6 inches of the nose portion was assumed to be loaded. This assumption was
based on the effective size of the concrete media, for which both test data
and 2-D code analysis indicated that load relief occurred at this depth of
penetration. In addition, only the first 560 usec of the event is valid be-
cause of subsequent impact with the aluminum media container. (See Reference 1 b
for details.) 1In the case of the DNA 0.284 scale E.P. (Reference 2) full body
penetration was experienced. Thus, the analytical model for these two tests
was generated with the following two assumptions: 1) the projectile is modeled
in four sections, and 2) because of the limitations in the modeling procedure,
the aft flare was not considered.

Figures 13 and 14 present comparisons between the 2-D code and simplified
analysis for Case 1 (half scale P2) reverse ballistic test loading environ-
ments. The axial loading environment shown in Figure 13 agrees reasonably well
with the 2-D code prediction. The simplified analytical prediction appears :
somewhat higher than the 2-D code prediction, which is due to a combination of
factors including linear extrapolation of the nose loading and significant
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concrete load relief experienced in the actual test caused by stress wave re-
filections from the limited target size. The simplified analytical predictions
start at a non-zero loading due to modeling of the relatively blunt nosetip.
For the lateral loading environment, shown on Figure 14, the same general
trends appear as in the axial loading environment. In summary, there is good
agreement in both shape and phasing, with variations in amplitude being at-
tributed to the complexity of the impact event.

The Case 2 (DNA 0.284 scale) sled test loading environment comparisons
between the 2-D code and simplified model are presented in Figures 15 through
20. On Figures 15 and 16 are shown the total axial and total lateral forces,
respectively. And on Figures 17 through 20 the lateral loading on each of
the four individual model sections are compared. 1In all cases excellent
agreement between the 2-D code and the simplified model is found through full
penetrator body wetting (i.e., ~1200 usec).

These comparisons demonstrate that the simplifying assumptions used in
this new analytical procedure provide excellent correlation with the 2-D
code. In addition, because of the simplicity of this new procedure, loading
environments can be generated in a fraction of the time that was required for
more detailed 2-D code.

The ultimate correlation of the simplified analytical procedure is the
comparison of the structural response predictions with the detailed lumped
parameter analytical predictions based on the 2-D code loading environments
and the experimental data.

The strain response histories for Case 1 (half scale P2) are shown on
Figures 21 through 25 for angles of attack from 0° to 10°. These figures show
both the axial and combined axial/bending responses. On Figure 21 for u = 09,
the axial response calculated from the simplified procedure exhibits a some-
what faster rise time than the test data or lumped parameter prediction. Also
the response after 3.6 inches of nose penetration does not decay as much. 1In
general the agreement is quite good in predicting the amplitude of the first
strain peak and the overall shape of the response. The differences can be
attributed te the simplifying assumptions in modeling of the impact event, as
discussed previously. It should also be noted that because of the scope of
this study only an approximation of the true projectile mode shape was used,
and is another source of error.

The 5 and 10 degrees angle of attack combined axial/bending responses are
shown on Figures 22, 23, 24, and 25. The agreement between experimental re-
sults and the lumped parameter predictions is considered good. Again the
differences in frequency, phase shift, amplitude and late time response are
attributed to the factors described previously, but the differences are rela-
tivelyv minor.

Structural response comparisons for the Case 2 rrverse ballistic sled
tests are presented in Figures 26 through 30. For the axial response, Tests 1
and 3 (Reference 2 ) at o = 3° are used in this comparison.
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The axial response is compared in Figure 26 and shows good agreement in
timing and shape of the simplified analysis, detailed lumped parameter analy-
sis and experimental data. The simplified analysis produces a conservative,
higher level of response which is attributed to the assumption of neglecting
the aft flare from the simplified penetrator model. The 5 and 10 degrees
angle of attack strain combined response is shown in Figures 27 through 30 for
both the internal and external mounted (Reference 2) strain gages. 1In the
simplified analytical approach the external strains were calculated. The
reason for showing both internal and external strain gage response is due to
the limited strain data obtained at these strain gage locations. Looking at
the external strain gages, 3 and 10, shown on Figures 27 and 30, respectively,
it is evident that the simplified procedure is in good agreement with the more
detailed lumped parameter model and with the existing experimental data. The
major differences in agreement occur in the timing and level of the reverse
peak. The smaller amplitude and late timing of the simplified analysis ap-
proach is attributed to the inaccuracies in the mode shape and primary fre-
quency assumed for the projectile. It should be noted that for completeness
both the elastic and plastic responses are presented on the figures, and the
plastic regime analysis provides the best agreement with test data and lumped
parameter predictions.* It is thought that a further refinement of the mode
shape and frequency would lead to an even better correlation.

