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I. INTRODUCTION

On 27 January 1978, a meeting was held at Hughes Helicopters,
Culver City, California, to discuss the technical characteristics of
the 30mm ammunition for the Chain Gun. Personnel from the Project
Manager, Advanced Attack Helicopter (PM-AAH), the Ballistic Research
Laboratory (BRL), and Hughes Helicopters (HH) were present. One of
the results of the meeting was a joint recommendation to fire a fifteen
(15) round program of 30mm, XM788 Target Practice (TP) projectiles
through the BRL Aerodynamics Range, to obtain basic aerodynamic data.
The ammunition was to be provided by Honeywell, Inc. (subcontractor to
HH), HH was to provide the gun, and the PM-AAH agreed to fund the BRL
test.

The 30mm barrel for testing was received from HH in April 1978,
and thirty (30) rounds of XM788 TP ammunition in a separate shipment.
The XM788 test was placed on the firing schedule at BRL. On
11 May 1978, word was received from the PM-AAH that the projectiles
sent to BRL had defective rotating bands, and should be returned to
the contractor. New projectiles were received mid-October 1978. The
BRL test was rescheduled, and firing began on 15 November 1978.

ITI. TEST PROCEDURE

All tests were conducted in the BRL Aerodynamics Rangel. Physical
measurements were made, utilizing the methods described in Reference 2
for dimensions, weights, and centers of mass. The axial and transverse
moments of inertia were obtained to within £0.03% error, using the
recently acquired equipment from Space Electronics Corporation. The
average physical characteristics of the test projectiles are included
in Figure 1, which shows the dimensional details. Figure 2 is a
photograph of the XM788 TP projectile.

The test rounds were fired from a 30mm Mann barrel, No. 387-7025,
S/N11, with a constant twist rate (6°30'). Various propellants and
charge weights were selected to achieve the required test Mach numbers.
A half-muzzle type yaw inducer was used for one round (Test Round
No. 13477), to investigate the effects of large yaw at a Mach number
around 0.8; all other rounds were launched without yaw induction.

1. W. F. Braun, "The Free Flight Aerodynamics Range,'" Ballistic
Research Laboratories Report No. 1048, August 1958. AD 202249.

2. E. R. Dickinson, "Physical Measurements of Projectiles," Ballistic
Research Laboratories Technical Note No. 874, February 1954,
AD 803103.



All test rounds were equipped with a single pin installed near
the outer edge of the base, to provide highly accurate spin measure-
ments. In addition to the fifteen (15) round program, two warmer
rounds (13463 and 13464) also provided useful data. The warmer rounds
were not equipped with roll pins, so no spin damping was obtained
from these two flights. The rotating bands of rounds 13478 and 13479
were pre-engraved, to reduce shot-start pressure at very low loading
density. Round number 13478, which was intended to be a second data
point at Mach number 0.6, failed to launch properly, and was lost.
The data obtained from the sixteen (16) successful flights are pre-
sented in this report.

ITI. RESULTS

The range data were fitted to solutions of the linearized
equation of motion and these results used to infer linearized aero-
dynamic coefficients, using the methods of Reference 3. The actual
projectile aerodynamic force-moment system Sften is not strictly
linear. Given sufficient data the actual non-linear behavior can be
determined from the range results“. For th> 30mm XM788 projectiles,
sufficient data were obtained to permit detzrmination of some non-
linear aerodynamic coefficients. A more datailed analysis of non-
linear effects is presented in the various subtopics of this section,
which discuss individual aerodynamic coefficients.

A useful by-product of tests conductsd in the BRL aerodynamics
ranges is the high quality shadowgraph information obtained. Figures
3 through 10 show the flowfield around the 30mm, XM788 projectiles, at
speeds ranging from supersonic down to high subsonic. Figures 3
through 9 were selected for locally small yaw (angle of attack less
than 1/2 degree). Figure 10 shows the XM783 projectile at an angle
of attack of 7.7 degrees, and Mach number of 0.84, Boundary layer
separation on the leeward side of the projectile is evident in
Figure 10,

The round-by-round aerodynamic data obzained is listed in
Table I, and flight motion parameters are g-ven in Table II.

