TECHNICAL REPORT ARLCD-TR-80002

TRIAMINOGUANIDINIUM ION IN
TRIAMINOGUANIDINIUM NITRATE BY THE
MINDO/3 SEMI-EMPIRICAL SCF-MO TREATMENT

ARTHUR J. BRACUTI
YVON P. CARIGNAN

JUNE 1980

U.S. ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND
LARGE CALIBER
WEAPON SYSTEMS LABORATORY
DOVER, NEW JERSEY

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other documentation.

Destroy this report when no longer needed. Do not return to the originator.

Any citation in this report to the names of commercial firms or commercially available products or services does not constitute official endorsement or approval of such commercial firms, products, or services by the United States Government.
MINDO/3 semi-empirical SCF-MO calculations on the triaminoguanidinium ion of triaminoguanidinium nitrate have provided information on the total energy, core-core repulsion energy, electronic energy, charge distribution, heat of formation, ionization potential, and dipole moment of the cation. The effect of rotation across the N-N bonds on the values of these parameters is presented. The configuration of the cation with the lowest total energy corresponds to the configuration determined by x-ray analysis on a crystal of triaminoguanidinium nitrate.
dinium nitrate and the energy barrier for the rotation of the three primary amino groups is of the order of 1.38 eV (31.8 Kcal).
ACKNOWLEDGMENT

The authors are grateful to Dr. T. Vladimiroff, of the Applied Sciences Division, LCWSL, ARRADCOM, for stimulating discussions.
TABLE OF CONTENTS

Introduction 1
Results 2
Discussion 2
Conclusions 2
References 4
Distribution List 10

TABLES

1 Sequence of rotations of the primary aminoguanidinium ion 5
2 Effect of rotation of the primary amino hydrogens on molecular parameters (MINDO/3 calculations) 6

FIGURES

1 Molecular configuration 1 and bond lengths for the triaminoguanidinium ion in the crystal of triaminoguanidinium nitrate 7
2 Molecular configuration 2 of the triaminoguanidinium ion after rotation of the N-N bonds by 180° 8
3 Variation of total energy of triaminoguanidinium ion with the angles of rotation 9
INTRODUCTION

Triaminoguanidinium nitrate (TAG·NO$_3$) should offer more than a passing interest on the basis of its nitrogen content alone. Compared to ammonium nitrate (35.0%N) or guanidinium nitrate (45.9%N), triaminoguanidinium nitrate contains 58.7% total nitrogen. In spite of this attractive feature, the interest in TAG·NO$_3$ has been limited so far mainly to its possible application in propellants technology.

The structure of this salt was recently established by x-ray diffractometry (ref 1) which revealed the fact that the carbon atom, three hydrogen atoms, and the six nitrogen atoms of the triaminoguanidinium (TAG+) ion lie in a mirror plane, while the primary amino hydrogens are reflected below and above this plane. A representation of the TAG+ ion structure found in the crystal of triaminoguanidinium nitrate is shown in figure 1.

Why the TAG+ ion in the crystal adopts this configuration in preference to others obtainable by simple rotation across the N-N bonds is a challenging question. Are the factors which determine this preference dictated mainly by the crystalline forces or by the directional forces associated with hydrogen bonds? Or is the configuration of figure 1 preferred over others (the 180° rotation across the N-N bonds shown in figure 2, for example) simply because of its lower total energy content? Basically, these questions relate to the charge distribution in the cation which, in turn, sets the magnitude of the energy barrier to rotation across the N-N bonds.

Considerations of this nature directs attention to the semi-empirical SCF-MO treatment, MINDO/3, which has been established (ref 2) as reliable in calculating energy, charge distribution, and other properties for the ground state of a large variety of molecular species. By means of MINDO/3 calculations (ref 3), the following treatment addresses the magnitude of the effect produced by the rotation across the three N-N bonds on the total energy of the cation. Since MINDO/3 can provide pertinent data on other properties for the ground state of the cation, these are also included in the results.
RESULTS

