AD=pU85 991

UNCLASSIFIFD

COMSTPUCTION FNGIMNEERIMG PESEARCH LAB (ARMY) CHAMPAIAN Il F/6 S/}
INTERAGENCY/IHTERGOVERNMENTAL COORDINATION FOR ENVIROMMEMTAL PL-=FTC(1))
MAY 80 R D WFBSTER» D E PUTNAM

CERL~TR=-N=87

“I" g
= ‘:,,‘ 22

. * e
e %
I2 fls nie

MICROCOPY RESOLUTION TEST CHART
WAL NG BLREAL & TART MWL T n

\

ADAO85991

\

R A BRI 4 -+ 1

L

\ ‘ -

PR

construction
engineering
research
laboratory

A .

e .

f“

ay

\

{
W
Y

I\

/
¢

TECHNICAL REPORT N-87
May 1980

INTERAGENCY/INTERGOVERNMENTAL
COORDINATION FOR ENVIRONMENTAL
PLANNING (IICEP): SYSTEMS CONSIDERATIONS

LEVEL”

N

by
R.D. Webster

=
—....b D.E. Putnanm é
!’b' DTIC

ELECTE |
JUN 2 6 1980 -

\

rACTICABLE: sam maE
15 pEST AV n,mzt racTIe
v DOCM?}: o 70 90€ CORTAL s
c.m? cwry}; v, ER OF PACE® /
QTGaIFTC TR
—_— l

R0 6 26 006

Approved for public release; distribution unlimited.

The contents of this report are not to be used for advertising, publication, or
promotional purposes. Citation of trade names does not constitute an
official indorsement or approval of the use of such commercial products.
The findings of this report are not to be construed as an official Department
of the Armiy position, unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN IT IS NO .ONGER NEEDED
DO NOT RETURN IT TO THE ORIGINATOR

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT |

NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

B

REPORT DOCUMENTATION PAGE BEF%%AEDCISSPTgCngN;om
) 2. GOVT ACCESSION NOJ fﬁm:ﬁ'"ﬁ‘umﬁ
ADAKSITL

NTERAGENCY/JNTERGOVERNMENTAL_COORDINATION FOR;
VIRONMENTAL PLANNING (IICEPJ: SYSTEMS /'
—1

PERFORMING ORG. REPORT NUMBER

: _,_w__1j
UTHOR(e) 8. CONTRACT OR GRANYT NUMBER(s)
R. D. Webster Project Order No. S-79-26
D. E. Putpam
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

U.S. ARMY
CONSTRUCTION ENGINEERING RESEARCH LABORATORY

P.0. Box 4005, Champaign, IL 61820

11. CONTROLLING OFFICE NAME AND ADDRESS - .
l | May 198 ;

[13-NUMBER-QF PAGES
101

T4, MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report)

1 F) Unclassified
/o’l 1 T8a DECLASSIFICATION/ DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

18. SUPPLEMENTARY NOTES

Copies are obtainable from National Technical Information Service
Springfield, VA 22151

identity by block number)

19. KEY WORDS (Continue on reverse aida if 'y and
directories
environmental management
Air Force

state goverment 2005979 ;%AM
7 :

26. ABSTRACT (Tantiaus e reverse side M and identify by dlock number)

A]‘ he primary purpose of this report is to document the organization and command
structure of a computerized system for providing access to information necessary for
the Interagency/Intergovernmental Coordination for Environmental Planning ;
(IICEP) requirements as set forth in Air Force Environmental Planning Bulletin 14.)
A secondary objective is to identify problems associated with the IICEP system’s »
implementation and to recommend pertinent solutions. Preliminary data acquired ~

e i

DD , “,,.,. W73 E0Imon OF ' NOV 68 1S OBSOLETE UNCLASSIFIED !
SECUMTY CLASSIFICATION OF THIS PAGE (Wiven Date Entered) A

Block 20 continued.

; y Air Force contractors were obtained and used as a basis for developing the soft-
] ; ware structure necessary to handle these data. This report describes IICEP and
explains the development of the organization, structure, and software of the pilot
computerized system. It will form the basis for evaluating the system and further
clarifying the need for data base refinement and update.

