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LATTICE GAS MODELS FOR CHEMISORPTION ON STEPPED SURFACES*

P. Kleban
Department of Physics and Astronomy

University of Maine
Orono, Maine 04469

We consider the theory of chemisorption on stepped surfaces for systems

for which a lattice gas in thermodynamic equilibrium is an appropriate model.

Using statistical mechanics we demonstrate that by comparing LEED (Low Energy

Electron Diffraction) results for flat and stepped substrates one can determine

the change in adsorption energy at terrace edges. Thus one can answer the

important question of whether adatoms bind more or less strongly at this kind

of defect site. We also examine some new and interesting features of LEED

spot shapes and integrated intensity behavior for adsorption on stepped sub-

strates when the overlayer is partially disordered. In a companion paper, we

consider 0 on a certain stepped W(ll0) surface. We demonstrate there, via Monte

Carlo calculations, that the binding energy is less strong on either terrace

edge for this particular adsorbate, surface and defect.

I. Introduction

The detailed behavior of adsorption at steps is a question of fundamental

importance to surface physics. The growth kinetics and equilibrium shape of

crystals can be determined by whether adsorption occurs at step edges or on

the flat surface. Overlayer ordering can be strongly influenced by terraces

if domains of different azimuthal ordering are crystallographically equivalent

on the flat surface but distinguished by step edge direction. Reactions in

heterogeneous catalysis are often associated with "active sites" at defects, and

the reaction kinetics may be profoundly influenced by adsorption energies at

those sites.

*Supported in part by the Office of Naval Research and a Stauffer Chemical
Company grant of Research Corporation.
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In this paper we present a detailed theory of LEED results for certain

chemisorbed systems on stepped surfaces. We also show how information about

changes in adsorption energies at terrace edge sites may be extracted from

those results.

Section II presents a general theory of LEED scattering from overlayers

on stepped surfaces, including the effects of disorder in the overlayer when a

lattice gas model is appropriate. We consider the overlayer spot splitting and

integrated intensity in the kinematic (single-scattering) approximation and also

point out that qualitatively new LEED features may appear at low or high coverages.

Our general conclusions are illustrated with a model adsorption system

calculation at T = 0 in Section III. We consider the effects of the change in

edge site adsorption energy on overlayer LEED spot splitting and intensity as

a function of coverage.

In a companion paper , we apply the theory developed here to 0 on a certain

stepped W(11O) surface. Using experimental results and existing models for the

stepped and flat surface adsorption systems as input in a Monte Carlo calculation,

we show that the edge site adsorption energy is less strong at either terrace

edge than for the flat surface.

The lattice gas theory employed here makes use of the properties of thermo-

dynamic equilibrium. This has some important advantages in surface systems that

have not been fully exploited, especially in chemisorption studies. First,

properly chosen systems are characterized by only a few parameters. Since

there exist several well-developed methods for calculating thermodynamic

quantities, one can determine these parameters with considerable confidence.

For instance, in an adsorption system many observable effects, such as LEED

results, depend only on the adsorption energy and adatom-adatom (AA) interactions.

This is a consequence of the general fact that all kinetic effects are irrelevant

to equilibrium properties. This situation is especially advantageous when one

is dealing with a lattice gas model with finite range AA forces. There are only
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a few energy parameters in the problem, since the adatoms sit at discrete

sites and are only influenced by a few near neighbors. Second, although

equilibrium studies certainly cannot solve all the important questions in

surface physics, they can provide a secure starting place from which to attack

other more difficult problems in complicated systems. One such application of

equilibrium studies on a flat surface is demonstrated in the companion paper

on 0 on stepped W(llO), and we believe it will not be the last.

II. LEED Scattering from Overlayers on Stepped Surfaces

In this section we present a theory of LEED scattering from overlayers

on stepped surfaces. There have been several treatments of LEED scattering

from stepped surfaces2 , but to our knowledge none of them have considered the

effects due to partial ordering of the adlayer that we present below. Our

treatment uses the single scattering (kinematic) approximation throughout.

