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I.  INTRODUCTION 

This report details the initial steps of a modest effort to 

explore failure criteria suitable for incorporation in two- and 

three-dimensional computer codes for analysis of high velocity impact 

and penetration phenomena.  Such codes have shown over the years 

their ability to successfully treat impact problems in various velo- 

city regimes and have been most notably successful in the area of 

hypervelocity impact (loosely definable as a regime where pressures 

generated in impacting bodies exceed the material ultimate stress by 

several orders of magnitude).  While existing codes can indicate 

high stress areas which are likely locations for occurrence of 

fracture, none can handle the fragmentation of an initially intact 

penetrator or target into individual fragments and then track the 

deformation and motion of those fragments.  Such a capability is 

still far off and will require refinements in material characteriza- 

tion, failure initiation and propagation. 

It is now generally well established that failure of materials 

subjected to intense impulsive loads is a time-dependent phenomenon. 

But existing codes, with few exceptions, deal only with simplistic 

criteria which assume instantaneous failure of material in a compu- 

tational cell or element once the critical stress or strain is exceeded. 

Models offering greater realism are available and are reviewed briefly 

in the paper by Jonas and Zukas', 

Jonas, G. H. § Zukas, J. A., "Mechanics of Penetration: Analysis and 
Experiment", Int. J. Engng. Sci., Vol. 16, pp 879-903, 1978. 



We can distinguish among three distinct approaches to fracture 

characterizations;  continuum models based on cumulative damage con- 

cepts, models concerned with microscopic aspects of ductile and 

brittle fracture, and crack propagation models.  In this report, we 

focus our attention on the crack propagation models. 

The means to limit the damage to a structure subjected to ballistic 

impact or maximize it in the case of offensive interactions is of 

great practical importance in the design of many structures.  Both 

require a knowledge of the response of the target to impact.  One 

of the keys to understanding energy dissipation in a structure as it 

experiences damage lies in a knowledge of dynamic fracture phenomena 

which can relate the kinetic energy of the incoming projectile to sub- 

sequent modes of failure, distortions, and heat that may characterize 

the damage. The total available energy may partially be dissipated in 

the creation of new surfaces either by nucleating new cracks or by 

extending the existing ones.  In the latter case the available energy 

can be related to the crack driving force and therefore to the frac- 

ture stress intensity. The need to account for such phenomena is clear 

since many penetrators of practical importance have either super- or 

sub-caliber grooves machined into the rod to permit fitting of a 

sabot.  For high obliquity impacts, these grooves act as stress rai- 

sers and frequently serve as fracture initiation sites. The subsequent 

reduction of the penetrator mass can severely impair its performance, 

especially against multi-plate target.  Additionally, imperfections in 

materials due to poor quality control in production processes may impair 
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ballistic performance.  This is easily noticeable in Lambert's report^ 

in which the data are compared for two cases involving oblique impact of 

65 gram steel penetrators with length-to-diameter ratio of 10 against 

rolled homogeneous armor plates.  A change in the manufacturing processes 

to reduce the inclusion rate in the steel rods dramatically reduced scatter 

in the data resulting in an improved estimate of ballistic limit with 

fewer rounds.  In other areas, the presence of cracks and inhomogeneities 

in confined explosives subjected to projectile impact may be important 

sources of hot spots leading to violent reactions^'^ . 

The existence of such inhomogeneities is currently ignored in 

most computer simulations of impact.  The incorporation of the Stanford 

5 —8 
Research Institute NAG-FRAG model   in two- and three-dimensional codes 

2 
Lambert, J. P., "The Termianl Ballistics of Certain 65 Gram Long Rod 
Penetrators Impacting Steel Armor Plate", BRL Technical Report 
ARBRL-TR-0 2072, May 1978.  fAD#A057757) 

3 
Engineering Design Handbook. Principles of Explosive Behavior. 

AMCP 706-180, April 1972. 

4 
Chawla, M. S. and Frey, R. B., "A Numerical Study of Projectile Impact 

on Explosives", BRL Memorandum Report 2741, April, 1977. rAD#A040433) 

Barbee, T. W. et al, Dynamic Fracture Criteria for Ductile and Brittle 
Metals.  J. of Materials, JMLSA, Vol. 7, No. 3, September 1972. 

Seaman, L. and Shockey, D. A., "Models for Ductile and Brittle Fracture 
for Two-Dimensional Propagation Calculations", Army Materials and Mechanics 
Reserach Center Final Report AMMRC CTR 75-2, February 1975. 

