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I. INTRODUCTION

While Grubbs1 discusses linear statistical regression and functional
relations in a general way in BRL Report No. 1842, Taylor agd Moore
explain in BRL Report No. 1986 the use of Scheffé's theorem” in providing
simultaneous confidence bounds for a polynomial in the set-up of a
general linear hypothesis model where the design matrix X is of full
rank. The aim of the first report was, as it appears, to provide an
introduction to the subject of linear regression and that of the second,
to make Scheffé's theorem3 accessible to the general reader in the set-
up of a nonsingular design matrix X. In this context, one may also
like to know how Scheffé's theorem could be used when the design matrix
is singular. This is important, since most of the Experimental Design
Models are characterized by singular matrices. In the perspective of
using Scheffé's theorem when the design matrix X is singular, it may
also be of interest to know how the basic results under the general
linear hypothesis model of full rank would extend to the situation
when the design matrix X is singular. With this objective in mind, some
of the relevant results which are very basic in the theory of singular
designs are brought together in this report paving the background with an
explanatory introduction to the solution of linear equations as related
to the concept of a generalized inverse (g-inverse).

II. THE GENERAL LINEAR HYPOTHESIS MODEL OF FULL RANK

A. Characterization of the Linear Model

Suppose a set of (p-1) mathematical variables, x X5 Xgs e, xp 1

are related to a random variable y which is observed with an unknown

random error € in the following manner,

y=80+81x1+32){2+....+8 (1)

p-lxp-l + €

1Grubbs, F. E., "Linear Statistical Regression and Functional
Relations,' Ballistic Research Lab Report No. 1842, AD #A018651,
1975.

2Taylor, M.S., and Moore, J.R., "Confidence Bounds for the General
Linear Model," Ballistic Research Lab Report No. 1986, 1977. (AD#A041035)

3Scheffé, H., "The Analysis of Variance," John Wiley § Sons, Inc.,
New York, 1959.




where Bj (j = 0,1,2,... p-1) are unknown parameters (constants). Equa-

tion (1), which is linear in the random variables, y and €, and the

.

arameters, Bn,Bqs +-+5 B , Tepresents a linear model. When all
ReRERRrtolh  Rigpley p-12 T°P

the observations are taken in accordance with this model, observing a
y for each set of the x's, the observational equations are expressible
in matrix notation as

y=XB+e . (2)

With n observations, y is an nxl column vector of the observed y's, -
X = (xij), (i = 1,28, smiy 1. = 0,1,2,...,p-1), is a known nxp matrix
with xij as its (i,j)th element; B is a pxl vector of unknown parameters,

Bj(j =0,1,2,...,p-1); € is an nxl vector of unobserved random errors,

o Ch= 1,255 prm sy s

When Rank (X) = p, we say that the model is of full rank. In the
analysis of such models we usually consider the following two cases con-
cerning the distribution of €.

Case 1y € is distributed normally with mean 0 and covariance

2 2 . . . '
c“I, ¢° > 0, where I is the nxn identity matrix. (These assumptions are

needed for tests of hypothesis and setting confidence bounds.)

Case 2: g_has an unknown distribution with mean 0 and covariance

2 .
0“1. (These assumptions are referred to as the "Least Squares" assumptions.)

B. Some of the Basic Results Relevant to the Full Rank Model

The normal equations to provide the least squares point estimate

é_of B are given by
(X'X)é_= X'y (3)
- =0 Xy . 4)

The equations to provide the maximum likelihood estimate of B for Case 1

will be the same. The least squares point estimate 02 of 62 (the same
for maximum likelihood estimate, when adjusted for bias) is given by

P - R @ =i ysxy - O

The estimates B and 02 are unbiased. That is E(B) = B, E(OZ) = 62,

where the symbol E stands for mathematical expectation. The least squares



A

estimate 2'B of 2'8, where % is any pxl vector of constants, is given by
&I_B_ = &l (X'X)—l XIX (6)

and the variance of %'S by

var (£'8) = o22r(xx) e . oo

In particular, &' may be any given observation vector (1, Xgs eoes xp_l).

Under the assumptions of Case 1, B has the multivariate normal distribu-

tion with mean B, and variance 025'1, where S = (X'X).

