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1. INTRODUCTION

The present work is concerned with analytical determination
of the effective elastic moduli of a unidirectional fiber com-
posite which contains a distribution of parallel cracks, either
in fiber direction or normal to the fibers (but not both kinds
at the same time). The cracked material is viewed as a homo-
geneous orthotropic sheet which contains cracks, the orthotropic
moduli being the effective elastic moduli of the fiber composite.
The presence of cracks reduces these moduli to an extent to be

f determined.

This problem is related to quantification of fatigue damage
in unidirectional fiber composites. During load cycling cracks
appear and grow. The reduction of moduli after a number of
cycles is often referred to as wearout. If a reliable predic-
tion of moduli reduction in terms of crack distribution is avail-
able then experimental determination of such reduction, which is
not difficult to accomplish, provides a measure of the extent of
crack formation, thus of the damage and possibly of the residual

strength.

The general problem of analytical determination of the elastic
moduli of a cracked solid has received repeated attention, but not
many exact results are available. Most of these are concerned
with the case of a small number of non-interacting cracks in which
situation the problem is easily solved [1-8). The case of a
periodic plane array of cracks arranged in a rectangular pattern
has been treated by a combination of analytical and numerical

methods in [9].
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In addition, a general approximate method known as the
"self consistent scheme" (SCS) has been applied to the case of
randomly distributed elliptical cracks in an isotropic medium
(10) as well as to the case of an oriented pattern of penny
shaped cracks [11]). The basic assumption underlying the SCS
is that any crack "sees'" the effective homogeneous medium and
thus the energy change due to the presence of any crack is com-
puted as if this crack were placed in an infinite homogeneous
medium whose elastic moduli are the effective moduli of the
material with many cracks. This assumption is of questionable
validity since any crack '"sees' matrix and neighboring cracks.
It is only on a sufficiently large scale of magnitude that the
effective property concept becomes useful, thus for a region
containing many cracks, not for a crack neighborhood.

As will be seen further on, computation of effective elastic
moduli of an elastic body containing a distribution of cracks
requires the determination of the energy change due to a crack in
the presence of other interacting cracks. A general solution of
this problem does not seem possible. It can be carried out ana-
lytically, for non-interacting cracks, or numerically, for a
specific periodic crack geometry. Consequently, the approach
adopted here is to construct bounds on the effective moduli by
use of variational principles.

2. DIRECT APPROACHES

Consider a unidirectional reinforced layer specimen which

contains a distribution of parallel cracks, Fig. 1. It is as-

sumed that the layer is statistically homogeneous which implies




that any sufficiently large portion of it has the same effective
elastic properties as the entire specimen.
The elastic moduli of the uncracked material are

A - Young's modulus in fiber direction

Associated Poisson's ratio
Er - Young's modulus transverse to fibers

GA - Shear modulus

If the specimen is subjected to average plane stress its

effective stress strain relations are
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where overbars denote specimen averages and asteriks denote
effective elastic moduli of cracked material.

A little reflection will show that

(2.2)

since a homogeneous uniaxial stress field in Xy direction and its
associated strains are not affected by cracks in X4 direction.
Similarly, if the cracks were all parallel to the X, direction

Bz' and “21* would be equal to E; and Vra» Tespectively.




By the definition (2.1) it follows that in order to compute
an effective elastic modulus it is necessary to compute the aver-
age strain due to an applied traction in the presence of cracks.
In the case of a general distribution of cracks, this may be
considered an intractable problem.

An alternative and equivalent definition is in terms of
stored elastic energy.

For applied stresses 322, 012+ each

separately, we have
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where U denotes stress energy per unit area of specimen and Au:,
Aug are energy changes due to any one crack, in the presence of
the others, in a tension or a shear field, respectively.

When the number of cracks is small and it can be assumed that
their mutual interaction is negligible, the energy change Aug

can be determined as if any crack were isolated in an infinite

orthotropic sheet under the pertinent state of stress. In that
case we have, [12).
2~ 2 1 1 1 vp 172
AU = wa ‘G [ +
n n %22 76 E ! (2.5)
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Consequently the small concentration results assume the forms:

X
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« = §1e (2.7)

and S is the surface of the specimen. Thus a is a measure of the
crack density per unit area.
According to the SCS approximation the energy change due to a

crack is computed as if the crack were imbedded in the effective

material. Therefore in this case we have

Viyar 172
a9 = ma 23,2 1 1 RS SRR A
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which results in the following approximation relation for the ef-
fective moduli Ez* and Glz*’ [13].
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3. VARIATIONAL APPROACHES

Bounds on the effective elastic moduli can be obtained by use
of the elasticity extremum principles. The elastic energies
(2.3-4) can be bounded by use of the principles of minimum poten-
tial and minimum complementary energy. For fhis purpose it is
necessary to construct suitable admissible fields for displace-

ments or for stresses.

Consider a rectangular cracked specimen under uniaxial stress

transverse to the cracks, Fig. 2. The boundary conditions are

02 (225, x3) = o
07 (X45 tL3) = o4 (3.1)
%12 (xl, :zz) = 0

On all crack surfaces

O = 032 = 0 (3.2)

An admissible desplacement ﬁi(xl,xz) field must be continuous
everywhere and satisfy all displacement boundary conditions. 1In
the present case the boundary conditions are (3.1-2), thus all
four transactions, and therefore an admissible displacement must
merely be continuous.

An admissible stress field &ij(xl,xz) must satisfy equilibrium




everywhere and the traction boundary conditions (3.1-2) There-
fore the construction of admissible stress fields is much more
difficult than that of admissible displacement fields, in the
present case.