While multiple-scattering (dynamic) effects constitute a very important part

of the LEED signal, in certain cases they may be ignored when considering an

overlayer beam and a small angular region around it. Previous work has shown

that overlayer spot shapes and trends in the intensity, rather than their

absolute numerical values3, are well approximated by the single scattering

approximation.

Now consider a stepped surface. We assume that this surface is composed

of identical terraces, with equivalent points on neighboring terraces separated

by a fixed vector q, and that there are N s such terraces within the coherence

length E of the LEED apparatus. If k is the momentum transfer (scattering)

vector k k - k o (f) = incoming (scattered) electron wave vector,

Ik = I k 1) then the total scattering amplitude A(k) is

,977.11- T
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Here A.(k) is the amplitude due to the jth terrace, and q is a (real space)

vector connecting identical points on adjacent terraces. For monatomic height

steps and uniform terraces Z N s g. If the terraces are identical and we use

the single scattering approximation

N (2

In Eq (2) we have made the important assumption that the overlayer can be

described by a lattice gas model. This means the adatoms on a given terrace

sit on a fixed set of N equivalent sites Z, with occupation variable n. = 0(1)

for an unoccupied (occupied) site. These sites are at positions R with respect

to the origin of q. (Note that the location of these adatom sites with respect

to the substrate is irrelevant in the lattice gas picture). Some of the other

assumptions involved in using a lattice gas model are reviewed by Domany et al4.

In writing Eq. (2) we have ignored an overall multiplicative factor - the adatom

scattering cross-section - which is usually sufficiently slowly varying with

scattering angle to be taken constant, in the vicinity of any diffraction feature.

Now the LEED intensity for the beam k is just
Ns

In Eq. (3) the angular brackets denote an average over adlayer configurations.

We assume from this point on that the adlayer is in thermodynamic equilibrium,

which means that at a given temperature T and coverage e the average will be

determined by adatom-adatom (AA) forces and any variation in the adatom adsorption

energy e (AS force) due to the steps. Now in the case of strong chemlsorption,

e is generally several eV (for 01W, e - 5V). Further, e is mainly determined

by the few substrate atoms surrounding an adsorption site. Since the configuration

of neighbors is different for a site just below or just above a step, one expects

a change 8£ in adsorption energy there on the order of one eV, so that 6c >> kT.

_____ _____ ______________________I
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Hence terrace edge sites for which 6c > 0 will be the last to be occupied as the

coverage e is increased. On the other hand, sites for which 6e < 0 will be

occupied first, and can serve as nucleation sites for overlayer domains. This

distinction can have a strong effect on the 0 dependence of the LEED scattering,

which we examine in detail below. Such effects can then be used to determine

the sign of 6c from LEED results for a given stepped chemisorption system.

Now for many important adsorption systems the AA interactions are short

ranged5 . Since the adsorption sites immediately on either side of a step will

be either occupied or empty according to whether 6c Z 0, the only AA interactions

that can "cross" a step and influence the next terrace will be long range and

hence quite weak. Thus we assume that the statistical average in Eq(3) can be

taken independently on each terrace. Hence

j *Z

In Eqs. (4) and (5) the statistical average refers to a single terrace, and

the interterrace interference is expressed via

Ns

;-'j,I.L-(

This function is familiar from the simple diffraction grating. For Ns > 1 it

has peaks of height Ns2 and width 2w/Ns centered at x 0 0, ± 2n, ± 4n, and is

quite small in between. The peak area rapidly approaches 2iNs as Ns grows.

Eq (5) is a central result of our theory. Its first term refers to a

single terrace and is non-zero only if there is some degree of statistical

disorder of the adatoms. This term contains some new physics that to our

knowledge has not been examined previously. The second term in Eq (5) includes

the effects of interterrace interference via the function h. If one has a
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"complete" (perfect) adlayer then <1Pl > = I<P>I and the peaks in h express the

condition of constructive interference between steps. This gives rise to a

characteristic splitting of the LEED spots in the q direction from which the

average step width and height may be determined2 . If there is disorder in

the adlayer, the situation is more complicated. In general, the second or

"split" term in Eq(5) will be non-zero. In addition there will also be a con-

tribution to the LEED intensity from the first term, due to the disorder, that

refers to one terrace only and is not split. In what follows we consider the

influence of the two terms in Eq(5) on overlayer LEED spot splitting and integrated

intensity. As we will see, the sign of 6e (the change in adsorption energy at

terrace edge sites) plays an important role in these effects.