8. C. H. Murphy, "Data Reduction for the Free Flight Spark Ranges,"
Ballistic Research Laboratories Report Jo. 900, February 1954,
AD 356833,

4. C. H. Murphy, "The Measurement of Nown-Linear Forces and Moments

by Means of Free Flight Tests," Ballistic Research Laboratories
Report No. 974, February 1956, AD 93521.
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A. Drag Coefficient
The drag coefficient, CD’ is determined by fitting the time-
distance measurements from the range flight. CD is distinctly non-

linear with yaw level, and the value determined from an individual
flight reflects both the zero-yaw drag coefficient, CD , and the
o)

induced drag due to the average yaw level of the flight. The drag
coefficient variation is expressed as an even power series in yaw
amplitude:

C, =C + C 2+ C y *
D D0 D626 Daqﬁ

where C, 1is the zero-yaw drag coefficient, C and C are the

D, Dy2 Dy
quadratic and quartic yaw-drag coefficients, and 82 is the total angle
of attack squared.

For the 30mm, XM788 projectile, only the quadratic yaw-drag

coefficient, CD )’ and the zero-yaw drag coefficient, CD could be
8 o
determined for supersonic speeds, since the average yaw levels for the
supersonic flights ranged from 0.5 degree to 3.5 degrees. At subsonic
speeds, one round (No. 13477) was fired with a yaw-inducer to obtain
8 degrees angle of attack, and the data from this flight, combined
with the other subsonic drag data allowed a determination of both
CD ) and CD o The yaw-drag coefficients for the various regimes

$ 8

were then used to correct the range values of CD to zero-yaw conditions.

Figure 11 shows the variation of CD with Mach number. Figure 12
(o]

is a plot of the quadratic yaw-drag coefficient, C versus Mach

3
D62
number. Insufficient data were obtained at transonic speeds to permit
determination of CD ; hence the dashed line on Figure 12 was used

62
to connect the subsonic and supersonic regions. Figure 13 shows the
variation of total drag coefficient, CD, with angle of attack at sub-

sonic speeds.

B. Spin Damping Moment Coefficient

The spin damping moment coefficient, C is determined by fitting

2' 3
P
roll angle-distance measurements from the range. Variation of Cl
P
11




with yaw level is usually much weaker than that observed for the drag
coefficient, and in the present tests, no significant variation of CZ

P
with yaw could be determined. Figure 14 is a plot of CZ versus Mach

P
number for the 30mm, XM788 projectile.

C. Pitching Moment Coefficient

The range values of the pitching moment coefficient, C were

M 3
a

fitted using the appropriate squared-yaw parameter from Reference 4.

CM was found to vary significantly with yaw level at supersonic speeds;
a

the subsonic dependence of CM with yaw was much weaker. The pitching

a v
moment is assumed to be cubic in yaw level, and the coefficient
variation is given by:

. 2
CM CM + CZG
[0 [0
o]
where CM is the zero-yaw pitching moment coefficient, and C2 is the

o
0

cubic coefficient.

For the 30mm, XM788 projectile, the value of C2 at supersonic

speeds was found to be -16. The subsonic value of C, was -0.5. The

2
cubic coefficients were used to correct the range values of CM to
o
zero-yaw conditions, and Figure 15 shows the variation of CM with

[0
0
Mach number.

D. Gyroscopic Stability

The 30mm, XM788 projectile has ample launch gyroscopic stability
when fired at standard velocity (805 metres/second) from the 6° 30'
twist rate (27.57 calibers/turn) of the XM230El barrel. The average
launch gyroscopic stability factor (Sg) of the four rounds launched at

standard conditions is 3.17. Since the XM788 is never fired at
reduced velocities, and the ratio of axial spin to forward velocity
increases continuously for flat trajectories, the slightly lower
values of Sg observed in Table 1I for the lower Mach numbers will never

occur in field firings.

12



The XM788 projectile is designed to be launched in forward fire
from an aircraft. The addition of the aircraft's velocity vector
to the gun muzzle velocity has the effect of reducing the projectile's
launch gyroscopic stability factor by the ratio:

2
VMuzzle

MGzl

\Y

The following table shows the effect of aircraft speed on
launch Sg’ for the XM788 in forward fire.

VA/C Sg
(Knots) (Launch)
0 3.17
150 2.64
300 2.23

At an aircraft speed of 300 knots, the XM788, fired from the
XM230E1 barrel still has more than adequate gyroscopic stability.