+

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS P AGE(When Deta Entered)

FOREWORD

) This project was performed for the Department of the Air Force Engineering and
f Services Center (AFESC), Tyndall AFB, FL, under Project Order Number S-79-26
" dated 19 March 1979. CPT R. Hawkins was the project monitor.

The work was performed by the Environmental Division (EN), U.S. Army Con-

~ struction Engineering Research Laboratory (CERL), Champaign, IL.

This research was made possible through the efforts of Air Force personnel and
the scientists and engineers of CERL. Administrative support and counsel were
provided by Dr. E.W. Novak, Acting Chief of EN.

COL LJ. Circeo is Commander and Director of CERL, and Dr. L.R. Shaffer is
Technical Director.

ACCESSION for I
NUIS White Section ﬂ
00C Buff Section O
UNANNOUNCED o
JUSTIFICATION

“ e on e—

DISTRIBUTION RYALABLTY

' o AL i /o WL

A7
i

[R,
[~

CONTENTS

Page
DD FORM 1473 .. ciiiiiiintiastetoanacncacasacsasseosnasnaness 1
FOREWORDccviiiietcestancesneassosssnasnasvsonsanena 3
1 INTRODUCTION.t iiiittitnetscascscnvacnsncosasssosans 5
Background
Objective
Approach
2 THENCEPPROGRAMccivetriencnnanersnnnansonscnnsns]
3 THE PILOT SYSTEM: ORANIZATION AND STRUCTURE................. 6
4 COMMAND STRUCTURE.cciiieriaoncosvnncercsancanes e
Selection Commands
Save and Restore Commands
List and Peek Commands
Help and Quit Commands
5 SUMMARY ANDRECOMMENDATIONSccccivvinnnnens 1
REFERENCES..........cocititiietscccassocnarasnsssncsnnnans 12
APPENDIX A: Sample Data From IICEP Directory................... 13
APPENDIX B: SoftwareDescriptionscciviiiennnn. 17
APPENDIXC:SourceCodec.conureurranssnnencencnns 21
DISTRIBUTION

i ST

INTERAGENCY/INTERGOVERNMENTAL
COORDINATION FOR ENVIRONMENTAL
PLANNING (NICEP): SYSTEMS
CONSIDERATIONS

1 INTRODUCTION

Background

The U.S. Army Construction Engineering Re-
search Laboratory (CERL) has maintained an
extensive systems development program for Depart-
ment of Defense (DOD) personnel to use in environ-
mental assessment, planning, and management.
These systems include the Environmental Technical
Information System (ETIS) and its subsystems'—the
Environmental Impact Computer System (EICS),?
the Economic Impact Forecast System (EIFS),> and
the Computer-Aided Environmental Legislative
Data system (CELDS).* These systems have been
used extensively by both the Army and the Air Force.
As a result of this cooperative effort, CERL has been
tasked with analyzing new areas for assisting users
and producing other systems which respond to these
additional requirements and also function in the
same interactive mode as ETIS. This mode is ex-
tremely beneficial from both developmental and
operational standpoints.® For instance, one new
application for the ETIS type of system has been the

'R.D. Webster, et al.. Development of the Environmental
Technical Information System, Interim Report E-52/ADA009668
(U.S. Army Construction Engineeting Research Laboratory
[CERLY], April 1975).

’Robert Baran and R.D. Webster, Interactive Environmental
{mpact Computer System (EICS) User Manual, Technical Report
N-80/ADA074890 (CERL, September 1979).

‘R.D. Webster, L. Ortiz, R. Mitchell, and W. Hamilton, Devel-
opment of the Economic Impact Forecast System (EIFS)—The
Multiplier Aspects. Technical Report N-35/ADA057936 (CERL.
May 1978); J.W. Hamilton and R.D. Webster, Economic Impact
Forecast System. Version 2.0: User's Manual. Technical Report
N-69/ADA073667 (CERL, July 1979).