7 
Shockey, D. A. et al,  A Computer Model for Fragmentation of Armor Under 

Ballistic Impact", BRL Contract Report 222, April 1975. rAD#B004672L) 

8 
Hageman, L. J. and Herrmann, R. G., "incorporation of the NAG-FRAG Model 
for Ductile and Brittle Fracture in HELP, A 2D Multi-Material Eulerian 
Program", ARBRL-CR-00380, September 1978. CAD#A062335) 
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will, in the future, partially offset this deficiency.  But NAG-FRAG is a 

nontrivial and expensive model and requires considerable material character- 

ization before it can be applied to realistic situations.  Hence, examination 

of simpler models is desirable. 

It had been the initial objective of this work to look at fracture 

criteria involving the J-integral and the crack opening displacement (COD) 

type with a view towards incorporating such a capability in HELP and EPIC Codes 

(the primary codes used at the BRL for kinetic energy penetrator impact 

studies) and comparing the results with existing instantaneous criteria 

for oblique impact of notched penetrators and normal impact of confined, 

nonhomogeneous explosives.  With the departure of the first author and 

a change in the workload this objective can no longer be met.  This 

report therefore documents the first step taken in this process, a 

study of the feasibility of performing a HELP code calculation with 

included cracks and voids.  A second purpose of this report is to obtain 

a feeling towards the accuracies of the HELP code results compared to the   i 

previously published results obtained by utilizing the highly dependable 

HEMP code, for a standard example. 

II.  DISCUSSION 

A crack in a plate becomes unstable when the stress state in the 

immediate vicinity of the crack tip becomes critical.  For a brittle 

material, the linear elasticity theory is generally adequate in describ- 

ing the macroscopic effects such as displacements and the stresses at 

12 



distances Large compared to the crack radius.  According to this theory, 

the stresses in the neighborhood of a crack tip show a —1— type behavior^-'"'" 

where r is the radial distance measured from the crack tip.  Conse- 

quently, the stress components obtain singular values at the crack tip in- 

dicating a breakdown of the elastic models in the vicinity of the crak tip. 

In reality, most materials have a small plastic zone in the neighborhood 

of the crack tip, so that the stresses do not actually become infinite at 

the crack tip.  Nevertheless, significant stress enhancement does take 

place due to the presence of a crack which may lead to a catastrophic failure 

under certain conditions.  To overcome the difficulties in the analysis 

that an infinite stress causes, it is customary to normalize the stresses 

by multiplying them by a function oty/~F  .  The limiting value of the product 

function is called stress intensity factor.  For dynamic problems, a dyna- 

mic stress intensity factor can be similarly defined. 

While analytic solutions for crack problems are available for many 

configurations , they are limited to certain idealized geometries and 

static load conditions. Hence it is important to develop a methodology 

which is simple in concept while being capable of handling complicated 

9 
G. R, Irwin, Analysis of Stresses and Strains Near the End of a Crack 
Traversing a Plate. J. Appl. Mech, Trans. ASME 24, 361, 1957. 

G. R. Irwin, "Fracture" Encyclopedia of Physics, Springer-Verlae 6. 
558 (1958) - 

11 
I. N. Sneddon, Proc Royal Soc London, 182, 229 (1946) 

12 
G. C. Sih and J. F. Loeber, Wave Propagation in an Elastic Solid With 

a Line Discontinuity or Finite Crack. J. Acoust. Soc. Amer. 44, 
90, 1968. 
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geometries under dynamic impact conditions.  Two computer programs, 

13 14 
HELP and EPIC have been tested for the purpose of solving a simple but 

nontrivial problem of dynamic fracture mechanics.  The HELP code is a 

two-dimensional, finite difference Eulerian code which can deal with 

elastic-plastic solids as well as pure hydro problems.  This code is 

especially good in handling problems involving extreme distortions.  In 

the HELP code, free surfaces and interfaces are handled in a pseudo-La- 

grangian fashion. The pressure, stresses and velocities are all cell-centered 

quantities.  Tillotson equations are employed to describe the state of the 

material.  In addition, the Von-Mises yield condition describes the onset 

of plasticity and a maximum volumetric strain defines the material failure. 

In the present problem, the plasticity and the material failure are not 

considered.  In this paper we will report the results of the test using the 

HELP Code. The EPIC Code Solution will be attempted in the near future. 

13 
L, J, Hageman, D. E. Wllklns, R. T. Sedgwick and J. L. Waddell, 

"HELP; A Multimaterial Eulerian Program for Compressible Fluid and 
Elastic-Plastic Flows in Two Space Dimensions and Time", Systems, 
Science and Software Report No. SSS-R-75-2654, 1975. 