It is interesting to compare Eq(5) with the van Hove expression for thermal

neutron scattering.6 The first term in Eq(5) corresponds to the incoherent

neutron scattering cross-section and p corresponds to the (spin dependent) neutron-

single nucleus scattering length.

We now consider uniform terraces that are long compared to their width.

Then we need only consider two 6c, on either long edge. In general, for small

widths and attractive 6 on one or both edges, one would expect most adatoms to

be "frozen" in a single ordered configuration as long as 6 and T are not too

large (i.e. for T < Tc, where Tc = ordering temperature on the flat surface and

e < e c where 6c is the coverage of a "complete" ordered overlayer on the flat
surface). In this case the second term in Eq(5) will be more important

and splitting may be observed. The first term, which is a measure of adlayer

disorder, will in general be relatively small. If both edges are repulsive,

the situation Is more complicated. Then for B < ec , one can have "floating"

regions of ordered adlayer, with a randomn phase relation so that I<Pk> a 0

and there will be little or no splitting. As 8 grows, there are two possibilities.

* I If the terrace width is commensurate with an integral number of adlayer unit

meshes the overlayer "locks in" to a single ordered arrangement so that 1<p <IP >

!M
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and the spot is split. If the width is incommensurate with an integral number
2

of adlayer unit meshes, one can have L<p>I 0 even for e c. On a real

surface one expects a distribution of terrace widths so that a combination of

both these possibilities will occur. These various cases are illustrated by

our model in Section III.

It is also instructive to consider the limit of Eq(5) for infinite terrace

width. In this case the number of sites N - -, and the number of terraces Ns -* 1

as the width approaches the LEED coherence length E. When this happens, the

interterrace interference function h - 1 and the right hand side of Eq(5) reduces
2

to < Ipi >, which is the proper limit. For N - -, this function will be

independent of 6c except in certain special cases. Note also that as N grows,
2 2 2 2

< 1p, > + 0 (N2 ),I<p> - O(N 2), and< Ip, > _ VP>I o NTy, where X is the

subceptibility of <p(k)> to a field coupling to p(k). One has X = O(1), but

X may become large near an incipient phase transition (a true phase transition

cannot occur in a two dimensional system with finite range forces). Hence for N

large but not infinite the first term in Eq(5) may become important.

Because of finite instrumental response function effects, an important

quantity for comparison with LEED experiments is the integrated intensity

a ' TUE ) J(k o) Lt7)
CTL

where a and b are unit mesh vectors and the integral extends over an area a in

reciprocal space around the overlayer diffraction beam. a is defined by in-

strumental parameters and beam energy. It is apparent from Eq(5) that even if
2

j<p>J is sizable its contribution to I may be relatively small, depending on a
2

and the shape of I<p(k)>I as a function of k. For instance, suppose
2

I<p>l2  constant. Then since

___
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there is a tendency for the two contributions of V<P> to * to cancel. To

understand this point in more detail let k. define an adlayer beam and i be
2

a unit vector parallel to the projection of q onto a terrace. Then, if l<P( )>I
A

constant for k in the range ko ± iT i and if there is a maximum of h at x = k 0-2, the
2 . g