C. Estimation of a Parametric Function When the Design Matrix is Singular

When the design matrix X is of full rank, that is, when Rank (X) = p,
we can provide, as noted above, an estimate for each element of B, and

therefore, also an estimate &'S for L'B, for any pxl vector %. However,
when the design matrix X is not of full rank, that is, when Rank (X) = r,
r<p, implying that Rank (X'X) = r, we cannot provide unique solutions to
the normal equations (3). Unique solutions given in (4) require a
regular inverse of (X'X). Since (X'X) is not of full rank, we cannot
compute a regular inverse. None-the-less, the normal equations (3)

can still be solved, and some of the results given in the preceeding
section can still be obtained in analogous forms by using what is called
a generalized inverse (g-inverse or a pseudo-inverse) of the matrix
(X'X). In order to make this report self-contained, we provide in the
sequel an elementary introduction to the solution of numerical equations
as related to the concept of a '"generalized inverse" (g-inverse).

When the model is of less than the full rank, we can provide
unbiased estimates of some specific linear functions of the parameters.
Such functions are called estimable functions. This brings in the defi-
nition of estimability.

A linear parametric function, y = c'B = clsl + c282 + ...+ chP,
is said to be estimable, if and only if it has an unbiased linear estimate

Y. That is, there should exist an nxl vector a, such that E(y) =

E(a'y) = ¥, which in turn implies that a'X B = c'8, for all B. Hence,

c' should be of the form a'X which is a Tow vector in the row space of X.

D. Scheffé's Theorem

We note here again that all linear parametric functions are uniquely
estimable in the full rank model. In such a situation, we can think of

p independent linear functions of the parameters given as wl’ wz, =g wp’



forming what may be called a basis of the p-dimensional space L of the
parametric functions. Thus, in the full rank model under Case 1, Scheffé's
theorem on simultaneous confidence bounds will read as follows:

Theorem 1: The probability is 1-a (where o is the size of the
associated test of hypothesis) that the values of all parametric functions
¥ € L simultaneously satisfy the inequalities:

¢_30$<1p<1p+30{1;, (8)
where 32 = [pFa‘ " n_P], F denoting Snedecor's F distribution with p
and (n-p) degrees of freedom, and ¢7 is the estimated standard error of Y.

v
If one is interested in a set of q (q<p) independent parametric
functions, Y'= (hys oo es wY), g2 will change to [qF

the confidence interval shorter.

a; q, n_P], making

The likelihood ratio test which provides the simultaneous confidence
bounds (8) for y provides simultaneous bounds also on all linear

combinations of wi(i =1, 2, ..., q), L'y = ¢, where £ is any gx1

column vector of constants (see [3,8]). The corresponding theorem on
confidence bounds will then read as follows:

Theorem 2: The probability is 1-a (where o is the size of the
associated test of hypothesis) that the values of all possible linear
combinations, ¢, of the linear parametric functions simultaneously
satisfy the inequalities:

. S ~ < < A[ SAA
where S2 = [qF:. q n'p]-

In order to apply Scheffé's theorem in the context of a singular
model, we need the following introduction to the solution of a system
of linear equations as related to the concept and computation of the
generalized inverse (g-inverse) of a matrix.



ITI. ON THE SOLUTION OF A SYSTEM OF LINEAR EQUATIONS

A. Necessary Operations Required to Solve Linear Equations with a
Singular Coefficient Matrix.

A system of n linear equations in n unknowns may be written as
5. 9 | (10)

where the coefficient matrix A is an nxn matrix of known constants, X is
a nxl vector of the unknown variables, and Y is a vector of known constants.

When Rank (A) n, the solution of the equations is obtained as X = A_IX,

it

When Rank (A) = p<n, A-1 does not exist. But the system of equations may
still have a solution, when the equations are consistent. Solutions for
such a system of equations exist, when and only when Rank (A) = Rank Ay,
which, in turn, implies that y lies in the column space of A. This
provides, in fact, also the condition for consistency of the equations.

In the general situation, the matrix A need not be a square matrix.