‘R.L. Welsh, User Manual for the Computer-Aided Environ-
mental Legislative Data System, Technical Report E-78/
ADAO019018 (CERL, November 1975); J. van Weringh,). Patzer.
R. Welsh, and R. Webster, Computer-Aided Environmental
Legislative Data System (CELDS) User Manual, Technical Report
N-56/ADA061126 (CERL, September 1978).

*B.W. Kernighan and J.R. Mashey. “Unix Programming
Environment,” Software Practice and Environment, Vol 9, No. 1
(January 1979), pp 1-15: J. Zucker. K.H. Davis, and P.J. Plauger,
Automated Software Design Tools: “*Unix: A High Level Environ-
ment for the Development of Microprocessor-Based Systems."”
“Using Unix for Development of Microprocessor-Based
Systems,” **Using Unix for Developing Microprocessor Software:
A Case Study,” “Unix in an Office Environment’: presented at
Midcon 77 Electronic Show and Convention, Chicago, IL, 8-10
November 1977, Electrical and Electronics Exhibitions, Inc.

review and systemization of the Air Force's three-
volume directory—Interagency/Intergovernmental
Coordination for Environmental Planning (I1CEP)—
developed to insure adequate coordination of Air
Force activities with state and local agencies respon-
sible for environmental planning issues as required
by Air Force Interim Planning Bulletin 14. Updating
the information in the current directory is a prob-
lem. Responsibilities of the listed agencies change
constantly; furthermore, the directory—filling three
large binders—is physically awkward and incon-
venient to update because changes must be mailed to
all users. A computerized system could help remedy
these difficulties. Implementation of IICEP as a
new subsystem of ETIS will encourage maintenance
of current directories by simplifying retrieval of the
contacts.

Objective

The primary purpose of this research was to
develop a pilot IICEP computerized system operat-
ing in interactive mode on the same host computer
as ETIS and exhibiting the same user-oriented
characteristics as the other ETIS subsystems. A
secondary objective was to identify any problems
associated with the IICEP system’s implementation
under ETIS and to recommend solutions to these
problems.

Approach

The documentation for IICEP was obtained from
AFESC, the data base was designed and developed.
and an interactive retrieval program was designed
and implemented.

2 THE HCEP PROGRAM

IICEP includes a three-volume directory of state
environmental planning agencies designed for use
by the three Air Force Regional Civil Engineers.
Agencies located in all 50 states, Guam, and Puerto
Rico are included. The listed agencies deal with
issues from the following environmental categories:

Land Use 11. Water
. Natural Resources

1. General 7. Noise

2. Air Resources 8. Socioeconomics
3. Energy 9. Solid Waste

4. Health and Safety 10. Transportation
S.

6

Table 1 gives the subdivisions of the 11 major
environmental categories.

Table 1

Categorical Breakout of IICEP

1. General
Coordination
Environmental Quality
Environmental Impact Statements
A-95 Clearinghouse
Transportation

2. Air Resources

General

3. Energy

General
Facility Siting

4. Health and Safety

General

Civil Defense
QOccupational Health
Pesticides

Radiation

Building Codes
Safety

5. Land Use

Planning

Agriculture

Coastal Zone Management
Minerals and Geology

6. Natural Resources

Land Management and Grounds Maintenance
Fish and Wildlife

Recreation

Forestry

Archaeology and Historic Preservation

Flood Control

Oil and Gas

7. Noise

General

8. Socioeconomics

Economic Development
Education

Housing

Local Government
Social Services

9. Solid Waste

General

10. Transportation

General
Aeronautics
Highways

11. Water

General
Water Resources Management

The IICEP directory contains information allow-
ing the user to decide whether a particular environ-
mental planning issue falls under the responsibility
of an agency, and lists the point of contact at each
agency. IICEP listings provide the agency’s name
and function, address, telephone number, and con-
tact person, as shown by the examples in Appendix
A. Interim Air Force Environmental Planning Bulle-
tins 14 and 15 have clarified the general concepts of
IICEP use and hierarchically organized the data
originally contained in the directory. However,
CERL'’s research on IICEP has indicated that updat-
ing the information is the most serious problem
with the directory and the computerized system,
primarily because the jurisdictions and duties of
agencies identified in IICEP are vague and change
frequently.

