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I. INTRODUCTION

There are many problems in structural analysis which have an axi-
symmetric configuration. An axisymmetric problem has the advantage
that a two-dimensional solution is possible. This fact greatly sim-
plifies the analysis of such configurations. There are other problems
which have an axisymmetric appearance, but have nonaxisymmetric fea-
tures which render a purely axisymmetric solution inapplicable. One
example of this type of problem occurs in interior ballistics where
longitudinal slits or slots are required for sabots. An example of
this type of configuration is given in Figure 1.

One method of analyzing these nonaxisymmetric problems would be
to use a full three-dimensional finite element approach.(l’2)* How-
ever, if some advantage can be taken of the fact that these geometries
will have stress and displacement fields somewhat similar to the axi-
symmetric cases, some efficiency could be gained over the complete
three-dimensional method of analysis. Consequently,a method that makes
use of the two-dimensional axisymmetric approach, but also yields first
order nonaxisymmetric effects, is an appealing alternative.

The objective of this investigation is to develop a method of
analysis that will take advantage of the axisymmetric similarity but
still give accurate results for stress and displacement fields. To
perform this analysis the structure is divided into several segments
in the r-96 plane.(s) An axisymmetric solution is obtained for each
segment. The segments are joined at a certain number of points. At
these points the displacements are forced to match. Since the axisym-
metric displacements for adjacent segments won't match, a set of per-
turbations displacements for each segment is obtained. Then the axi-
symmetric and perturbation displacements are combined to give the
total displacements. Once the displacements are known, it is a simple
matter to obtain the stresses and strains for the body.

In addition to elastic loadings, structural components are often
loaded only once, but well into the plastic region. Therefore the
elastic analysis is expanded to include elastic-plastic strain harden-
ing materials. For this part of the analysis the Hill yield cri-
terion(4) for orthotropic materials is used. If the material is iso-
tropic this reduces to the von Mises-Hencky yield condition. To model
the strain hardening behavior the Prager, or kinematic, hardening
rule is used.

*Superscripts refer to references.



After the method is developed a number of numerical examples are
presented. The method is compared to known solutions. Also results
are compared to the substructure analysis which resembles the per-
turbation method presented in this paper.
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ITI. ELASTIC ANALYSIS

The purpose of the present investigation is to develop an approxi-
mate method of analysis of elastic configurations which are almost axi-
symmetric but have geometrical changes in the circumferential direction.
The method of analysis which is proposed is based on the finite element
approach.

The type of geometries that this method is designed to analyze is
represented by Figure 1. If the geometry repeats at regular intervals
only one portion of the total structure need be analyzed. Consider
one such portion as shown in Figure 2. This configuration is divided
into a number of segments in the r-6 plane. Then each segment is divi-
ded into quadrilateral elements as shown in Figure 3. On each face of
this segment the finite element nodes are assumed to correspond to the
nodes in the adjacent segments. Then an axisymmetric analysis 1is per-
formed on each segment. The segments are joined at four connecting
nodes and displacements at these nodes are forced to match.

Axisymmetric Analysis

The first step in the analysis is to obtain an axisymmetric solu-
tion for each segment. The axisymmetric solution is obtained from the
SAGA I Finite Element Program developed at the University of Illi-
nois. (6,7)  This program is capable of performing a stress and displace-
ment analysis of layered, orthotropic bodies of revolution.

The configuration to be analyzed is defined by its cross-section
in the r-z plane. Then the geometry is divided into quadrilateral
elements as shown in Figure 3. Each quadrilateral element is further
divided into four triangular elements as shown in Figure 4. For each
triangular element the three components of displacement are defined in
terms of linear variation in the r and z coordinates as follows:

u.= al + a2r + asz

vV = 34 + asr + a6z

(2.1)
W= a., *+ a8r + a. .z



where u, v, w are the displacement components in r, z, and 0 di-
rections respectively. Using equation (2.1) it is possible to relate
the nine nodal displacements in the triangular element to the unknown
coefficients aj, ap, etc. and the coordinates of the nodes in the r-z
plane.

Let us now consider the appropriate strain-displacement rela-
tions:

. .
T or
.
z 0z
u
€ * T
(2.2)
_du, v
Yez © 32 ar
_
Y6 ° 3z
. W _w
Yor © 3r T

By solving for a;, ap, etc. in terms of the nodal displacements, it is

possible to combine equations (2.1) and (2.2) and obtain the matrix
equation: ;

{e} = [B] {8} (2.3)

where {e} represents the six strain components, {8} is the nine nodal
displacements, and [B] is explained in Appendix A.

Next, consider the stress-strain relations. The axisymmetric
analysis allowed for an orthotropic material. The three axes of
orthotropy are denoted by n, s, and t. The basic stress-strains re-
lations are defined in the n, s, t coordinates as follows:

¥
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(2.4)

Yns - 0ns/Gns

Yst = 0St/Gst

Ytn = th/th

where E.» ?s’ E¢, Ggsg Gsts Ggpo vns’,”st’ and Vi are_n%ne ingepen—
dent material coefficients. The remaining three coefficients in
equation (2.4) are given by:

vsn - vns (Es/En)
vnt = vtn (En/Et)

(2.5)
vts = vst (Et/Es)

Using the angles o and B as defined in Figure 5 the stress-strain
relations can be transformed into the r, 6, z system. The relations

given in equation (2.4) can also be inverted. This results in the
matrix relation:

{6} = [Dp] {e} (2.6)

A



where {0} represents the six stress components in the r, 6, z coordi-
nate system, and [D] is further explained in Appendix A.

Employing standard finite element techniques(l) the equilibrium

equations for the triangular element are obtained from the principle
of virtual work. These equations can be written as:

[k] {8} = {f} (2.7)

where {6} is the nodal displacement matrix and {f} is nodal force
matrix. In equation (2.7) [k] is the stiffness matrix and is given by:

k] S 817 [p] [B] d v (2.8)
v

where the integration is over the volume of the element.

By satisfying equilibrium at each nodal point, a global matrix
equation can be formed as:

[x] {q} = {F} 2. 9)

where [K] is the global stiffness matrix and {q} and {F} represent the
global displacement and global force matrix respectively.

Once this equation is formed it can be solved for the nodal dis-
placements {q}. Then the stresses and strains can be found from
equations (2.3) and (2.6).

Nonaxisymmetric Analysis

While the axisymmetric solution for each segment is being deter-
mined, the nonaxisymmetric force and stiffness matrices are calculated
and stored. In assembling the nonaxisymmetric stiffness matrix the
following displacement functions are used for each triangular element:

u=a,  +ar+az+ 6(b1+b2r+b32)

1 2 3

v=a, +ar+az+ 6(b4+b5r+b6z)

4" % 6 (2.10)

Wo=a, +agr+agz+ e(b7+b8r+bgz)
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Also the nonaxisymmetric strain displacement equations are used.
These are:

o s U
T or
e
z 9z
€ =E+l..al
0 T r 90
. du v
Yr2 T 32 7 %r (2.11)
- lov ow
Yze T r 36 YA
. Ldu _ow w
Yor = 736 " 3r T T

where again u, v and w are the displacements in the r, z and 8
directions.

These equations along with equation (2.6) can be combined to form
a nonaxisymmetric stiffness matrix as follows:

5,0 =5, 18,17 0] (83 av (2.12)

where [S]] is the nonaxisymmetric stiffness matrix and [Bl] is the
nonaxisymmetric strain-displacement matrix obtained by combining
equations (2.10) and (2.11). The matrix [B;] is defined as:

{8} u [Bl] {8} (2.13)

where {8} is the eighteen nonaxisymmetric displacement components
(i.e., 3 displacements u, v, and w at each node on both faces of the
segment.) The [B;] matrix is derived in Appendix A.

11



In general, the displacements generated by the axisymmetric
solution will not be compatible with the displacements generated for
an adjacent segment. Consequently, some changes need to be made in
these displacements to obtain the real situation. The total displace-
ment is now represented by two components. If we call the total dis-
placement {u}, we can write:

fub = {u} = {up} (2.14)

where {ug}l is the displacement from the axisymmetric solution and
{up} is the additional perturbation displacement.

For each side of a segment the perturbation displacements are
expressed as follows:

u = a, + a,r + z(a3 + a4r)

v=a_+arxr+z(a, + a,r)
5 6 7 8 (2.15)

W= ag + a)oF + z(all + alzr)

where r, z, and O refer again to coordinates in Figure 1. Similar
expressions can be written for the other side of the segment.

If the total displacements are forced to match for two adjacent
segments at four nodal points, a sufficient number of equations to be
able to solve for the coefficients of the perturbation displacement
equations will be obtained. These nodes, where the solutions match
are called connecting nodes. Then for each segment:

{ucp} = [R] {p} (2.16)

where {u.,} is the perturbation displacement at the connecting nodes,
[R] is a matrix of the connecting nodal coordinates further defined
in Appendix A, and {p} is the unknown perturbation coefficients.
Solving for {p} yields:

{ip} = [R]'l {fu } (2.17)

12
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Also, for each quadrilateral element in a particular segment:
{up} = [G] {p} (2.18)

where [G] is the matrix of nodal coordinates for the element further
defined in Appendix A. Substituting equation (2.17) into equation
(2.18) yields:

_ -1
{up} = [G6] [R] {ucp} (2.19)
Also for each element:
{f} = [s,] ({ua} + {up}) ' (2.20)

where [S;] is the nonaxisymmetric stiffness matrix and {f} is the in-
ternal force vector. Now, applying the principle of virtual work to
equation (2.20) gives:

T L .
Gup e} = Gup [Sl] ({ua} + {up}) (2.21)

From equation (2.19), it can be seen that:

61" (2.22)

Substituting this into equation (2.21) and summing the contribution of
all the elements in the segment, results in:

W, o= Gusz([R]-lT[G]T[Sl]{ua}
(2.23)

+ e s 16T R 1)

Also, there are contributions from the external body forces. This can
be written as:

13
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Gup {fE} = Gup {Pl} (2.24)

where {Pl} is the external body force vector for an individual element.
The same process of substitution and summing over all the elements
gives:

W = Guzp ) [R]'lT[G]T{Pl} (2.25)

Also there will be a contribution from the concentrated loads. This
contribution can be stated as:

Gug {fc} = Gu; B (2.26)

where {g} is the concentrated force vector for the element. Then, for
the whole segment:

_ T -1T, T
W, o= ducp z [R] "T[A] {g} (2.27)

where [A] is a matrix relating the perturbation displacements at the
nodes where the concentrated forces are applied to the perturbation
coefficient matrix. That 1is:

{up} = [A] {p} (2.28)

at nodes where concentrated forces are applied. The [A] matrix is
presented in more detail in Appendix A.

Balancing the virtual work done by all the forces gives:

W, + W = W (2.29)

Here, the following substitutions can be made:

14



A,

b = 17T @ 6" o)+ 17 tgh

s] = 177 @ e’ s, ) ®17
(2.30)
-1T T
{F;} = [R] (Z [6]" 8] {u ]
4T
where the [R] has been brought outside the summation since it is

constant for the entire segment, and the summation is over all the
elements in the segment. The terms in the summation can be easily
calculated during the axisymmetric solution and later be multiplied
by the [R]-1! terms. Then {Fg}, [Sk], and {F1} can be stored for each
segment. These substitutions give:

s, ] {ucp} + {FI} = {FE} (2.31)

Since it is the total displacements that must match at the connecting
nodes, equation (2.31) can be written as:

[sk] {uCT} - [sk] {uca} + {FI} = {FE} (2.32)

where {u a} is the axisymmetric displacement at the connecting nodes
and {ucTﬁ is the total displacement at the connecting nodes. Every-
thing is known except {u_p}. Combining terms in equation (2.32)
yields:

(5,0 {u_} = ()} (2.33)

where {Fc} is a combination of {Fg}, {F;}, and [Sg] {u.,}. There will
be one matrix equation for each segment. Now [Sg] can be assembled
into a banded global stiffness matrix for the overall structure. Then
appropriate boundary conditions can be applied to restrict the rigid
body motion, preserve symmetries, or comply with external restraints.
Then equation (2.33) can be solved for the {ucp} vector, giving the
total displacements at all of the connecting nodes.

15



Now it is a simple matter to work back from this point to obtain
the stresses and strains for each element in each segment. For a

given segment {UCT} and {uca} are known, and therefore, {ucp can be
calculated from:
= - 2.34
lugd = fugd - fu) (2.34)

Then knowing {u.,} and [R]_l, {p} can be obtained from equation
(2.17). Then for each element the perturbation displacements {u_}
can be obtained from equation (2.18). Having determined {u,} anfl
{up}, it is easy to get the total displacement from equation (2.14).

At this point, it is simple to apply the basic finite element
relations developed earlier:

{e}

[B,] {8}

(2.35)
{o} = [D] (e}

Comparison to Substructure Analysis

This method of analyzing nonaxisymmetric structures is geometric-
ally similar to the substructure analysis. The basic difference be-
tween the substructure analysis and the perturbation analysis is in
the way total displacements are calculated. In the perturbation
analysis the displacements are the sum of the axisymmetric and the
perturbation displacements. In an equivalent substructure analysis
the internal degrees of freedom are eliminated in each substructure
and a set of equations similar to equation (2.15) is obtained except
instead of representing only part of the displacements, they represent
the total displacements.

With these differences the perturbation analysis outlined pre-
viously can be converted into a substructure analysis by modifying
equation (2.19) to read:

fu} = [6] [r]"} {u_,) (2.36)

16
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where {u} is the displacement matrix for an element and [G] and [R]
are defined as before. It is possible to solve for {ucT} by using
equation (2.33) by replacing {F.} with {Fg}. That is:

[s,] {uCT} = {FE} (2.37)

with {FE} and [Sg] defined as in equation (2.30). Although there is
major conceptual differences between the perturbation and substructure
methods, there are only minor changes required in the computer pro-

grams. Therefore, it is possible to obtain solutions for both methods
and compare answers.

17



ITI. NUMERICAL RESULTS OF ELASTIC ANALYSIS

To test the accuracy of this analysis three examples were used.
On each example both a perturbation and a substructure analysis were
performed. Whenever possible the results were compared to known
solutions.

Axisymmetric Problem

The first test of the perturbation method is that if the confi-
guration is indeed completely axisymmetric, the solution should be
identical to the axisymmetric solution. To test this requirement, an
example of an axisymmetric disk with a center hole, loaded with in-
ternal pressure, was used. Both the perturbation and the substructure
analyses were performed.

In both analyses two segments in the circumferential direction
were used. Each segment was divided into four elements in the radial
direction and one element in the axial direction. The disk had an
inner radius of 5 inches and an outer radius of 15 inches, and was 2
inches thick. Thus, each element measured 2.5 inches by 2 inches.

In Table 1 the results for the radial stress, Ory, and the cir-
cumferential stress, Ogg, are presented. The axisymmetric results
presented were obtained from the SAGA I finite element program 6,7)
These results agree well with analytic results. From this table it
can be seen that the perturbation analysis does yield answers that
agree well with the axisymmetric solution for both 0, and ogg. It
can also be seen that the substructure analysis gives reasonable ans-
wers for ggg but shows large errors in computing the radial stress,

Orr .

Nonaxisymmetric Disk

The second example tested was a nonaxisymmetric disk under inter-
nal pressure as shown in Figure 6. Again both a perturbation and a
substructure analysis were performed. For this configuration six
segments in the circumferential direction were used. Three of these
segments were the same as those described in the previous section,
and the other three were of the same thickness but had only two ele-
ments in the radial direction. These elements had an outer radius of
ten inches.

Since this problem is a plane stress problem in the r-6 plane,

the solution obtained by the perturbation analysis can be compared
to a plane stress solution. A plane stress solution was obtained

18
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using the SAAS Finite Element Program.9 In Figure 7 results for
radial displacement as a function of radial displacement are presented.
Results for circumferential stress and radial stress as a function of
radial location are presented in Figures 8 and 9 and Tables 2 and 3.

It can be seen that the perturbation solution agrees well with the
plane stress solution which is known to be accurate. Furthermore,

the substructure results disagree with the plane stress results for
radial stresses and radial displacements. The circumferential stresses
do agree well for the substructure analysis. These results are not
shown in Figure 8 for the sake of clarity since the results of all
three analyses are very close.

Three Dimensional Tube

The third example considered is a three dimensional tube shown
schematically in Figure 10. Again six segments in the 6-direction
were used. Four elements were used in the axial or z-direction. The
end labelled the "unsymmetric end'" in Figure 10 has an end view the
same as shown in Figure 6. The "axisymmetric end'" has an end view as
shown in Figure 11. The tube measured eight inches in the axial
direction. The geometric discontinuity is at the mid-point of the
tube. As before, the tube is subjected to an internal pressure.

Once again the problem was solved using both the substructure and
the perturbation methods. Results for the circumferential stresses
are presented in Table 4, and for the radial stresses in Table 5.
Since this problem is a true three dimensional problem, no analytic
solution was available. However, each end should approach a limit
solution as represented by the previous two examples. From Table 4
and 5 it can be seen that the stresses do approach the so-called limit
solutions. Also it can be seen that again the substructure method does
not predict the radial stresses well. A boundary condition of the
problem is that the outer boundary is stress free. The perturbation
method fulfills this boundary condition while from Table 5 it is
obvious that the substructure method violates it.

Effect of the Choice of Connecting Nodes

One ambiguity in this method is the choice of the connecting
nodes. If the accuracy of the solution depends on this choice, the
same constraints must be placed on this choice. To see what effect
the choice of connecting nodes has example three, the nonaxisymmetric
tube, was solved using three sets of connecting nodes. These three
sets of nodes are shown in Figure 12, where the circles represent the
connecting nodes. The choices ranged from widely spaced as shown in
Figure 12a to very close together, in fact all nodes of one element,

19



as shown in Figure 12c. In Table 6 results are shown for these three
cases. Results for the other stresses show similar changes. It can
be seen that the results are insensitive to the choice of connecting
nodes. Thus, this choice can be arbitrary and no restraints need be
placed on the generality of the method.

20



IV. THE ELASTIC-PLASTIC ANALYSIS

Many applications of the perturbation analysis described in
Chapter II occur in the field of interior ballistics. In many cases
the structures involved must survive an extreme environment only
once. Therefore, the components are often loaded well into the plas-
tic range. To analyze such problems the perturbation method was ex-
panded to include elastic-plastic strain hardening material behavior.

Incremental Eduation for a General Strain Hardening Material

To describe the plastic work hardening behavior of a material
three things are needed:

a) an initial yield condition

b) a flow rule relating plastic strain increments
) to the stress and the stress increment

c¢) a hardening rule

For this work the Hill's yield criterion(4) for orthotropic
materials was chosen. This reduces to the von Mises-Hencky yield
condition if the material is isotropic. The Hill's condition will be
discussed more fully later, but it can be represented symbolically as:

F (Oij) CH (4.1)

at the point where yielding occurs.