Ax = 0 of equation (10) will be referred to as the homogeneous part
of the system. As we know, to solve a system of equations, any one
equation can be multiplied or divided by a constant (other than 0),
and that any two equations may be added, or one equation may be sub-
tracted from another without affecting the solutions. These operations
on the equations may be performed by the appropriate operations on the
rows of A and the corresponding elements of b4

By premultiplying a given matrix by what is called an elementary
matrix E, we can interchange any two rows, multiply a row by a non-zero
scalar, or replace the i th row by the sum of the i th row and ¢ times
the j th row. These elementary matrices are obtained from the identity
matrices of appropriate dimensions after performing corresponding opera-
tions on the identity matrices. Let us suppose that A is of dimension
3x3. The elementary matrices will then be obtained from the identity
matrix I, of dimension 3.

The elementary matrix E.., to interchange the first and second row
. . 12
of A will be given by

01 0
E12 =11 0 0
0 0 1

é12 is obtained by interchanging the first and the second Tow of I3'



The elementary matrix to multiply the second row of A by 3 will
be given by

1 0 O
E2(3) =10 3 0
0 01

E2(3) is obtained by multiplying the second row of 13 by 3.

The elementary matrix to replace the second row of A by the sum
of the second row and (-3) times the third row will be giver by

1 @ o
EZS(-S) = 0 1-3
0 01

Ezs(-Z) is obtained by replacing the second row of I, by the sum of the
second row and (-3) times the third row of 13.

If A is a pxp nonsingular matrix, we can reduce A to the identity
matrix Ip by a finite number (say, t) of row operations on A. That is,

By By -or BjA = 1)

= B, By nos B A

It is then observed that the product of the elementary matrices gives
the inverse of A, when A is nonsingular.

It may be pointed out that post-multiplication by the elementary
matrices E obtained from the column operations on the identity matrix
provides the corresponding column operations.

B. A Numerical Illustration of Solving a System of Linear Equations
by the Sweep-out Method.

Given below is a system of 3 linear equations in 4 variables.
Here, the associated coefficient matrix A has 3 rows and 4 columns.

10



(1). Equations: X) + 2%y + 3Xg + X, = 4
4x1 + sz + 6x3 + 2x4 =5
8x1 + 13x2 + 18x3 + 6x4 = 21
Homogeneous part Non-homogeneous part
X; + 2x2 + 3x3 X, = 0 ' E B E = 4
4x1 + 5x2 + 6x3 + 2x4 =0 N = e F = 5

n
o
I
N
=

8x1 + 13)(2 + 18x3 + 6x4

E32(-1)’ E31(-4)

2 1 = 4
4 2 = 5
0 0 0 = 0

Epr (-4)

[« T o

J

(72 N S ]

[}

W

1

N =

1] H
+

-11

o
o
o
o
1}
o

E,(-1)

2 1 = 4

3 6 2 = 11

0 0 0 = 0
E,(1/3)

2 3 = 4

o
N
~
w
[}

11/3

o
o
o
I
o

E;,(-2)
0 -1 -1/3 = -10/3
0 1 2 2/3 = 11/3
0 0 0 0 = 0

11



The method of elimination adopted above is sometimes referred to
in literature as the method of '"sweep-out.'" The method of ''sweep-out"
gives us a basis of the row space of A along with the solutions, if
solutions exist. Solutions will exist, if when a row is swept out
leaving 0's as its elements, the correspondlng element of y should also
go to 0 in the ''sweep-out' procedure. The '"sweep-out" procedure,there-
fore,gives us also a way of finding if the equations are consistent.

The third row has been swept out, retaining only two equations in
four variables. The first row could have been swept out, and the last
two rows raised above, retaining the same form of the reduced coefficient
matrix. The form is important. It may be “pointed out that other kinds
of row operations could also have been performed, retaining the same
form of the reduced coefficient matrix. Now, merely from an inspection
of the non-zero part of the reduced coefficnent matrix, it is possible
to find a solution vector of the homogeneous part, a vector that is

orthogonal to a row of the reduced matrix. Such solutions are indicated
below.