Interim Air Force Environmental Planning Bulle-
tin 15, Volume II, lists environmental contacts for
Federal agencies. The IICEP pilot program used
these contacts as the basis for developing the com-

puter-based retrieval system. The listings contained
in the three volumes of contacts for the state environ-
mental planning agencies will be incorporated in the
IICEP computer program at a later date.

THE PILOT SYSTEM:
ORGANIZATION AND STRUCTURE

For the three-volume directory of state environ-
mental planning agencies, Volume II of Interim Air
Force Environmental Planning Bulletin 15, and the
computerized system, the information in 1ICEP is
organized around a unit of data called a ‘“‘contact.”
A given contact consists of information about some
individual in the Government, and thus generally
lists a name, title, address, and phone number. In
addition, a contact includes keyword data which
enable an [ICEP user to locate the contacts of
interest. The keywords currently fall into the follow-
ing seven categories.

e araReys et ket

il aiie

o o

1. ‘“‘agency”

This category consists of the abbreviated name of
the 30 major agencies of the executive branch of the
Federal Government. For example, “doc” and
“doa” are agency keywords corresponding to the
Departments of Commerce and Agriculture. All
contacts belonging to the Department of Commerce
include *“doc” as one of their keywords. A complete
list of the agencies and their corresponding keywords
is given below:

Advisory Council on Historic Preservation ach
Civil Aeronautics Board cab
Community Services Administration csa
Department of Agriculture doa
Department of Commerce doc
Department of Defense dod
Department of the Interior doi
Department of Justice doj
Department of Labor dol
Department of State dos
Department of Transportation dot
Environmental Protection Agency epa
Energy Research and Development

Administration erd
Executive Office of the President exo
Farm Credit Administration fca
Federal Energy Administration fea
Federal Maritime Commission fme
Federal Power Commission fpe
General Services Administration gsa
Department of Health, Education and

Welfare hew
Department of Housing and Urban

Development hud
National Aeronautics and Space

Administration : nas
Nuclear Regulatory Commission nre
National Science Foundation nsf
National Transportation Safety Board nts
Small Business Administration sba
Smithsonian Institution si
Treasury Department td
Veterans Administration va
Water Resources Council wrC

2. “‘sub-agency”

This category corresponds to the next level below
*‘agency” in the Government hierarchy. For ex-
ample, “bureau of the census” is a subagency key-
word occurring in some of the contacts belonging to
the Department of Commerce.

3. “‘region”

This category consists of the names of the Federal
regions. Unfortunately, many Federal agencies have
adopted nonstandard regional divisions. Therefore,
these keywords must be taken in the context of the
appropriate Federal agency. The 10 standard
Federal regions—"‘region 1"’ through ‘‘region 10”—
are included in this category, as well as regions like
the “atlanta region” of the Department of Com-
merce.

4. ‘‘state”

This category consists of the 50 state names and
the term “‘us,” which refers to the whole United
States. Users who seek contacts concerning some
issue in an individual state should retrieve the con-
tacts having that state as a keyword (such as Ohio,
“oh,” or Alabama, *‘al”’), as well as those having
“us”” as a keyword.

5. *'topic”

This category consists of the 11 general topics
listed in the following section.

6. “‘sub-topic”

This is a subcategory of the ““‘topic” category. The
following list gives various topics; the subtopics
under each are indented.

a. general
coordination
environmental quality
environmental impact statements/A-95 clear-
inghouse
transportation

b. air resources
general air

c. energy
general energy
facility siting

d. health and safety
general health and safety
civil defense
occupational health
pesticides
radiation
building codes
safety

crcteron.

