AD-A086 006

UNCLASSIFIED

GEORGE WASHINGTON UNIV WASHINGTON O C SCHOOL !Nl-!"c Fll 13/13
A COMPARATIVE STUDY ON THE ELASTIC=PLASTIC COLLAPSE STRENGTH OF=-ETC (1)

FEB 80 R KAO NOOOL8=7S~C=0986
N




|||" |0 02

:':: ﬂjf fl22

L 5 1
= e
22 s o

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

| ———




A COMPARATIVE STUDY ON THL ELASTIC-
v ’ : THE
i
i
{
§

:Q GEORGE

i ,.j INITIALLY IMPERFECT DEEP WASHINGTON
1 - . = UNIVERSITY
Yy

gLASTIC COLLAPSE STRENGTH OF

SPHERICAL SHELLS ’
P

STUDENTS FACULTY STUDY R
ESEARCH DEVELOPMENT FUT
URE CAREER CREATIVITY CC
"« MMUNITY LEADERSHIP TECK
U NOLOGY FRONTIZSNSIGN
ENGINEERING APPIEARRERFNC
 GEORGE 1’, -+ N
., S‘ .

=
A N
|
-
-
()
<C

SCHOOL OF ENGINEERING
AND APPLIED SCIENCE

M



(- A GOMPARATIVE STUDY ON THE ELASTIC-
o PLASTIC COLLAPSE STRENGTH OF
“lNITIALLY IMPERFECT DEEP
- SPHERICAL SHELLS)

;1- 41 ,Robert‘K;;Lz . j!/ . {

~d
. <.

Sponsored by
Office of Naval Research

Arlington, Virginia 22217

| Contract Number
| & T

< \
i Np9g14-75-C-0946 |

. PP

7/ { Feb et 1986°

School of Engineering and Applied Science

The George Washington University

Washington, D, C. 20052

VA
-——i L




A COMPARATIVE STUDY ON THE ELASTIC-PLASTIC COLLAPSE STRENGTH

; OF INITIALLY IMPERFECT DEEP SPHERICAL SHELLS1

|

i By - S
| = NG

i Robert Kao 3 ,B‘UJJ

: | February 1980
i

1 The research reported on here was supported by the
Office of Naval Research, Contract Number
NAVY 00014-75-C-0946




ABSTRACT

g§/l\ finite-difference method for the large deformation elastic-
plastic analysis of spherical caps is applied to predict the col-
lapse strength of initially imperfect deep spherical shells.
Twelve uniformly loaded hemispherical shell models with flat
spots at their apex are analyzed. For each model, a number of
shallow spherical regionsjcontaining the flat spot are selected
from its domain. One of these selected shallow regions yields a
minimum buckling pressure; this minimum value is taken as the ~
theoretical buckling load for the shell model under consideration.
Present solutions are in good agreement with existing experimental
and empiricel results. The good comparison suggests that initially
imperfect deep spherical shells may be analyzed by using a much
simpler mathematical model - the spherical cap, and thus the
analytical cost may be greétly reduced. This also demonstrates
that the collapse of imperfect spherical shells is primarily a
local phenomenon and therefore dependent on local geometry. Con-
sequently, the presence of initial imperfections must be fully
taken into consideration in any large deformation inelastic
buckling analysis before such analysis can be expected to quan-

titatively predict the collapse strength of practical shell

structures/.?\
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INTRODUCTION

Buckling analysis of spherical shell structures has received
considerable attention in the literature. This may be attributed
to the fact that the use of spherical shells to resist uniform
external hydrostatic pressure has increased rapidly in recent
years. This increased use results from the introduction of mis-
siles and other spacecrafts and also from the growing interest in
hydrospace.

Timoshenko [1] summarized the classical small deflection
theory for the elastic buckling of a complete spherical shell.
Unfortunately, earlier tests conducted in Ref. {2] provided only
one-fourth of the collapse strength predicted by the classical
buckling theory. The huge discrepancy existed between the theory
and the test is traceable. The test specimens used in Ref. [2]
were formed from flat plates, which inevitable introduced
significant departures from sphericity as well as variations in
thickness and residual stresses. Since the initial imperfection
among these adverse factors introduced has been assumed to be the
primary source that affects the collapse strength of shell struc-
tures [3-6], the discrepancy is consequential and their comparison
is inappropriate.