(2). Solutions of the Homogeneous Part

Solutions shown as columns

x ] T I
i h 0 =1 =B - -1 =1/8
Basis i : |
6 1 2 @B |2 2/3 |
[J—— — W - | -
Solns. i 12 N W gl 0
shown asﬁ 1 2 *
TOWS l— ':,? 'g 0 -1 0 -1 .
1 - —

(3). A Particular Solution of the Equations Ax =y

x; =[-10/3
Xy =1 11/3
Xz =} 0
Xy = 0

4= —

This comes from the nonhomogeneous part, and is obtained by adding two
zeros to the reduced part of the vector y. If there are four equations
in two variables, we can assign arbltrary values to two of the variables,
and solve uniquely for the remaining two variables. In this case, zero
values are assigned to the third and the fourth variables.

12



(4). General Solution

Particular Solution + General Solution from the homogeneous part

= = . B
X, = -10/3 - =1 N /=1/3 \
:I \
x, = 11/3 2 . 2/3°

+ A | ERE T Pl

Xz = 0 -1 | 0o
: i /

Xg= 0| i \ o / Cary

A, u being arbitrary scalars.

It should not be difficult to verify how all possible solutions are
included in the above general solution. Suppose we want to find the
values of X, and X, by assigning ) to Xxg, c, to Xy instead of 0's.

2
Each step taken in the elimination process shown above is

equivalent to an elementary row operation provided by premultiplication
with elementary matrices, Eij(c), Ei(k), etc. These elementary matrices

are indicated prior to the steps taken.

This solution will then be given by writing ) = ~Cy» and y = -¢

If necessary, a row of O's may be added to make the matrix A
square (i.e. 4x4). Correspondingly, the vector y may be made to
consist of 4 elements, with the fourth element as zero.

Writing B as the product of the elementary matrices required
to reduce A to the standard form, it is obtained as

B = Bpp(-2) Ej(1/3) By(-1) Epy(-4) Egp(-1) Egq(-4) I,

-5/3 2/3 0 0

4/3  -1/3 0 0

4 1 0

0 0 0 1

where A is of dimension 4x4.

13



One may also introduce "economy" in the number of row operations
or perform other row operations and get a different form for B. B has
been obtained the same way as a regular inverse of A is sometimes obtained,

when A is nonsingular. B = A-1 is unique, when A is nonsingular. But,

4
B is not unique, when A is singular. Other forms of B could be found
reducing A to the above standard form.

It may be verified that the particular solution, referred to
above, is given by By. In this case, the last column of B is redundant,
as it does not contribute to the solution. The last column of B has
a unity in the fourth row, while the rest of the elements are 0's, and
y has a 0 in the fourth row. Omitting the fourth column of B, the re-
maining 4x3 matrix can be taken as a g-inverse of A. Calling it B,

a solution for x is given by X = By.

Although B is not unique, the particular solution By has a unique

character. It should be evident that the values of Xy and X, come from

I 2 4
4 5 S
The values of Xy and X, are unique. If, for example, the first row were

swept out, retaining the second and the third rows, the values of X3 and
X, would have come from

X1 | ) 4 ) S
XZJ 8 13 21
The values of Xy and X, are the same as above. In both cases, Xz and

X, are assigned zero values. (This aspect of uniqueness of By is

referred to later in this report.)

C. The General Solution in a Compact Form

The general solution to the equations Ax = y can be written in a
compact form as

X = By + (H-I)z, (11)

where H = BA, and z is any arbitrary vector. The first part of the

4Banerjee, K.S., "Singularity in Hotelling's Weighing Designs and
a Generalized Inverse,'" Annals of Math. Stat, 37, 4, 1021-31
(1966) . (Correction note: Annals of Math. Stat., 40, 2, 719.)

14



solution, By, is what has been termed as the particular solution, while
the second component is derived from the homogeneous part. As Z is
arbitrary, the above solutions may also be expressed as By + (I-H)z. We
may adopt any one of these two forms. We provide below a derivation of
the compact form of the general solution by way of summarizing what has
been done under the ''sweep-out'" operations.