e. land use
planning
agricultural
coastal zone management
minerals and geology

f. natural resources
land management and ground maintenance
fish and wildlife
recreation
forestry
archaeology and historic preservation
flood control

g. noise
general noise

h. socioeconomics
economic development
education
housing
local government
social services

i. solid waste
general solid

j. transportation
aeronautics
highways

k. water
general
water resources management

7. “program”
This category contains the names of the 26 Air

Force programs.
air installation compatible use zone aicuz
air pollution ap
airfield and airspace criteria aac
coastal zone management czm
compliance with pollution controls cwpe
comprehensive plan cp
energy conservation ec
environmental impact assessments and

statements eias

explosive safety criteria esc
fish and wildlife and endangered species fwes
forest management fm

grazing and agricultural outleasing gao

interagency/intergovernmental

coordination (a-95) a-95
joint use of military airfields juma
land management and landscape

development Imid

military construction program (programs) mcpp
military construction program

(construction) mcepe
military family housing mfh
noise pollution np
outdoor recreation and cultural resources orer
pesticide use and control puc
real property and acquisition rpa
real property disposal rpd
reducing flight disturbances rfd
solid waste sw
water pollution wp

4 COMMAND STRUCTURE

This chapter discusses the commands available to
the IICEP user. Appendices B and C provide the
software description and source code for IICEP,
respectively, if further clarification is necessary.
Table 2 lists and briefly describes IICEP commands.

Selection Commands

The IICEP system maintains a list of all contacts
in the data base. By using keywords with the selec-
tion commands described below, a user can narrow
this list to those contacts of interest.

1. “find”

The *“find” command sets the list of contacts
equal to those associated with a given keyword. For
example, ““find doc”” sets the current list to con-
tain all the contacts in the Department of Com-
merce. The find command can be used to retrieve
a specific contact. For example, “find # 162" brings
the contact number 162 to the current list.

2. **and”

The “and” command limits the current list to con-
tacts already in the list and associated with a given
keyword. For example, suppose a user types

“find hew"

“and radiation”

Table 2

Pocket [ICEP: Reference For Using [ICEP Information Retrieval Program
NCEP Command Glossary

Command Format Deacription Categories Keyword

find <keyword > -sets current subset of contacts (use with “list" (use with “find.” "and.”
equal to those associated with and “'peek” commands) “or"” and “except” commands)
s iven keyword.

and <keyword > -lin,its current subset to those
associated with the given
keyword. agency €.g.. epa

or <keyword > -augments current subset with sub-agency e.g., enforcement
those associated with the given
keyword. region e.g.. region 6

except <keyword > -removes from current subset
those contacts assaciated with state e.g., texas
the given keyword.

save <filename > -saves current list in the topic e.g., land use
specified file. sub-topic .., planning

restore < filename > -replaces current list with list of program e.g.. aicuz
contacts stored in specified file.

restore -replaces current list with
previous fist.

list <category 1 > <category 2> -displays keywords associated
with contacts in current list for
the given category or cate-
gories. (IMPORTANT: if more
than one category is to be
specified, they should be
ordered as follows:
< narrower > <bfroader >
e.g.. list agency sub-agency)

peek < category> -invokes the editor on a copy of
system file which contains key-
words for given category. “q"
returns to HCEP.

el kR

show -displays contact number, key-

words, name, title, address
phone number, and possibly
3 comments for each contact in
the current list.

TRUT 2N

' help <term> -prints message about the
given term.

help -prints summary of commands
and references to more specific
topics.

quit -exits [ICEP program.

2

LT

The first command sets the current list to all the con- 3. “or
tacts in the Department of Health, Education, and
Welfare. The second command limits that list to
those concerned with radiation. The “and” com-
4 mand can be used to retrieve a specific contact. For
g . example, “find #234”" “and #678" bring the con-
3 tact numbers 234 and 678 to the current list. “find us”

The **or” command augments the current list to
include the contacts associated with a given key-
word, and can be used to retrieve a specific contact.
For example, suppose a user types

e L e B Y I S

‘‘or alabama”

The first command sets the current list to include all
contacts having national jurisdiction. The second
command expands this list to include contacts with
jurisdiction only in Alabama and the Federal gov-
ernment. At this point, the user might wish to
further modify the list, for example, by typing

‘‘and radiation”

The three commands create a list of all contacts as-
sociated with radiation in Alabama.