The input bond lengths and angles used for the MINDO/3 calculations are those obtained by the x-ray study (ref 1), including the corrections for thermal motion of the atoms assumed to be moving independently. To keep the optimized molecular geometry calculated by MINDO/3 as close as possible to the experimental x-ray geometry (fig. 1), a single optimization parameter was requested from the molecular geometry optimization program; specifically, the 120° N-C-N angle measured by x-ray. The calculated optimized geometry expanded this angle to 120.4° and values of charge distribution, electron density distribution, heat of formation (kcal/mole), ionization potential (eV), electronic energy (eV), core-core repulsion energy (eV), total energy (eV), and dipole moment (Debye) were obtained. Since the optimized geometry differs so slightly from the experimental (only of 0.4° in one angle while bond lengths and other angles are the same), it is reasonable to assign calculated values to the actual molecular geometry of the TAG+ ion in the crystal. Five other sets of data were obtained by rotating the primary amino hydrogens from their actual positions in the crystal structure (table 1). Because the H-N-H angles for the three sets of amino hydrogens are quite different (96.98°, 105.26°, 122.56°), the rotation performed with these hydrogens differs with their location in the cation.

The effect of the rotation operations on the calculated molecular parameters is shown in table 2. The variation of the total energy as a function of the rotation sequence is plotted in figure 3.

DISCUSSION

Within the constraints imposed on the TAG+ ion structure, which limits the energy optimization process to seeking its minimum through variation of a single angle, the core-core repulsion energy is lowest for the configuration corresponding to that observed from the x-ray analysis, (0° rotation, fig. 1). With rotation, this repulsion energy increases to a maximum (gain of 90 eV) at 180° rotation, corresponding to the configuration shown in figure 2. By contrast, the electronic energy decreases with rotation, reaching its minimum value at the 180° rotation angle. The net result, however, is that the total energy (the sum of core-core repulsion energy and electronic energy) for the ground state of the TAG+ ion is lower for configuration 1 (0° rotation) than for any other configuration obtained through rotation of the primary amino hydrogens (fig. 3). The energy barrier to rotation for all three sets of amino hydrogens is calculated to be 1.38 eV (31.8 Kcal) or 10.6
Kcal per NH$_2$ group. According to the MINDO/3 calculations, the
configuration adopted by the TAG$^+$ ion in the crystal of triamino-
guandinium nitrate is anticipated on the basis of minimum energy
criteria for stability.

Relaxing the constraints in the optimization process does not
invalidate this result. Instead of optimizing a single angle in
the structure, for example, if two bond lengths, one bond angle and
three twist angles are optimized simultaneously, the energy yielded
will be lower by approximately 23 Kcal for the x-ray structure
(configuration 1) than for any other configuration.

CONCLUSIONS

According to the MINDO/3 calculations, which treat the TAG$^+$
ion as if it were isolated in space and thus subjected to no
external force, the lowest energy configuration for this cation
corresponds to that in the crystal of triaminoguandinium nitrate
where external forces are known to operate. The combination of the
different forces or dynamic effects in the crystal, only serve to
produce local perturbations within the cation, resulting in devia-
tions from the expected C$_3$ symmetry. One interesting general
conclusion which could be drawn from this work is that the
triaminoguanidinium ion, irrespective of the nature of the anion,
would adopt the configuration observed in the nitrate salt simply
because of its inherently lower total energy content.
REFERENCES

3. Ibid, p 1294 (1975)

4. Calculations conducted on a CDC 6600 computer using the molecular geometry optimization program of M. J. S. Dewar, et al, QCPE No. 279, Indiana University, Bloomington, Indiana, April 1973,
Table 1. Sequence of rotations of the primary amino hydrogens in the triaminoguanidinium ion

<table>
<thead>
<tr>
<th>Position of hydrogen atoms(^1)</th>
<th>a(^4)</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 & 5</td>
<td>0°</td>
<td>48.49°</td>
<td>83.02°</td>
<td>48.49°</td>
<td>83.02°</td>
<td></td>
</tr>
<tr>
<td>8 & 9</td>
<td>0°</td>
<td>52.63°</td>
<td>74.74°</td>
<td>52.63°</td>
<td>74.74°</td>
<td></td>
</tr>
<tr>
<td>12 & 13</td>
<td>0°</td>
<td>61.28°</td>
<td>57.64°</td>
<td>61.28°</td>
<td>57.64°</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Refers to numbering in figure 1.