D. The Derivation of the General Solution

The second component of the general solution comes from the homogeneous
part. We recall that a matrix B exists such that BA = H where H is of a
particular form. That is,

Ag(_=0=>Hx=9‘

1 E=0 = The solutions are given by

H
| ,[:TEE_J (12)
n-p i

Any column in the column space of (12) is also a solution. That is,

is also a solution, where z, p is a vector of (n-p) elements. Also,

’ H Z
0.3 S e + 2 I s T H-I)z
!
(nmp)xpl “In p Zn-p

is a solution, where z is arbitrary. Introduction of Ep adds 0 to the
solution. It may be noted that this whole part merely adds 0 to the
R.H.S. of the equations, Ax = y.

The first component, By, of the general solution, called a
particular solution, comes as follows:

15



I. |H i 7
= __I_)__J__lg_ X = BX = -
N %
I “H X i ]
R e M) (B . [% (13)
{
L | 0 _-] iI'l-pJ | -O'n-P.

where the suffixes attached to the column vectors indicate their dimen-
sions. (13) implies that

% T Y - Mgk
Since we can assign arbitrary values to the elements of the vector x F

can set it to 0 to get a solution. This solution has been termed
the particular solution, being given by

X Y
_:E__ = _.:2__ = Bx.
- 9.

Combining the two together, we get the general solution in the above
form.

IV. GENERALIZED INVERSES

A. Introductory Remarks

It has been observed in the preceding sections that even when the
rank of the coefficient matrix A is less than the full, we can find
solutions to the system of equations, Ax = Y, when the equations are
consistent. It has also been observed ?hat_BX gives a solution, {a
particular one), which is a component part of the general solution.
Thus, B takes the place of the inverse of A, and may, therefore, be
taken as a pseudo-inverse or, more generally, as a generalized inverse

2

(g-inverse) of A. Some authors designate an inverse such as B as a con-

ditional inverse. There are, in fact, many other pseudo-inverses, or
generalized inverses (g-inverses) depending on the properties thece
inverses satisfy. All of these generalized inverses are not unique, as
we have shown for B.: Only one of these inverses, the one due to
Moore-Penrose, is unique. For this unique g-inverse, we shall reserve
the symbol "', while for other g-inverses, we shall use "-",

16
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The following is an introduction to g-inverses. The material for
: . : s 5 :
the first part of this discussion is drawn from Rao~, while that for the
second part from Greville.6 One may refer to these two references and

also to Price7, Graybill8 and Banerjee4 for details and further insight.

B. AG-inverse That is Not Unique. (See C. R. Raos)

Definition of gfinverse

A generalized inverse (or g-inverse) of a matrix A of order mxn is
a matrix of order nxm, denoted A , such that for any y for which
Ax = y is consistent, x = Ay is a solution.

Lemma 1. If A" is a g-inverse, then A A"A = A, and conversely.

Choose y as the ith column a; of A. Then, the equation Ax = 2y is
consistent, as_gi~lies in the column space of A. Hence, X =A a, is a
solution. That is, AA_gi =_§i, for all columns_gi of A, This implies
that A A A = A. Conversely, if A~ exists such that A A~ A = A, and
AX =y is consistent, then A A" Ax = Ax =y, or AA” y = y. Hence,

A-X_is a solution for Ax = y. Thus, A is, by definition, a g-inverse.

Lemma 2. Let A'A = H for a given g-inverse A~. Then

(a)., H2 = H; i.e., H is idempotent;
(b). AH = A.
2

Proof of (a): ATAA A=A A=H

e
n

Proof of (b): AH=AA A=A

5Rao, C.R., "A Note on a Generalized Inverse of a Matrix with Appli-

cations to Problems in Mathematical Statistics," J. Roy. Statist.
Soc., B, 24, 152-158, 1962,

6Greville, T.N.E., "The Pseudo Inverse of a Rectangular or Singular
Matrix and its Application to the Solution of Systems of Linear
Equations,' SIAM Review, Vol. 1, No. 1, pp. 38-43, Jan. 1959.

7Price, C. M., "The Matrix Pseudo Inverse and Minimal Variance
" Estimates,' SIAM Review, Vol. 6, No. 2, 115-20, 1964.