4. “except”

The “except” command, which modifies the
current list by excluding contacts associated with the
given keyword, can be used to exclude specific con-
tacts. For example, ’

“find radiation”

~

*“*except hew”

establishes a list of contacts—other than those in
“hew’’—associated with radiation. As the selection
commands narrow the current list of contacts, the
IICEP program reports the number of contacts in
the list. When this number is small enough, the user
may use the ‘‘show” command to see the actual con-
tact data. This command is invoked by simply typing
“show”” at the keyboard. For each contact in the list,
the contact number, keywords, name, title, address,
phone number, and any comments are displayed on
the terminal. The contact numbers displayed by the
**show” command can be used as keywords with any
of the selection commands. For example,

*find alabama”’

“show”

“except #435”
“‘except #932”

might be used to eliminate contacts that are not of
interest.

Save and Restore Commands

Once the user has narrowed contacts down to
those of interest, he/she may wish to save this list for
future reference. This can be done with the *‘save”
command. For example, if the user types

*‘save testfile”

the current list is written to a file named *testfile.”
The file name can be any character string up to 14
characters long. Lists saved in this way can be re-
covered later by typing

“restore <filename>"

For example,

‘‘restore testfile”

would recover the list saved by the “save testfile”
cominand. The “restore” command can also be used
to recover from errors made during the selection
process. The ‘‘restore” command used without any
filename causes the previous list of contacts to be re-
stored as the current list. Suppose a user types

“find texas”
‘and alabama"’

‘“‘restore’’

The result of this seties of commands is a current list
of all contacts associated with ‘‘texas’” and *ala-
bama.” Since these resulted in a null set, the “re-
store” command reestablished only the set of
“texas” contacts without reestablishing the entire
search.

List and Peek Commands

The selection commands described earlier are use-
ful only if the user knows which keywords to use. For
example, ‘‘Bureau of Census” is a keyword, but
“Census Bureau” is not. Therefore, two additional
commands have been provided to furnish infor-
mation on keywords. The “list” command displays
all the keywords from a given category that apply to
the current list of contacts. The number of contacts
in the current list which corresponds to a given key-
word is displayed alongside that keyword. For
example,

“find radiation’

*“list agency™

PUE]

i >4

R e

displays all the agencies which have contacts con-
cerned with radiation.

DOC (1)
EPA (§)
ERD (3)
HEW (1)
NRC{21)

Each of these agencies is a “keyword” associated
with the subtopic “‘radiation.” If the selection com-
mands have been used to modify the current list
of contacts,

“find all”

can be used to set the current list to contain all the
contacts in the data base. Thus,

“find all”
*“list agency”

produces a list of all agencies in the data base. The
*“list”’ command can be invoked with more than one
category name. If the user types

*“list sub-agency agency”

the program responds with a list of subagencies and
the agencies to which they belong. In general, this
feature should be used only when the first category is
a subcategory of each subsequent category. The pro-
gram will respond in any case, but the information
generated may be misleading. Suppose the user
types

“list state agency”

In this case, the first category is not a subcategory of
the second, and when the program responds with

*‘alabama”
“‘agency: doa”

it only means that “doa” is one of the agencies
having a contact where Alabama is a keyword.

The other command designed to provide infor-
mation on keywords is the ‘‘peek” command. This
command invokes the operating system's editor on a
copy of the IICEP svstem keyword file for a given

11

category. As an example,
*peek sub-topic”

invokes the editor on the file of *‘sub-topic” key-
words. Then,

**g/waste/p”

prints a list of all keyword terms which contain the
word “‘waste.” Finally,

[L

q

quits the editor session and returns the user to the
11ICEP program.

Help and Quit Commands
A “help” command has been provided to help
acclimate the user to using the system. If the user

simply types
(lhelp"

the system responds with a message that briefly
summarizes the IICEP commands. For further
information, the user can type

“help <term>"

and the system will respond with a message provid-
ing information about the given term. For example,

“help list”

gives a brief message concerning the use of the list
command, Many help messages refer to other terms
that can be used with the help command. By follow-
ing these chains of reference with the *‘help’” com-
mand, many questions can be answered without the
aid of a manual. The last command that a user must
know is the “‘quit” command. When the user types

“quit”

the IICEP session is ended.