E. Lift Force Coefficient

The 1ift force coefficient, CL » was also analyzed by the method
o

of Reference 4. If the lift force is assumed to be cubic in yaw level
the coefficient variation is given by:

2

C, =2¢C + a_ 62

where CL is the zero-yaw 1ift force coefficient, and a, is the cubic
o
0

coefficient.

At supersonic speeds, a value of 21 was obtained for a,; at

subsonic speeds the corresponding value was 7. The two values of a,

were used to correct the range values of CL to zero-yaw conditions.
o

13




Figure 16 shows the variation of CL with Mach number.
o

o
The lift force coefficient is not as well determined from spark
range tests as is CM . This fact is reflected in the larger round-
a
to-round data scatter observed in Figure 16, compared to the pitching
moment data plotted in Figure 15.

F. Magnus Moment Coefficient and Pitch Damping Moment Coefficient

The Magnus moment coefficient, CM , and the Pitch Damping Moment
pa
Coefficient, (CM + CM ), are discussed together, since if either
q
coefficient is non-linear with yaw level, both coefficients exhibit
non-linear coupling in the data reduction prozess“. Due to mutual
reaction, the analysis of CM and (CM + CW- ) must be performed
Pa q Ta

simultaneously, although the aerodynamic moments are not, in themselves,
directly physically related.

If the dependence of both the Magnus moment and the Pitch Damping
moment are cubic in yaw level, the non-linear variation of the two
moment coefficients is of the general form:

= 2
CM = CM + C25
Po Pa
. - 2
(CM + CM-) = (CM + CM- I+ d26
q o q a o
where CM and (CM + CM-) are the zero-yaw values of Magnus and
pa q a ©

Pitch Damping moment coefficients, respective.y, and C2 and dz are
the associated cubic coefficients.

In Reference 4 it is shown that the non-l_inear coupling intro-
duced through the data reduction yields the following expressions

for range values [R-subscript] of CM and [CM + CM- ):
pa q o

14



= 2
[y 1 =Cy +C,82+d,s
po pa TH

[C, +C,] =(C, +C.) +C, 6 Zs+d, 6 °2

M M. M M. 2 e 2 e
q o b qQ a HT HH

0
where the above effective squared yaws are defined as:

. B ) P R — /

Ve wXg 2Ky ¥ UK = Ugke Vile/gumuT)

3 _ 2y 2 Sy Bt B il

6eHT2 = (/L)W + ) (K = Kp')/ (8 -0)

2 _
6eHH - (¢F KS

R SO VTS

The remaining symbols are defined in the List of Symbols in this
report.

Preliminary analysis of the XM788 data indicated that significant
values of both C2 and d2 exist for this projectile. Subsequent

analysis determined that [CM ] varied significantly with Gez, but
Fo o
only very weakly with 8 2, while [C,, + C. ]
M M-
eTH q a R

dependence on both non-linear terms. Hence, the Magnus moment data
was fitted assuming a dependence on Gez only, and values were obtained

showed a strong

for C2 at subsonic and supersonic speeds. Using the known values of

A

C2, the Pitch Damping data was re-analyzed to determine improved

values of d2.

15




The values finally obtained for C, and ¢, are given below:

2 2
Mach Region EZ ig
Subsonic 29 -224
Supersonic 48 -224

The above tabulated values for C2 and d. were used to correct the
<

range values of CM and (CM + CM-) to zero-yaw conditions. Figure 17
po q
is a plot of CM versus Mach number, and Figure 18 is a similar plot
e,

of (CM + CM_).

q o

It should be noted that the analysis of non-linear Magnus and
Pitch Damping data from free flight spark rarges is a delicate process
at best; i.e., the results are highly sensitive to small errors in
determination of the damping exponents on the two modal arms. In
view of this fact, the CM and (CM + CM_) analysis of this report

' _ pa q a

should be regarded with some suspicion, at the least, until such time
as computed flight dynamic behavior for the XM788 can be verified by
a long-range flight-dynamic experiment.

G. Damping Rates

The damping rates, AF and AS, of the fast and slow yaw modes

indicate the dynamic stability of a projectile. Negative A's indicate
damping; a positive A means that its associated modal arm will grow
with increasing time.