8Graybill, F. A., "Theory and Application of the Linear Model,"
Duxbury Press, Massacuusetts, 1976,

17



Lemma 3. A g-inverse exists for any matrix A, although it may not
be unique, and it can be constructed in such a way that it has A
itself as a g-inverse. In other words, it is possible to find A~ such
that A A" A=A, and that A" A A” = A™,

Given a matrix A of order mxn and rank s, there exist non-singular
matrices P and Q of orders m and n respectively, such that PAQ = 4, or

o = P‘IAQ'I, where

and Ds is a diagonal matrix of order s and rank s. Let us define
A" = QAP, where

This A~ satisfies

(a). AA A =A
(b). A" AA =A".
1
Remark: If, in particular, A is a symmetric matrix, then Q = P . It

may also be pointed out the matrix P or Q can be obtained as a product
of the elementary matrices introduced earlier,

Observation: 1In order that that A~ be unique, A" has to satisfy, it is

known6’7, the following two additional relationships:

(@.MAU'=AN

(d). (A'A)' = AT A,

C.  The Unique G-inverse (See T. N. E. Grevi11e6)

For any matrix A, there exists, as referred to above, a unique

g-inverse A+ such that
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| AA A =A
2. A+ A A+ = A+
3. (aah’ = aat
4, (AT A)' = A+ A

D. Unique G-inverse for Special Rectangular Matrices B and C

1. If any matrix B is of dimensions nxm, (m < n), and of rank m,

then BT is obtained as
t i t
BT = 8')" 18" . (14)

2. If any matrix C is of dimensions mxn (m < n), and of rank m,
then Cf is obtained as

.i-

¢ =c'echHt . - (15)

E. Left and Right Identity Matrices for any General Matrix A.

Let Rank (A) = r < m, and let B denote a matrix of r columns whose
columns form a basis for the column space of A. [In particular, B might
be formed by selecting r linearly independent columns of A.] Also, let
C be an r-rowed matrix whose rows form a basis for the row space of A.
[C may be formed by selecting r linearly independent rows of A.] The
g-inverses of B and C are given by (14) and (15) above. Then A has
a unique left identity IL and a unique right identity IR being given by
= il

IL = BB
= i
IR =C¢C,
such that ILA = A, and AIR ="A. The proof follows from the fact that

each column of A is a linear combination of the columns of B, and that
each row of A is a linear combination of the rows of C.

F, Existence of a Unique G-inverse of a General Matrix

1. An Observation: For any matrix A, there is a unique matrix

AT, which has its rows and columns in the row space and column space of
T

A , and also satisfies the equations,

T t
AA° =1 &
> @and AA-= IR'
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It can be verified that for B and C, the matrices B+ and CT satisfy the
above requirements.

2, A+ in General. To get A+ in general, we introduce the matrix
G being given by

c=8"ach.

From the above,
BGC=A.
It may be noted that G is of rank r. We finally define A+ as

At = ¢t Bt

(See Greville6 for uniqueness of AT.)

V. LINEAR HYPOTHESIS MODEL OF LESS THAN THE FULL RANK

A. The Problem of Estimation

The general linear hypothesis model introduced Zn equation (2) is
of full rank, where Rank (X) = p. The model will be said to be of less
than the full rank, when Rank (X) = r<p. Most of the problems in
Design of Experiments are characterized by models of less than the full
rank. Both under Case 1(permitting the maximum likeliihood estimation
procedure) and under Case 2(giving the least squares estimates) the normal
equations are obtained as

(x'x)é= X'y . (16)

Since Rank (X) = r, r<p, Rank of [X'X] is also r. Hence (X'X)—1 does
not exist, as X'X is of dimension pxp. However, we can still solve the
equations using the first g-inverse of X'X = S introduced earlier, and
express the general solution for @ as

B =8X'y + (I-H)z (17)
where H = §°S.

The least squares estimate 02 of 02, and the maximum likelihood

estimate 02 of 02 (adjusted for the bias) are the same, being given by

y'y - éfX Y] (18)

]
1
2]
I
I
I
L
1
=

where B represents any solution of equation (16) given above in (17).
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Since Rank (S) = r, it is not possible to provide a unique esti-
mate for each element of 8. However, it is possible to provide a best
(in the sense of minimum variance) and unbiased estimate of an estimable
linear function of the elements of B. It should be pointed out that all
possible linear functions of the elements of B are not estimable. If it
were so, every element of B would have been estimable. There are many
equivalent, necessary and sufficient, conditions that would make a linear
function of the parameters such as k B (where A is a row vector of
constants) estimable. We provide below a few of such necessary and suffi-
cient conditions. For further details, one may refer to Graybill8.