The displacement field

° }f ' (3.3)
4. = u.- + u. 3.3
i i nel in
where u.° are the displacements due to the applied stresses in

1

the uncracked body and uy ' the perturbation displacement field

n
of the n-th crack as if it were isolated in an infinite body, is
an admissible displacement field for the given problem, since it
is continuous everywhere. It is shown in Appendix A that this
field leads to the result that the small concentration approxi-

mations (2.6) are upper bounds on the effective elastic moduli

for any crack distribution. Thus

E ®
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In order to obtain lower bounds an admissible stress field

has to be constructed. If we divide the specimen of Fig. 2 into

smaller rectangles, each one containing one central crack,
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the solution of the problem of one such finite cracked rectangle

under uniaxial tension (Fig. 3) is an admissible stress field

for the problem described in Fig. 2, since it satisfies equilib-
rium and traction boundary conditions on all the cracks.

The problem of Fig. 3 was solved numerically [14] and the
stress intensity factor K was given as a function of the geomet-
rical parameters a, b and c¢ and the elastic properties of the
orthotropic body. Using this result in the principle of minimum
complementary energy as described in Appendix B, a lower bound on

*®
EZ is obtained.

&
E2 1
E;— T 1+ /ZE; [ 1_, - ;A
vE,E. A A

(3.5)

where f implies f(a,b,c, material properties) and is given in [14].

It appears, that a corresponding solution of a finite centrally
cracked rectangle under pure shear is not available; thus no lower
bound on 512* can be given here.

4. DISCUSSION

It has been shown that the upper bounds for the effective
elastic moduli of unidirectional composites can be determined by
use of the variational theorems of the theory of elasticity.

These bounds are general and easy to calculate. The lower bounds
are more problematic and can be contructed only for special cases.

All of the results obtained for elastic moduli of a cracked

orthotropic layer are illustrated by application to a typical




glass fiber-polyester matrix unidirectional composite.

The elastic properties of the uncracked material are:

EA = 26.4 GPa; E.,. = 7.17 GPa; GA = 5.12 GPa; v

1 . 267

A"
Using these constants in Eq. (2-9), (3-4), and (3-5) the various
results for Ez*/EA and GlZ*/GA as a function of o have been
obtained (Fig. 4 and Fig. 5). For EZ*/ET upper and lower bounds
have been constructed. However only an upper bound is avail-
able for Gy, /G,.

In the case EZ* upper and lower bounds are reasonably close;
the lower bound being higher than the SCS approximation. The
lower bound and G12* is very close to the SCS approximation.

The present results can be incorporated into analysis of
laminates with cracked layers by use of the effective moduli re-

sults for any one cracked layer.

Measurement of reduction of the effective elastic moduli
(wearout) during cycling can, in conjunction with present re-

sults, serve to estimate the crack damage in layers by evaluation

of the o parameters.
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APPENDIX A
UPPER BOUNDS FOR EFFECTIVE MODULI

The displacement solution of one crack in an infinite body

under tension is well known [15] and can be expressed as

u; = u;? + u;! (A-1)

where u.°

i is the displacement associated with the applied stress

in the uncracked body and u, ' is the perturbation field due to
the crack. The displacement perturbation u; goes to zero at
infinity and is continous everywhere in the body.

It follows that

. = u, % + ? (u; ") (A-2)
i i =1 17n
is an admissible displacement field for the problem of the body
containing N cracks since it is evidently continuous everywhere
and boundary conditions on the cracks need not be satisfied
since these are traction free, thus a traction prescribed
boundary. :

The strain and stress fields, associated with ﬁi are

N
- . 1 " __ o ]
and
N
~ = ~ = (o) -
%ij Cijk1 €ij = %15 * nZl("ij')n (A-4)

The potential energy functional can be expressed as

ii - 1 = o o
\

Substituting (A-2), (A-3) and (A-4) into (A-5) it can be shown




(A-6)

U =-u_-7JYau”
p o s n

where U, is the strain energy of the uacracked body and AUnm is
the potential energy release due to cne crack of length a, in an
infinite body. The substitution of Eq. (A-6) into the inequality

U, > U, (A-7)

which is essentially the principle of minimum potential energy,
leads to the conclusion that the results for small concentration

of cracks are upper bounds on the effective moduli for any crack

distribution.




APPENDIX B

As explained in the text the solution to the problem of Fig.
3 is an admissible stress field, for the problem of Fig. 2.
From [14] the stress intensity factor is known as a function of
the length of the crack, the dimensions of the rectangle and the
elastic moduli of the uncracked body. For a rectangle of dimen-

sions bn’ <h containing a crack of length a, this result is

Kn = 04 /wan fn (an,bn,cn, elastic moduli) (B-1)

The increase in stress energy functional (which is a special
case of the complementary energy functional) due to the cracks
is thus [12]

Y 1/2
AUO - T a K 2 1 [ 1 + 1 _ "A ] (B-2)
E nn VIES V/EE; G, E,

The stress energy functional can be written as

N (B-3)
where Ug is the stress energy of the cracked body. Introducing
(B-3) into the ‘minimum stress energy (complementary energy)
principle

U, < Uy (B-4)

and using (2.3) and (2.5) the bound (3.5) follows.




Fig. 1. Cracked Unidirectional Composite §
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Fig. 2. Cracked Specimen under Transversc Stress
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Fig. 3. Tinite Rectanglec with a Central Crack
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