For a projectile whose Magnus or Pitch Damping moments are cubic
with yaw level, the damping rates also show a non-linear dependence
on yaw". The cubic variation of the dampirg rates can be written:

2 2

e = A A (KT 4 2K

16



The damping rates for the 30mm, XM788 projectile were analyzed

using the above equations, and values obtained for AFZ and ASZ at
subsonic and supersonic speeds are given below:
Mach Region AF AS
2 2
Subsonic -.0039 -.0112
Supersonic +.0047 -.0203

The above tabulated values were used to correct the range values
of AF and AS to zero-yaw conditions. Figures 19 and 20 show the zero-

yaw behavior of the fast and slow arm damping rates at various Mach
numbers.

Figure 19 shows that between flight Mach numbers of 0.65 to 0.85,
the fast arm damping rate is slightly positive, for very small yaw
levels. However, the cubic coefficient, AF , 1s negative in this

2

region, indicating that increasing yaw level will decrease the size of

the positive AF . Hence, a small fast arm 1imit cycle could exist, in
o

a relatively narrow band of flight Mach numbers.

Figure 20 shows a wide band of slow arm undamping at zero yaw,
for all flight Mach numbers below 1.05. Since the cubic coefficient

for AS is also negative, a slow arm limit cycle would be expected, and

due to relative sizes of terms, both the growth rate and the limit
cycle values of the slow arm should exceed that of the fast arm.

The effect of non-linear damping rates can be predicted using
the amplitude plane methods of Reference 5. However, a more direct
method, which also accounts for damping rate variations with Mach
number, is to numerically solve the following system of equations:

5. C. H. Murphy, "Free Flight Motion of Symmetric Missiles,"
Ballistic Research Laboratories Report No. 1216, July 1963,
AD 442757,

17



d KS = 2 ASKSZ
d s
B 2 " 2
AF = AF + AF (KF + 2 KS )
o} 2
N - 2 2
Ag = >\50+ ASZ (ZKF + KS )

where s is arc length along the trajectory, and the Mach number
variation of the damping rate coefficients is input as a table in arc
length.

The 30mm, XM788 projectile is normally launched at a Mach number
of 2.3, and for the entire supersonic fligkt, both damping rates are
negative, for all likely yaw levels. Hence, the projectile will
normally arrive at transonic speeds with very small yaw, due to the
damping of any initial transients. A preliminary calculation showed
that at M_ = 1.0 (approximately 980 metres from the gun), a slow arm
amplitude of 0.1 degree and a fast arm amplitude of 0.05 degree would
be physically reasonable, and these values were used as initial condi-
tions to start the numerical integration. Ths Mach number variation
with arc length was obtained from a standard trajectory program, using
the zero-yaw drag coefficient curve of Figure 11.

The numerical solution of the equations for modal amplitudes
showed that the fast arm does not grow to a limit cycle value; in
fact, it decreases below the very small initial value assumed, and
remains small throughout the subsonic trajectory. The slow arm does
reach a limit cycle value, which grows to a magnitude of nearly 4
degrees at a Mach number of 0.70, and then begins to damp as the
projectile speed continues to drop. The predicted behavior of the
slow arm amplitude at transonic and subsonic speeds is shown in
Figure 21.

IV. CONCLUSIONS

The 30mm, XM788 projectile, when launcaed at a muzzle velocity of
805 metres/second from the XM230El barrel, is gyroscopically stable in
either forward or side fire, from aircraft speeds in excess of 300
knots.

The spark range data show that a slow-arn (precession) limit-
cycle yaw exists at low transonic and subsonic speeds. The magnitude
of the limit-cycle varies between three and four degrees, and will

18



produce a drag increase of between ten and fifteen percent over the
zero-yaw value, at subsonic speeds. Since the XM788 reaches transonic
speed at around one kilometre range, the drag penalty due to the limit-
cycle will affect the trajectory in increasing amounts as the range
increases beyond one kilometre. The magnitude of the effect is
currently under investigation, using the BRL six-degree-of-freedom
program®, and the aerodynamic data presented in this report.