The Prager or the kinematic strain hardening rule was used(S).
This hardening rule assumes that the yield surface retains its initial
size and shape but undergoes a translation in the direction of the
plastic strain increment. This is illustrated in Figure 13. After
plastic flow begins the yield surface can be written as:

F (@3 =00 Jowo=n ol (4.2)

where the 0;;'s represent the translation of yield surface. The
assumption t%at this translation is in the direction of the plastic
strain increment can be written as:

21



da,. = ¢ deb. (4.3)
ij ij

where ¢ is a constant for the material.

The flow rule chosen was also due to von Mises, namely:

gel, = 2B e @ aE o (4.4)
ij aoij —_

The scalar dA in equation (4.4) can be determined by the fact that the

stresses remain on the yield surface during plastic flow. This condi-
tion can be expressed as:

(dog; - do, ) 5o = 0 4.5)

Substituting from equations (4.3)-(4.4) into equation (4.5) gives:

oF 9F
(dOij - C % ) d )\) % = 0 (4.6)
ij i

J

Solving equation (4.6) for dX gives:

-1
dA = {=+— do..} {éf- 3 ;
c ij 3

(4.7)
ij 9%1 9%

The total strain increment is the sum of the elastic and the plastic
strain increments. Thus:

de®. = de,. - deP, (4.8)
ij ij ij

where deij is the total strain increment.
Substituting for deij in the elastic stress-strain relationship

gives:

do.

_ -
ij = Bijxg 198 - degl (4.9)

where Eijkl is the elastic-stress-strain tensor.

22



Equation (4.5) can be rewritten as:

} Py oF
(do;; - c dejy) 30, 0 (4.10)

Then substituting equations (4.4), (4.7) and (4.9) into equation
(4.10) gives:

oF
{E. ., [de, . - = dA]
ijkl kl aokl
(4.11)
dF )
"y, M5, =0
1] 1]
This can be rewritten as:
oF oF  OoF
E.. , de, . =~— {E.. , == =
ijkl "kl aoij ijkl Boij Bokl
. . ' (4.12)
F F
¢ %, , 3, P
1] 1]
Then defining the bracketed term as 1/D where D is the scalar:
oF oF oF oF -1
= {E;511 %, . 30,. * © 39,. 30, ! (4.13)
kl ij ij ij
equation (4.12) can be written as:
_ oF
dA = D Eijkl 56;j dskl (4.14)

‘Substituting equation (4.14) into equation (4.4) gives a relation be-
tween the total strain increment and the plastic strain increment as:

P 3 3F
dsij DBkl 30 0., d€k1 (4.15)
mn - ij



or:
P
dey; i 4 Eg (4.16)

where Cijkl is defined from equation (4.15).

Then equation (4.9) can be written as:

= Biska  Eximn Conig) 9 &4 (4.17)
or:

dohey = gy Hiiepg (4.18)
where:

Avsin = [Bisir 7 Biymn Congd! (4.19)

For the isotropic case, c can be evaluated from a uniaxial test.
It can be shown that:

m

‘E
2 g
c = £ — (4.20)
3 B

tm

where Ep 1s the tangent modulus as shown in Figure 14, and E is Young's
Modulus. In general Er will depend on the stress state at a given
time. Thus by knowing the elastic constants and the tangent modulus
the stresses can be obtained from the total strains.

Application of General Strain Hardening Relations to an Orthotropic
Material

In applying the equations developed in the previous section to an
orthotropic material, the Hill's yield condition was used. This yield
condition can be expressed as:
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23 13
* ¥55911933 Y3391195, = 1

(4.21)

where Y1, Y22 and Yz3 are the yield stresses in simple tension in the

three orthotropic directions and Y

ing yield stresses in
yield stresses.

simple shear.

These functions are:

v . L _ 1 _ 1
11 2 2 /A
Yll Y22 Y33
Yy, = Yé } Yé J Yé
22 33 11
- 1 i
Y = - -
33 2 2 2
Y33‘ Yll Y22

After strain hardening

(01371

-
~|

11$95279%55)

has occurred equation (4.21) becomes:

2 -3
v (957007 (03370520
3 7
Y2 Yzz
2 2
o Op370y2)" (O30
7 7
Yoz . Y13

o_ - = -
(Og5-0g5) + ¥, (05570520 (07704 ,)

¥ ¥gg(0)7701)(0,70p,) = 1
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” . oF .
Then evaluating the 5o terms gives:

ij
3F _ 2(0,,-0,,) . = _ Y -
5o, T L LT % Yy (Og57tgg) * Y55(0570p))
11 \2
11
3F _ 2(0,,-0,,) . = = 2 g
Jo.. = 22 227 + Yqq (o) -ayy) + ¥, (055-055)
22 ;2
22
0F _ 2(0,,-0._.) 7 B i _
5o, T 33 337 + Yy (0,,7055) + Y)y(0y,70y))
55 2
33
- 200m%y)
12 =8
12
IF . 2(957%3)
?%23 2 4.24)
b (4.
2 =2095%9)
13 2
13

There still remains the question of evaluating the hardening para-

meter, c¢. This was evaluated from a uniaxial test in the isotropic
case, but there are three uniaxial tests which will give three dif-
ferent results in the orthotropic case. To solve for the hardening
parameter two assumptions were used which reduce the generality of

the analysis but increase its simplicity. These assumptions -are:

a) transverse isotropy (i.e., Yoo = Y33)
b) there is one predominant direction

Then by taking a uniaxial tension loading in the preferred direction,

such that Oll # 0 and all other stresses are zero, equation (4.24)
becomes:
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33
(4.25)
OF  _ 9F  _3F o
99}, T LY
By assuming transverse isotropy equation (4.22) becomes:
= 1 2
T @ = = s
11 2 2
! Y22
Ly 1
Yoo = - v2
11,
— i l s
o N 3B (4.26)
11

Also as a result of transverse isotropy in this uniaxial loading case:

= 7
Ay Gz (4.27)

Then, since the plastic flow is incompressible and dai. is proportion-
al to degj, it follows that: J

o, 0 + 0 = 0

117 722 33 (4.28)

and substituting from equation (4.27) gives:

@, = -2a22 = -2a33 (4.29)
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By substituting equations (4.26) and (4.29) into equation (4.25):

st Wl 8!
% 2
11
5 e . P Y
e 2 ]
11
] (4.30)
LT e
933 2 )
11
Noting the common factor (2011 - Sall) gives:
_1 9F  _ F  _ 9F
2 8011 8022 8033 (4.31)
Evaluating dA from equation (4.7) gives:
- 1/c doll
3/2 BF/aoll
(4.32)
Then from equation (4.4):
p . 21
deP 2 L w0, (4.33)
or:
Sy = B, €
P 2
dell (4.34)

This result is identical with the isotropic result. Equation (4.21)
now becomes:

E.,-E
11 llT

Efci=E

c -2 |
117°11
T (4.35)
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By assuming that this direction is the predominant one the value for
"'¢'" given by equation (4.35) can be used. This value is good for iso-
tropic materials and transversely isotropic materials. Therefore, the
program is limited in that it cannot have a general orthotropic
material. However, the types of materials that are transversely iso-
tropic includes fiber-matrix materials and many others.

Implementation of Elastic-Plastic Analysis in the Finite Element
Program

In incorporating the theory for plastic flow into the existing
elastic finite element program two simplifications were used.

The first simplification was assuming the uniaxial behavior of
the material was bilinear. Figure 14 shows a bilinear material. By
doing this Ep and c are reduced to constants independent of the stress
state. This obviously leads to much simplification in the programming.
The bilinear model is fairly accurate for most materials if the plastic
deformation is not too large.

The second simplification is that the stresses were not forced to
be on the yield surface during an entire load increment. Thus, the
consistency equation given in equation (4.10) is violated. At the
start of a load step an element is either plastic or elastic. If it
is elastic, it is considered to be elastic for the entire load step.
If it is plastic, all terms in equation (4.18) are computed using
values of 0;: at the start of the load step. At the end of the load
step the strésses are checked for each element to see if it has yield-
ed. The element is treated as either elastic or plastic in the next
load step according to this check. Thus, the stresses may overshoot
the actual yield surface for a given time step. This effect can be
minimized if load steps are kept small. The alternative to this would
be to do a solution based on the initial stresses, check the yield
condition at the end and iterate to make sure the stress remains on
the yield surface. This would cause a substantial increase in the
execution time of the program. Since this analysis is by its very
nature approximate, the substantial increase in execution time needed
to obtain the more exact answers by iteration seems impractical.
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V. NUMERICAL RESULTS OF ELASTIC-PLASTIC ANALYSIS

Axisymmetric Perfectly Plastic Problem

The first test of the elastic-plastic numerical analysis is that
the numerical solution should match an analytic solution for an axi-
symmetric problem.

By letting Ep = .001 E in equation (4.35) a perfectly plastic
material was approximated. Using the example of an isotropic axisym-
metric disk with a hole in the center under internal pressure, a
numerical solution was obtained. This solution was compared to an
analytic solution of the same problem(lo). There is one difference
between these solutions; namely, the numerical solution uses a von
Mises yield condition while the analytic solution uses a Tresca yield
condition.

Allowing for the difference in yield conditions the numerical
solution agrees well with the analytic solution. In Figure 15 it can
be seen that the elastic-plastic boundary for both solutions has the
same shape and that yielding at a given radial location occurs at a
higher pressure for the numerical solution. This is to be expected
from the difference in the yield conditions (i.e., for this example
the Tresca condition does predict yielding at a lower pressure than
the von Mises condition).

The circumferential strain at the outer surface is shown a func-
tion of pressure in Figure 16. Again the analytic and numerical
solutions agree well. Since there is more yielding at a given pres-
sure with the Tresca condition, the structure is less stiff. Larger
strains are to be expected with the analytic solution at a given
pressure than with the numerical solution. This is shown by Figure
16.

Nonaxisymmetric Perfectly Plastic Problems

In doing the numerical solution in the axisymmetric example two
segments were used in the 0 direction. Each segment had a ratio of
outer radius to inner radius of 2. Eight elements in the radial
direction and one in the axial direction were used.

Two nonaxisymmetric cases were also studied. Both cases used two
segments as before. In each case one segment was the same as the axi-
symmetric configuration. One configuration removed the outermost
element from the other segment leaving seven elements in the radial
direction. The second nonaxisymmetric configuration had only the inner
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four elements in the radial direction. These configurations are
shown in Figure 17.

For both these configurations, a numerical solution was obtained.
Since the material is perfectly plastic, the solution fails when the
elastic-plastic boundary reaches the outer boundary of the structure.
The radial displacement of the inner boundary at the interface be-
tween the two segments is shown in Figure 18. From this graph it can
be seen that as material is removed from one of the segments the
structure loses stiffness and there are greater displacements at a
given pressure. While there is no analytic solution for comparison
in the nonaxisymmetric case, these displacements do exhibit expected
trends.

Hardening Cases, Nearly Elastic Examples

The final example involved the configurations denoted as case 1
and case 3 in Figure 17. These examples were solved numerically with
Er = .9E in equation (4.20). For this value of the tangent modulus
the numerical solutions would not be expected to vary greatly from
the elastic solutions.

For the axisymmetric case, Figure 15 shows how the elastic-plastic
boundary grows much slower than in the perfectly plastic case. In
Figure 16 it can be seen that the circumferential strain as a function
of pressure is very nearly linear. This is consistent with the solu-
tion being close to the linear elastic solution.

In Figure 19 the displacements of the inner surface at the inter-
face between the two segments are shown. It can be seen that these
displacements are also nearly linear as expected. The elastic solu-
tion is shown for comparison.
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VI. CONCLUSIONS

The purpose of this investigation was to develop a method that
could be used to analyze nonaxisymmetric configurations without per-
forming a full 3-dimensional analysis. The analysis was broken into
two parts: elastic and elastic-plastic.

The elastic analysis- gives accurate results for a number of ex-
amples. These results were verified by comparison to results obtained
from another finite element code of proven accuracy. Also these re-
sults are vastly superior to results obtained by the substructure
method. The substructure method is another method which has certain
geometric similarities to the perturbation method presented in this
paper. Also the versatility of the method was demonstrated on the tube
example. This showed that more complex configurations can be handled
by the perturbation method.

For the elastic-plastic version the analysis is designed to handle
both isotropic and orthotropic materials. Since the examples presented
are all trying to establish the accuracy of the method, only problems
with some means of judging the answers are presented. Since there are
no analytic, experimental, or numerical results available for ortho-
tropic materials, no orthotropic examples are presented. Obtaining
such results experimentally was beyond the scope of this work.

However, for the isotropic elastic-plastic examples the results
are accurate. In this case an analytic solution was available for
comparison. These examples represent the wide variety of material
behavior that can be approximated. Examples range from perfectly
plastic to nearly elastic.

In conclusion, the method presented here gives an accurate,
efficient means of analyzing a wide class of problems. The method
is quite versatile in the geometric configurations it can analyze as
well as the material behavior.
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Figure 1. Typical nonaxisymmetric configuration to which the
structural analysis method can be applied.
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typical segment

Figure 2. Configuration to be analyzed is divided into segnents
by plane sections in the r-z plane.
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Figure 3. Division of a typical segment into a finite element
grid in the r-z plane.
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Figure 4. Subdivision of quadrilateral elements into triangular
elements and definition of nodal displacements.
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Figure 5.

Relation between cylindrical and orthotropic coordinates.
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Figure 6. End view of nonaxisymmetric disk showing segment
and element numbering systems,
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Figure 7. Radial displacement for nonaxisymmetric disk obtained
from different methods of analysis.
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Figure 8. Circumferential stress for nonaxisymmetric disk
obtained from different methods of analysis.
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Figure 9.
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Radial stress for nonaxisymmetric disk obtained
from different methods of analysis.
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Symmetric lind
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Figure 10. Noraxisymmetric tube configuration,
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Figure 11. End view of nonaxisymmetric tube configuration showing
element and segment numbering systens.
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Figure 12. Location of three sets of connecting nodes
shown in r-z plane.
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Yield Surface

Figure 13. Kinematic or Prager's strain hardening.
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Figure 14.

v

Uniaxial tensile stress=strain curve for a
bilinear material;
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Segment 1 Segment 2

a., Case 1

b. Case 2

c. Case 3

Figure 17. Configurations analyzed shown in r-z plane.
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TABLE 1

Stresses from various methods of analysis

for axisymmetric disk under internal pressure of 1000 psi

Radial Stress, ©
Trr

Element No. Axisymmetric Perturbation __Substructure
1 -598 -610 - 39
2 -242 -243 -149
3 - 97 - 94 -199
4 - 24 - 18 -222

Circumferential Stress, 066
Element No. Axisymmetric Perturbation Substructure
1 857 853 908
2 491 487 | 527
3 345 345 520
4 271 274 209
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TABLE 2

Circumferential stress % from various methods of analysis of a

disk with internal pressure of 1000 psi

Element No. Perturbation Plane Stress Substructure
1 1164 1216 1193
2 505 540 544 Segment 1
3 208 215 202
4 46 20 il
17 1078 1133 1159 Segment 6
18 906 864 829
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TABLE 3

Radial stress Orr for nonaxisymmetric disk under

internal pressure of 1000 psi

Element No. Perturbation Plane Stress Substructure
1 -446 -519 109
2 -164 -150 - 79
3 - 53 - 30 -164 Segment 1
4 6 0 -203
17 -608 -541 -239
18 - 92 -116 -325 Segment 6
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TABLE 4

Circumferential stress %40 from perturbation and
substructure analysis for nonaxisymmetric tube

under internal pressure of 1000 psi

Element No. Perturbation Substructure Limit Solution
1 1010 ' 1061 1164
2 503 544 505
3 284 268 208
4 108 102 46

17 : 1155 1217 1078
18 811 760 906
61 934 986 857
62 486 528 491
63 301 286 345
64 205 141 271
81 755 956 857
82 479 594 491
83 386 402 345
84 345 288 271
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TABLE 5

Radial stress O from perturbation and
substructure analysis of nonaxisymmetric

tube under internal pressure 1000 psi

Element No, Perturbation Substructure Limit Solution

1 -523 ‘ + 51 -446
2 -200 -104 -164
3 -71 -178 - 53
4 _ = 16 -216 ' + 6
17 -574. ' +102 -608
18 -112 + 6 - 92
61 -570 # 5 -599
62 -228 -130 -243
63 - 88 -193 - 97
64 _ - 16 -223 - 24
81 -659 -106 -599
82 -266 -212 -243
83 - 98 -262 - 97
84 - 17 -286 - 29
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TABLE 6

Circumferential stress 096 for nonaxisymmetric
tube under internal pressure of 1000 psi with

various choices of connecting nodes

Element Set a Set b Set ¢
1 1010 1011 1011
2 503 503 503
3 284 284 284
4 168 167 168

17 1155 1155 1156
18 811 810 809
61 934 933 934
62 486 . 486 486
63 301 301 300
64 205 206 205
81 755 756 756
82 | 479 479 479
83 386 386 385
84 345 345 344
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APPENDIX A

DEVELOPMENT OF MATRICES USED IN ANALYSLS

A.1 Derivation of Matrix [B]

The [B] matrix introduced in equation (2.3) is obtained by com-
bining equations (2.1) and (2.2). Writing equation (2.1) in matrix
form for the nodal displacement$ of a triangular element gives:

u RZ. 0 0
1 1
v.\ = 0 RZ. 0 {ag
i i j
Wy o 0 Rz, (A.1)

where RZj is a row matrix [1, rj, zj] and i and j vary from 1 to 3
and from 1 to 9 respectively. The parameters (rj, zj) are the nodal
coordinates of the triangular element. Equation (A.l) can be ex-
pressed as:

{6} = [C] {o} (A.2)

where {8} is the nodal displacement, {a} is the generalized coordinates
and [C] is defined from equation (A.1). Solving equation (A.2) for
{a} gives:

5
{a} = [Cc]7" {8} (A.3)
Then substituting equation (2.1) into equation (2.2) gives:
- b
r I o h al
& 0 1 0 0 0 0 0 o0 O a,
€, 0 0 0 0 0 1 0 0 o0 &
a
<€e ; . Ly 2 %5 0 0 0 0 o 4
r Tr ﬁas ?
s 0 o0 1 0 1 0 0 0 o0 ag
a5 0 0 0 0 0 0 0 0 1 “o
a
Yor o 0 0 o o o L o -2 8
- J A r r a
79 (A.4)




Lquation (A.4) can be expressed as:

{e} = [qQ] {a} (A.5)

where [Q] is defined from equation (A.4). Substituting for {a} from
equation (A.3) gives:

e} = [Q [1c17! (83 (A.6)
Making the substitution:

Bl = [q] [c]7" (A.7)
gives the result:

{e} = [B] {8} (A.8)

which is identical to equation (2.3).