To eliminate or at least partially reduce the adverse effect

from flat plates, a series of nearly perfect machined shells were

made in Refs. [7-9]. The test results showed their collapse




strength was nearly 90% of the classical buckling pressure.
These tests not only provide a strong support to the classical
small deflection buckling theory of initially perfect spherical
shells, but indicate that the initial imperfection does play a
significant role in reducing shell load-carrying capacity.

In view of the practicality, it is very difficult, if not
impossible, to manufacture or measure most spherical shells with
sufficient accuracy to justify the use of classical shell
buckling formulas in design. It thus becomes evident that we
should consider the unevenness factors in the shell buckling
analysis. Since most contributions to the unevenness factors,
such as variation in thickness, residual stress, boundary con-
ditions, etc. may be, at least on occasions, are fairly well con-
trolable, the effect of initial departures from sphericity
appears most worthy of investigation.

In connection with this investigation, the large deflection
elastic buckling analysis was performed in Ref. [5] for complete
spherical shells with a dimple type of initial imperfections.
Focused only on shallow spherical portions of these complete
shells, numerical solutions of these modified shell structures
[6] compare quite satisfactorily with those of ([5].

The comparison by itself prompts a basic assumption that the
collapse of initially imperfect shell structures is primarily a
local phenomenon and therefore critically dependent on local
geometry.

For the purpose of the same investigation with an extension




to include both elastic and inelastic behavior, 62 machined
hemispherical shell models with local thin spots and flat spots
and subjected to uniform external hydrostatic pressure were
tested in Ref. [3]. Based on the classical buckling equation,
empirical formulas were also proposed in the same reference,
using local geometry rather than nominal shell dimensions to
account for the effect of initial imperfections on the collapse
strength. Buckling loads obtained from both experiments and
empirical formulas are in good agreement. This good agreement
lends a strong support to the validity of the aforementioned
basic assumption.

By adopting the same basic assumption, the computer program
developed in Ref. [4] for the large deformation elastic-plastic
buckling analysis of spherical caps is utilized in this report
to predict the collapse strength of those hemispherical shells
with flat spots in Ref., [3]. The present analysis has following
purposes. First, through a comparison of present analytical
solutions with empirical and test results of [3], it is intended
to varify the validity of the computer code developed in Ref.
[4]. Secondly, it is attempted to illustrate the degree of
reliability of the spherical cap theory when it is applied to
predict the collapse strength of initially imperfect deep spher-
ical shells in both elastic and inelastic behavior. Finally, we
also intend to demonstrate the usefulness of the spherical cap
theory by its applications. The final purpose is, in effect, to
justify the efforts of numerous research activities as have been

done so far for the development of the shallow spherical shell

theory.




LARGE DEFORMATION ELASTIC-PLASTIC THIN SPHERICAL CAP THEORY

Governing Equations

As mentioned in the previous Section, the large deformation
elastic-plastic thin shallow spherical shell theory [4] is
utilized in this paper to predict the collapse strength of
initially imperfect deep spherical shells. A shell is called
"thin" if the ratio of its thickness to the radius of curvature
of its middle surface is much less than unity; and a spherical
shell is called "shallow" if its rise at the center is less
than, say, one-eight of its base diameter.

The geometry of a clamped spherical cap is shown in
Fig. 1(a), in which H is the central height, R the shell radius
to the midsurface of the shell, a the base radius, and h the
shell thickness; W(r) and U(r) are displacement components
along normal and tangential directions, respectively, and
Wi(r) is the initial imperfection; q is the applied uniform
pressure. Also shown in Fig. 1(b) are membrane forces Nr and
Ne, the transverse shear Qr and moments Mr and Me.

In view of the axisymmetric nature of the problem encoun-
tered here (Fig. 1), we need only consider the situation along
a generic radius. Governing equations of this problem have
been derived in a great detail in Ref. [4], only a summary of

these equations will be given here. For convenience, let's

first introduce following nondimensional quantities:




X = r/a m4 = lZ(l-vz)
AZ = mzaZ/Rh q = 4Eh2/R2m2
cr
()" = 23( )/x p = q/qcr
- 2 - W
u = a U/h W, = wi/h
w = W/h

where [ is Young's modulus, v is Poisson's ratio, and Ay is
the classical buckling pressure of a complete sphere of the
same radius of curvature and thickness; X is a spherical cap
geometric parameter.