contribution of I<p>I to will be small if the integrated intensity is

measured over this range of k values. Notice that for Ns reasonably large

(>2 or 3) and for sufficiently wide terraces, the peaks in h will be quite

narrow (Ak Z -Ng). Hence h will act like a delta function in the 2 direction

and its affect on-: will be to single out one k value. Further, one expects
2

I<p(k)>! to "spread out" as a function of k for g small enough. Hence it

may happen that the LEED instrument response function is such that the net
2

contribution of I<p> to -is small. This in fact occurs in the model calcula-

tion for O/stepped W(ll0) reported in the companion paper.
1

There is an interesting possibility of new LEED features appearing in the

stepped chemisorption systems we are considering. Suppose Se < o for a certain

edge. Then the sites along that edge will fill up first, while all others on

the terrace remain empty. Since the substrate configuration is quite different

at the edge than elsewhere in the terrace, one would expect the adatom-adatom

(AA) interactions to be different as well. If the AA edge energies favor a

particular one-dimensional order and the temperature is not too large, new LEED

spots will appear. If one edge has 6c < o and the terrace is D sites wide,

these spots will reach a maximum intensity for some coverage o < 0 < -. The spots

will be streaked in the direction perpendicular to the step edge, since they

are due to one-dimensional order. There should also be a spot splitting in

this direction due to the fixed phase relation between edge sites. If the

terraces are randomnly distributed in the direction parallel to the step edge,

there will be no splitting in that direction. For a repulsive edge (de>o) similar

effects can occur for coverages I - < 8 < 1. Note that the two terrace edges

are different, hence one can have two new sets of AA interactions. The

-----....... _F



corresponding LEED features will occur simultaneously at low 0 if both ft<o,

at high 0 if both ft>o, or separately at low and high 0, if 6e<o for one edge

and 6E>o for the other. To our knowledge such LEED features have neither been

predicted nor observed previously, and we urge that experiments be done to

confirm these ideas.

III. Model Calculation

We illustrate the general points made above with a model calculation at

T = 0. Consider a square lattice of adsorption sites with terraces of width

D sites in the [1,0 direction and length L sites in the [0,1] direction.

Suppose the adatom-adatom (AA) interactions are such that (2X1) adlayer ordering

occurs. The "perfect" (complete) overlayer has an adatom occupying every

other site in the [1,0] direction, and every filled site is part of a filled

row in the [0,l] direction. A simple (but not unique!) set of AA interactions

giving rise to this type of order is nearest neighbor attraction on the [0,1]

direction along with nearest neighbor repulsion and second neighbor attraction

on the [1,0] direction.

We restrict ourselves to T = 0 to be able to calculate analytically. In

general, we expect the conclusions we draw at T = o will be valid for a con-

siderable range of finite temperatures. This expectation is born out by the

results for our finite temperature calculation for 0 on stepped W(110) in the

Icompanion paper . There may well be more subtle effects near incipient phase

transitions, but we are not concerned with them here.

We now consider several aspects of the LEED scattering predicted by our

model at T = 0. The features of interest are (i) the behavior of the quantities
2 2

<IP, > and I<p>l and the LEED intensity I vs. coverage B for the overlayer beam,

(ii) LEED spot splitting effects and (iii) the relative size of the contributions
2 2

of <lPi > and I<P>I (cf. Eq(5)) to the integrated LEED intensity • at certain 0

values. There are three possibilities for the change in adsorption energy at

-WNW--- .I
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terrace edge sites: (a) both 6c>o (both edges less attractive than the terrace)

which we denote ++, (b) both SE<o (both edges more attractive than the terrace,

denoted --, and (c) one edge with 6c>o and one with 6e<o, denoted +-. Further

we distinguish in each case whether D is even or odd since this difference can

be significant. We make no assumptions here about AA interactions along the

edges and therefore do not consider the possibility of new LEED spots mentioned

at the end of Section II.

Now let a (b) be a vector between neighboring adsorption sites in the

[1,0] ( [0,1] ) direction. A (2xl) overlayer beam may be defined by k s, where

= 7r, ko-b = 0. If the experiment is set up so that ko-q = (2 n+l)r, n = integer,

the second term in Eq(5) will not contribute to the intensity of the overlayer

beam I(k ). When considering splitting we will also be interested in a nearby
-o

beam k chosen to coincide with a maximum of h in Eq(5), ko = + Ak.2 = ±.

There is a third overlayer beam defined by k = ko' that is of interest; for this
beam (Ns  ) = N . One can always find such a k vector since o<h<N 2 This

beam is useful in discussing the intensity I since by Eq(5)

1(') N Ifst>rsj~) > (cj)

The last equality holds because the statistical average is independent of the

component of k perpendicular to the terrace.