A.2 Derivation of Matrix [Bl]

In forming the nonaxisymmetric stiffness matrix the [B;] matrix
was introduced in equation (2.13). This matrix is found in a manner
similar to the [B] matrix explained in the previous section. Equation
(2.10) can be expanded as:

L. C 0
i
0 &)
1 J
Wy o 6C (A.9)

where matrix C is defined in equation (A.2), 6 is a multiplying con-
stant, i varies over integers 1 to 6, and j varies over integers 1 to
18. We define 6 = 0 on one face of the segment and © = 6 on the other
face. Equation (A.9) can be written in partitioned form as:

& cC o0 ﬁ o
4 =g,
s, C ocC B 1 {B} (A.10)
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where [C] is identical to the [C] in equation (A.2) and {%} are the
18 generalized coordinates. Solving for {B} gives:

-1 |6 _ o

o
I

(A.11)

where:

=1
[c,]

D= O
1
—
D= ©
1
—

(A.12)

] e

0, 1, 8x0, 6, 7x0

5x0, 1, 8x0, 6, 3x0

= [ L u, B omm Onid 2 5o Lo, 2 {a}
= i T 3 T b j

2x0, 1, 0, 1, 6x0, 6, 0, ©, 4x0

8x0, 1, 3x0, &, 1, £, 2x0, 6
T T
éx0, "W, 05 2R, 1y L 2x0, 2 @, "2
T T T T T T
- =

(A.13)

where j varies over integers 1 to 18 and the rectangular matrix has
been written in a compressed form where nx0 indicates n consecutive
elements which are identically equal to zero. Equation (A.13) can be
rewritten as:

o
{e} = [Q,] {B} (A.14)

Combining equations (A.11) and (A.13) gives:

{e}

[Q,] [Cl]'l {s} (A.15)

or

{e}

[B,] {8} (A.16)
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where

B, = Q] [c;]™ (A.17)

A.53 Description of [D] Matrix

The [D] matrix is defined as:

{o} = [D] {e} (A.18)
The inverse of equation (A.18) is:
fe} = ]! {o} (A.19)

-1 3G . . )
The [D] ~ matrix is defined in equation (2.4 ). It can be expressed
as:

. ]
Y Y
1 ns nt
E "E "E 0 4] 0]
n n n
- N T
E E E
S [ s
_ v v
[D]_l = _ Etn _ Ets %_ 0 0 0
t t t
1
0 (4] 4] T 0 0
ns
8] 4] 8] 4] E%— 0]
st
4] 0 0 0 0 El—
tn (A.ZO)
; —

The [D] matrix is obtained by inverting equation (A.20).

A.4 Derivation of the Matrices [R] and [G]

If we number the connecting nodes of a segment from 1 to 8 where
the nodes 1-4 are on one face and the nodes 5-8 on the other face,
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the [R] matrix in the equation

{ucp} = [R] {p} (A.21)
can be partitioned as:
R., 0
(R] ==t -
0 R2 (A.22)

where [Rl] has the form:

) o

RRl

RR2

RR3

RR4_J (A.23)

[R,]

—

where matrices RRi are defined as follows:

Rzz. 0 0
[RR.] =

0 Rzzi Rzzi (A.24)

where Rzz. is a row matrix [1, r., z., r.z.].
i i’ 71 Titi

The matrix [Ry] has the same form with rj replaced by r;,, and z; re-
placed by zj4q (i=1,4). Also for .each element we have:

{up} = [G] {p} (A.25)

where [G] can be partitioned as:

G (A.26)

In this case, since the nodes on opposite faces of the segment
correspond, their sub-matrices are identical. The matrix G; has the
same form as Rj in equation (A.23) except the coordinates apply to
the coordinates of the four corners of the quadrilateral element rather
than the four connecting points.
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A.5 Derivation of the [A] Matrix

The concentrated loads such as pressure loadings are input into
the program as occurring between two nodes, i and j. The perturbation
displacements at these nodes are related to the perturbation displace-
ments at the connecting nodes by:

{upi} = [A] {p} (A.27)

Substituting for {p} from equation (2.17) gives:

— -l =
{upi} = [A] [R] {ucp} (A.25)
where {u)i} represents the perturbation displacements of node "i'"'. A
similar %xpression is then written for node 'j'".
If {g} is a matrix of applied loads at node "i' then:
e,
£,
{8} =< ;'_:.EI
g,
Bg
o T (A.29)

k”ﬂ

where g,., g, and gg are the components of the load in the three direc-
tions. These components are repeated to indicate that the load is
applied equally to each face of the segment.

The [A] matrix in equation (A.26) can be written in partitioned
form as:

Ax ' 0
[A] =]- '
0 : A* (A.30)
where [A*] is:
[A*] = [RR.] (A.31)

where [RR.] was defined in equation (A.24) and where coordinates o,
zy refer to points where the load was applied.
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Then balancing virtual work gives:

T . |
éup {fel = 58 upj {g}
but
0 ] IR
dupi = ([A] [R] § ucp)
or
il
T iy -1 jy
Gupi = § uCp [R] [A]

Then equation (A.30) becomes:

T T

sul {fc} = sul 1 R AT g

(A.32)

(A.33)

" (A.34)

(A.35)

where the summation is over all nodes with an external load applied.
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APPENDIX B

INPUT CARDS FOR COMPUTER PROGRAMS

1. SEGMENT CONTROL CARD (one for each version)

Elastic Version:
Format (2110)

Columns 1-10 NTYPS (Number of different types of
segments; 4 maximum)

11-20 NTOTS (Number of total segments;
8 maximum)

Elastic-Plastic Version:
Format (2110)
Columns 1-10 NTOTS (Number of segments, 8 maximum)

11-20 NOLINC (Number of load increments)

2. SEGMENT DATA CARDS

One card for each type of segment,
Format (F10.5, 110)
Columns 1-10 THETA (Angle subtended by segment)
11-20 NST (The number of segments éf each

type; 5 maximum; not needed in
elastic-plastic version)

3. SEGMENT NUMBERING CARDS (not needed in elastic-plastic version)

One card for each type of segment.

Format (5110)
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Columns 1-10 NUMS (1) (Reference numbers for
segments of each type in
global numbering system;

: there can be one to five
41-50 NUMS (5) numbers per card depending
on how many segments there
are of each type.)

4, CONNECTING NODES CARDS

One card for each segment. These cards must be in order accord-
ing to the global numbering system for segments.

Format (8110)

Columns < 1-10 NPC (1) (Nodal number for connecting
nodes according to the
axisymmetric grid for the
segment).

71-80 NPC (8)

Cards 5-18 must be repeated for each different type of segment.
_-These :are the control cards for the axisymmetric solution.
5. TITLE CARD
Format (20A4)

Columns 1-80 TITLE (Title for particular case)

6. CONTROL CARD
Format (615, F5.0, 515)
.Columns 1-5 NNLA (Number of nonlinear approxima-

tions; NNLA = 1 for this version of
the program)

6-10 NUMTC (Number of temperature cards;
if -2, a constant temperature is
specified)

11-15 NUMMAT (Number of different materials;

6 maximum

16-20 NUMPC (Number of boundary pressure
cards; 200 maximum)
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21-25 NUMSC (Number of boundary shear
cards; 200 maximum)

26-30 NUMST (Number of boundary shear
cards in tangential direction;
200 maximum)

31-35 TREF (Reference temperature)

36-40 INERT (This parameter decides if
inertia loads will be present,
INERT + 0 means zero values of axial
acceleration, and angular accelera-
tion and velocity for each load
increment)

51-55 INCF (If INCF = 0, then surface loads
for each time increment will be the
same as for first increment)

56-60 IPLOT (Plot parameter, 1 if plot re-
quired)

7. MESH GENERATION CONTROL CARD

Format (515)

Columns 1-5 MAXI (Maximum value of I in mesh;
25 maximum)

6-10 MAXJ (Maximum value of J in mesh;
100 maximum)
11-15 NSEG (Number of line segment cards)
16-20 NBC (Number of boundary condition
cards)
21-25 NMTL (Number of material block cards)

8. LINE SEGMENT CARDS

The order of line segment cards is immaterial except when plots
are requested; in this case, the line segment cards must define the
perimeter of the solid continuously. The order of line segment cards
defining internal straight lines is always irrelevant.
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4 Circular arc specified by 1st and
2nd points at the ends of the arc
with the coordinates of the center
of the arc given as the 3rd point
(delete I and J for 3rd point)

5 Straight line as boundary diagonal
for which I of ist point is minimum
for its row and/or I of 2nd point
is minimum for its row (input only
lst and 2nd points)

6 Straight line as boundary diagonal
for which I of 1st point and/or
2nd point is maximum for its row
(input only 1st and 2nd points)

NOTE: In specifying a circular arc, the points are ordered such that

a counterclockwise direction about the center is obtained upon
moving along the boundary.

9. BOUNDARY CONDITION CARDS

Each card assigns a particular boundary condition to a block
of elements bounded by I1, 12, J1, J2. For a line Il = I2 or JI =
J2. For a point Il = I2 and J1 = J2,

Format (415, 110, 3F10.0)

Columns 1-5 Minimum I
6-10 Maximum I
11-15 Minimum J
16-20 Maximum J
21-30 Boundary condition code
31-40 Radial boundary condition code, XR
41-50 Axial boundary condition, XZ
51-60 Tangential boundary condition XT
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Format (3(213, 2F8.3), I5)

Columns 1-3 I coordinate of 1st point
4-6 J coordinate of 1lst point
7-14 R coordinate of 1st point

15-22 Z coordinate of 1lst point
23-25 I coordinate of 2nd point
26-28 J coordinate of 2nd point
29-36 R coordinate of 2nd point
37-44 Z coordinate of 2nd point
45-47 I coordinate of 3rd point
48-50 J coordinate of 3rd point
51-58 R coordinate of 3rd point
59-66 Z coordinate of 3rd point
67-71 Line segment type parameter

If the number in column 71 is
0 Point (input only 1lst point

1 Straight line (input only lst and
2nd points)

2 Straight line as an internal diagonal
(input only 1st and 2nd points)

3 Circular arc specified by 1lst and
3rd points at the ends of the arc
and 2nd point at the mid-point of
the arc
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If the number in Columns 21-30 is

XR
XZ
XT
XR
1 XZ
XT
XR
2 XZ
XT
XR
3 XZ
XT
XR
4 - XZ
XT
XR
5 XZ
XT
XR
6 XZ
XT
XR
7 XZ

XT

is

is

is

is

is

is

is

is

is

is

is

is

is

is

is

is

is

is

is

is

is

is

is

is

the

the

the

the

the

the

the

the

the

the

the

the

the

the

the

the

the

the

the

the

the

the

the

the
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specified
specified
specified
specified
specified
specified
specified
specified
specified
specified
specified
specified
specified
specified
specified
specified
specified
specified
specified
specified
specified
specified
specified

specified

R-load and
Z-load and
8-load
R-displacement
Z-load and
8-load

R-load and
Z-displacement
B-load
R-displacement
Z-displacement
8-load

R-load and
Z-load and
B-displacement
R-displacement
Z-load and
B-displacement
R-load and
Z-displacement
B-displacement
R-displacement
Z-displacement

O-displacement

and

and

and

and

and

and

and

and



NOTE: All loads are considered to be total forces acting on one

radian segment.

10. MATERIAL BLOCK ASSIGNMENT CARD

Each card assigns a material definition number to a block of
elements defined by the I, J coordinates.

Format (5I5, 2F10.0, 2I5)

Columns 1-5

6-10
11-15
16-20
21-25

26-35

36-45

46-50

51-55

11. PLOT TITLE CARD*

Format (20A4)

Columns 1-80

Material definition number
(1 through 6)

Minimum I
Maximum I
Minimum J
Maximum J

Material principal property inclina-
tion angle BETA which defines N-S
plane orientation relative to z
direction (see Figure 4)

Material principal property inclina-
tion angle ALPHA which defines the
orientation of N-T plane relative
to r-z plane (see Figure 4)

IANG (If IANG = 0, then ALPHA is same
for total material block. If
IANG = 1, the ALPHA varies in
sign in the I direction from
element to element every NANG
elements. This will allow for
equal but opposite helical
angles.)

NANG (Number of elements in the I
direction with the same ALPHA).

Title (Title printed under each plot)

73



12. PLOT GENERATION INFORMATICN CARD*

Format (2F10.0)
Columns 1-10 RMAX (Maximum r coordinate of mesh)

11-20 ZMAX (Maximum z coordinate of mesh)
*NOTE: Use only if IPLOT = 1 (plot required)

13. TEMPERATURE FIELD INFORMATION CARDS

If NUMTC in columns 6-10 of the CONTROL CARD is greater
than 1, the temperature field is given on cards. One card must be
supplied for each point for which a temperature is specified.

Format (3F10.0)

Columns 1-10 R coordinate
11-20 z coordinate
21-30 Temperature

If NUMTC in columns 6-10 of the CONTROL CARD is -2, a constant tem-
perature field is specified; the value is given on a single card.
Format (F10.0)

Columns 1-10 Temperature

14. MATERIAL PROPERTY INFORMATION CARDS

The following group of cards must be specified for each

material (maximum of 6),

a. MATERIAL IDENTIFICATION CARD

Format (2I5, 2F10.0)
Columns 1-5 Material Identification number

6-10  Number of temperatures for which
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b.

11-20

21-30

properties are given (12 maximum)

Mass density of material (if
required)

Thermal expansion parameter (If 1,
free thermal expansions on the
material property cards; otherwise,
coefficients of thermal expansion
are on the material property cards.)

MATERIAL PROPERTY CARDS

Two cards are required for each temperature.

First Card

Format (7F10.0)
Columns 1-10
11-20
21-30
31-40
41-50
51-60

61-70

Second Card

Format (6F10.0)
Columns 1-10
11-20
21-30
31-40

41-50

51-60

75

Temperature

Modulus of elasticity, EN

Modulus of elasticity, ES

Modulus of elasticity, ET

Poi L i
oisson's ratio, v ¢

Poisson's ratio, VNT

Poisson's ratio, Vor

Shear Modulus, GNS

Shear Modulus, GST

Shear Modulus, GTN

uNT or aN

uST or as

uTT or aT



16.

YIELD STRESS CARDS (not needed in elastic version)

Format (7F10.0)

Columns

1-10 Yield stress in tension in N direc-
tion

11-20 Yield stress in tension in S direc-
tion

21-30 Yield stress in tension in T direc-
tion

31-40 Yield stress in shear in NS direction
41-50 Yield stress in shear in NT direction
51-60 Yield stress in shear in TS direction

61-70 Hardening parameter - C

INERTIA LOAD CARD

Format (3F10.0)

Starting with this input card and including the boundary

force cards, this data is to be inputted as a block for

each load step, that is NLINC times. There are the follow-

ing exceptions to this:

a)

b)

If INERT = 0, then this card is to be omitted
completely (no inertia load).

If INCI = 0, then this card is not repeated, but
appears in first block only (the inertia loads
are constant for each load step).

If INCF = 0, then the following boundary pressure
and shear cards are to be given only for the first
block and not repeated again (the pressure and

shear loads are constant for each load increment).
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Columns 1-10 ACELZ (axial acceleration)
11-20 ANGVEL (angular velocity)

21-30 ANGACC (angular acceleration)

17. BOUNDARY PRESSURE CARDS

One card is required for each boundary element which is
subjected to a normal pressure, that is the number of these
cards is NUMPC for each load increment.

Format (2I5, F10.0)

Columns 1-5 Nodal point M
6-10 Nodal point N
11-20 Normal pressure

As shown in the figure below, the boundary element must be
on the left when progressing from M to N. Surface normal

tension is input as a negative pressure.

ST

i/



18. BOUNDARY SHEAR CARDS

One card is required for 2ach boundary element which is
subjected to surfaée shear, that is, the number of these
cards is NUMSC for each load increment.
Format (215, F10.0)
Columns 1-5 ﬁodal point M

6-10 Nodal point N

11-20 Surface shear
As shown in the figure below, the boundary element must
be on the left when progressing from M to N. The positive

sense of the shear is from M to N.
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19. BOUNDARY TRANSVERSE SHEAR CARDS

One card is required for each boundary element which is
subject to transverse shear, that is, the number of these
cards is NUMSC for each load increment.
Format (2I5, F10.0)
Columns 1-5 Nodal point M

6-10 Nodal point N

11-20 Surface transverse shear
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20. BOUNDARY CONDITION CONTROL CARD

Format (I5)

Columns 1-5 NRDF (This parameter is equal to the total
number of displacement components
specified at connecting points, for
example, if one displacement component
was specified at each connecting point
then NRDF would be equal to the number

of connecting points)

21. BOUNDARY CONDITION CARDS

There are NRDF of these cards.

Format (110, F10.0)

Columns 1-10 NREQ (The location of the equation to be
modified in the assembled matrix
relative to the connecting points.