Governing equations in terms of these nondimensional

gquantities are written as follows:
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where z is the vertical coordinate through the shell thickness

(Fig. 1b).
Boundary condition at outer edge of the spherical cap is

assumed to be clamped which requires: u(l) = w(l)

i
=
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=

Due to symmetry at apex, we also have u(0) = w'(0)

Constitutive Equations of Plasticity

The flow rule of von Mises and the Ziegler-Prager kinematic
hardening rule are selected to describe the inelastic material
property in this study. This selection has the advantage that
the Bauschinger effect is properly accounted for. In the in-
cremental solution procedure for elastic-plastic problems, it is
required to define constitutive relations and loading criteria.

To begin with, let's discuss loading criteria. For this

purpose, it needs to introduce f = (af/aoij) d o. where f = 0

ij°’

is the yield surface, o is stress vector, and %5 is the

ij
position vector of the yield surface center C which before

plastic deformation takes place is located at the origin. For

the case of plane stress (Fig. 2), f takes the form




where oy is the yield :tress in uniaxial tension and Fl =

o Ays Oy = 0y = Ay Loading, unloading and neutral loading

1
arc associated with the plastic state f = 0, and are character-
ized by f > 0, £ < 0 and f = 0, respectively.

For a shell deforming into a plastic range, the total

strain in a point within the thickness can be considered as a

combination of its elastic and plastic components:
{e} = {e®) + (&P} (7)

When loading or neutral loading takes place, stress in-
crements are simply expressed in terms of total strain incre-

ments [4] as follows:

Aol C11 C12 Ae1
= (8)
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Expression for D implies that its value is equal to the slope
of the uniaxial stress-plastic strain curve.

Figure 3 shows three types of hardening, the D value
associated with each of them may be given here: (i) for an
clastic-ideally pla.tic material, D = 0, (ii) for a lincar
hardening material, D = EEt/(E-Et), where Et is the tangent
modulus, (iii)} for the case of nonlinear hardening, thec expres-
sion of D, which is obhtained on the basis of the Ramberg-
Osgood representation for a uniaxial nonlinear stress-strain
curve, is omitted here. Because of requiring a rather lengthy
interpretation, readers are referred to Ref. [4] for this ex-
pression.

For a material point whose stresses are still in an elastic

range or in an unloading situation, Hook's Law should be applied:

e
Aoy i E [1 v] Aey )
Aoz 1-v v 1 Ae2

Solution Procedure

For convenience, a simple flow chart is sketched in Fig. 4
to explain the general solution procedure. The entire process
is divided into two major loops, namely, the elastic solution
and material property loops.

In the elastic solution loop, all material properties are

held constant, the effective plast.c loads q? are fixed and

combined with the applied load q. The problem is thus reduced




- 10 -

to an elastic large deformation problem. The solution plan to
this problem is to superpose a finite-difference mesh on the
onc-dimensional shell domain, replace nonlinecar differential
equations by a set of two nonlinear algebraic finite-difference
cquations, and solve the resulting set of equations by the non-
linear relaxation method [10].

In the material property loop, effective plastic load
terms are updated so that their values correspond to the com-
puted state of stress and to the specified nonlinear stress-
strain rclation at all points over the shell surface and through-
out the shell thickness.

Iterations keep going back and forth on these two loops
until the specified material property and equilibrium equations
are simultaneously satisfied. For more detailed information
on the solution procedure outlined here, readers are referred

to Ref. [4].



MPIRICAL FORMULAS FOR THE COLLAPSE STRENGTH OF IMPERFECT DELP

SPHERICAL SHELLS

Based on many experimental results, Krenzke and Kiernan
{3] proposed empirical formulas for the calculation of the col-
lapse strength of initially imperfect spherical shells. These
equations are essentially the modifications of the classical
buckling equation for a complete spherical shell [1], taking
into account the limitations of realistic fabrication techniques
and the effects of initial departures from sphericity and
thickness variations on the elastic or inelastic collapse
strength.