5 SUMMARY AND RECOMMENDATIONS

This report has documented the organization and
command structure of a pilot IICEP computerized
system operating in interactive mode as a subsystem

{
i

¥
¥

of ETIS. The study aiso identified difficulties in
implementing IICEP. The most serious problem
with both the HICEP directory and system is the task
of updating the information. The jurisdictions and
duties of the various identified agencies are nebulous
and change constantly.

Nonetheless, the IICEP program could be a valu-
able source of information to Air Force planners. If
the information were maintained in a central data
base accessible by remote terminal and capable of
supporting interactive usage, the system could be
updated constantly with minimal effort, and users
could access it from the central source (the inter-
active system). Incorporating IICEP into ETIS
would allow the user to access IICEP’s information
without having to learn to operate a new system.

It is recommended that selected potential users
(the Air Force Regional Civil Engineering offices, for
example) use excerpts from this document to
analyze the usefulness of the software produced
under this research and development effort. The
suggestions resulting from such a review could form
the basis for modifying and improving the system.

Furthermore, an update procedure could be set up
as part of an effort already contemplated for the
ETIS operational component now being established
for Army users. The additional update of the IICEP
data could be integrated into existing procedures for
CELDS and EIFS with little increase in long-term
operational costs.

REFERENCES

Baran, Robert, and R.D. Webster, Interactive
Environmental Impact Computer System (EICS)
User Manual, Technical Report N-80/ADA
074890 (U.S. Army Construction Engineering
Research Laboratory [CERLY], September 1979).

12

Hamilton, J.W., and R.D. Webster, Economic Im-
pact Forecast System, Version 2.0: User's Man-
ual, Technical Report N-69/ADA073667 (CERL,
July 1979).

Kernighan, B.W., and J.R. Mashey, “UNIX Pro-
gramming Environment,” Saftware Practice and
Environment, Vol 9, No. 1 (January 1979),
pp 1-15.

van Weringn, J., J. Patzer, R. Welsh, and R.
Webster, Computer-Aided Environmental
Legislative Data System (CELDS) User Manual.
Technical Report N-56/ADA061126 (CERL,
September 1978).

Webster, R.D., L. Ortiz, R. Mitchell, and W,
Hamilton, Development of the Economic Impact
Forecast System (EIFS)—The Multiplier Aspects,
Technical Report N-35/ADA057936 (CERL, May
1978).

Webster, R.D,, et al., Development of the Environ-
mental Technical Information System, Interim
Report E-52/ADA009668 (CERL, April 1975).

Welsh, R.L., User Manual for the Computer-Aided
Environmental Legislative Data System, Tech-
nical Report E-78/ADA019018 (CERL. Novem-
ber 1975).

Zucker, J., K.H. Davis, and P.J. Plauger, Automated
Software Design Tools: *“Unix: A High Level
Environment for the Development of Micro-
processor-Based Systems,” *Using Unix for
Development of Microprocessor-Based Systems.™
*“Using Unix for Developing Microprocessor Soft-
ware: A Case Study,” *“Unix in an Office Environ-
ment’: presented at Midcon 77 Electronic Show
and Convention, Chicago, IL, 8-10 November
1977, Electrical and Electronics Exhibitions, Inc.

vy

e e A LT

APPENDIX A:
SAMPLE DATA FROM HICEP DIRECTORY

STANDARD FEDERAL REGION V

A. Illinois
1. General
ILLINOIS
General
Environmental Quality
a. Agency

Environmental Protection Agency

2200 Churchill Road

Springfield 62706

(217) 782-3397

Richard H. Briceland, Director

Function—The Agency coordinates programs for air quality, noise, solid waste and water quality.
State Laws—The Agency is established by S.L., Chapter I11%4, Section 1004.

Federal Laws—(See functional headings.)

ILLINOIS
General
A-95 Clearinghouse
b. Agency
Bureau of the Budget
103 State House
Springfield 62706
(217) 782-4520

Leonard Schaeffer, Director

Function—The Bureau is responsible for reviewing federally financed projects in accordance with
A-95 procedures.

§ State Laws—None identified.

Federal Laws—The Bureau coordinates state review of federally assisted projects pursuant to OMB
Circular No. A-95.