For example, if there are 12 connecting

points and at the fifth connecting

point the second component of displace-

ment is specified then this integer

would be equal to 3 x (5-1) + 2 = 14)
11-20 U (The actual boundary condition valve

to be specified in position NREQ in the

matrix equations)
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C% % % % % % % % % % % % % % % % % % % % % % % % ¥ % % % X X ¥ X % % % ¥

-

v

APPENDIX .C
PROGRAM LISTING

PROGRAM NONAXI(INPUT,OUTPUT,TAPE5S=LNPJUT,TAPE6=UUTPUT,TAPE1,

1 TAPEZ,TAPE3,TAPE22,TAPE23, TAPE2Y,
2TAPE21,TAPE25, TAPE26)

INTEGER CODE
COMMON/NPDATA/R(1000),CODE(1000),XR(1000),Z(1000),XZ(1000),

1NPNUM(25,80),T(1000),XT(1000)

COMMON/ARG/RRR(5),22Z(5) ,RR(Y4),Z2Z(4),S(15,15),P(15),TT(6),

1H(6,15),CRZ(6,6),XI1(10) ,ANGLE(Y),SIG(18),EPS(18),N

COMMON/ELDATA/BETA(1000) , EPR(1000),PR(200),SH(200),IX(1000,5),

11P(200),JP(200),1S(200),J3(200),ALPHA(1000),1T(200),JT(200),
2ST(200)

COMMON/BASLC/ACELZ, ANGVEL , ANGACC, TREF , VOL , NUMNP , NUMEL , NUMPC , NUMSC,

1NUMST

COMMON /N XMESH/THETAN(4) ,NST(4) ,NUM3(4,5) ,NPC(8,8)
COMMUN/ANS1/NUMELS (4 ) ,NUMNPS(4)
COMMON/NXDATA/NTP,NTYPS,NTS,NTOTS,GTS1G (24,24 ,4)
COMMON/NONAXI/31(30,30),P1(30),THETA,BS1(6,30)

COMMON /SOLVE/X(4428),Y(4428),TEM(4428) ,NUMIC ,MBAND
COMMON/TD/IMIN(100),IMAX(100),JMIN(25),JMaX(25),MAXL,MAXJ ,NMTL , NBC
COMMON /CONVRG/ LDONE

COMMUN/PLANE/NPP

COMMON/RESULT/BS(6,15),D(6,6),C(6,6) ,AR,BB(6,9),CNS(6,6)
COMMUN/MATP/RO(6),E(12,16,6),EE(16),A0FTS(6)

DIMENSION TITLE(20)

READ AND WRITE CONTROL INFORMATION

CR % % % % % % % % % % % % % % % X X E X % X X X X X X X X XK X X X %R

152
3000
3001
3002

60
3010

3011

3012

READ(5,3000) NTYPS,NTOTS
DO 150 I=1,NTYPS
READ(5,3001) THETAN(L),NST(IL)
DO 151 I=1,NTYP3
J2 =NST(I)
READ(5,3000) (NUMS(L,d),Jd=1,J2)
DO 152 1= 1,NTOTS
READ(5,3002) (NPC(IL,Jd),Jd=1,8)
FORMAT(8110)
FORMAT(F10.5,110)
FORMAT(8110)
DO 60 I=21,26
REWIND I
WRITE(6,3010)
FORMAT ("1","3SEGMENT DATA FOR NONAXISYMMETRIC PROBLEM")
WRITE(6,3011) NTYP3,NTOTS
FORMAT ("™ "," NUMBER OF TYPES OF SEGMENTS = ",I5,//,
" NUMBER OF TOTAL SEGMENTS =", 15)

DO 153 I=1,NTYPS

WRITE(6,3012) I,THETAN(LI),NST(I)

FORMAT("™ ",///," SEGMENT TYPE = ",6I5/," THETA = ",F10.5/,
" NUMBER OF SEGMENTS OF THIS TYPE = ",I5)
J2 = NST(I)
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WRLTE(6,3013) (NUMS(L,d),d=1,d2)
3013 FORMAT(" "," SEGMENT NUMBERS IN GLOBAL SYSTEM ARE ",5I5)
155 CONTINUE
DO 154 I=1,NTOTS
154 WRITE(6,3014)I1,(NPC(I,J),d=1,8)

3014 FORMAT("™ " ,"CUNNECTING NODES FOR SEGMENT",I5," ARE",8I5)
DO 950 NTP = 1,NTYP3
THETA= THETAN(NTP) /57.295780

50 READ(5,1000 )TITLE,NNLA,NUMTC,NUMMAT, NUMPC,NUMSC,NUMST, TREF
1, INERT,NLINC, INCI, INCF,IPLOT
WRLTE(6,2000)TLTLE , NNLA , NUMIC, NUMMAT , NUMPC , NUMSC , NUMST , TREF , INERT,

TNLINC

NPP=0
C************************************
© GENERATE FINITE ELEMENT MESH

C* % % % ¥ % % % % % % ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ X ¥ ¥ ¥ F ¥ ¥ ¥ X X ¥ ¥ ¥ ¥

100 CALL MESH
NUMELS(NTP) = NUMEL
NUMNPS(NILP) = NUMNP
LF (IPLOT.EQ.1) CALL MPLOT
CH % % % K ¥ K K F K K K K F K % ¥ K ¥ X K X X X K K K K K X X X £ ¥

C READ AND WRITE TS5MPERATURE DATA
C************************************
103 IF(NUMIC.EQ.0) GO TO 440
IF(NUMTC.GT.0) ReAD(5,1001) (X(I),¥(L),TEM(I),1=1,NUMTC)
IF(NUMTC.EQ.-2) CALL TEM2(NUMNP)
IF(NUMTC.EQ.-2) GO TO 440
MPRINT=0
DO 210 I=1,NUMTC
IF(MPRINT.NE.OQ) GO TO 200
WRITE(6,2001)
MPRINT=59
200 MPRINT=MPRINT-1
210 WRLITE(6,2002) X(L),Y(i),TEM(I)
MPRINT=0
DU 230 N=1,NUMNP
IF(MPRINT.NE.OQ) GO TO 220
WRITE(6,2003)
MPRINT=59
220 MPRINT=MPRINT-1
CALL TEMP(R(N),Z(8),T(N))
230 WRLTE(6,2004) N,R(N),Z(N),T(N)
440 MPRINT=0
DO 460 N=1,NUMEL
IF(MPRINT.NE.Q) GO TO 450
WRITE(6,2008)
MPRINT=59
450 MPRINT=MPRINT-1
II=IX(N,1)
JJ=IX(N,2)
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KK=IX(N,3)
LL=IX(N,4)

TEM 1S TEMPORARY STORAGE FOR ELEMENT TEMPERATURES

aQaCa

TEM(N)=(T(IL)+T(JJ)+T(KK)+T(LL))/4.00
460 WRITE(6,2009) N,(IX(N,I),L=1,5),BETA(N),ALPHA(N),TEM(N)
DO 470 K=1, NUMEL
470 T(K)=TEM(K)
C¥ % % % % % % % % % % % % % % % % % % * % X X ¥ H X X X % ¥ H ¥ % ¥ X ¥
C READ AND WRITE MATERIAL PROPERTIES
CE % % ¥ £ % % % % % % % % % % % » ¥ % R R ¥ ¥ X X X X ¥ X ¥ X X X ¥ ¥ »
500 CONTINUE
DO 510 M=1,NUMMAT
READ(5,1004) MTYPE, (NT,RO(MTYPE),AOFTS(MTYPE))
WRITE(6,2010) MTYPE,NT,RO(MTYPE)
READ(5,1005) ((E(L,J,MTYPE),J=1,14),I=1,NT)
IF(AOFTS(MTYPE) .NE.1.) WRITE(6,2011) ((E(L,J,MTYPE),J=1,13),i=1,NT)
IF(AOFTS(MTYPE).EQ.1.) WRITE(6,2012) ((E(I,J,MTYPE),J=1,13),I=1,NT)
DO 510 I=NT,12
DO 510 J=1,16
510 E(L,J,MTYPE)=E(NT,J,MIYPE)
DO 900 NL=1,NLINC
WRLITE(6,2030) NL
ACELZ=0.00
ANGVEL=0.00
ANGACC=0.00
IF(INERT .EQ. 0) GO TO 511
IF(NL .NE. 1 .AND. INCI .EQ. 0) GO TO 511
C***********************************************************************

C READ AND WRITE DYNAMIC FORCES
C***********************************************************************
READ(5,1030) ACELZ, ANGVEL, ANGACC
WRITE(6,2031) ACELZ, ANGVEL, ANGACC
511 CONTINUE
C* * % K K R X K X ¥ X X ¥ ¥ ¥ ¥ * % % K X X X X ¥ X X X X % ¥ ¥ ¥ % % ¥

¢ READ AND WRITE PRESSURE AND SHEAR BOUNDARY CONDITIONS
C¥ % % % % % % % % % % % % » * R R ¥ X ¥ E X ¥ X X O X X ¥ ¥ * ¥ % % ¥ ¥
IF(NL .NE. 1 .AND. INCF .EQ. 0) GO TO 700
600 IF(NUMPC.EQ.0) GO TO 630
MPRINT=0
DO 620 L=1,NUMPC
IF(MPRINT.NE.O) GO TO 610
WRITE(6,2013)
MPRINT=58
610 MPRINT=MPRINT-1
READ(5,1006) IP(L),JP(L),PR(L)
620 WRITE(6,2014) IP(L),JP(L),PR(L)
630 IF(NUMSC.EQ.0) GO TO 701
MPRINT=0
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DO 650 L=1,NUM3C
IF(MPRINT.NE.O) GO TV 640
WRITE(6,2015)
MPRINT=58
640 MPRANT=MPRLINT-1
READ(5,1006) IS(L),dS(L),3H(L)
650 WRITE(6,2014) IS(L),JdS(L),SH(L)
701 L[F(NUMST.EQ.0) GO TQ 700
MPRINT=0
DO 680 L=1,NUMST
IF(MPRINT.NE.O) GO TO 670
WRITE(6,2025)
MPRINT=58
670 MPRINT=MPRINT-1
READ(5,1006) IT(L),JT(L),ST(L)
680 WRLTE(6,2014)IT(L),JT(L),ST(L)
* O % R X R X R R X R X OE OE O O OE OE O OF OE O R O R X OE E X OE O X X X ¥ %
DETERMINE BANDWIDTH, INITIALIZE ELASTIC-PLASTIC RATIO,
AND CONVERT BETA FROM DEGREES TO RADIANS
¥ O X X X X R X R E R X OE OF OE R OE OE O R OE OE O O OE O O OE O O OE O ¥ X X ¥
700 J=0
DO 710 N=1,NUMEL
IX(N,5)=1ABS(IX(N,5))
Do 710 1I=1,4
DU 710 L=1,4
KK=IABS(IX(N,I)-IX(N,L))
IF(KK.GE.J) J=KK
710 CONTINUE
MBAND=3*J+3
IF(NL.GT.1) GU TO 721
DO 720 N=1,NUMEL
EPR(N)=1.
ALPHA(N)=ALPHA(N)/57.295780
720 BETA(N)=BETA(N)/57.295780
721 CONTINUE
C# % % % % % % % % % ¥ % % ¥ ¥ % % ¥ ¥ % % ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ X X ¥ ¥ ¥

C SOLVE NONLINEAR PROBLEM BY SUCCESSIVE APPROXIMATIONS
CE¥ % % % % % % ¥ % % % % ¥ % ¥ % F ¥ K K R O R K OB F O ¥ F B F X ¥ ¥ ¥ ¥

DO 800 NNN=1,NNLA

G QO

C
C FORM STIFFNESS MATRIX
v
CALL STIFF
C
C SOLVE FOR DISPLACEMENTS
C
CALL SoLv
C
C COMPUTE STRESSES
C
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CALL STRESS
CALL STORE
IF(1DUNE.NE.1) GO TO 800
799 NLITER=NNN
IF(IDUONE.EQ.1) GU TO 810
800 CONTINUE
810 LiF(IDONE.EQ.1) WRITE(6,2016) NLTER
IF(IDONE.NE.1) WRITE(6,2017) NITER
900 CONTINUE
950 CONTINUE
CALL ASEMBL
CALL ANSWER
910 CONTINUE
1000 FORMAT(20AY4/615,F5.0,5L5)
1001 FORMAT(3F10.0)
1004 FORMAT (2I5,2F10.0)
1005 FORMAT(7F10.0)
1006 FORMAT (215,F10.0)
1030 FORMAT(3F10.0)
2000 FORMAT (2H1 ,20AM4/

1 33H0 NUMBER OF APPROXIMATIONS~~-=--~ 14/

2 33H0 NUMBER OF TEMPERATURE CARDS~--~IY4/

3 33H0 NUMBER OF MATERIALS~-~~~eeeeas I4/

4 33H0O NUMBER OF PRESSURE CARDS~~~--- I4/

5 33H0 NUMBER OF SHEAR CARDS—~—meee-- 4/

6 33H0 NUMBER OF TORSIUN CARDS~===--- 14/

7 33H0 REFERENCE TEMPERATURE—=~~~~e==- E12.4/
8 33H0 NUMBER OF INERTIA CARDS~~~-=-- L4/

9 33H0 NUMBER OF LUAD INCREMENTS-~-~-- I4/)

2001 FORMAT (1H1,1sX, 18K, 14X, 1HZ, 14X, 1HT)
2002 FORMAT (3F15.3)
2003 FORMAT (35H1 N R - 2 = W)
2004 FORMAT (15,2F10.4,F10.0)
2008 FORMAT (74H1 EL I J K L MATERIAL ANGLE BETA  ANGLE A
1LPHA TEMPERATURE)
2009 FORMAT (L5,414,18,F11.1,2F13.3)
2010 FORMAT (1H1,"MATERIAL IDENTIFICATION NUMBER =",I2/
114 ,"NO. OF MATERLAL TEMPERATURE CARDS =",I2/
21H ,"MAS3S DENSITY =”,E15.7)
2011 FORMAT (1H ,"TEMPERATURE =",E15.7/
11H ,"MODULUS OF ELASTICITY-EN =»,E15.7/
21H ,"MODULUS OF ELASTICITY-ES =",E15.7/
31H ,"MODULUS OF ELASTICITY-ET =",E15.7/
41H ,”POL3SON RATIO-NUNS =",E15.7/
51H ,"PULSSON RATIO-NUNT =",E15.7/
61H ,"PUISSON RATIO-NUST =",E15.7/
71H ,"SHEAR MODULUS-GNS =",E15.7/
81H ,"SHEAR MODULUS-GST =",E15.7/
91H ,"SHEAR MODULUS-GTN =%,E15.7/
11H ,"COEFFICIENT OF THERMAL EXPANSION-AN =",E15.7/
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21d ,"CUEFFLCIENT OF THERMAL EXPANSION-AS =", £15.7/

31H ,"COEFFICIENT OF THERMAL EXPANSION-AT =",£15.7/)
2012 FURMAT (1H ,"TEMPERATURE =" ,E15.7/

111 ,"MODULUS OF ELASTICITY-EN =",£15.7/

214 ,"MODULUS OF ELASTICITY-ES =",E15.7/

31H ,"MODULUS OF ELASTICITY-ET =",£15.7/

41H ,"POISSON RATIO-NUNS =",E15.7/

51H ,"PULSSON RATIO-NUNT =",E15.7/

61H ,"POISSON RATIO-NUST =",£15.7/

714 ,"SHEAR MODULUS-GNS =",E15.7/

81H ,"3HEAR MODULUS-GST =",E15.7/

91H ,"3HEAR MUDULUS-GTN =",E15.7/

11H ,"FREE THERMAL STRAIN-FN =", E15.7/

21H ,"FREE THERMAL STRAIN-FS =",E15.7/

310 ,"FREE THERMAL STRAIN-FT =",E15.7/)
2015 FORMAT (30H1 PRESSURE BOUNDARY CONDITIONS/20H L J PRES3URE)
2014 FORMAT (2i5,F10.1)
2015 FORMAT (27H1 SHEAR BOUNDARY CONDITIONS/1TH i J SHEAR)
2016 FORMAT (26H THE SYSTEM CONVERGED IN i2,11H ITERATIONS)
2017 FORMAT (33H THE SYSTEM DID NOT CUNVERGE IN I[2,11H LITERATIONS)
2024 FORMAT (43H0 THE AXISYMMETRIC OPTLON NAS BEEN SELECTED)
2025 FORMAT(30H1 TORSLION BOUNDARY CONDITIONS/17H L J SHEAR)
2030 FORMAT (1H1,"LOAD STEP=",Il)
2031 FORMAT(1HO ,"AXIAL ACCELERATION =",E12.4/

11HO0 ,"ANGULAR VELOCITY =", E12.4/
2140 ,"ANGULAR ACCELERATION=",E12.4)
920 3TOP
END
SUBROUTINE ANGLE (R,Z,RC,ZC,ANG)
& FIND ANGLE OF INCLINATION BETWEEN O AND 2%Pi

C************************************
PI=3.1415927
D1=(2-ZC)
D2=(R-RC)
IF(ABS(R-RC).GT.1.E-8) GO TO 100
ANG=PIL/2.
IF(D1.GT.1.E-8) RETURN
ANG=-ANG
RETURN
C************************************
C ALLOW CIRCLE TO CRUSS AXIS3
C************************************
100 ANG=ATAN2(D1,D2)
RETURN
END
SUBROUTINE ANSWER
INTEGER CODE
COMMON/ELDATA/BETA(1000) ,EPR(1000),PR(200),SH(200),IX(1000,5),
11P(200),JP(200),15(200),J5(200) ,ALPHA(1000),IT(200),JT(200),
2ST(200)
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COMMON/ARG/RRR(5),22Z2(5),RR(4),Z22(4),3(15,15),P(15),TI(6),
1H(6,15) ,CR4(6,6) ,XL(10) ,ANGLE(4),S1G(18),EPS(18),N8
COMMON/NXSOLV/SKG(132,24) ,FTu(132),ITOT
COMMON/ANS2/ UT1(24), G(24,24), GR1(24,24),DUMM(24,24)
COMMON /ANS 1/NUMELS (4) ,NUMNPS (4)
COMMON /NONAXL/31(30,30),P1(30),THETA,BS1(6,30)
COMMON/NXDATA/NTP,NTYPS,NTS,NTOTS,GT31G (24,24, 4)
COMMON /NXMESH/THETAN(4) ,NST(4),NUMS(4,5) ,NPC(8,8)
COMMON/ARG1/31G1(18),EP31(18)
COMMON/SULVE/B(162) ,A(162,81) ,NUMBLK , MBAND
DIMENSION UT(24),UC1(24),UC(24),R1(24,24)
REWIND 25
REWIND 26
KOLD=1
DO 100 K=1,NTYPS
KNEW=K
J1=  NST(K)
NUMNP = NUMNP3(K)
NUMNP3 = 3¥NUMNP
NUMEL = NUMELS(K)
K20 = K+20
READ(26) (B(I),I=1,NUMNP3)
READ(26) ((Lx(L,d),d=1,4),I=1,NUMEL)
DO 100 L=1,d1
NS=NUMS(K,L)
REWIND K20
WRITE(6,1200) K,NS
READ(25)((R1(L,Jd),d=1,24),I=1,24)
DU 110 KK=1,4
NP1 = NPC(NS,KK)
NP2 = NPC(NS,KK+4)
DO 110 I=1,3
UC(3*(KK-1)+L) = B(3*NP1-3+I)
UC(3%(KK-1)+1+12) = B(3¥NP2-3+1)
110 CONTINUE
DO 115 KK=1,24
115 UT(KK) = FTG(KK+(N3-1)%12)

WRITE(6,900)

900 FORMAT("™ "," EL  SIGMAR  SIGMAZ  SIGMAC  SIGMARZ S3IGMAZC®
1 ," SIGMACR SIGEFF",/" EPSR ERSZ EPSC",
2 " EPSRZ ERPSZC EPSCR")

IF(KOLD.EQ.KNEW) REWIND 21

IF(KOLD.NE.KNEW) KOLD=KNEW

DO 120 N=1,NUMEL

READ(K20) ((CRZ(IL,d),d=1,6),I=1,6)
READ(K20)((BS1(L,d),J=1,30),I=1,6)
READ(K20)(( G(I1,d),Jd=1,24),I=1,24)
DO 125 I=1,24
bo 125 J=1,24

GR1(1,Jd) = 0.00
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DO 125 M=1,24
125 GR1(L,Jd) = GR1(L,d) + G(I,M)*R1(M,J)

DO 126 I=1,24

Uc1(I) =0.00

UT1(I) =0.00

DO 126 J=1,24

UC1(I) = UCI1(I) + GR1(1,J)*UC(J)
126 UT1(L) = UT1(I) + GR1(I,J)*UT(J)

DO 130 i=1,4
1i=3%)

JJI=3%1X(N,I)
P1(LI-2) = B(JJ=-2)
P1(11-1) = B(JdJd-1)
P1(II ) = B(JJ )
P1(iL+10) = B(JJ-2)
P1(L1+11) = B(Jd=1)
P1(1L+12) = B(JdJ)

150 CUNTLNUE
DU 135 I=1,24
135 P1(I) = P1(1) -0UC1{I)+dT1(L)
DO 136 1I=1,3
P1(I+24)= (P1(L)+P1(L+3)+P1(1+6)+P1(i+9))/4.00
136 P1(L+27) = (P1(I+12)+P1(L+15)+P1(I+18)+P1(L+21))/4.00