14 
G. R, Johnson, 'EPIC-3, A Computer Program for Elastic-Plastic 

Calculations in 3 Dimensions", BRL Contract Report 343, July 1977. 
(AD#A043281) 
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IIIo  PROBLEM SET UP 

^  The study reported here involved a rectangular plate in plane 

strain geometry loaded in uniaxial tension.  Similar problem involving 

a different material has been addressed by Chen'^ and Chen and Wilkins'^, 

using the Lagrangian HEMP code.  The plate is shown in Figure 1 and the 

loading is shown in Figure 2.  The elastic constants for the plate 

material are listed in Table I. < 

TABLE I.  ELASTIC CONSTANTS OF MATERIAL 

Density,p ^ = 7.80 g/cc 

Bulk Modulus, K = 1.27 X 10^^ dyne/cm^ 

Shear Modulus, G = 1.93 x 10^^ dyne/cm^ 

Logitudinal sound speed, V = //<• + -• G        = 0.702 cm/^s 

Transverse sound speed, V^ =\/p = 0.497 cm//is 

Bulk sound speed, C^ =  / _^ = 0.403 cm/fjs 

Rayleigh sound speed, V = 0.495 V = 0.347 cm/^ys 

15 
Y. M. Chen, Numerical Computation of Dvnamic Stress Intensity Factors 

by a Lagrangian Finite-Difference Method (The HEMP Code), Eng. Fract 
Mech. Vol. 7, pp. 653-660, 1975. 

Y. M. Chen and M. L. Wilkins, Elastodvnamic Crack Problems. 
Noordhoff International Publishing, Leyden, 1977. 
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Figure 2.  The Load Applied to the Rectangular Plate 
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The elastic constants listed in Table I perhaps do not represent any real 

material. The high value of the Shear Modulus corresponds to a Poisson's 

ratio of zero.  Substantial simplification of the material stress state 

is thus obtained by not letting any waves arise from transverse plate 

contractions or crack opening.  For the configuration shown in Figure 1, 

it is sufficient to solve the quarter problem because of the mirror sym- 

metries along the x=o and the y=o planes. 

Figure 3 is a schematic of the first quadrant of the problem.  The 

entire grid consists of 40 cells in the x-direction and 47 cells in the y- 

direction, as shown in Figure 3. The first three columns of the cells 

define the half width of the crack, which is nearly invisible in the 

figure because of its small size^  The cells are ultrafine near the crack 

tip.  Additionally these cells are square and have constant area so that 

numerical errors near the crack tip are minimal.  In the rest of the sample, 

where the accuracy was of less concern, the cells are not square and cell 

sizes increase progressively as one goes away from the crack tip along the 

X- or y-axis. The HELP code was modified to accommodate the present example 

for which the loading was tensile instead of compressive, which in turn 

necessitated defining the initial conditions in terms of pressure rather 

than velocity as is customarily done in the HELP code for solution of im- 

pact problems.  Here the material was assumed to be perfectly elastic. 

Extreme caution was exercised to define the circular slot edge. The quarter 

circular arc of the slot was defined by means of 40 straight line segments. 

18 
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IV.  RESULTS 

The stress intensity factor for the elastic material in the vicinity 

of the crack tip is defined by 

k (t) = Lim kj^*(t) (1) 
r—»o 

where 

V^^> =  "7^  -XX ^^' «' '' ''' 

^"^ f(e) =  (1+ sinfsin^) cos f (3) 
2 

The last two equations are based on the results of the static field 

equations describing the stress state of a perfectly elastic medium in the 

vicinity of a crack   .  Existence of the corresponding solution for the 

dynamic case has been assumed.  Equation (1) indicates a limiting process 

which yields the crack-tip stress intensity factor utilizing the near field 

results.  The rigorous process indicated in Equation (1), however, cannot 

be carried out in practice since the finite-difference code calculations 

yield incorrect stress values ( cr^^j^ ) near the crack tip.  Instead an 

extrapolation method can be used for estimating the stress intensity factors. 

Assumption is made that ^'^^t 0 t   t) is correctly defined a few crack radii 

away from the crack tip.  Extrapolation path is chosen along the line, 6=0, 

in accordance with Chen's suggestions.  The function k *(t) is defined for 

points along 0=0  for different values of r.  It was found that k,*(t) de- 

fine a straight line of the type 

k^*(t) = k^(t) + fi  (t)r (4) 

A least subroutine was employed to successively exclude points 

from the fit until the change in the sum of residuals was less than 57.. 

This usually amounted to ignoring the first seven or eight points near 

the crack tip. The straight line thus obtained was extrapolated to 

r = 0, yielding an estimate of k (t) from Equation (4).  Figure 4 shows 

the extrapolation technique for a given time.  This technique was employed 

20 
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Figure 4. A Typical Linear Extrapolation Curve for k 
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to generate all the data points for 0<t< 18/^ s which are plotted in 

Figure 5.  This figure shows several oscillations.  It is interesting to 

try to attempt to correlate these oscillations with the arrival of waves 

reflected from various free surfaces.  The times for arrival of various 

waves are tabulated in Table II and are also marked on Figure 5.  All the 

times are measured from the instant when the load is applied, and were 

calculated simply by dividing the appropriate space dimension by the 

corresponding wave velocity. 