For convenience, we shall first list the classical buckling
equation of a complete sphere and empirical formulas for the
clastic and inelastic collapse strength of near-perfect
spherical shells. By assuming v = 0.3, these equations of

interest are given as follows:

a., = 1.21 E(h/R)* (10)
a; = 0.7 q_. = 0.84 E(h/Ry)? (11)
ap = 0.84VE_E, (h/Ry)> (12)

where R0 is the outer radius of the sphere. Equation (16) is

the classical buckling equation of a complete spherical shell

as already given in Eq. (1) (R in this equation is the radius




to the midsurface of the shell).

Considering the difficulty involved in manufacturing or
measuring most spherical shells with sufficient accuracy to
justify the use of the classical equation in design, it is
suggested in Ref. [3] that Eq. (10) be replaced by Eq. (11)
tor calculating the buckling strength of near perfect spheres.
Eventually Lq. (11) states that near-perfect spheres collapse
at about 0.7 times the classical strength.

A similar formula, Eq. (12), is also proposed for predicting
the inelastic buckling strength of near-perfect spheres. The
sccant and tangent moduli used in Eq. (12) are derived from the
typical uniaxial tension or compression stress-strain curve. A
shell is considered to be nearly perfect if the ratio of its
maximum imperfection (wi)max to its wall thickness h is less
than 2 to 3 percent.

Before going to list empirical formulas for the collapse
strength of imperfect spherical shells, we shall here introduce

a so called "critical arc length" -- L By taking a A value of

i
2.2* and g (spherical cap base radius) equal to LC/Z**, L. can

be obtained from A expression of Eq. (1) as follows:

L. = 2.42¢R1 Ea (13)

Cc

*From theoretical and experimental results of spherical
caps, for A values greater than approximately 2.2, the detri-
mental effect of clamping the edges diminishes as the shells
become more stable; see Ref. [3].

**Because of the assumed shallowness, the cord length is
approximated by the arc length. :




in which ha and R1 are the average shell thickness and the
local radius to the midsurface of the shell over a critical
arc length associated with a A value of 2.2.

Empirical formulas for the collapse strength of initially
imperfect spherical shells can now be readily obtained from ex-

pressing Eqs. (11-12) in terms of local geometry:

q} = 0.84 E(ha/Rlo)Z (14)
aj, = o.s4/‘rs“‘“sﬁt(ha/klo)2 (15)

where Rl is the lccal radius to the outside surface of the
0

shell over a critical arc length associated with a A value of
2.2.

The primes in Eqs. (14-15) simply imply that the local
geometry is used to calculate the buckling pressure. In fact,
Eq. (15) may be used to compute the buckling strength of
initially imperfect spheres which collapse in either the
elastic or inelastic region, since Eq. (15) reduces to Eq. (14)
in the elastic region.

These formulas are essentially '"engineering type' solutions
and do not intend to be regarded as a theoretical treatment of
the strength analysis of imperfect spherical shells. The effect
of initial deviations from sphericity is extremely important in

both elastic and inelastic buckling cases, because the local

radius appears in their buckling equations to the second power.




EXPERIMENT

Series FS models experimented in Ref. [3] are selected in
this paper for the purpose of verifying the theoretical work.
This series of models was designed to study the effect of
local imperfections on the hydrostatic collapse strength of
deep epherical shells which collapse in either the elastic or
inelastic region.

Series FS consists of 36 machined models of hemispherical
shells with local flat spots as shown in Fig. 5. All models
have the same inner diameter of 1.625 inches. Each model has
nearly uniform wall thickness, however, dimensions of the wall
thickness are different from model to model. The flat spots,
which were machined in the apex of each model, have an included
angle of 10° for models FS-1 through FS-9, 20° for models FS-10
through FS-27, and 30° for models FS-28 through FS-36. The
local radius of curvature is held constant for each flat spot
and is about 1,15 times the nominal radius for Models FS-10
through FS-18 and about 1.4 times the nominal radius for all
remaining models.

Each model was machined in an identical manner. The in-
terior contours were machined by use of form tools, the exterior
contours by supporting the inside contours on a mating mandrel
and by generating the outside surface using a lathe with a ball-

turning attachment.