DO 140 I=1,6
EP31(L) = 0.00
DO 140 J=1,30
140 EPS1(L) = EPS1(L)+BS1(L,d)*P1(J)
DO 150 I=1,6
SIG1(I) = 0.00

DO 150 J=1,6
150 SIG1(L) = SIG1(L) + CRZ(L,J)*EPS1(J)
SIGEFF=(SLG1(1)=-3Tyd1(2) ) **¥24(S1G1(2)=-SIG1(3))*¥*¥24+(3LG1(3)~
1 SIGT(1))*%246. % (SIGT1(U)*¥*24SIG1(5)**24+31G1(6)%*%2)
SIGEFF=3QRT (.5*SiGEFF)
DO 141 J=1,6
141 EP31(J) = EPS1(J)*100.0
WRITE(6, 1000)N, (SIG1(L)
WRITE(6,1100)(EP31(L) ,
120 CONTINUE
100 CONTINUE
1000 FORMAT(" ",I5,6F9.0,3X,F9.0)
1100 FORMAT(" " ,5X,6F9.5)
1200 FORMAT("1","3EGMENT TYPE",I5,//," ","SEGMENT NUMBER = ",I5)
RETURN
END
SUBROUTINE ASEMBL
COMMON/GLBSEG/FL(24,8),FE(24,8),UC(24,8),3K(24,24,8)
COMMON/NXDATA/NTP,NTYPS ,NTS,NTOTS,GTS1G(24,24,4)
COMMON/NXSOLV/SKG(132,24) ,FTG(132),ITOT
COMMON/ANS2/FC(24),G(24,2U4),GR1(24,24),DUMM(24,24)
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ITOT= 24 + 12%(NTOTS-1)
DU 10 1=1,ITOT
FTG(L) = 0.00
DO 10 J = 1,24
10 SKG(L,J) = 0.00
DO 100 M=1,NTOTS
WRLTE(6,1000)(FE(I,M),I=1,24)
WRITE(6,1000)(FL(I,M),I=1,24)
WRITE(6,1000) ((SK(L,Jd,M),d=1,24),I=1,24)
WRLITE(6,1000)(UC(I,M),I=1,24)
1000 FORMAT(" ",12£10.3)
3 3 58 3 36 3 3 3 3 3 3 3 3 36 I 3 3 3 I 3 3 I I 3 I I I I I I 3K I I I I A K I I A K I WK I KW I I KWK W®RER

COMBINE FL1, FE, AND SK*UC INTO A TOTAL FORCE VECTUR FC
3 36 3 5 36 3 3 % 3 3 36 36 3 3 3 3 36 36 3 3 3 3 3 3 3 3 35 36 3 3 3 36 36 36 3 3 36 3 36 36 36 3 36 36 3 36 3 3 3 36 36 3 3 3 3 3 ¥ K €KX
DO 55 I=1,24
FC(L) = 0.00
DO 55 J=1,24
55 FC(L) = FC(I) + SK(I,J,M)* UC(J,M)
DO 60 L[=1,24
60 FC(I) = FC(L) +FE(I,M) -FI(I,M)
36 96 3 3 36 3 3 3 3 3 3 3 3 3 36 3 3 36 I 3 3 3 3 3 3 3 3 36 3 3 36 3 3 3 3 3 3 I ¥ 3 36 3 36 36 36 36 3 3 3 3 3 3 3 3 ¥ W N
NOW FILL GLOBAL FORCE AND STIFFNESS MATRICES
336 3 3 3 3 3 3 3 3 36 3 3 3 36 36 3 36 3 3 3 36 3 3 3 36 36 36 3 3 36 36 3 3 36 3 2F 36 3 36 36 36 36 36 36 3 3 3 36 36 3 3 3 3 3 ¢ X
DO 70 I=1,24
I1 = [+(M-1)%¥12
FTG(I1) = FTG(L1) + FC(I)
DO 70 J=i,24
SKG(I1,J+1-I) = SKG (11,J+1-1I) + SK(I,J,M)
70 CONTINUE
100 CONTINUE '
READ THE TOTAL NUMBER OF RESTRAINED DEGREES OF FREEDOM
READ(5,1200) NRDF
WRITE(6,1255) NRDF
AIMPOSE BOUNDARY CONDITIONS ON RESTRAINED D-O-F
D0 150 NBC=1,NRDF
READ THE EQUATION NUMBER AND THE [MPOSED BOUNDARY CONDITION
READ(5,1250) NREQ,U
WRITE(6,1260)NREQ,U
CALL XMODFY(U,NREQ)
150 CONTINUE
1200 FORMAT(I5)
1250 FORMAT(15,F10.0)
1255 FORMAT(1H1,"NUMBER OF RESTRAINED DEGREES OF FREEDOM =", 110/
1 " EQUATION NUMBER  VALUE ")
1260 FORMAT (" ", 5X,15,5X,F10.2)
CALL XSOLVE
WRITE(6,1050)
WRITE(6,1100)(FTG(L),I=1,ITOT)
1050 FORMAT("1","TQOTAL DISPLACEMENTS AT CONNECTING NODE3"/
1 18X,2HUR, 18X, 2HUZ, 18X, 2HUT)
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1100

CH¥ % % % % % % % %X % % % ¥ % % ¥ % % % % %

-

G

CH % % % % % % % % % % % % ¥ % % % ¥ % % %

100
200

300

FORMAT(" ", 3E20.7)

RETURN
END
SUBROUTLNE CIRCLE(ANG1,DELPHI,RSTRT,ZSIRT,RC,ZC,I,d)
INTEGER CODE

CUMMON/TD/IMLN(100) , IMAX(100),JMIN(25) ,IMAX(25) ,MAXL,MAXJ , NMTL , NBC

COMMON/NPDATA/R(1000),CODE(1000),XR(1000),Z(1000),X4(1000),
INPNUM(25,80),T(1000),XT(1000)
DIMENSION AR(25,80),AZ(25,80)
EQUIVALENCE (R(1),AR),(4(1),AZ)

L

% %
FIND INTERSECTION OF LINE AND CLRCLE EW R AND Z
® *

*® 1l
»* = ok
* = %k

ANG1=ANG1+DELPHI

RR=SQRT ((RSTRT-RC)**2+(ZSTRI-ZC)**2)
AR(I,J)=RC+RR¥COS(ANG1)

AZ(IL,J)=ZC+RR*SLN(ANG1)

RETURN

END

SUBROUTINE INTER

COMMON/ARG/RRR(5),ZZZ(5) ,RR(Y4),ZZ(4),3(15,15),P(15),TI(6),
1H(6,15),CRZ(6,6),Xi(10),ANGLE(Y4),SIG(18),EPS(18),N
COMMON /PLANE/NPP

DIMENSION XM(T7),R(7),Z(7),XX(9)

DATA XX/3*.1259391805448,3%.1323941527884, .225,
1 .696140478028, .410426192314/
R(7)=(RR(1)+RR(2)+RR(3))/3.0
Z(T7)=(ZZ(1)+2Z(2)+2Z(3))/3.0

DO 100 I=1,3

Jdz=l+3

R(I)=XX(8)*RR(I)+(1.00-XX(8))*R(T)
R(JI)=XX(9)*RR(I)+(1.00-XX(9))*R(7)
Z(I)=XX(8)*ZZ(1)+(1.00-XX(8))*Z(7)
Z(J)=XX(9)*ZZ(L)+(1.00-XX(9))*Z(7)

DO 200 1=1,7

XM(I)=XX(I)*R(IL)

DO 300 I=1,10

XI(I)=0.00

AREA=.50%(RR(1)*(ZZ(2)-ZZ(3))+RR(2)*(ZZ(3)-ZZ(1))+RR(3)*(ZZ(1)

1 =2E2)))

LF(NPP.NE.O) GO TO 600

DO 400 I=1,7

XL(1)=XL(1)+XM(L)
X1(2)=XI(2)+XM(I)/R(I)
XL(3)=XI(3)+XM(L)/(R(I)*¥*2)
XI(W)=XI(4)+XM(I)*Z(IL)/R(L)
XL(5)=XI(5)+XM(I)*Z(L)/(R(L1)**2)
XL(6)=XL(6)+XM(L)*(Z(I1)**2)/(R(I)**2)
XL(T)=XI(7)+XM(I)*R(L)
XI(8)=XI(8)+XM(L)*Z(I)
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G QG
»

CH % % % % % % % % % % % % ¥ % % % % & ¥ ¥ % ¥ ¥ ¥ ¥ ¥ X ¥ ¥ X X X % X ¥

LINE SEGMENT CARDS
C¥ % % % % % % % % % % % % % % % X % ¥ ¥ % ¥ ¥ ¥ ¥ X X X ¥ ¥ ¥ X ¥ X ¥ ¥

C

490
500

600

XL(9)=XL(9)+XM(L)®(R(L)*%2)
XL(10)=XI(10)+XM(L)*R(L)*Z(L)

DO 500 £=1,10

XL(I)=XL(L)*AREA

RETURN
XL(1)=AREA
XL(7)=R(7)*AREA
XI(3)=Z(T)*AREA
RETURN

END

SUBROUTLINE MESH
INTEGER CODE

DIMENSLON AR(25,80),AZ(25,80),NCODE(25,80)

COMMON /TD/LMIN(100) , IMAX(100),JMIN(25),JMAX(25) ,MAXL ,MAXJ , NMTL , NBC
COMMUN/NPDATA/R(1000) ,CODE(1000) ,XR(1000),Z(1000),XZ(1000),
1NPNUM(25,80),T(1000),XT(1000)

COMMON/ELDATA/BETA(1000), EPR(1000),PR(200),3H(200),IX(1000,5),
1LP(200),JP(200),L3(200),J3(200),ALPHA(1000), LT(200),JT(200),
23T(200)

EQULVALENCE (R(1),AR),(Z(1),AZ),(£X(1,1),NCODE)

# % ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ *

*

MESH CONTROL {NFORMATION

# 0% B X % % X X ¥ X X X % X X X X X X X ¥ X X X X X 3

READ (5,1000) MAXI,MAXJ,NSEG,NBC,NMIL
WRITE(6,2000) MAXI,MAXJ,NSEG,NBC,NMTL

*

*

*

#* *

# % % % %

*# % % X ¥ % ¥ X ¥ ¥ X F X ¥ ¥ ¥ X % ¥ X X X X X * *

INITIALIZE

¥ % % % ¥ X X B % X % % ¥ X X X X ¥ ¥ X X X ¥ ¥ ¥ *

100

110

150

ISEG=-1
Pi=3.1415927
bo 110 J=1,100
DO 100 f=1,25
NCODE(L,Jd)=0
AR(I,J)=0.
AZ(1,J)=0.
JMAX(1)=0
JMIN(L)=MAXL
IMIN(J)=MAXJ
IMAX(J)=0

ISEG=LISEG+1

159 IF(LSEG.EQ.NSEG) GO TO 400

READ(5,1001) £1,J1,R1,Z1,12,J2,R2,22,L3,J3,R3,Z3, IPTION
WRLTE(6,2001)1,J1,R1,21,12,d2,R2,22,(3,J3,R3,Z3, [PTLON

IPTION=IPTLON+1
AR(L£1,J1)=R1
AZ(11,d1)=21
NCODE(£1,J1)=1
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CALL MNIMX(L1,J1)
G0 TV (150,200,200,300,300,200,200)

C********************

=

C

GENERATE STRALGHT LINES ON BOUNDARY

s {PTION
B oE K K R R K X X B %X % K % X ¥

C************************************
200

(@]

G C

GO

219

Dl= ABS(FLOAT(i2-I1))
DJ= ABS(FLOAT(J2-J1))
AR(I2,J2)=R2
AZ(12,d2)=z22
NCODE(L2,d2)=1

CALL MNIMX(12,J2)
ISTRT=11

ISTP=12

JSTRT=J 1

JSTP=J2
DIFF=MAX1(DI,DJ)
ITER=DiFF-1.

IINC=0
JINC=0
IF(L2.NE
IF(J2.NE
KAPPA=1
LF(I2.NE
IF(KAPPA.EQ.2) DLFF=2.%DifF
RINC=(R2-R1)/DIFF
ZINC=(22-Z1)/DiFF

WRITE(6,2002) DI,DJ,DIFF,RINC,ZINC,

CHECK FOR INPUT ERROR

IF(KAPPA.NE.2.0R.DI.EQ.DJ) GO TO 21
WRLITE(6,2003)
GO TU 150

INTERPOLATE

I=I1

J=J1
WRLITE(6,2004)
DO 230 M=1,ITER

-11) LINC=(L2-11)/LIAB3(L2-I1)
.J1) JINC=(J2-J1)/IABS(J2-J1)

-L1.AND.J2.NE.J1.AND.IPTLON.NE.3) KAPPA=2

ITER,IINC,JLNC,KAPPA

0

IF(ITER.EQ.0.AND.IPTION.EQ.2) GO TO 230
IF(ITER.EQ.0.AND.IPTION.EQ.6) GO TO 230
IF(ITER.EQ.O.AND.IPTION.EQ.?) GO TO 230

IF(KAPPA.EQ.2) GO TO 220

IOLD=I

1=1+IINC

JOLD=J

J=J+JINC

AR(L,J)=AR(IOLD,JOLD)+RINC

AZ(I,J)=AZ(IOLD,JOLD)+ZINC
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220

221

230

231

WRLTE(6,2005) 1,J,AR(1,J),AZ(L,d)
CALL MNIMX(1,Jd)

NCUDE(I,J)=1

GO TO 230

CONTINUE
IF(L1.GT.12.AND.IPTION.EQ.7) GO TO 221
IF(I1.LT.I2.AND.IPTIiUN.EQ.6) GU TO 221
I0LD=1L

I=I+L1INC

AR(L,J)=AR(IOLD,J)+RINC
AZ(I,J)=AZ(i0LD,J)+ZINC
WRITE(6,2005) L,J,AR(I,J),AZ(1,Jd)
NCODE(L,Jd)=1

CALL MNIMX(IL,J)

JOLD=J

J=J+JINC

AR(1,J)=AR(I,JOLD)+RINC
AZ(I,J)=AZ(1,JOLD)+ZINC
NCODE(I1,J)=1

WRITE(6,2005) 1,J,AR(1,J),AZ(1,d)
CALL MNIMX(I,J)

GO To 230

JOLD=J

J=J+JINC

AR(I,J)=AR(I,JULD)+RINC
AZ(L,J)=AZ(1,JOLD)+ZINC
NCODE(I,J)=1

WRITE(6,2005) I,J,AR(I,J),AZ(I,J)
CALL MNIMX(L,d)

I0LD=I

I=I+1INC

AR(L,J)=AR(IOLD,J)+RINC
AZ(1,J)=AZ(IOLD,J)+ZINC
NCODE(1,J)=1

WRITE(6,2005) 1,J,AR(1,J),AZ2(1,d)
CALL MNIMX(4,Jd)

CONTINUE

IF(KAPPA.EQ.1) GO TO 150
IF(I1.GT.I2.AND.IPTION.EQ.T) GO TO 231
IF(I1.LT.L2.AND.IPTION.EQ.6) GO TO 231
I0LD=I

I=I+IINC

AR(I,J)=AR(IOLD,J)+RINC
AZ(1,J)=AZ(IOLD,J)+ZINC

GO TO 232

CONTINUE

JOLD=J

J=J+JINC

AR(I,J)=AR(L,JOLD)+RINC
AZ(1,J)=AZ(1,JOLD)+ZINC
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252 CONTINUE
NCODE(L,J)=1
WRITE(6,2005) [,d,AR(L,J),AZ(L,J)
CALL MNIMX(i,J)

GO TO 150
CH ¥ % % % % ¥ % % % % % % % ¥ ¥ B K X X X X K X K K K X K X X £ X ¥ ¥ #
C GENERATE CIRCULAR ARCS ON BOUNDARY

C************************************
300 AR(L2,J2)=R2
AZ(I2,J2)=Z2
NCUDE(L2,J2) = 1
CALL MNIMX(12,dJ2)
IF(LPTiON.EQ.5) GO TO 320

FIND CENTER OF CIRCLE

QG

AR(L3,J5)=R3
AZ(I3,d3)=Z3
NCODE(I3,Jd3)=1

CALL MNIMX(L[3,d3)
SLAC=(Z2-Z21)/(R2-R1)
SLBF=-1./3LAC
SLCE=(Z3-22)/(R3-R2)
SLDF=-1./3LCE

CHECK FOR INPUT ERROR

GG

IF(ABS(SLAC-SLCE).GT..001) GO TO 310
WRLTE(6,2006) R1,Z1,R2,Z22,R3,Z3,SLAC,SLCE
Gu TO 150

310 RU=R1+(R2-R1)/2.
Z4=71+(22-21)/2.
R5=R2+(R3-R2)/2.
25=72+(Z23-22)/2.
BBF=Z4-SLBF*RY4
BDF=45-SLDF¥*R5
RC=(BBF-BDF) / (SLDF-SLBF)
ZC=SLBF*RC+BBF
WRLTE(6,2007) RC,ZC
KAPPA=1
GO TO 330

320 KAPPA=2
RC=R3
ZC=1Z3

3350 ISTRT=I1
ISTP=I2
JSTRT=J1
JSTP=J2
RSTRT=R1
RSTP=R2
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GG O

340

350

w
Ul
O

360

ZSTRT=21

ZSTP=Z2

CALL ANGLE(RSTRT,ZSTRT,RC,ZC,ANG1)
CALL ANGLE(RSTP,ZSTP,RC,ZC,ANG2)
IF(ANG2.LE.ANG1) ANG2=2.0*PL+ANG2

FIND ANGULAR INCREMENT

DI= ABS(FLOAT(ISTP-I3TRT))

DJd= ABS(FLOAT (JSTP-JSTRT))

IINC=0

JINC=0

LF(ISTRT.NE.ISTP) IINC=(13TP-ISTRT)/IABS(ISTP-ISTRT)
IF(JSTRT .NE.JSTP) JINC=(JSTP-JSTRT)/IAB3(JSTP-JSTRT)
LAMDA=1

IF(IINC.NE.O.AND.JINC.NE.0) LAMDA=2

DLFF=MAX1(D1,DJ)

ITER=DIFF-1.