These detailed correlation studies have demonstrated the credibility of
the simplified analytical approach. The source of minor discrepancies in the
predictions is believed to be understood and with a minimum of refinement in
assumed mode shapes and frequencies, the prediction capability of this tech-
nique would achieve an even better level of accuracy.

*Rased on inear elastic analysis
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Figure 19 Lateral loading comparison — DNA 0.284 scale earth penetrator — Section 3

-42-

Y oo

T - A L.
& Pr gy AR

60F__
50— Lateral Force — Section 3
DNA 0.284 Scale E. P.
Sandstone Target Media
\ V = 1500 ft/s
o=3°
™ 40—
- \
B
c
3
3]
¢ Q
x
* \
30— 20
Code Simplified Analysis
Prediction Prediction
20—
10 r— / \
0 / J I 1
0 500 1000
99 1359 Time, Milliseconds

e ® n T

a T

AL KL

i e ae A



0051

P uondag — J0jes3ausd Yliea ajedss p8Z 0 VNG — uosuedwos Buipeo) jesale| oz ainbig

Juﬂ/

uo11Ipaly &

sisAjeuy panyjdwig

SPUODBSH I ‘AW | 09¢t1-66
000! 00s 0
oL-
0
uoNIP3Iyg
apo)
/ ac
.~/ 'S (o]
N -
%
3 N\ !
g
=
=1
\1 / 2
M_. q 2
No< 0z
og
o€ =0
S/4 006t = A
eipa 18bie| auoispueg
‘'d '3 81838 $82°0 YNQ o
¥ PU023g — 32104 [BJ3lET] v

-43-

© ey e v ———— WY b s 0 e v

g R

e

y

PP P

h




Station: 13.85 inch from Tip (S. G. 18)
Projectile: DNA P2 Half Scale E. P,
— Target: Concrete, Sand, Aluminum

Impact: Normal &= 0. (R. R. Test D-2)
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Figure 21 Test data/analysis comparison — P-2 Half scale earth penetrator - a = o°
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Strain, ue in./in.

Station: 11.08 inch from Tip (S.G. 5)
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Figure 22 Test data/analysis comparison — P-2 Half scale earth penetrator — a = 5°
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Figure 23 Test data/analysis comparison — P-2 Half scale earth penetrator —a = 59
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Station: 11.08 inch from Tip (S. G. b)
Projectile: DNA P2 Half Scale E. P.
Target: Concrete, Sand, Aluminum
Impact: Angle of Attack o= 10°

Vel = 1530 ft/s (R. R. Test D-4)
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ﬁ Figure 24 Test data/analysis comparison — P-2 Half scale earth penetrator —a = 10°
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Figure 25 Test data/analysis comparison — P-2 Half scale earth penetrator —a = 10°
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Figure 27 Test data/analysis comparison — DNA 0.284 scale earth penetrator — 5.G. 3
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SECTION 6.0

PARAMETRIC STUDIES

- ————" o

A series of parametric studies can be performed now that the validity of i
this simplified structural analysis technique has been verified. The para-
metric studies encompassed several design factors including impact conditions,
\ material strength, penetrator structural stiffness and penetrator L/D.

The design used in this study is similar to the full scale P-2 earth
penetrator, with the flare omitted. The three parameters that were varied in [
the earth penetrator design studies are:

® Material strength.

® Structural ruggedness (i.e., wall thickness).

® Length to diameter ration (L/D).

All analyses consisted of varying impact conditions. The range of the
impact conditions were:

® Sandstone target media.