The model dimensions are given in Table 1. These models é




were machined from 7075-T6 aluminum bar stock whosce stress-
strain curve was displayed in TFig. 6. For simplicity in 1
analysis, the nonlinear material hardening behavior is approx-
imated with a linear hardening: FE (Young's modulus) = 1
10.8 x 10° psi, L_ (tangent modulus) = 1.1 x 10% psi and |
Uy (initial yield stress) = 7.8 x 104 psi. As already mentioned,
a Poisson's ratio v of 0.3 in the elastic range is assumed for
all modeis.

lach model was tested under external hydrostatic pressure.
Pressure was applied in increments and each new pressurc level
was held at least 1 minute. The final pressure increment was
always less than 2 percent of the maximum pressure. Lvery
effort was made to minimize any pressure surge when applying

pressure.

A

.




THEORET ICAL SOLUTIONS AND COMPARISON WITH EMPIRICAL AND

EXPERIMENTAL RESULTS

The large deformation elastic-plastic spherical cap theory
outlined in an earlier section is applied here for the buckling
analysis of initially imperfect hemispherical shells. Hemispher-
ical shells considered here are those of 36 Series FS models
tested in Ref. [3]. These shell structures have flat spots at
their apex. As has been mentioned in the previous section, the
material property and shell geometry are given in Fig, 6 and
Table 1, respectively.

Figure 7 shows a clamped spherical cap which is produced
from a hemispherical shell. It is noted that the spherical cap
selected is well beyond the flat spot region to fully account
for the effect of the entire initially imperfect region. The
included angle and radius of curvature to the midsurface are
B and R for the entire spherical cap, o and R1 for the
flat spot, and ¢ and R for the perfect portion occupied by the
flat spot. All radii mentioned here are referred to the mid-
surface of the shell. ;

An immediate question should be raised here: what is the
appropriate size of a spherical cap to be selected? The answer
to this question may have to resort to the requirement for a
spherical cap. The assumed shallowness - the rise at the cap

center is less than one-eighth of its base diameter - asks for

B < 60°.




But the rcquirement for a shell to bhe thin - the ratio of
the wall thickness to the radius of curvature is much less

than unity - is too vague to have a precise criterion. However, |

based on both experience and this vague requirement, we shall
here provide an approximate guideline which may be quite helpful {
in selecting a cap size. From X = 1.82 a//Rh it is proposed

A > 2.5 for a shell being thin. This proposed guideline is

quite in line with the argument for deciding the critical arc
length [3]. In summary, a shell is called thin and shallow if

A > 2.5 and B < 60°; these are two basic guidelinces adopted in
this paper for forming a spherical cap from a hemispherical

shell (Fig. 7).

Another important aspect concerning the buckling analysis of
initially imperfect spherical shells is what is a better way of
cxpressing initial imperfections. Determining the local radius ‘
over a critical arc length around the imperfect region as has
been suggested in Ref. [3] is very hard to accomplish in prac-
tice, and for some occasions is almost impossible to carry out ¥
when the irregularity of unevenness is involved. One of the
best ways to deal with this situation is by measuring departures
from sphericity, Wi (Fig. 1), for a number of nodal points on a
generic spoke. Accordingly, the initial imperfection at a

point within the flat spot region (Fig. 8) may be approximated

by

Wi = R(cos 8 - cos %)- Rl(cos Y - cos %) (16)




This approach poses a flexibility that any imperfection pattern
including irregular distribution of deviations from sphericity
can easily be measured and readily be adopted in governing
equations for the theoretical analysis.

Figure 9 shows a one-dimensional finite-difference mesh
superposed on the axisymmetric spherical cap domain; a clamped
edge is assumed. An appropriate fixed number of evenly spaced
nodal points are chosen in the flat spot region. Additional
nodal points with the same even spacing are also distributed in
the remaining perfect region. The number of nodal poimts in
this region is varied depending on the size of the spherical
cap selected. Ao and A appeared in this Figure represent the
shallow region geometric parameters for the flat spot and the
selected spherical cap, respectively.

