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INTRODUCTION

Triaminoguanidinium nitrate (TAG.N03) should offer more than a
passing interest on the basis of its nitrogen content alone. Com-
pared to ammonium nitrate (35.0%N) or guanidinium nitrate (45.9%N),
triaminoguanidinium nitrate contains 58.7% total nitrogen. In
spite of this attractive feature, the interest in TAG.NO has been
limited so far mainly to its possible application in propellants
technology.

The structure of this salt was recently established by x-ray
diffractometry (ref 1) which revealed the fact that the carbon
atom, three hydrogen atoms, and the six nitrogen atoms of the
triaminoguanidinium (TAG+) ion lie in a mirror plane, while the
primary amino hydrogens are reflected below and above this plane.
A representation of the TAG+ ion structure found in the crystal of
triaminoguanidinium nitrate is shown in figure 1.

Why the TAGt+ ion in the crystal adopts this configuration in
preference to others obtainable by simple rotation across the N-N
bonds is a challenging question. Are the factors which determine
this preference dictated mainly by the crystalline forces or by the
directional forces associated with hydrogen bonds? Or is the
configuration of figure 1 preferred over others (the 180° rotation
across the N-N bonds shown in figure 2, for example) simply because
of its lower total energy content? Basically, these questions
relate to the charge distribution in the cation which, in turn,
sets the magnitude of the energy barrier to rotation across the N-N
bonds.

Considerations of this nature directs attention to the semi-
empirical SCF~-MO treatment, MINDO/3, which has been established
(ref 2) as reliable in calculating energy, charge distribution, and
other properties for the ground state of a large variety of
molecular species. By means of MINDO/3 calculations (ref 3), the
following treatment addresses the magnitude of the effect produced
by the rotation across the three N-N bonds on the total emergy of
the cation. Since MINDO/3 can provide pertinent data on other
properties for the ground state of the cation, these are also
included in the results.



RESULTS

The input bond lengths and angles used for the MINDO/3 calcu-
lations are those obtained by the x-ray study (ref 1), including
the corrections for thermal motion of the atoms assumed to be
moving independently. To keep the optimized molecular geometry
calculated by MINDO/3 as close as possible to the experimental
x-ray geometry (fig. 1), a single optimization parameter was
requested from the molecular geometry optimization program; speci-
fically, the 120° N-C-N angle measured by x-ray. The calculated
optimized geometry expanded this angle to 120.4° and values of
charge distribution, electron density distribution, heat of forma-
tion (kcal/mole), ionization potential (eV), electronic energy
(eV), core-core repulsion energy (eV), total energy (eV), and
dipole moment (Debye) were obtained. Since the optimized geometry
differs so slightly from the experimental (only of 0.4° in one
angle while bond lengths and other angles are the same), it is
reasonable to assign calculated values to the actual molecular
geometry of the TAG+ ion in the crystal. Five other sets of data
were obtained by rotating the primary amino hydrogens from their
actual positions in the crystal structure (table 1). Because the
H-N-H angles for the three sets of amino hydrogens are quite dif-
ferent (96.98°, 105.26°, 122.56°), the rotation performed with
these hydrogens differs with their location in the cation.

The effect of the rotation operations on the calculated
molecular parameters is shown in table 2. The variation of the
total energy as a function of the rotation sequence is plotted in
figure 3.

DISCUSSION

Within the _ constraints imposed on the TAG+ ion structure,
which limits the energy optimization process to seeking its minimum
through variation of a single angle, the core-core repulsion energy
is lowest for the configuration corresponding to that observed from
the x-ray analysis, (0° rotation, fig. 1).’ With rotation, this
repulsion energy increases to a maximum (gain of 90 eV) at 180°
rotation, corresponding to the configuration shown in figure 2. By
contrast, the electronic energy decreases with rotation, reaching
its minimum value at the 180° rotation angle. The net result,
however, is that the total energy (the sum of core-core repulsion
energy and electronic energy) for the ground state of the TAG+ ion
is lower for configuration 1 (0° rotation) than for any other con-
figuration obtained through rotation of the primary amino hydrogens
(fig. 3). The energy barrier to rotation for all three sets of
amino hydrogens is calculated to be 1.38 eV (31.8 Kcal) or 10.6



Kcal per NH, group. According to the MINDO/3 calculations, the
configuration adopted by the TAGt+ ion in the crystal of triamino-
guandinium nitrate is anticipated on the basis of minimum energy
criteria for stability.

Relaxing the constraints in the optimization process does not
invalidate this result. Instead of optimizing a single angle in
the structure, for example, if two bond lengths, one bond angle and
three twist angles are optimized simultaneously, the energy yielded
will be lower by approximately 23 Kcal for the =x-ray structure
(configuration 1) than for any other configuration.

CONCLUSIONS

According to the MINDO/3 calculations, which treat the TAG+
ion as if it were isolated in space and thus subjected to no
external force, the lowest energy configuration for this cation
corresponds to that in the crystal of triaminoguandinium nitrate
where external forces are known to operate. The combination of the
different forces or dynamic effects in the crystal, only serve to
produce local perturbations within the cation, resulting in devia-
tions from the expected C3h symmetry. One interesting general
conclusion which could be drawn from this work is that the
triaminoguanidinium ion, irrespective of the nature of the anion,
would adopt the configuration observed in the nitrate salt simply
because of its inherently lower total energy content.
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