IF(LAMDA.EQ.2) DIFF=2.%D1FF

DELPHI=(ANG2-ANG1)/DIFF

WRITE(6,2008) ANG1,ANG2,DiFF,DELPHI

CHECK FOR INPUT ERROR

IF(LAMDA.NE.2.0R.DL.EQ.DJ) GO TO 350
WRITE(6,2003)

GO TO 150

I0=1STRT

JO=JSTRT

WRITE(6,2004)

INTERPOLATE

NPT=IABS(I2-I11)+IABS(J2-J1)-1

DO 380 M=1,ITER

IF(LAMDA.EQ.2) GO TO 360

I=10+IINC

J=JO+JINC

CALL MNIMX(I,J)

NCODE(I,J)=1

CALL CIRCLE(ANG1,DELPHI,RSTRT,ZS3TRT,RC,ZC,1,J)
WRLTE(6,2005) I,J,AR(I,J),AZ(L,J)

GO TO 370

I=I0+1INC

J=J0

NCODE(I,d)=1

CALL MNIMX(I,J)

CALL CIRCLE(ANG1,DELPHI,RSTRT,ZSTRT,RC,ZC,I,J)
WRLTE(6,2005) I,J,AR(L,Jd),AZ(I,d)

J=JO+JINC
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NCODE(I,Jd)=1
CALL MNIMX(L,d)
CALL CIRCLE(ANG1,DELPHL,RSTRT,ZSTRT,RC,ZC,I,J)
WRLTE(6,2005) 1,Jd,AR(1,J),AZ(I,d)
370 IO=I
380 Ju=J
IF(LAMDA.NE.2) GO TO 390
I=10+LINC
NCODE(I,Jd)=1
CALL MNIMX(I,J)
CALL CIRCLE(ANG1,DELPHI,RSTRT,ZSTRT,RC,ZC,I,J)
WRLTE(6,2005) L,J,AR(I,J),AZ(I,J)
390 LF(KAPPA.EQ.2) GO TO 150
ISTRT=i2
ISTP=I3
JSTRT=J2
JSTP=J3
RSTRT=R2
RSTP=R3
Z3TRT=Z2
43TP=Z3
KAPPA=2
399 GO To 340 :
C************************************
& CALCULATE COORDINATES OF INTERIOR PQINTS
C************************************
400 IF(MAXJ.LE.2) GO TO 430
J2=MaXJ -1
DO 420 N=1,500
RESID=0.
DO 410 J=2,J2
I1=IMIN(J)+1
12=IMAX(J)-1
DO 410 I=I1,I2
IF(NCODE(L,d).EQ.1) GO TV 410
DR=(AR(L+1,J)+AR(I-1,J)+AR(I,J+1)+AR(LI,J-1))/4.-AR(L,J)
Di=(AZ(I+1,J)+AL(L-1,d)+AZ(L,J+1)+AZ(L1,J-1))/4.-AZ(1,Jd)
RESID=RESID+ABS(DR)+ABS(DZ)
AR(I,J)=AR(I,J)+1.8%DK
AZ(I,Jd)=AZ(I,J)+1.8%DZ
410 CONTINUE
IF(N.EQ.1) RES1=RESID
IF(N.EQ.1.AND.RESID.EQ.0.)GU TO 430
IF(RESID/RE3S1.LT.1.E-5) GO TO 430
420 CONTINUE
430 WRITE(6,2009) N
C************************************

CALL POINTS3
C¥ ¥ % % % % % ¥ % ¥ % % % % % % % ¥ % ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ X % K ¥ X

1000 FORMAT (51I5)
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1001 FORMAT (3(213,2F8.3),I5)
2000 FORMAT (30H1 MESH GENERATLON INFORMATION//

1 41H0 MAXIMUM VALUE OF [ IN THE MESH-m———m—- 13/
2 41H0 MAXIMUM VALUE OF J IN THE MESH-=—m—=—-- 13/
3 4U1HO NUMBER OF LINE SEGMENT CARDS-=——e——e—m L3/
4 41HO NUMBER OF BOUNDARY CONDITION CARDS----L[3/
5 41HO NUMBER OF MATERIAL BLOCK CARDS-=---o——- 13//7)
2001 FORMAT (//88H INPUT 11 J1 R1 71 2 J2 R2 %
12 I3 J3 R3 Z5 IPTION/8X,3(2L4,2F8.4),16)

2002 FORMAT (5H DI=F4.0,5H DJ=F4.0,7H DIFF=F4.0,TH RINC=F8.3,7H ZI
INC=F8.3,7H LiTER=I3,7H IINC=13,7H JINC=13,8H KAPPA=I1)

2003 FORMAT(1X, 38H¥*BAD INPUT--THIS LINE IS NOT DIAGONAL)

2004 FORMAT (30H I J AR AZ)

2005 FORMAT (215,2F11.6)

2006 FORMAT (51H *# BAD INPUT - THESE POINTS DO NOT DEFINE A CIRCLE,/,
13X,6F12.4,10X,2£20.8)

2007 FORMAT(19H CENTER COORDINATE,(F11.6,1X,F11.6,1X))

2008 FORMAT (7H ANG1=F9.6,7H ANG2=F9.6,7H DIFFz=F3.0,9H DELPHI=FY.6)

2009 FORMAT (//30H COORDINATES CALCULATED AFTER I3,11H ITERATIONS)
RETURN
END

SUBROUTINE MINV

PURPOSE
INVERT A MATRIX

USAGE
CALL MINV(A,N,D,L,M)

DESCRIPTION OF PARAMETERS
A - INPUT MATRIX, DESTROYED IN COMPUTATLON AND REPLACED BY
RESULTANT INVERSE.

N - ORDER OF MATRIX A

D - RESULTANT DETERMLINANT

L - WORK VECTOR OF LENGTH N

M - WORK VECTOR OF LENGTH N
REMARKS

MATRIX A MUST BE A GENERAL MATRIX

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
NONE

METHOD
THE STANDARD GAUSS-JORDAN METHOD IS USED. THE DETERMINANT
IS ALSO CALCULATED. A DETERMINANT QF ZERO INDICATES THAT
THE MATRIX IS SINGULAR.
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SUBROUTINE MiNV(A,N,D,L,M)
DiMENSION A(1),L(1),M(1)

IF A DUUBLE PRECLSION VERSION OF THIS ROUTINE I3 DESIReD, THe
C IN COLUMN 1 SHOULD BE REMOVED FROM THE DUUBLE PRECISION
STATEMENT WHiCH FOLLOWS.

DOUBLE PRECLSION a,D,BIGA,HOLD

THE C MUST AL30 BE REMOVED FROM DUUBLE PRECISION STATEMENTS
APPEARING iN OTHER ROUTLNES USED LN CONJUNCTION WLTH THIS3
ROUTLINE.

fHE DOUBLE PRECISLON VERSION OF THLS SUBROUTLNE MUST ALSO
CONTALIN DOUBLE PRECISION FORTRAN FUNCTLONS. ABS IN STATEMENT
10 MUST BE CHANGED TO DABS.

SEARCH FOR LARGEST ELEMENT

D=1.0

NK==N

DY 80 K=1,N
NK=NK+N
L(K)=K
M(K)=K
KK=NK+K
B1GA=A(KK)
DO 20 J=K,N
IZ=N*(J-1)
DO 20 I=K,N
IJ=IZ+1
LIF(ABS(BIGA)-ABS(A(LJ))) 15,20,20
BiGA=A(LJ)
L(K)=I
M(K)=d
CONTINUE

INTERCHANGE ROWS

J=L(K)

IF(J-K) 35,35,25
KI=K-N

DU 30 I=1,N
KI=zKi+N
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70

HOLD=-A(KL)
JI=K[-K+J

A(KL)=A(JI)
A(JI) =HOLD

INTERCHANGE COLUMNS

L=M(K)

IF(I-K) 45,45,38
JP=N*(I-1)

DO 40 J=1,N
JK=NK+J

J1=JP+dJ
HOLD=-A(JK)
A(JK)Y=A(JI)
A(JL) =HOLD

DIVIDE COLUMN BY MINUS PIVOT (VALUE OF PLVOT ELEMENT IS

CONTAINED IN BiGa)

LF(BLGA) 43,46,48
D=3.0

RETURN

bO 55 I=1,N

IF(i-K) 50,55,50
IK=NK+I
ACIK)=A(LK)/(-BIGA)
CONTINUE

REDUCE MATRIX

DO 65 I=1,N
IK=NK+L
HOLD=A(IK)
IJ=1I-N

DO 65 J=1,N
IJ=1J+N

IF(I-K) 60,65,60
IF(J-K) 62,65,62
KJ=1J-I+K
A(LJ)=HOLD*A(KJ)+A(LJ)
CONTINUE

DIVIDE ROW BY PIVOT

KJ=K-=N

DO 75 J=1,N
KJ=KJ+N

IF(J-K) 70,75,70
A(KJ)=A(KJ)/BIGA
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CONTINUE
PRODUCT OF PLVOTS

D=D¥*BIGA

REPLACE PIVOT BY RECLPRUCAL

A(KK)=1.0/BLuA
CONTINUE

FINAL RUW AND COLUMN INTERCHANGE

K=N

K=(K-1)

IF(K) 150,150,105
L=L(K)

IF(1-K) 120,120,108
JQ=N*(K-1)
JR=N¥(1i-1)

DO 110 J=1,N
JK=JQ+J

HOLD=A(JK)

JI=JRrR+J
A(JK)==A(JI)

A(JL) =HOLD

J=M(K)

IF(J-K) 100,100,125
K1=K=N

bVU 130 I=1,N
KI=KI+N

HOLD=A(KI)
JI=KI-K+J
A(KL)=-A(JIL)

A(JI) =HOLD

GO TO 100

RETURN

END

SUBROUT LNE MNIMX(I,J)

COMMON /TD/LMIN(100),IMAX(100),JMIN(25),JMAX(25) ,MAXT ,MAXJ , NMTL , NBC

IF(J.LT.JMIN(I)) JMIN(I)=J
IF(J.GT.JMAX(I)) JMAX(I)=J
IF(L.LT.IMIN(J)) IMIN(J)=I
IF(I.GT.IMAX(J)) IMAX(J)=I

RETURN
END

SUBROUTINE MODIFY(NEQ,N,U)

CUMMON/SOLVE/B(162),A(162,81),NUMBLK,MBAND

DO 10 M=2,MBAND
K=N-M+1

100

"
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IF(K.LE.Q) GO TO 5
B(K)=B(K)-A(K,M)*U
A(K,M)=0.00
5 K=N+M-1
IF(NEQ.LT.K) GU TO 10
B(K)=B(K)-A(N,M)*U
A(N,M)=0.00
10 CONTINUE
A(N,1)=1.00
B(N)=U
RETURN
END
SUBROUTINE MPLOT
INTEGER CODE
COMMON/TD/LMIN(100),IMAX(100),JMIN(25),IMAX(25) ,MAXL ,MAXJ,NMTL ,NBC
COMMON/NPDATA/R(1000) ,CODE (1000),XR(1000),2(1000),XZ(1000),
INPNUM(25,80),T(1000),XT(1000)
REAL X(100),Y(100),TX(2),TY(2),TITLE(20),ZMAX
READ (5,1000) TITLE,RMAX,ZMAX
CALL ccp2sy (0.7,0.2,0.2,TITLE,0.0,80)
CALL ccp1PL (0.7,0.7,-3)
TX(1)=0.00
TY(1)=0.00
TX(2)=RMAX/9.0
TY(2)=RMAX/9.0
ZMAX=ZMAX¥*TY(2)+2.0
IF (ZMAX.LT.17.0) ZMAX=17.0
DO 100 J=1,MAXJ
NSTART=IMIN(J)
NSTOP=IMAX(J)
N=0
DO 101 I=NSTART,NSTOP
N=N+1
NP=NPNUM(L,J)
Y(N)=R(NP)
101 X(N)=Z(NP)
CALL CCP6LN (X,Y,N,1,TX,TY)
100 CONTINUE
DO 102 I=1,MAXI
NSTART=JMIN(I)
N3TOP=JMAX(I)
N=0
DO 103 J=NSTART,NSTOP
N=N+1
NP=NPNUM(I,J)
Y(N)=R(NP)
103 X(N)=Z(NP)
CALL CCP6LN (X,Y,N,1,TX,TY)
102 CONTINUE
CALL CCP1PL (ZMAX,-0.7,-3)
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1000 FURMAT (20A4/2F10.0)

100

110

F

RETURN
END

SUBROUTINE NAXSTF(IL,JJ,KK)

INTEGER CODE

COMMON/MATP/RO(6),E(12,16,6),EE(16),A0FTS(6)
CUMMON/BASLC/ACELZ , ANGVEL, ANGACC , TREF , VOL, NUMNP , NUMEL , NUMPC , NUMSC,
1NUMST

COMMON/ARG/RRR(5),Z2Z(5) ,RR(4),2Z(4),S5(15,15),P(15),TT(6),
1H(6,15),CR%(6,6),XI(10) ,ANGLE(4),SIG(18),EP3(18),N
COMMON/NPDATA/R(1000),CODE(1000),XR(1000),Z(1000),XZ(1000),
1NPNUM(25,80),T(1000),XT(1000)
CoMMON/ELDATA/BETA(1000) , EPR(1000),PR(200),SH(200),iX(1000,5),
11P(200),JP(200),15(200),J3(200),ALPHA(1000),IT(200),JT(200),
23T(200)

COMMON/NXQUAD/AR1

COMMON/NONAXI/S1(30,30),P1(30),THETA,B31(6, 30)

DIMENSION C(18,18),8(18,18),B1(5,18),B2(6,18),B3(6,18),BU(6,18),

1 35(6,18),B6(6,18),B1A(6,18),B1B(6,18),BZA(6,18),525(6,18
2 ),BjA(6,18),BsB(6,18),BMA(6,18),BMB(6,18),BSA(6,18),
3 B58B(6,18) ,B6A(6,18),B6B(6,18)

ZERO MATRICES
DO 100 1=1,18
DO 100 J=1,18
C(I,d)= 0.0

DO 110 I=1,6
DO 110 J=1,18
B1(IL,J) =0.0
B2(1,J)
B3(I1,J)
BU(L,J)
B5(4L,J)
B6(L,J)
RR(1)
RR(2)
RR(3)
BT

OO O OO

n o n un u
OO OOoOOo

RRR(IL)

RRR(JJ)

RRR(KK)

ZZZ(1L)

ZZ(2) = 22Z(JJ)

ZZ(3) = ZZZ(KK)
COMM=RR(2)*(ZZ(3)-2Z(1))+RR(1)*(ZZ(2)-ZZ(3))+RR(3)*(Z2Z(1)-2Z(2))
ILL C INVERSE

C(1,1)= ( RR(2)*ZZ(3) -RR(3)¥* 2z(2)) / coMM

C(1,4)= ( RR(3)*ZZ(1) -RR(1)* Zi(3)) / COMM
C(1,7)= ( RR(1)%Z2Z(2) -RR(2)* ZZ(1)) / COMM
C(2,1)= ( Z2z(2) - ZZ(3)) / coMM
C(2,M)= ( ZZ(3) - 2z(1)) / COMM
C(2,7)= ( Z2z(1) - ZZ(2)) / COMM
C(3,1)= ( RR(3) - RR(2)) / COMM
C(3,4)= ( RR(1) - RR(3)) / coMM
C(3,7)= ( RR(2) - RK(1)) / coMM
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OGO oan

Cc(4,2)= c(1,1)
C(4,5)= C(1,H4)
C(4)8)= C(1)7)
C(5,2)= C(2,1)
0(515)= C(Z)u)
c(5,8)= C(2,7)
C(6)2)= C(311)
C(6,5)= C(3,4)
C(6,8)= C(3,7)
C(713)= C(111)
C(7,6)= Cc(1,%)
c(7,9)= Cc(1,7)
C(8,3)= c(2,1)
C(8,6)= C(2,4)
C(8,9)= C(2,7)
C(913)= C(311)
C(9)6)= C(Syu)
€(9,9) = C(3,7)

DO 120 I=10,18
DO 120 J= 1,9
I1 = I-9
J1=J+9
C(I,Jd) =(-1./THETA) * C(I"
C(I,Jd1)=( 1./THETA) * C(I1

120 CONTINUE

FILL B MATRICES

B1 CONSTANT TERMS

B2 THETA TERMS

B3 1/R TERMS

B4 THETA/ R TERMS

B5 Z/R TERMS

B6 THETA *Z/R TERMS
DO 130 J=1,18

B1(1,Jd) = c(2,J)

B1(2)J) = C(6)J)

B1(3,J) = C(2,J)+C(17,J)
B1(4,Jd) = C(3,J)+C(5,d)
B1(5,J) = C(9,J) +C(14,J)
B1(6,J) = C(11,J)

B2(1,Jd) = Cc(11,J)

B2(2,Jd) = c(15,J)

B2(3,J) = C(11,d)

B2(4,J) = C(12,J3)+C(14,J)
B2(5,Jd) = C(18,J)

B3(3,d) = C(1,J)+ C(16,d)
B3(5,Jd) = C(13,J)

B3(6,J) = C(10,J) - ¢(7,d)
B4(3,Jd) = C(10,J)

B4(6,J) = -C(16,d)

B5(3,J) = C(3,Jd) +C(18,J)

»d)
»J)
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B5(5,d) = C(15,J)
B6(6,d) = -C(18.4d)

150 CONTLINUE
C NOW CALCULATE BT * D * B
CALL INTER
THETA2 = (THETA *#2)/2.0
THETA3 = (THETA **3)/3.0
DO 140 [=1,6
DO 140 J=1,18
B1A(L,J)=(B1(L,J)*XLi(1) +B3(I,d)* XI(2)
1 (B2(I,J)*XL(1) +BU(I,Jd)* XL(2)
B2A(L,J)=(B1(L,J)*XI(1) +B3(L1,J)* Xi(2)
1 +  (B2(L,J)*XI(1) +BU(I,Jd)* XI(2)
B3A(L,J)=(B1(I,J)*xL(2) +B3(L,d)* XI(3)
1 +(B2(L,J)*XI(2) +B4(L,J)* XI(3)
BUA(IL,J)=(B1(L,J)*XI(2) +B3(L,Jd)* XI(3)
1 +(B2(L,J)¥X1(2) +BY4(I,J)* X1(3)
BSA(L,J)=(B1(L,J)*XI(4) +B3(I,Jd)* XI(5)
1 + (B2(I,J)*XI(4) +BU(L,J)* XI(5)
BOA(IL,J)=(B1(I,J)*XI(4) +B3(I,Jd)* XI(5)
1 + (B2(L,J)*XI(L4) +BU(I,J)* XI(5)
140 CONTINUE
DY 150 [=1,6
DO. 150 K=1,18
B1B(L,K)= 0.0
B2B(L,K)= 0.0
B3B(I,K)= 0.0

0.0

0.0

0.0

G S T T S S S TR,

BUB(L,K)=

B5B(I,K)=

B6B(L,K)=

DO 150 J=1,6

B1B(L,K) = B1B(L,K) + CRZ(I,J)

B2B(I,K) = B2B(L,K) + CRZ(I,J)

B3B(1,K) = B3B(I,K) + CRZ(I,J)

BUB(I,K) = BUB(I,K) + CRZ(I,J)

B5B(L,K) = B5B(L,K) + CRZ(L,J)

B6B(I,K) = B6B(1,K) + CRZ(L,J)
150 CONTINUE

DO 160 I=1,18

DO 160 K=1,18

B(L,K)=0.0

DO 160 J=1,6

B1A(J,K)
B24(J,K)
B3A(J,K)
B4A(J,K)
B5A(J,K)
B6A(J,K)