V. RECOMMENDATIONS

It is recommended that a long-range flight-dynamic experiment be
conducted, to verify the predicted subsonic limit-cycle behavior of
the XM788 projectile. The flight dynamic experiment should be con-
ducted using the HH Chain Gun (rather than a Mann barrel), and the
flight dynamic information could best be provided using the 30mm
yawsonde fuze currently under development at the BRL.

Preliminary six-degree-of-freedom calculations indicate a high
sensitivity of the trajectory to the magnitude of the first maximum
yaw. Due to the effect of weapon dynamics, the distribution of first
maximum yaw of projectiles fired from the Chain Gun may be signifi-
cantly different from that obtained with a Mann barrel. Therefore,
it is also recommended that a test be conducted to define the first
maximum yaw distribution of XM788 projectiles fired from the Chain
Gun.

6. R. F. Lieske and R. L. McCoy, "Equations of Motion of a Rigid
Projectile,"” Ballistic Research Laboratories Report No. 1244,
March 1964, AD 441598.
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Figure 1. Sketch of 30mm, XM788 Projectile
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Figure 2, Photograph of 30mm, XM788 Projectile
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LIST OF SYMBOLS

- cubic lift force coefficient

cubic static moment coefficient
cubic Magnus moment coefficient

Drag Force

(1/2) p V% S

zero yaw drag coefficient

quadratic yaw drag coefficient

quartic yaw drag coefficient

Lift Force Positive coefficient: Force in plane
(1/2) p VZ S 6 of total angle of attack, o, A
' to trajectory in direction of Q.

(oz,c directed from trajectory to

missile axis.) 8 = sin «,.

t
Normal Force Positive coefficient: Force in plane
(1/2) p V2 S & of total angle of attack, o, A1

to missile axis in direction of th.

C T C. +C
N, L, ™D

Static Moment Positive coefficient: Moment in-

(1/2) p V2 Sdé creases angle of attack o

Magnus Moment Positive coefficient: Moment
2
(1/2) p Ve S d (%@_) 5 rotates nose Lto plane of o,

in direction of spin.
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LIST OF SYMBOLS (continued)

C - Magnus Force Negative coefficieng:: Force acts
N N 2 <.Ld> in direction of 90  rotation of
pe (/)2 N v 5 the positive lift force against
spin,
For most exterior ballistic uses, where & = q, B = - r, the definition

of the damping moment sum is equivalent to:

_ Damping Moment Positive coefficient: Moment
c,, +C = p .
M M& > qtd increases angular velocity.
L (1/2) p V sa(-v—>
_ Roll Damping Moment Negative coefficient: Moment
Cﬂp - 2 pd decreases rotational velocity.
(1/2) p Vv Sd<V>
CPN = center of pressure of the normal force, positive from
base to nose.
o B = angle of attack, side slip
2 2 1/2 -1
9 = (¢ +B7) "= sin ~ §, total angle of attack
KF = fast mode damping rate
negative A indicates damping
KS = slow mode damping rate
P = air density
ch" = fast mode frequency
(PS' = slow mode frequency
c.m. = center of mass
d = body diameter of projectile, reference length
d2 = cubic pitch damping moment coefficient
Ix = axial moment of inertia
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LIST OF SYMBOLS (continued)

Iy = transverse moment of inertia
KF = magnitude of the fast yaw mode
KS = magnitude of the slow yaw mode
£ = length of projectile
m = mass of projectile
M : = Mach number
P = roll rate
q, r = transverse angular velocities
3 | B L2
q = (@ +r17)
R = subscript denotes range value
s = dimensionless arc length along the trajectory
T d2
S = Fg—ou reference area
Sd = dynamic stability factor
Sg = gyroscopic stability factor
A% = velocity of projectile
Muzzle = launch velocity of projectile
v = aircraft velocity
A/C

Effective Squared Yaw Parameters

E m? ; mt

8 F S
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LIST OF SYMBOLS (continued)

2 ) 2

2 2 . 9K o K

Kp'+ Kg“ + TF F|- s|s

?r - ¥s

2 2

Kp” + 2 Kg

2 2
2 Kp“ + Kg

1 1 2 2

) 1

2 12 12 2
(_I_}g>(KF ¢p - Ks %)
I,,. 1 2 12
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Laboratory, ARRADCOM, ATTN: DRDAR-TSB, Aberdeen Proving Ground,
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for improving future reports.
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