Now we consider case (a), ++, for D = odd. At low 0, there is considerable
2

cancellation in I<p(kio)> I , since the (2xl) domains may nucleate anywhere except

at an edge site. The maximum value of this quantity comes at em = 1/2 Y < 1/2.
2 2

> will be larger than J<p>12 at low e, but will also reach a maximum with
2

the same value as I<p(ko)> at em . This may be seen easily by finding the state(s)

of minimum energy at each 0. Note that the maximum LEED intensity for a flat

surface (2xl) overlayer comes at e = 1/2. Now I(ko) will go to zero at em, but

-oL



I(ko') will have a maximum there. Since em = 1/2 -1for the ++

D = odd case, the maximum in I(ko') is shifted to lower coverage values than

for the flat surface. This is simply a consequence of the fact that less

adsorption sites are available, which implies a "complete" adlayer forms at

a lower a value. By our arguments in Section II, one can expect similar results

for the integrated intensity -if the integration area ,is properly chosen,
2

since the contribution of I<p>! may be quite small. This is confirmed in the

companion paper

For 0 = m one has

Hence, using g Da, one finds

Since I(k) = 0, the overlayer spot is strongly split (for a real system various

effects that we are ignoring such as multiple and diffuse scattering will make

I(k) > 0). If one calculates the integrated intensity

rk) 4 IT/ -T1

r

2where the integral is along a line including ko and one finds that the <1P1 >

term in Eq(5) contributes about 5/4 of the total integrated intensity for D - .
2-

For case (a), ++ and D = even the behavior of <Ip(ko)I >is similar to
that above, except that its maximum is at em = 1/2 2D , further below 1/2

2

than for the D = odd case. I<p(ko)>I, however, goes to zero at em due to

phase cancellation effects. Thus both I(ko) and I(k') show maximum at 0 = em.

At this coverage, one finds

) > I



Hence ( " b (i)2/z.

- isi + (Is)
so that

Iy (~)- 4 Ns~
- (,D-4 /2.)

if we take D = 10, PI= 5. Therefore the overlayer spot is not split. De-
2

fining - as in Eq(12) one finds that the contribution of the k<p>I term in I(k)
2

is about 10% and the V<P>I h term about 2% of the total.

For case (b), -- and D = even, there is only one overlayer arrangement*2 2

possible at low T and <Ip(k)1'-> = (<p(k)> for all k. Also, < p(%o) ( >is very

small due to phase cancellation effects. For D = odd, the maximum in either

term comes at em -M I/2 Dl = 1/2 + 1 . On a real surface with both 6E<o one

would expect a mixture of odd and even width terraces. Hence the maximum in

I(k o) or will occur for coverages abnve the flat surface value of 1/2.

For case (c), +-, there is again only one overlayer arrangement possible,
2 

2

so <IP[ > = I<p>J . For D = even the maximum comes at em = 1/2, for D = odd

aam = 1/2 0- 1/2 2D
Notice that one can distinguish between the three cases, ++, -- and +-

(both edges less attractive, more attractive, or one of each) by simply looking

at the coverage em at which the observable quantity I(k ') peaks vs. the flat

surface value (0 1/2 here). Assuming an even mixture of odd and even terrace

widths one finds

V' -- -/4 -4--



For D 10 which is achievable by cutting crystals at an angle, the difference

between these three cases is easily within the resolution of Auger spectroscopy.

Thus one can determine whether terrace edge sites adsorption energies are

greater or less than on the terrace by looking at changes in the coverage de-

pendence of appropriately chosen LEED features. Note that em is respectively

less than, greater than or close to the flat surface value depending on whether

there are effectively fewer, more, or the same number of adsorption sites

available on the stepped surface than the flat surface. Thus we expect the

shift induced by the changes in adsorption energy on the stepped surface to be

a very general effect, determined only by the sign of the two 6c and not

specific to the model calculation presented here. Further consequences of this

argument for theory and experiment are explored in the companion paper
I .
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