® Normal target media obliquitv.
® Impact velocitv from 1000 to 4000 ft/s.
® Angle of attack from 0 to 15 degrees. ‘

|
The sandstone target media was chosen as representative of a hard media (e.g., '
concrete, rock, etc.), and because penetrator structural survival is design
critical for high strength media, the softer target media were not considered.
Normal obliquity was imposed bv the limitations of the current simplified pro-
cedure, although impact obliquities up to 45 degrees should not substantiallv o
alter the results, The impact velocity and angle of attack were varied over
the ranges specified to determine the limits of structural survivability. The t
impact velocitly range was sampled at 500 ft/s intervals with angle of attack .
being increased until the design failure criteria of structural survivability

was exceeded. 1In general this criteria was a function of allowable plastic

deformation. The incrementing of the velocity and angle of attack was handled
automatically by the code.

The first parametric studv considered the effect of penetrator material

strength on capabilitv. Three vield strengths were selected, 150, 200, and
250 ksi. The results are shown on Figures 31, 32 and 33 for strain allowables
of 2, 4, and 6 percent, respectivelv. The presentation format of the results ’

show impact velocity versus critical (maximum) angle of attack which will
produce the allowable strain. Also included are two test data points for

FRulhwlaG Faulk bheuK=OI FlunBi
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Figure 31 Parametric study results — structural material — €. itical = 2%
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correlation, one from the reverse ballistic sled tests (Reference 2) at o = 3
degrees and the other from concrete reverse ballistic impact tests (Reference
1). ]

These figures show some surprising trends. The most important of which
is the sharp inflection of the curves in the velocity regime of 2000 to 3000
ft/s. Instead of following the expected behavior exhibited in the 0 to 1500
ft/s, i.e., as velocity is increased the critical angle of attack at which
failure is predicted decreases, the results indicate that structural surviv-
ability can improve with higher impact velocities (1500 to 2500 ft/s). Also
the results show that very high velocities (i.e., >3000 ft/s) are required to
produce the same critical angle of attack for failure as expected at 1500 ft/s.

A detailed review of the equations of motion that produce these results G
was performed to verify the procedure. A graphic explanation of this phenom-
ena is provided on Figure 34. The figure shows an impact event, with and
without the effect of rigid body motion included. The impact for the left
hand portion of the figure (without rigid body motion) is described below. At
time t(1) the E.P. first impacts the target media. At time t(2) nose wetting
is achieved and the lateral surface loading produces a bending moment distri-
bution in the expected direction (i.e., compression on the upper surface and
compression on the lower surface) along the length of the penetrator. This is
shown in the strain response shown on the lower left corner of Figure 34. 4
The response of the penetrator with an increase in velocity would show with
this analytical model an increase in the lateral loads and bending moments
and therefore lower critical angles of attack.

el a8 erogm

If the effect of rigid body motion is included in the analysis, the pene-
trator impact history and loads are shown in the right hand column of Figure
34. The impact event is identical with or without the effect of rigid body
motion up to time t(2). And until now this has been the result that was pre-
dicted. But, now at time t(3) with the rigid body motion included, a pitching
motion develops which causes the nose loading to reverse direction. Also, at
the same time, lateral loads are being applied to the midsection of the pene-
trator. It is the combination of both of these loadings that causes a reversal
in the bending response of the penetrator. Thus the rate of loading reversal,
which is a function of the velocity of the penetrator, can cause a resonance
condition, if it is similar to the fundamental frequency of the penetrator.
Thus, there is a definite relationship between the impact velocity (which
determines how fast the penetrator is loaded or wetted) and the structural
response frequency of the penetrator. Velocities which load the penetrator
body before penetrator fundamental response frequencies begin are preferred to
the lower velocities which cause resonance induced amplification of the funda-
mental bending mode strains.

To demonstrate this phenomena the distributed loads from the detailed 2-D
codes are presented. The example case is a 3 degree angle of attack impact
(Reference 2) and the distributed loads at 200, 500 and 800 usecs are presented.
An inspection of the first column on Figures 35 through 37, which is the
lateral loading distribution (FXPSV), does show the nose load reversal at the
same time as peak midsection loads occur.
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This confirms the loading reversal which was seen on Figures 31 through
35, and causes an inflection in the capability at velocities above 1500 ft/s.
The second reversal at velocities above 2500 ft/s indicates that the overall
loading environment is much too severe for the described mechanisms to ensure
structural survival.