¥ % k ¥ Xk ¥

B5(I,J)#*
B6(I,J)*
B5(1,J)*
B6(L,J)*
B5(L,J)*
B6(L,J)*
B5(L,J)*
B6(L,J)*
B5(1,J)*
B6(I,J)*
B5(I,J)*
B6(L,J)*

Xi(h4))*
XL(h4))*
XL(4))*
XL(h)y)#
X1(5))*
XL(5))*
XI(5))*
XL(5))*
XL(6))*
Xi(6))*
XL(6))*
X1(6))%*

THETA +
THETAZ2
THETA2
THETAS
THETA
THETAZ
THETAZ2
THETAS
THETA
THETAZ2
THETAZ
THETAS

B(L,K) = B(I,K) + B1(J,I)* B1B(J,K)+B2(J,I)*B2B(J,K)+B3(J,L)*
1 B3B(J,K)+B4(J, I)*BUB(J,K)+B5(J,I)*B5B(J,K)+B6(J, [)*B6B(J,K)

100 CONTINUE
250 CONTINUE

C B(I,K) NOW CONTAINS THE STIFFNESS MATRIX FOR ONE TRIANGULAR ELEMENT

AR1 = AR1 + XI(1) ¥*THETA
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DU 235 K=1,6
DO 235 I=1,3
BS1(K,3*%iI-3+I) = BS1(K,3*II-3+I) +B1A(K,I )

B31(K, 3%JJ-3+1) = BS1(K,5*%JJ-3+I) +B1A(K,L+5 )

B31(K,3%¥KK-3+I) = B31(K,3%KK-3+I) +B1A(K,1+6 )

B31(K,3*IL+1+12)= BS1(K,3¥II+12+L)+B1A(K,I+9 )

B31(K,3*JJ+I+12)= B3S1(K,3%JJ+12+1)+B1A(K, [+12)

B31(K, 3%KK+1+12)= BS1(K, 3%KK+12+1)+B14(K,I+15)
235 CONTINUE

iIM = 3% IL -3

JIM = 3% JJ =3
KKM = 3% KK -3
DO 170 K=1,U4
DO 170 I=1,3
DO 170 J=1,3
IF(K.£Q.1 .OR. K.EQ.2) I1=I
IF(K.£Q:3 .OR. K.EQ.4) I1zI +9
IF(K.EQ.1 .OR. K.EQ.3) J1=J
IF(K.EQ.2 .OR. K.EQ.U4) J1=J 49
IF(K.EQ.1 .OR. K.EQ.2) K1=0
IF(K.EQ.3 .OR. K.EQ.4) K1=15
IF(K.EQ.1 .OR. K.EQ.3) K2=z0
IF(K.EQ.2 .OR. K.EQ.4) K2z15
182 KK2zKKM
II2=1IM
JJ2=JJM
180 KK1=KKM
JJ1=JIM
II1=IIM

S1(IL1+I+K1,I12+J+K2)

S1(LL1+I+4K1,Jd2+J+K2)

S1(II1+I4K1,KK2+J+K2)

31(JJ1+1+K1, I12+J+K2)

S1(JJ1+I+4K1,JJ2+J+K2)

S1(JJ1+I1+K1,KK2+J+K2)

S1(KK1+14K1,LI2+J+K2)

S1(KK1+I+K1,JJ2+J+K2)

ST(KK1+I+K1,KK2+J+K2)
170 CONTINUE

RETURN

END

FUNCTION NODE(L,J)

COMMON/TD/IMIN(100),IMAX(100),JMIN(25),JMAX(25),MAXI,MAXJ ,NMTL , NBC

NODE=0

DO 100 JJ=1,J

NSTART=IMIN(JJ)

NSTOP=IMAX(JJ)

DO 100 LI=NSTART,NSTOP

NODE=NODE +1

IF(JJ.EQ.J.AND.II.EQ.I) RETURN

105

S1(LI1+I+K1,II2+J+K2) +B(I1,J1)
S1(IL1+I+K1,JJ2+J+K2) +B(I1,J1+3)
S1(IL1+I+K1,KK2+J+K2) +B(L1,J1+6)
S1(JJ1+I+K1,112+J+K2) +B(I1+3,J1)
S1(JJ1+I+K1,JJ2+J+K2) +B(I1+3,J1+3)
S1(JJ1+I+K1,KK2+J+K2) +B(I1+3,J1+6)
S1(KK1+I+K1,II2+J4K2) + B(I146,J1)
S1(KK1+I+K1,JJ2+J+K2) + B(L1+6,J1+3)
S1(KK1+I+K1,KK2+J+K2) + B(I1+46,J1+6)
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100 CONTINUE

RETURN

END

SUBROUTINE POINTS

INTEGER CODE

COMMON/BASLC/ACELZ , ANGVEL , ANGACC, TREF , VOL , NUMNP , NUMEL , NUMPC , NUMSC,
INUMST

COMMON/MATP/RO(6),E(12,16,6) ,EE(16) , AOFTS(6)

COMMON/NPDATA/R(1000),CODE(1000) ,XR(1000),Z(1000),XZ(1000),
1NPNUM(25,80),T(1000),XT{1000)

COMMON/ELDATA/BETA(1000) ,EPR(1000),PR(200),SH(200),IX(1000,5),
1LP(200),JP(200),15(200),J3(200),ALPHA(1000),IT(200),JT(200),
23T(200)

COMMON/SOLVE/X(4428),Y(4428), TEM(L4428) , NUMIC ,MBAND

COMMON/TD/LMIN(100), IMAX{100) ,JMIN(25),IMAX(25) ,MAXL,MAXJ, NMTL , NBC

COMMON/PLANE/NPP
DIMENSION AR(25,80),AZ(25,80),MATRIL(100,5),BLKANG(100),BLKALF (1
100)

DIMENSLON IBNG(100),NBNG(100)

EQUIVALENCE (R(1),AR),(Z(1),AZ)

ESTABLLSH NODAL POINT INFORMATLON

Ch # * % % % % % % % % % % % % % ¥ % ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ X * % ¥ ¥ X X X X *

100

110

120

NEL=0

NOD3SUM=0

DO 100 J=1,MAXJ
NSTART=IMIN(J)
NSTOP=IMAX(J)

DO 100 i=N3TART,NSTOP
NODSUM=NODSUM+1
NELSUM=0

JIMAX=MAXJ =1

DO 110 JJ=1,JIMAX
NSTOP=MINO{IMAX(JJ),IMAX(JJ+1))-1
NSTART=MAXO0 (IMIN(JJ),IMiN(JJ+1))
DO 110 I1=NSTART,NSTOP
NELSUM=NELSUM+1
NUMNP=NOD3UM
NUMEL=NELSUM

DO 120 J=1,MAXJ
NSTART=IMIN(J)
NSTOP=IMAX(J)

DO 120 [=NSTART,NSTOP
NPNUM(I,J)=NODE(I,J)
NP=NPNUM(I,Jd)
R(NP)=AR(I,J)
Z(NP):AZ(I,J)

CH ¥ % % % % % % % % ¥ % % % % ¥ ¥ ¥ ¥ ¥ ¥ X ¥ F X F F F X X F X X ® ¥ *

GO

*

*

READ AND ASSIGN BOUNDARY CONDITIONS
B ok K B R B X X K X R K X K X K K K K K K ¥ K K ¥ X ¥ X F X ¥ ¥ ¥

INITIALIZE
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C************************************
DO 130 L=1,NUMNP
CobE(I)=0
IF(R(I).EQ.0..AND.NPP.EQ.0) CODE(L)=1.
XR(I)=0.
XZ(1)=0.
XT(i)=0.0
130 T(L)=0.
IF(NBC.EQ.0) GU TV 210
DU 200 IBCON=1,NBC
READ(5,1002) 11,I12,J1,J2,1CN,RCON,ZCON,TCON
DO 200 I=i1,I2
DO 200 J=dJ1,d2
NP=NPNUM(I,J)
CODE(NP)=ICN
XR(NP)=RCON
XT(NP)=TCON
200 XZ(NP)=ZCON
210 MPRINT=0
DO 230 J=1,MAXJ
NSTART=IMIN(J)
NSTOP=IMAX(J)
DO 230 L[=NSTART,NSTOP
NP=NPNUM(I,J)
IF(MPRINT.NE.Q) GO TO 220
WRITE(6,2000)
MPRINT=59
220 MPRINT=MPRINT-1
230 WRITE(6,2001) [,J,NP,CODE(NP),R(NP),Z(NP),XR(NP),XZ(NP),XT(NP)
C************************************
& ASSIGN MATERIALS IN BLOCKS
Cé % % % % % % % % % % % ¥ % % % ¥ ¥ ¥ ¥ ¥ % ¥ ¥ ¥ ¥ ¥ ¥ X ¥ X X X X X ¥
DO 300 M1=1,NUMEL
300 1X(M1,5)=0
DO 310 IMTL=1,NMTL
READ (5,1000) MTL,(MATRIL(IMTL,IM),1iM=2,5),BLKANG(IMTL),BLKALF(IMT
1L), IBNG(IMTL) ,NBNG ( IMTL)
310 MATRIL(IMTL,1)=MTL
CH % % % % % % % % % ¥ ¥ ¥ ¥ ¥ % % % ¥ ¥ ¥ % X X ¥ X ¥ ¥ ¥ ¥ ¥ ¥ X X ¥ ¥
(¢ ESTABLISH ELEMENT INFORMATION
C********.****************************
JIMAX=MAXJ -1
N=0
MTL=1
KTL=1
DO 440 JJ=1,JIMAX
NSTOP=MINO(IMAX(JJ),IMAX(JJ+1))=-1
NSTART=MAXO (IMIN(JJ) ,IMIN(JJ+1))
DO U440 II=NSTART,NSTOP
NEL=NEL+1
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DO 400 IMTL=1,NMTL
IF(IL.LT.MATRIL(IMTL,2)) GO TO 400
LF(I1.GE .MATRIL(IMTIL,3)) GO TO 400
IF(JJ.LT.MATRIL(IMTL,4)) GO TO 400
IF(JJ.GE.MATRIL(IMTL,5)) GO TO 400
KAT=IMTL
MAT=MATRIL(IMTL,1)

400 CONTINUE
IF(KAT.EQ.KTL) GO TO 410
KTL=KAT
MTL=MAT
GO TO 420

410 LF(II.EQ.NSTART) GO TO 420
IF(JJ.NE.JJMAX.OR.II.NE.NSTOP) GO TO 440
M=NEL+1
IANG=ICNG
NANG=NCNG
GO TO 421

420 L=NPNUM(ILI,JJ)
J=I+1
K=NPNUM(LI+1,JJ+1)
L=K-1
M=NEL
IX(M,1)=1
1X(M,2)=J
IX(M,3)=K
IX(M,4)=L
I1X(M,5)=MTL
BETA(M)=BLKANG (KTL)
ALPHA(M)=BLKALF(KTL)
IANG=ICNG
NANG=NCNG
ICNG=IBNG(KTL)
NCNG=NBNG (KTL)

421  NC=2

430 N=N+1
IF(M.LE.N) GO TO 440
IX(N,1)=IX(N=1,1)+1
IX(N,2)=IX(N-1,2)+1
IX(N,3)=IX(N-1,3)+1
IX(N,U)=IX(N=1,4)+1
IX(N,5)=IX(N-1,5)
BETA(N)=BETA(N-1)
IF(LIANG.EQ.1) GO TO 442
ALPHA(N)=ALPHA(N=-1)
GO TO 4u3

442 CONTINUE
IF(NC.GT .NANG) GO TO 4ul
ALPHA(N)=ALPHA(N-1)
GO TO 443
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444 NC=1
ALPHA(N)=-ALPHA(N=-1)
443 CONTINUE
NC=NC+1
IF(M.GT.N) GO TO 430
Y40 CONTINUE
IF(NUMNP.GT.2000) WRLTE(6,2002)
CH % % % % % % ¥ % B % % % K ¥ B B E X X K K K B B B K K K K K ¥ ¥ *
C SET NODAL POINT TEMPERATURE TO REFERENCE TEMPERATURE
CH % F % ¥ % % B K R B B R B B F B X R ¥ X X B E X K K K K K K K K X X #
IF(NUMIC.NE.O) RETURN
DO 500 N=1,NUMNP
500 T(N)=TREF
1000 FORMAT (515,2F10.0,215)
1002 FORMAT(415,I10,3F10.0)

2000 FORMAT (128R1 I d NP TYPE R-ORDINATE Z2-0RDINA
1TE R LOAD OR DLSPLACEMENT Z LOAD OR DISPLACEMENT T LOAD OR DISP
2LACEMENT)

2001 FORMAT (215,16,112,F13.6,F14.6,826.7,824.7,E24.7)
2002 FORMAT (35H BAD LINPUT - TOO MANY NODAL POINTS)

RETURN

END

SUBROUTINE QUAD

INTEGER CODE

REAL NUSN,NUTN,NUTS,NUNS,NUNT,NUST

DIMENSION DUMMY(6,6),DUMMY1(6,6)

COMMON /BASLC/ACELZ,ANGVEL ,ANGACC, TREF, VOL , NUMNP , NUMEL , NUMPC , NUMSC,
INUMST

COMMON/NXQUAD/AR1

COMMON /NONAXL/31(30,30),P1(30),THETA,B31(6,30)
COMMON/MATP/RO(6),£(12,16,6) ,EE(16) ,AOFTS(6)

COMMON /NPDATA/R(1000),CODE(1000),XR(1000),Z(1000),X2(1000),
INPNUM(25,80),T(1000),XT(1000)
COMMON/ELDATA/BETA(1000),EPR(1000),PR(200),SH(200),IX(1000,5),
1LP(200),JP(200),13(200),J5(200),ALPHA(1000),LT(200),JT(200),
2ST(200)
COMMON/ARG/RRR(5),Z2Z(5),RR(}4),Z2Z(4),S(15,15),P(15),TT(6),
1H(6,15),CRZ(6,6),XI(10),ANGLE(Y4),S1G(18),EPS(18),N
COMMON/RESULT/B3(6,15),D(6,6),C(6,6),AR,BB(6,9),CNS(6,6)
COMMON /PLANE/NPP

COMMON/DUM1/S1TEM(3,30),31T(24,24),TS(6,24)

DIMENSION S2T(24,6)

DIMENSION BS1T(6,3) ,P1T(3)

I1=IX(N,1)

J1=IX(N,2)

K1=IX(N,3)

L1=LX(N,4)

MTYPE=IX(N,5)

IX(N,5)=-IX(N,5)
CH % % % % % % % % % % ¥ % % % % K K R % % B R ¥ X B B K X X ¥ ¥ ¥ ¥
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g INTERPOLATE MATERIAL PROPERTIES
C************************************
DO 100 [=1,12
100 EE(L)=E(1,{+1,MTYPE)
DO 110 1=1,5
DO 110 J=1,6
CN3(L,J)=0.00
Cc(1,J)=0.00
110 b(L,Jd)=0.00
C************************************
C FORM STRESS-STRAIN RELATIONSHIP IN N-3S-T 3SYSTEM
C************************************
NUNS=EE(4)
NUNT=EE(5)
NUST=EE(6)
NUSN=(EE(2)*NUNS)/EE(1)
NUTN=(EE(3)*NUNT)/EE(1)
NUTS3=(EE(3)*NUST)/EE(2)
DIV=1.00-NUNS*NUSN-NUST*NUTS-NUNT*NUTN-NUSN*NUNT*NUTS
1-NUNS*NUTN*NUST
CNS(1,1)=EE(1)%(1.00-NUST#NUTS)/DLV
CN3(1,2)=EE(2)*(NUNS+NUNT*NUTS)/DIV
CNS(1,3)=EE(3)*(NUNT+NUNS*NUST)/D1V
CNS(2,1)=CNs(1,2)
CNS(2,2)=EE(2)*(1.00-NUNT*NUTN)/DLV
CN3(2,3)=EE(3)*(NUST+NUSN*NUNT ) /DLV
CNS(3,1)=CNS(1,3)
CNS(3,2)=CNS(2,3)
CNS(3,3)=EE(3)%(1.00-NUNS*NUSN)/DIV
CNS(U,4)=EE(7)
CN3(5,5)=EE(8)
CN3(6,6)=EE(9)
C SET UP 3STRAIN TRANSFORM TO N-S-T SYSTEM
SINA=SIN(ALPHA(N))
COSA=COS(ALPHA(N))
S2=SINA*#%)
C2=COSA%*#%2
SC=SINA*COSA
D(1,1)=C2
D(1,3)=82
D(1,6)==SC
D(2,1)=SZ
D(2,3)=C2
D(2,6)=3C
D(3,2)=1.00
D(4,1)=2.00%3C
D(4,3)=-2.00%3C
D(4,6)=C2-S2
D(5,4)=SINA
D(5,5)=CUSA
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(@'

120

130

140

150

161

D(6,4)=COSA

D(6,5)=-SINA

SET UP STRAIN TRANSFORMATION TO R-Z-T SYSTEM
SINB=SIN(BETA(N))

COSB=COS(BETA(N))

S2=SINB¥*¥2

C2=C0SB¥*#%2

SC=SINB*COSB

C(111)=52

c(1,2)=C2

c(1,4)=8C

c(2,1)=C2

c(2,2)=s2

c(2,4)=-3C

€(3,3)=1.00

C(4,1)==-2.00%5C

C(4,2)=2.00%sC

C(l4,4)=82-C2

€(5,5)=SINB

c(5,6)=-COSB

C(6,5)=C03B

C(6,6)=SINB

CALCULATE CRZ MATRIX

DO 120 I=1,6

Du 120 J=1,6

DUMMY (I, J)=0.00

DO 120 K=1,6
DUMMY(I,J)=DUMMY(IL,J)+D(I,K)*C(K,J)
DO 130 I=1,6

DO 130 J=1,6

DUMMY 1(I,J)=0.00

DO 130 K=1,6
DUMMY1(1,J)=DUMMY1(I,J)+CNS(I,K)*DUMMY(K,J)
DO 140 I=1,6

DO 140 J=1,6

DUMMY(IL,J)=0.00

DO 140 K=1,6

DUMMY (I,J)=DUMMY(I,J)+D(K,I)*DUMMY1(K,J)
DY 160 I=1,6

(I,Jd)+C(K,I)*DUMMY(K,Jd)

TT(I)=0.00

DO 160 M=1,6

P(M)=0.00

DO 161 iI=1,3

IF(AOFTS(MTYPE).EQ.1.) P(M)=CNS(M,IL)*EE(ILI+9)
P(M)=P(M)+(T(N)-TREF)*CNS(M,IL)*EE(II+9)

DO 160 K=1,6
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160 TI(L)=TT(L)+C(K,I)¥D(M,K)*P(M)

FORM QUADRILATERAL STIFFNESS MATRIX
RRR(5)=(R(L1)+R(J1)+R(K1)+R(L1)) /4.
222(5)=(Z(I1)+Z(J1)+2(K1)+Z(L1)) /4.
DU 200 M=1,4
MM=1X(N,M)
IF(NPP.NE.O) GU TO 190
IF(R(MM).EQ.O..AND.CODE(MM) .£Q.0.)CODE(MM)=1.
190 RRR(M)=R(MM)
200 Z2ZZ(M)=Z(MM)
DU 220 II=1,15
P1(1L)=0.0
P1(II+15) =0.0
P(L£I)=0.00
DO 220 JJ=1,15
220 3(11,JJ)=0.00
VOL=0.