Twelve hemispheres among 36 Series FS models listed in
Table 1 are chosen for the present analysis. A well balanced
choice on these test specimens is achieved by selecting every
other two model according to the sequence of model number dis-
played in Table 1. For each model, the analysis is performed
on a number of A values for the purpose of verifying the local
phenomenon on the collapse of initially imperfect spherical
shells.

Numerical solutions in the form of buckling load versus
geometric parameter of the selected spherical cap, qcr/A, are
tabulated in Table 2. Also recorded in this Table are those

of experiment and empirical method [3]. By comparing the values
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ol A and )‘()’ it seems that quite a wide range of various

spherical cap sizes larger than thc f{lat spot has been considered.
From the values of (Wi)max/h’ it also appears that quitc a variety
of imperfection magnitudes has been involved in these models.

The solution pattern emerged shows a tendency of a mono-
tonic decreasing and then an increasing for ey against A,
having a small to moderate rate of change of Aoy with respect
to X for most cases. In each case, the spherical cap that
yields a minimum e P value* represents a shallow region of the
hemisphere which is subjected to the least detrimental effect
of clamping the edge. Therefore, this critical spherical cap may
simulate the actual deformed (or damaged) area of the shell struc-
ture when the collapse occurs. Based on this argument, it is
suggested that the buckling pressure of the critical spherical
cap be taken as the theoretical collapse pressure for its
associated hemispherical shell.

It should be very interesting to compare the critical
spherical cap region with the actual deformed area of the collapsed
model. A successful comparison will not only provide a strong
evidence of the local phenomenon on the collapse of imperfect
spherical shells, but also provide a strong support to the

applicability of the spherical cap theory to deep imperfect

spherical shell problems.

*We may henceforth call the spherical cap which yields a
minimum q the '"critical spherical cap,'" and designate its
corresponﬁing minimum q_._ as q,, which stands for the theoretical

buckling pressure for sﬁﬁerica shells under considerations.

A




For the purpose of references, two typical load vs central
deflection curves are plotted in Figs. 10 and 11 for the critical
spherical caps of Models FS-25 and FS-31, respectively. lor the
cap of Fig. 10, plastic yielding was set in at the load level of
2600 psi, but, for the case of FS-31 model, there was no evidence
that plastic deformation has ever occurred.

The comparison between theoretical and experimental results
shows that four models have an average qt/qexp value of 1.0375
while this value reduces to 0.886 for remaining eight. The com-
parison is regarded to be good, considering the fact that the
flat spot models have abrupt change in curvature, which would
not be true for imperfections in most practical shells and thus
is considered as the case of severe imperfections. Taking this
into account and other effects related to the clamped edge which
is artificially introduced to the shell structure, we may dis-
regard the difference of a less than 4% in buckling loads in-
volved in those four models, and view theoretical results as
the lower-bound solutions for imperfect spherical shells.

A similar comparison between empirical and experimental
data gives an average qé/qexp value of 1.13 for a group of
seven models and 0.963 for the remaining group. Based on similar
reasons, empirical data may be treated as the upper-bound solu-
tions for imperfect spherical shells under consideration.

In the empirical approach, the analysis is centered on a

shallow spherical portion with a A value of 2.2 which in some

models falls within the flat spot region. A most striking




cxample may be referred to Model FS-31. [Its flat spot poses a

AU value of 4,17 compared with a shallow portion of » = 2.2
utilized in the analysis. Without taking the entire imperfect
region into consideration may be a contributing factor, among
others, responsible for thc huge difference between its empirical
and experimental buckling results - 747 psi vs 525 psi.

For very shallow spherical regions, say, with A < 2.5, the
detrimental effect of boundary conditions or secondary moments
becomes more severe and tends to increase their rigidity, which
may be a part of reasons to have them yield higher buckling
loads than those of having larger A values. This argument may
be supported by the fact that the critical spherical caps employed
in the present theoretical study, having X values of ranging f{rom
3.4 to 7.6, possess for most cases higher load-carrying capaci-
ties than their corresponding empirical values.

Generally speaking, the comparison among these three sets
of results is surprisingly good. The good comparison suggests
that initially imperfect spherical shells can be-analyzed by
using a much simpler mathematical model - the spherical cap -
by which the analytic cost can be greatly reduced. At the same
time, this also emphasizes the usefulness of the shallow
spherical shell theory because it can be applied to solve
important practical structural problems.