Another interesting result of the parametric study (Figures 31 through
33), is the effect of reducing the penetrator material allowable from 250 to a
150 ksi (a reduction of 40%). The capability analyses indicate only a 20 to
30 percent reduction in critical angle of attack, which may provide a rationale
for performing material allowable strength tradeoff studies to obtain a small
reduction in structural survival when cost becomes a major factor in the design.

Another result is the 10 to 30 percent increase in critical angle of
attack for every 2 percent the critical strain is increased. (See Figures 31
and 32.) The study also indicates that a 150 ksi material with an ecritical
of 4 percent trades-off better than a 250 ksi material with an e€cyitical of
2 percent. These results emphasize that tradeoff studies of material strength
and elongation properties are significant because design optimization can be
realized without sacrificing structural integrity.

The second parametric study considered the effect of penetrator wall
thickness on structural survivability. Before performing the parametric study
a demonstration of the effect of optimizing the wall thickness will be made.
On Figure 38, for the specific penetrator shown (L = 63.9 in, D = 6.0 in),
the effect of reducing the wall thickness and thereby increasing the avail-
able volume (a function of payload weight) for payload packaging is shown.
This indicates the effect of wall thickness reduction on payload available
weight.

The parametric study considered three wall thicknesses expressed in terms
of a non-dimensional parameter by dividing by the penetrator diameter t/D
0.225, 0.150, and 0.075. These represent the baseline design thicknesses, two
thirds of the baseline design and one third of the baseline design thickness.
The baseline configuration is the full scale DNA earth penetrator with a
nominal material yield strength of 200 ksi. The study was performed with the
following impact parameter ranges: the impact velocity was varied from 1000
to 4000 ft/s and the angle of attack from zero until the structural criteria
was exceeded. The results are shown on Figures 39, 40, and 41 for various
strain allowable values. As seen in the first parametric study, the figures
show the resonance phenomena occurring around 1000 ft/s.

The significant conclusion from this study is that only a relatively small
survivability penalty results from a reduction in the wall thickness. A 1/3
reduction in wall thickness (i.e., 2/3 baseline) produces only a 10 to 20 per-
cent reduction in critical angle of attack while a 2/3 reduction in wall thick-
ness (i.e., 1/3 baseline) yields only a 40 to 60 percent reduction in critical
angle of attack. These results indicate the importance of tradeoff studies
in penetrator design.

The final parametric study involved the effect of variations in penetrator
length to diameter ratio (L/D) on survivability. The values of L/D selected
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for this study are 6.67, 10 (baseline design), and 15. The same penetrator
baseline configuration, material strength, and impact condition ranges were
selected. The L/D variations were achieved by increasing or decreasing the
penetrator model length while holding the diameter constant. On Figure 42 the
payload weight to total weight ratio versus L/D is shown. It is evident from
this figure that a low L/D places severe limitations on payload carrying
capacity.

The results of the parametric study are presented in Figures 43, 44, and
45. These results indicate several interesting trends regarding penetrator
length, response frequency, and impact velocity. For the low L/D (6.67) design
it appears that the inflection in the curve occurs below 1000 ft/s. This is
because the penetrator achieves full body wetting sooner at lower velocities
in relation to its structural response. Thus the results show only the low
L/D's response to increasing loading at the higher velocities. For the base-
line design (L/D = 10) the results are the same as described previously. The
higher L/D (15) design shows an extension of the relationship between impact
velocity and structural response frequency. Because of the longer length (and
hence longer time to full body wetting) the inflection in the curve occurs at
higher velocities. In addition, the L/D = 15 design achieves overall lower
critical angles of attack than the baseline design. This is caused by the
larger bending moments generated by the longer design which has been fixed to
the same diameter as the baseline design. These results indicate that some
matching of penetrator L/D to required impact velocities is necessary in order
to optimize structural survivability.

Also shown on Figures 43 through 45 are test data points which have been
related to the variables under consideration. The test data although sparse
does provide limited verification of the analytical model results.