1
A linear combination of the parameters, A B, is estimable, if and
only if:

1
1. A 1is a row vector of X, or a linear combination of the row

]
vectors of X. In other words, A is in the row space of X.

2. The equations Sr = ) are consistent, where S = X'X. That is,

a solution r exists for the equations.

1 O | ] - -
3. A is of the form A = X\ H, where H = SS, and S~ is the first
g-inverse of S = X'X, that is, the g-inverse that satisfies only
the condition SS°S = S.

'A
B. On the Estimate, A B

Although the normal equatlons (16) will have 1nf1n1te1y many solu-
tions for B 1mp1y1ng that B is not un1que, the estimate A B of the

estimable function XA B is unique. Also, K B is unbiased, which can be
shown using the f1rst g-inverse which is more general than the unique
g-inverse.

1. Unbiased: E[A'B] = ER'(5X'y + (1-H)2)]

ELS X'y« 'A'm) z)

' -
E[r S X'X] + 0, since &f = X'H

L | v
A 8TX XB = A S7SB

AHB

=18 .
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2. Unique: Let Rank (X) = r. Let it be possible to rearrange the
columns of i with a corresponding rearrangement of thre elements of B

in such a manner that the first r columns of X, denoted Xq5 be independent.
Partitioning X as [X1:X2], we have

1 | [ g ] "
S g ks S111512] | & !_Xl %1%1
[X'X]g = |2T7°77272" | g =sg = |T7-Foo| |- Tl o
X,Xg : XX, Sy1 1555 Bp-r ! X2i L?zz
pu - -

1
where Rank (Sll) =T, Er denotes the first r elements of B, and Xlz)

1 =
the first r elements of X y. Application of the '"'sweep-out' procedure
would reduce the above equation to

~ 1
Is.7 rg T :
511 S120 | Bp Sl
SR T
| ! B o A
b _p°rJ =

Applying the sweep-out procedﬁre still further, we should have

i r il

T 811812 T8 510

0 1 0 '8 { 0

IR 4 LEP‘T - -

That is,

o 0 Ee B sty
iy R M8 ] 1141
___r _________ i = | et - ———
0! o : 0

f A -._EP-I‘_JI L - ir
rg - sT iy
= e { T S s ! (19)
Epr .

= t
Since Sli(xlzj is unique, the particular solution given in (19)

is unique.
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'A
Hence, the estimate A B reduces to
1A r ot ' . __
AB=2AS8SXy+2r(IH) z=2A8SXy

_ 1
where S X Y is the particular solution. The above reduces to A Sll(xly)

where x represents the first r elements of x . r 1l(le) is unique.

'A
C. Variance of the Estimate AB

1A v
V(A B) = V(A SXY)
L | - 2 - ! ' - -
= (A8 X XS MNd", since (S) =(8) =58
_ 2 t t ! 2
= (LSS S Ao = [AS (A S8) Jo
v ! { 2 v 2
=[AS (WH Jo© = (A s M) . (20)
1]
We have seen above that the estimate x B reduces to (A S1 x1 e
Hence, the variance of x B will reduce to
L. | ' L | tro 2
[y 817 X)) Oy 837 X)) o

S L I
Ay Sp1 %) X; 8y Ao

' —
(A{ Sli Ar)oz which is unique.