We shall here discuss some observations made in Refs.

[4,5,6,11] concerning the influence of plastic yielding and

initial imperfections. The first observation is that the initial
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imperfection has a great impact on reducing the buckling strength
of the shell structure, the degree of the impact increased with
increase of the imperfection magnitude.

This ob<ervation may be confirmed by, for example, a compari-
son of results obtained for Models FS-13 and 22. Both shells are
almost identical except for the local radius in the flat spot;
Rl/R = 1.15 for FS-13 and 1.4 for FS-22. The difference in local
radii creates a difference in imperfection magnitudes:

)

a result of this difference, FS-13 model with less severe

(W /h = 0.162 and 0.346 for FS-13 and 22, respectively. As

i’max
imperfections yields a higher buckling load than FS-22: 910 psi
vs 770 psi theoretically, or 1040 psi vs 718 psi experimentally.
The next observation is that plastic yielding also has a
significant influence in reducing the buckling pressure of
spherical shell structures, this influence increased with increase
of the thickness-to-radius ratio [4,11,12]. This observation
may be confirmed by, for example, comparing the results of
Models FS-19 and 25. Both models are identical with a difference
only in the wall thickness. For Model FS-19 of h/R = 0.0062,
no plastic deformation ever occurs during the entire loading
process, and hence, its buckling load (140 psi) is an elastic
solution. On the other hand, Model FS-25 of h/R = (.0304, having
plastic yielding set in approximately at a load level of 2600 psi,
yields an elastic-plastic buckling pressure of 3700 psi. The

influence of plastic yielding increased with increase of the

thickness-to-radius ratio is quite obvious.
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CONCLUSIONS

A finite difference method for the large deformation elastic-
plastic buckling analysis of spherical caps developed in Ref. [4]
is applied to predict the collapse strength of hemispherical
shells with flat spots. Twelve out of 36 hemisphere models
experimented in Ref. [3] are selected for the analysis. In each
selected model, a number of shallow spherical regions containing
flat spots and with clamped edges are chosen from its domain. The
critical spherical cap is the one, among those chosen, which
yields a minimum buckling pressure; this minimum value is taken
as the theoretical buckling load for its associated imperfect
hemispherical shell,

Present theoretical solutions are in good agreement with
those of experiment and empirical method [3]. Compared with
those of experiment, present results represent lower-bound
solutions to these shell problems, having an average of nearly
90% accuracy, while empirical data provide upper-bound solutions
with an average of about only 13% in error.

Good comparison among these three sets of results suggests
that initially imperfect spherical shells can be analyzed by
using a much simpler mathematical model - spherical cap - by
which the analytical cost can be greatly reduced. At the same
time, this good comparison also emphasizes the usefulness of

the shallow spherical shell theory because of its applicability

to important practical structural problems. This comparison




also serves to justify the efforts made in so many publications
for the development of shallow spherical shell theories.

An important implication also emerged from this comparison
is that the collapse of spherical shells is primarily a local
phenomenon and therefore critically dependent on local geometry,
a view also shared in Ref. [3]. This implication makes it clear
that the presence of initial imperfections should be fully taken
into consideration in any large deformation analysis before such
analysis can be expected to quantitatively predict the collapse
strength of practical shells.

Present solutions together with experimental and empirical
data confirm a general belief that the initial imperfection plays
an important role in reducing the collapse strength of shell
structures, the influence of the imperfection increased with
increase of its magnitude [4,5,6,11]. It is also found that
plastic yielding has a significant effect of weakening spherical
shells, the degree of this effect increased witih increase of
the thickness-to-radius ratio. This is a finding also observed

in Refs. [4,11,12].
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Fig.1- Geometry, stress resultants and moments for axisymmetric
clamped spherical cap with initial imperfection,
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Fig. 2 - Kinematic hardening in plane stress.
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Fig., 5-Geometry of Series FS hemispherical shell models.
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Figs 8 - Determination of imperfections for a spherical cap

with flat spot.
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Fig. 9 - One dimensional finite-difference mesh on axisymmetric
spherical cap domain.
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