\(^2\) Rotation clockwise looking along the N-N bond in the direction of the hydrogen atoms.

\(^3\) The dotted lines through the circles refer to the plane of symmetry of the cation.

\(^4\) Corresponds to configuration 1, figure 1.
Table 2. Effect of rotation of the primary amino hydrogens on molecular parameter (MINDO/3 calculations)

<table>
<thead>
<tr>
<th>Rotation*</th>
<th>Heat of formation (Kcal/mole)</th>
<th>Ionization potential (eV)</th>
<th>Electronic energy (eV)</th>
<th>Core core repulsion energy (eV)</th>
<th>Total energy (eV)</th>
<th>Dipole moment (deby)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>236.81</td>
<td>14.274</td>
<td>-5953.875</td>
<td>+4549.925</td>
<td>-1403.951</td>
<td>0.0671</td>
</tr>
<tr>
<td>b</td>
<td>243.84</td>
<td>13.447</td>
<td>-5975.041</td>
<td>+4571.395</td>
<td>-1403.646</td>
<td>4.1406</td>
</tr>
<tr>
<td>c</td>
<td>268.595</td>
<td>13.531</td>
<td>-6033.434</td>
<td>+4630.861</td>
<td>-1402.573</td>
<td>4.2580</td>
</tr>
<tr>
<td>d</td>
<td>262.574</td>
<td>14.452</td>
<td>-6043.073</td>
<td>+4640.239</td>
<td>-1402.833</td>
<td>0.2801</td>
</tr>
<tr>
<td>e</td>
<td>268.595</td>
<td>13.521</td>
<td>-6033.434</td>
<td>+4630.861</td>
<td>-1402.572</td>
<td>4.2583</td>
</tr>
<tr>
<td>f</td>
<td>243.837</td>
<td>13.447</td>
<td>-5975.041</td>
<td>+4571.395</td>
<td>-1403.646</td>
<td>4.1406</td>
</tr>
</tbody>
</table>

*Letters a through f refer to the rotation angles given in table 1.
Figure 1. Molecular configuration and bond lengths for the triaminoguanidinium ion in the crystal of triaminoguanidinium nitrate.
Figure 2. Molecular configuration 2 of the triminoquatinium ion after rotation of the p-N bonds by 180°.
Figure 3. Variation of total energy of triaminoguanidinium ion with the angles of rotation.
DISTRIBUTION LIST

Commander
US Army Armament Research and Development Command
ATTN: DRDAR-LC
 DRDAR-LCA (8)
 DRDAR-LCE (5)
 DRDAR-LCM (2)
 DRDAR-PAD (2)
 DRDAR-TSS (5)
 DRDAR-LCA-G (15)

Dover, NJ 07801

Defense Technical Information Center (12)
Cameron Station
Alexandria, VA 22314

Director
Ballistic Research Laboratory
ARRADCOM
ATTN: DRDAR-BRL, Walter Meier
 DRDAR-TSB-S

Aberdeen Proving Ground, MD 21005

Commander
Armament Development & Test Center
ATTN: AFATL

Eglin Air Force Base, FL 32542

Commander
Naval Surface Weapons Center
Dahlgren, VA 22448

Commander
U.S. Army Missile Research and Development Command
ATTN: Technical Library

Redstone Arsenal, AL 35809

Weapon System Concept Team/CSL
ATTN: DRDAR-ACW

Aberdeen Proving Ground, MD 21010

Technical Library
ATTN: DRDAR-CLJ-L

Aberdeen Proving Ground, MD 21010
Benet Weapons Laboratory
Technical Library
ATTN: DRDAR-LCB-TL
Watervliet, NY 12189

Commander
U.S. Army Armament Materiel
 Readiness Command
ATTN: DRSAR-LEP-L
Rock Island, IL 61299

Director
U.S. Army TRADOC Systems
 Analysis Activity
ATTN: ATAA-SL (Tech Lib)
White Sands Missile Range, NM 88002

Commander
U.S. Army Materiel Systems
 Analysis Activity
ATTN: DRXSY-MP
Aberdeen Proving Ground, MD 21005