TABLE II.  Times of Arrival of Various Scattered Waves 

at the Crack Tip as Marked in Figure 5 

OA = 2.85/is       Arrival of first L wave at the crack tip 

OB = 4.35/is       Arrival of Rayleigh wave reflected from the 

other crack tip 

OC = 4.96//s       L reflection from the free surface 

OD = 5.83 /is       T reflection from the free surface 

OE = 8.55 /is       Arrival of L wave reflected from the other end 

OF = 10.05 /is      Arrival of T wave reflected from the other end 

OG = 10.66 /is     Reflection of the second L wave 

OH = 11.53/is     Reflection of the second T wave 

Clearly, an attempt to correlate the oscillations in k values with the 

arrival times of various waves has been met with mixed success. This is 

hardly surprising because the finite difference codes characteristically 

tend to smear out sharp wave fronts.  The wave arrival times are therefore 

difficult to pick out in a hydrocode solution. 

22 



Figure 5.  Stress Intensity Factor versus Time 
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The plots of O      versus t for two observation points near the crack 

tip are shown in Figure 60  It is clear that as the distance of the point 

of observation from the crack tip decreases, the absolute value of (T^^ 

Increases.  However, for points very near the crack tip, the a      values 

will be inaccurate„  We feel that our case, the a      values are accurate 

for r^O.OS cm, A number of oscillations are also apparent in the a 

versus t curve.  These oscillations, like the ones in Figure 5, result      , 

from cancellation and reinforcement of the scattered waves from various 

free surfaces.  It should be pointed out that if there wetre no cracks, 

the a      curve will oscillate about the mean value, P(t) = 4 kbar.  The 

plot in Figure 7 shows the computer results for the same geometry without 

cracks, while Figure 8 shows the stress transverse to the crack, a     > for 

a given time for the entire grid.  The time-average of a (t) versus t 

plots shown in Figure 6 is a roughly 5.2 kbar„  The average is customarily 

obtained by considering the first global minima and the second global 

maxima which are believed to be not significantly altered by the dynamic 

oscillations.  The first global maxima is thus ignored from the averaging 

process.  The average a      value corresponds to a time of 15.75|/s.  The k , 

value corresponding to this time is 3.75 kbar \/cm.  This compares remarkably well 

with the time average 3.73 obtained from the plot in Figure 5 or the theo- 

retical value''' 3.75 or Chen's value'' 3.72„  As in Chen's case, the present 

result also agrees with Baker's result'^ for a load of 2P(t).  Also since 

Baker employed an infinite plate, the agreement will vanish on arrival of 

the first reflected wave at the crack tip. 

A. S. Kobayashi, R. D. Cheerpy and Wo Co Kinsel, A Numerical Procedure 
for Estimating the Stress Intensity Factor of a Crack in a Finite 
Plate. Trans. ASME, Series D, 86, 681, 1964. 

18 
B. R. Baker, Dynamic Stresses Created by a Moving Crack, Jo Appl, Mech. 

2i, ^^9, 1962o 24 



*'■■■>■■ttrf-'-'-'^- >'■(:!:•'> ■,K-T">-' 

Figure 6.  Transverse Stresses versus Time at Points Slightly Away from the Crack Tip 
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Figure 7. Transverse Stress versus Time at the Center of the Uncracked Plate 
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Figure 9 shows the crack openings at various times. The crack 

extension and new surface creation are not modeled in the present study. 

If desired, the crack tip movement can roughly be followed by placing a 

few master/slave particles in the y axis, along which the extension is 

expected to take place provided some critical conditions are meto The 

crack in our example does not seem to open up in the x axis as freely as 

in Chen's case.  This is due to the fact that the material employed in 

this study has higher rigidity modules than in Chen's case.  Figure 10 

depicts the change in the crack width as a function of time. Crack width 

increases when the wave is tensile, but it is never seen to decrease 

below its original value at t = o.  The transverse stree seldom becomes 

strongly compressive near the middle of the crack as can be seen from 

Figure 60 

V.  CONCLUSIONS 

Based on the above results, one can conclude that as long as the 

loading is in the elastic regime, an extrapolation method can be employed 

to calculate the dynamic as well as the static values of the stress inten- 

sity factors. These values can then be employed to study the stability of 

cracks when used in conjunction with some suitable crack propagation theory. 

The procedure outlined above can be extended to complicated geometries 

undergoing extensive deformation as a result of impact.  Either HELP or 

HEMP code can be employed to study the crack stability.  This example also 

shows that stresses as well as the details of material motion are qualita- 

tively so similar in the two codes - one Eulerian, other Lagrangian, that 

it can hardly be dismissed as fortuitous. 

28 
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Figure IQ.    Crack IVidth as a Function of Time 
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