B31(I1,J+15
BS(I,J)=0.00
AR=0.00
240 CALL TRISTF(4,1,5)
CALL TRISTF(1,2,5)
CALL TRISTF(2,3,5)
CALL TRISTF(3,4,5)
DO 91 I=1,6
DO 91 J=1,15
BS(L,J)=BS(I,J)/AR
DO 300 I=1,30
DO 300 J=1,30
300  381(I1,d)=0.0
AR1 =0.0
CALL NAXSTF(4,1,5)
CALL NAXSTF(1,2,5)
CALL NAXSTF(2,3,5)
CALL NAXSTF(3,4,5)
DO 310 I=1,6
DO 310 J=1,30
310 BS1(I,J)= BS1(I,J)/AR1
DO 320 I=1,6
DO 320 J=1,3
320 BS1T(I,J) = B31(I,Jd+12)
DO 325 I=1,6
DO 325 J=1,12
325 BS1(I,J+12) = BS1(I,Jd+15)
DO 330 I=1,6
DO 330 J=1,3
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330 BS1(L,Jd+24) = BSIT(IL,d)
DO 340 I=1,3
340 P1T (L) = P1(I+12)
DU 341 I=1,12
341 P1(I+12) = P1(Li+15)
DO 342 1=1,3
342 P1(I+24) = P1T(I)
DO 149 1I=1,3
DO 149 J=1,30
149  S1TEM(L,d) = S1(I+12,d)
DO 151 I=1,12
DO 151 J=1,30
151 S1(I+12,J) = 31(L+15,J)
DO 152 1=
DO 152 J=
152 31(I+24,
DO 153 I
DU 153 J

J S1TEM(I,J)
153 S1TEM(I,d
2

S1(J,I+12)
DO 154 J
DO 154 I
154 S1(1,Jd+1
DO 155 I=
bo 155 J=
155 S1( J,I+

'3
,30
'3
» 30
, 12
» 30
= 31(L,Jd+15)
3
30

S1TEM(I,J)

251 TS(I,Jd)
?
DO 252 J=1,U4
TS(I,I+(J-1)%*3) = 0.250
252 TS(I+3,I+12+(J-1)*3) = 0.250
DO 253 I=1,24
DO 253 J=1,24
S1T(I,Jd) = 0.00
DU 253 K=1,6
253 S1T(I,d) = S1T(I,J) + S1(I,24+K)*TS(K,dJ)
DO 254 I=1,24
DO 254 J=1,24
254 31(1,Jd) = S1(I,Jd) + S1T(I,Jd) + S1T(J,I)
DO 255 I=1,24
DO 255 J=1,6
S2T(I,Jd) = 0.0
DO 255 K=1,6
255 S2T(I,d) = S2T(I,d) +TS(K,I)*S1(K+2L,J+2L)
DO 256 1I=1,24
DO 256 J=1,24
S1T(I,J) = 0.0
DO 256 K=1,6 oo
256 S1T(I,Jd) = S1I(I,Jd) + S2T(I,K)*TS(K,J)

113




DU 257 1i=1,24
bu 257 J =1,24
25y S1(L,J) =S1(I1,d)+S1T(L,J)
RETURN
END
SUBROUTINE SOLV
COMMON /ELDATA/BETA(1000) ,EPR(1000),PR(200),3H(200),IX(1000,5),
11P(200),JdP(200),15(200),J5(200),ALPHA(1000),IT(200),JT(200),
2ST(200)
COMMON/BASiIC/ACELZ,ANGVEL, ANGACC, TREF, VOL , NUMNP , NUMEL , NUMPC ,NUMSC,
INUMST
COMMON/NONAX1/31(30,30),P1(30),THETA,BS1(6, 30)
COMMON/NXDATA/NTP,NTYPS,NTS,NTOTS,GTS1G(24,24,4)
COMMON/SOLVE/B(162),A(162,81) ,NUMBLK,MBAND
MM=MBAND
NN=31
NL=NN+1
NH=NN+NN
REWIND 1
REWIND 2
NB=0
GO To 150
O R R R K % X R R E OB X X R X X O X X R X R ¥ X ¥ ¥ O X ¥ X X X X X ¥

REDUCE EQUATIONS BY BLOCKS
# OB R K K X K X X X X ¥ K ¥ X X X K K K ¥ K X X % % K B B X X X ¥ ¥

1. SHIiFT BLOCK OF EQUATIONS3

OO
L 3
%

100 NB=NB+1
DO 125 N=1,NN
NM=NN+N
B(N)=B(NM)
B(NM)=0.00
DO 125 M=1,MM
A(N,M)=A(NM,M)
125 A(NM,M)=0.00

(@]

2. READ NEXT BLOCK OF EQUATIONS INTO CORE

IF(NUMBLK.EQ.NB) GO TO 200
150 READ(2) (B(N),(A(N,M),M=1,MM),N=NL,NH)
IF(NB.EQ.0) GO TO 100

[@ N @

3. REDUCE BLOCK OF EQUATIONS

(@]

200 DO 300 N=1,NN
IF(A(N,1).EQ.0.00) GO TO 300
B(N)=B(N)/A(N,1)

DO 275 L=2,MM
IF(A(N,L).EQ.0.00) GO TO 275
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C=A(N,L)/A(N,1)
I=N+L-1
J=0
DU 250 K=L,MM
J=J+1

250 A(I,J)=A(L,J)-C*A(N,K)
B(1)=B(I)-A(N,L)*B(N)
A(N,L)=C

275 CONTINUE

300 CONTINUE

&
o 4. WRLTE BLOCK OF REDUCED EQUATIONS ON FORTRAN UNIT 1
&

IF(NUMBLK.EQ.NB) GO TO 400

WRITE (1) (B(N),(A(N,M),M=2,MM),N=1,NN)

GU TO 100
C************************************
G BACK-SUBSTITUTLON

C*******************************l’****.
400 DO 450 M=1,NN
N=NN+1-M
DO 425 K=2,MM
L=N+K-1
425 B(N)=B(N)-A(N,K)*B(L)
NM=N-+NN
B(NM)=B(N)
450 A(NM,NB)=B(N)
NB=NB-1
IF(NB.EQ.0) GO TO 500
BACKSPACE 1
READ (1) (B(N),(A(N,M),M=2,MM),N=1,NN)
BACKSPACE 1

GV TO 400
CH % % % % % % % % % % % % X E E X E O B B E X X O F E B X F F E ¥ ¥ ¥
C ORDER FORMER UNKNOWNS IN B ARRAY

C¥ % % ¥ ¥ % % ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ F X E ¥ E ¥ X ¥ ¥ E E E E O O ¥ ¥
500 K=0
DO 600 NB=1,NUMBLK
DO 600 N=1,NN
NM=N+NN
K=K+1 _
600 B(K)=A(NM,NB)
C¥ % % % ¥ ¥ % % ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ X ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ X E X O X X X X X ¥

& WRITE SOLUTION
C************************************
NN12 = 3%NUMNP
1500 FORMAT(" ",5110)
WRITE(26) (B(I),I=1,NN12)
WRITE(26)((IX(L,d),d=1,4),1=1,NUMEL)
MPRINT=0
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DO 710 N=1,NUMNP

IF(MPRINT.NE.O) GO TO 700

WRITE (6,2000)

MPRINT=59

700 MPRINT=MPRINT-1

710 WRLITE (6,2001) N,B(3*N-2),B(3%¥N-1),B(3%N)
2000 FORMAT (13H1 NODAL POINT,18X,2HUR, 18X,2HUZ, 18X, 2HUT)
2001 FORMAT (113,3E20.7)

RETURN

END

SUBROUTINE STiFF

INTEGER CODE

CUOMMON/BASLC/ACELZ ,ANGVEL , ANGACC, TREF , VOL , NUMNP , NUMEL , NUMPC , NUMSC,

1NUMST

COMMON/ELDATA/BETA(1000) ,EPR(1000),PR(200),S4(200),1X(1000,5),

1LP(200),JP(200),1S(200),J5(200) ,ALPHA(1000),IT(200),JT(200),
25T (200)

COMMON/NPDATA/R(1000),CODE(1000),XR(1000),Z(1000),XZ(1000),

1NPNUM(25,80),T(1000),XT(1000)

COMMON/SOLVE/B(162) ,A(162,81) ,NUMBLK , MBAND

COMMON/NXDATA/NTP,NTYPS,NTS,NTOTS,GTS1G (24,24 ,4)

COMMON/ANSY/FT (24 ,4),GTS10(24) ,GTS1UT(24,4)

COMMUN/ARG/RRR(5),Z2Z(5) ,RR(Y4),2Z(4),S(15,15),P(15),TT(6),

1H(6,15),CRZ(6,6),XL(10),ANGLE(Y4),S1G(18),EPS(18),N

COMMON/NONAXI/S1(30,30),P1(30),THETA,BS1(6,30)

COMMON /PLANE/NPP

COMMON/ANS2/GTP1(24),G(24,24) ,GTS1(24,24) ,GTS1GE (24 ,24)

COMMON/DUM1/S1TEM(3,30),S1T(24,24),TS(6,24)

DIMENSION LM(4),s2(12,3),83(3,12),34(3,3),35(12,3),36(12,12)
C************************************
C INITLALLZATION

REWIND 2

REWIND 3

NB=27

ND=3*¥NB

ND2=2%ND

STOP=0.

NUMBLK=0

DO 100 N=1,ND2

B(N)=0.00

DO 100 M=1,ND

100 A(N,M)=0.00
DO 50 i=1,24
FT(I,NTP) = 0.0
GT31UT(I,NTP)=0.0
DO 50 J=1,24
50 GTS1G(I,J,NTP) = 0.0
C************************************

C FORM STIFFNESS MATRIX IN BLOCKS
C*¥ % % % % % % % % % & % % & ¥ % % % % % % % £ % ¥ % ¥ E KB ¥ K K K K ¥ ¥
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200 NUMBLK=NUMBLK+1
NH=NB* (NUMBLK+1)
NM=NH-NB
NL=NM-NB+1
KSHIFT=3%NL-3
DO 340 N=1,NUMEL
IF(IX(N,5).LE.0) GO TO 340
DO 210 L=1,4
IF(IX(N,I).LT.NL) GO TO 210
IF(IX(N,I).LE.NM) GO TO 220
210 CONTINUE
GO TO 340
220 CALL QUAD
IF(VOL.GT.0.) GU TO 230
WRITE(6,2000) N
STOP=1.
230 IF(IX(N,3).EQ.IX(N,4)) GO TO 300
DO 231 II=1,3
DO 231 JJ=1,3
231 SU(LI,Jd)=S(II+12,JJ+12)
CALL SYMINV(S4,3)
DU 232 II=1,12
DO 232 JJ=1,3
232 82(L1,JJ)=8(1L,dJ+12)
DO 233 II=1,3
DO 233 JJ=1,12
233 S3(LI,dJd)=S(1i+12,dJ)
DO 240 I=1,12
DO 240 J=1,3
S5(1,J)=0.00
DO 240 K=1,3
240 S5(1,d) = S5(I,d) + S2(I,K) * Su(K,J)
DO 241 I=1,12
DO 241 J=1,12
S6(1,J)=0.00
DO 241 K=1,3
241 S6(L,J) = S6(L,Jd) + S5(I,K) * S3(K,d)
DO 234 Ii=1,12
DO 234 JJ=1,3
234 P(LI)=P(II)-S5(I1,JJ)*P(JJ+12)
DO 235 II=1,12
DO 235 Jd=1,12
235 S(I1,JJ)=S(Ii,JdJ)-S6(II1,Jd)
DO 259 I=1,24
DO 259 J=1,24
259 G(I,J) = 0.0
DO 260 K=1,4
DO 260 I=1,3
G(K¥3~3+I1,I%4-3) =1.0
G(K¥*3~3+I,I%4-2) = RRR(K)
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G(K*¥3-3+L,1%4-1)
260 G(K*3-3+4I1,I%4 )
DO 262 1=1,12
DO 262 J=1,12
262 G(1+12,d+12) = G(I1,Jd)
NTP20 = NTP+20
WRITE(NTP20) (( CRZ(I1,J),Jd=1,6),I=1,6)
WRITE(NTP20)((B31(1,J),J=1,30),I=1,6)
WRITE(NTP20)((G(L,J),J=1,24),1I=1,24)
DO 280 I=1,24
GTP1(1)=0.0
DO 280 K=1,24
GTS1(L,K) = 0.0
GTP1(L)= GTP1(I)+ G(K,I)*P1(K)
DO 280 J=1,24
280 GIS1(L,K) = GT31(L,K) + G(J,I) * 31(J,K)
WRITE(3) ((GTS1(IL,d),J=1,24),1I=1,24)
DO 281 I=1,24
FT(L,NTP) =FT(I,NTP) + GIP1(L)
DO 281 J=1,24
GTS1GE(L,J) = 0.0
DO 281 K=1,24
281 GT31GE(I,Jd) = GTS1GE(1,J)+ GIS1(I,K) *G(K,d)
DO 282 I=1,24
DO 282 J=1,24

ZZ2(K)
2Z2(K) ¥RRR(K)

282 GT351G(1,J,NTP) = GT31G(I,Jd,NTP) + GTS1GE(I,d)
Ch % % % % % ¥ % % % % ¥ % ¥ % % # ¥ % B ¥ R ¥  F K K K % X & K X X X %
C ADD gLEMENT STIFFNESS MATRIX TO BODY STIFFNESS MATRIX
CH % % % % & % ¥ % % % & £ & % % % % % £ £ X ¥ F X X K X X X K F ¥ X ¥

300 DO 310 I=1,4
310 LM(I)=3%LX(N,I)-3

DO 330 I=1,4
bv 330 K=1,3 .
I1=LM(I)+K-KSHIFT
KK=3%[-3+K
B(II)=B(II)+P(KK)
DO 330 J=1,4
DO 330 L=1,3
JJI=LM(J)+L-II+1-KSHIFT
LL=3%J-3+L
IF(JJ.LE.O) GO TO 330
IF(ND.GE.JJ) GO TO 320
WRITE(6,2001) N
STOP=1.
GO TO 340

320 A(1I1,JJd)=A(IL,JdJ)+3(KK,LL)

330 CONTINUE

340 CONTINUE

C************************************

C ADD CONCENTRATED FORCES
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C¥ % % ¥ ¥ % % % ¥ ¥ % ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ R R ¥ ¥ ¥ ® ¥ ¥ X ¥ ¥ ¥ ¥ ¥ ¥ ¥

DO 400 N=NL,NM

IF(N.GT.NUMNP) GO TO 500

K=3%¥N-KSHIFT

B(K)=B(K)+XT(N)

B(K=1)=B(K-1)+XZ(N)

400 B(K-2)=B(K-2)+XR(N)
C************************************
C ADD PRESSURE BOUNDARY CONDITIONS
C****************************&*******
500 IF(NUMPC.EQ.0) GO TO 600

DO 540 L=1,NUMPC

I=IP(L)

J=JP(L)

PP=PR(L)/6.

DR=(R(J)-R(1))¥*PP

DZ=(Z(1)-Z(J))*pP

RX:Z.*R(I)+R(J)

ZX=R(I)+2.%R(J)

II=3%[-KSHIFT-1

JJ=3%J-KSHLFT-1

IF(II.LE.0.OR.IIL.GT.ND) GO TO 520

SINA=0.

COSA=1.

510 B(II-1)=B(IL-1)+RX*(COSA*DZ+SINA*DR)
GR=RX*(COSA*¥DZ+SINA*DR)*THETA/2.0
FT(1,NTP) = FT(1,NTP)+GR
FT(2,NTP) = FT(2,NTP) +R(I)¥*GR
FT(3,NTP) = FT(3,NTP) +Z(L)*GR
FT(4,NTP) = FT(4,NTP) + R(I)*Z(I)*GR
FT(14,NTP)= FT(14,NTP) +R(I)¥*GR
FT(13,NTP) = FT(13,NTP) +GR
FT(15,NTP) = FT(15,NTP)+Z(1)*GR
FT(16,NTP) = FT(16,NTP) +Z(I)*R(I)*GR

B(IL)=B(II)-RX*(SINA*DZ-COSA¥DR)
GZ=-RX*(SINA*DZ-COSA*DR) ¥*THETA/2.0
FT(5,NTP)=FT(5,NTP)+GZ
FT(6,NTP)=FT(6,NTP)+R(I)*GZ
FT(7,NTP)=FT(7,NTP)+ Z(I)*GZ
FT(8,NTP)=FT(8,NTP)+Z(I1)*R(1)*GZ
FT(17,NTP)=FT(17,NTP)+GZ
FT(18,NTP)=FT(18,NTP)+R (1 )*GZ
FI(19,NTP)=FT(19,NTP)+Z(L)*GZ
FT(20,NTP)=FT(20,NTP)+Z(I)*R(I)*GZ

520 IF(JJ.LE.0.0R.JJ.GT.ND) GO TO 540

SINA=0.

COSA=1.

530 B(JJ=1)=B(JJ-1)+ZX*(COSA*¥DZ+SINA*DR)
GR= ZX *(COSA*DZ+SINA*DR) ¥THETA/2.0
FT(1,NTP)=FT(1,NTP)+GR
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FT(2,NTP)=FT(2,NTP)+R(J)*GR
FT(3,NTP)=FT(3,NTP)+Z(J)*GR
FT(4,NTP)=FT(4,NTP)+Z(J)*¥R(J)*GR
FT(13,NTP)=FT(15,NTP)+GR
FT(14,NTP)=FT(14,NTP)+R(J)¥*GR
FT(15,NTP)=FT(15,NTP)+Z(J)*GR
FT(16,NTP)=FT(16,NTP)+Z(J)*R(J)*GR
B(JJ)=B(JJ)-ZX*(SINA*DZ-COSA*DR)

GZ= -ZX*(SINA*DZ-COSA*DR) *THETA/2.0
FT(5,NTP)=FT(5,NTP)+GZ
FT(6,NTP)=FT(6,NTP)+R(J)*GZ
FT(7,NTP)=FT(7,NTP) +Z(J)*GZ
FT(8,NTP)=FT(8,NTP)+Z(J)*R(J)*GZ
FT(17,NTP)=FT(17,NTP)+GZ
FT(18,NTP)=FT(18,NTP)+R(J)*GZ
FT(19,NTP)=FT(19,NTP)+Z(J)*GZ
FT(20,NTP)=FT(20,NTP)+Z(J)*R(J)*GZ

540 CUNTINUE
1100 FORMAT(" ",12E10.3)
C************************************

) ADD SHEAR BOUNDARY CONDITLONS
C************************************
600 IF(NUMSC.EQ.0) GO TO 701
DO 640 L=1,NUMSC
I=I3(L)
J=J3(L)
S3=SH<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>