D. On the Estimate ;2 Which is Unique and Unbiased

While the normal equations (16) will provide infinitely many
solutions for B, the estimate 02 is unique, although it contains 8.
o~ is given by

A2 ] ~t ]
o =—?[XX‘§ X yl . (21)
In equatlon (21), B X y = (y X)B is unique, since (X_X)B is of the

form A B, where x is a combination of the row vectors of X and thus
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1 A

' vt
A B is estimable with a unique estimate AB=(yX)(XX) Xy. Hence
(21) reduces to

() Y [1-x7X1y

=WE%HW+QWLW§“[@+Q
= (== ) B'X (- XXX + 26 (T - 187X)XB + ' (1 - 57X )e]
= ()[R (XX - XXSXX)B + 26 (1 - x8X)XB + & (1 - x5°X') e}

The first component of the above expression is 0. If we take expec-
tation of the remaining terms, the second term will be 0. The expec-
tation of the third term which is a quadratic form in € with mean

0 and variance 021 will be equal to (by a well known theorem, see [8]).

ot
o2 Trace [I - X S X ]

1]

_ 1
02 (n - Trace X S X )

2

¢° (n - Trace S §7) = 02

(n - Trace H)

o® (n-1)

1l

A

; 2 2 "
Hence, the estimate o~ is unbiased.

E. Scheffé's Theorem

Scheffé's theorem as given in (8) will reduce, when Rank (X) = r, to

A A A

V- S <Y<Y Sy (22)

2
where S™ = [qFa; 4, n-r

¥
be noted. It should also be noted that ¥ is now of the form A B, where
! 1
A = X H. In the light of what has been provided in this section,
S _ ool 7
% = Q4S1A)o

], 9 £ r. The change of (n-p) to (n-r) should

1
In Design of Experiments, the function ¢ = A B is often required

to be of the form of a contrast, and we may be interested in all
possible contrasts which are mutually orthogonal.
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A contrast among the parameters is defined to be a linear function

of the parameters, § c.B., such that § c. =0,
S T 5 i
i=1 i=1

Two contrasts wl = f i? wz § d, B are said to be ortho-
i=1 i=1

gonal, if and only if g c.d. = 0.
f=1 * %

If we are interested in all possible contrasts which are mutually
orthogonal, q will change to (r-1), because we can only think of (r-1)
mutually othogonal contrasts from a space of rank r.

If a set of q linear functions AB, where A is of dimension qxp,

are individually estimable, their linear compound ¢ = % AB where 2
is a gx1 column vector of constants, will also be estimable. The

variance of ¢ will be given by

of =dla'n' s w'vl. (23)

Hence, we may also have an analog of the formula given in (9).

It may be noted that if one is interested in contrasts of the
type (B ), then one may use the confidence intervals given by

Tukey (see Scheffe3 and Graybill ), as such intervals would give shorter
lengths.
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F. An Illustration

We provide below a simple example illustrating the use of Scheffés
theorem as given in (22). The example is drawn from an experiment in which
it was desired to find the contributions of three factors represented by
Bl, 62 and 63. Y = XB is obtained as

XR = Y
Measurements
r i r -
1 1 1 7.8
By !
1 1 1 8.0
1 -1 0 62 0.8
L} -1 9_ L63 L0.4

The 4 x 3 design matrix X is of rank 2., Hence, n=4, r =2, p =3,

t
For the normal equations SB = X Y, we have

r A © .

‘e o Zni B 117.0

| . Al i

0 4 2{! B, . = 114.6
I ;

3 2 2 B 15.8

w
]
w
n
= O Bl
i
= B O
— o
[
=
o.
)
]
wn
]
7))
n
ol o
o —
]

The particular solution is obtained as

{4.25

é = B(X'Y) = {3.65

0
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]
An estimable parametric function will obviously be given by A = [1 0 3],
1] )
as it satisfied A = )\ H.

Hence, X'B = E.O %] 4.25
3.65
0

n
<>

4.25

A

Again, 02 is estimated by

1 1 [l I |
=== 0¥ ¥ = 3 %]

5 [125.64 - 125.54]

= .05 .
. _ u _ _ W2
Taking q = 2 and o = .05, we have qFa; q,n-r - qFa;Z,Z = 8" = 2x19.00
2 A |
= 38.00, S =6.16, and Var () = Var (A 'B) = o2A_ s-ha_ = o?/4.

r "11°r
'A
Substituting .05 for 02, we have, for Var (A B) = .0125. Hence the 95
percent confidence bounds are given by [4.25 & 6.16 (.11)] » (3.57, 4.93).

1 ]
In the above, A B is of the form Bl # 83/2. Depending on the
necessity, we could also work with the estimable functions, such as

82 = 81, 81 + 82 + 83, etc.
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