The effect of wall thickness on depth of penetration is shown on Figures
46 and 47 as related to the variables of the previous two parametric studies.
Although the penetrator depth is not the prime purpose of this code, it can be
used to generate approximate depth of penetration data for system evaluation.
These results are self-explanatory and should prove very useful in a design
tradeoff study.

These parametric studies have shown the usefulness of the simplified
structural analysis procedure. Thus a wide range of geometric, media and im-
pact parameters may be varied efficiently and economically.
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SECTION 7

CONCLUSIONS AND RECOMMENDATIONS

The significant results and conclusions of this program are:

1.

2.

3.

4.

A simplified method has been developed and demonstrated.

The effects of full body wetting or envelopment were shown to be
significant.

The structural capability of penetrators can improve with increasing
velocity and angle-of-attack.

The structural survival penalty for increased payload carrying
capacity was found not to be excessive.

The most dramatic of these conclusions is the third one, but as described in
the preceding sections, the phenomena is merely a result of the basic
resonance phenomena.

The utility of the simplified analytical procedure has been demonstrated
by the range of parametric studies indicated and the interesting phenomena
identified. The inflection in the capability curves should be further in-
vestigated, since the potential for improved penetrator performance has been
identified.

As a result of the parametric studies, the following recommendations are

made:

L.

Perform reverse ballistic diagnostic tests at higher velocities to
verify the existence of more favorable impact regimes and to obtain
a better definition of the more severe impact loading environments.

Perform direct ballistic tests at these higher velocities to define
the payoff in penetration performance.

Based on the above testing and other test data available, further
refine the simplified procedure.

ORI TR
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APPENDIX A

AVCO IMPACT AND PENETRATION TECHNOLOGY PROGRAM SUMMARY

Al.l1 TRAJECTORY ANALYSES FY 1975

This effort involved identifying the Impact and Penetration Technology
existing at the Avco Systems Division. This capability was used to provide
pretest predictions of a full scale impact and penetration event to be con-
ducted by Sandia Laboratories at the "Watching Hill Test Site'" in Canada.
The trajectory was 'straight line" due to the normal impact conditious and
excellent correlation was obtained between test results and predictions.

Al.2 AXIAL LOADING AND STRUCTURAL RESPONSE ANALYSES FY 1975

The Avco 16 inch diameter Reverse Ballistic Test Facility* was used to
obtain axial structural response of a typical earth penetrator undergoing
normal impact events using a concrete media. (See Figure 2.) In support of
the tests, pretest predictions were made by several contractors to assess
the community's capabilities to predict both the applied loading environments
and resulting structural response.

Al.3  OFF NORMAL IMPACT EVENTS FY 1976

This phase also used the Avco Reverse Ballistic Facility to obtain
structural response (i.e., strain time history) test data resulting from both
normal and angle of attack impact conditions. In this program, six tests
were conducted at 1600 ft/sec, for angle of attack ranging from 0 to 10 degrees.
A complete aescription of this program is presented in Reference l.

Al.4  FULL BODY WETTING INVESTIGATIONS FY 1977

Because of the limited size of the media targets (i.e., 16" diameter x 10"
long) used in Avco's reverse ballistic gun tests, only nose wetting (embed-
ment) impact environments could be investigated, but there were indications
that nose wetting loads may not be causing peak strain response. It was
postulated that the lateral loads may be dominant during or after full body
embedment. The FY 77 efforts, therefore, involved reverse ballistic tests
using much larger targets. The penetrators were designed, fabricated and
instrumented by Avco and subsequently tested by Sandia at their sled test
facility. Avco and other contractors made pretest calculations (i.e., pre-
dictions) of the event. Avco used its differential force law technique to
predict the loads for use in a lumped parameter axial/lateral beam model
which represented the penetrator structure. The Avco pretest predictions in-
dicated excellent agreement with test results. This effort is documented in
Reference 2. As a result of this program, it was still not established whether
tull body lateral loads were critical from a structural survival point of view,

.
The target media is impacted into a static instrumented penetrator,
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This was not established until the current program where it was determined that
full body loading is one of the critical design conditions for high L/D pene-
The analytical technique described in Section 5.0 allows for a direct
comparison between nose wetting (embedment) and full body wetting.

trators.
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