13

Almes hrbe Enima e o o e e s

e Mermmn it ALl s o e

S A e AT

i i D Do -5 s Rt Se M k

- m-«-lyl

ILLINOIS
General
Transportation

bk

c. Agency
Department of Transportation
2300 S. Dirksen Parkway
Springfield 62706
(217) 782-5597

Langhorne Bond, Secretary

Function—The Department plans and develops state transportation systems. It develops and imple-

ments mass transit programs, plans airports, promotes transportation safety and constructs and maintains
highways.

State Laws—The Department is established by the Civil Administrative Code of 1917.
Federal Laws—(See functional headings.)

2. Air Resources

ILLINOIS
Air Resources
General

1 a. Agency]

Division of Air Pollution Control
Environmental Protection Agency
2200 Churchill Road

Springfield 62706

(217) 782-6514
John Moore, Division Director i

Function—The Division administers and enforces state air pollution laws and reviews applications
E for permits.

State Laws—The Division is established under the Environmental Protection Act of 1970, as
amended. The Division operates under the following laws and regulations: Stationary Sources Standards, 1972,

as amended; Air Quality Standards, 1973; Episodes Regulations, 1976; Open Burning Regulations, 1971, as
amended; and Odors Regulations, 1972,

; : Function—The Division administers state responsibilities under the Clean Air Act.

14

T -

ILLINOIS
Air Resources
General
b. Agency ﬂ
Pollution Control Board ,
309 West Washington Street
Chicago 60606
(312) 793-3620

Jacob D. Dumelle, Board Chairman
Function—The Board establishes air quality standards and regulations. :

State Laws—The Board is established under the Environmental Protection Act of 1970, as amended.
The Board operates under the following laws and regulations: General Air Pollution Regulations, 1972, as
amended; Stationary Sources Standards, 1972, as amended; Air Quality Standards, 1973; Episodes Regu-
lations, 1976; Open Burning Regulations, 1971, as amended; and Odors Regulations, 1972,

Federal Laws—The Board administers state responsibilities under the Clean Air Act.

3. Energy

ILLINOIS 1
Energy
General

a. Agency
Division of Energy
Department of Business and Economic Development
222 South College Avenue .
Springfield 62702 i
(217) 782-5784
Sidney M. Marder, Director

Function—The Division conducts energy conservation programs and coordinates energy research
within the state. The Division administers fuel allocation programs.

State Laws—The Division is organized under 78-1125, S.L. 1974.

Federal Laws—The Division administers energy conservation plans under the Federal Energy
Administration Act of 1974,

O

p——

S Sor PR il S6o AL AR, | iaphot 49U ki sl VMR 8 ¢ g b pm e

[

ILLINOIS
Energy
General

b. Agency

Interstate Oil Compact Commission
(See Interstate Agency Appendix for details.)

16

APPENDIX B:
SOFTWARE DESCRIPTIONS
Hashing Subsystem

The hashing subsystem provides a means of look-
ing up character strings in files of keywords. If a
string is present in these titles, the lookup mecha-
nism returns identifying data, specifying:

1. The number of keyword file in which the string
is found

2. The keyword’s number within each file
3. The byte offset of the keyword within each file.

The keyword files are specially formatted text
files which are named with some fixed prefix such as
*key,” followed by a numeric string. Generally, it is
best to organize keywords into coherent groups ac-
cording to file numbers associated with each key-
word type. For example, in the IICEP system, one
category consists of state names, while another
consists of agency names, so these categories should
have different file numbers. In the files themselves,
keywords are marked by a ““‘# " character in column
1, followed by the keyword string, followed by a
terminating ‘*:” charuacter. Characters following the
*“:" character and characters on subsequent lines
are not part of the keyword string. This provides
space for comments about the keyword. The next
*“#" character found in column 1 marks the end of
the comments and the beginning of a new keywoid.

Thus, the “hash” program sets up a hashtable
which allows keyword data to be retrieved, but in
order to use the “hash” program, another file must
be prepared which itself names the keyword files.
This file simply lists one keyword file name per line;
the following is a current list of IICEP keyword files.

key.0 key.5

key.1 key.6

key.2 key.7

key.3

key.4

Then the *““hash” program is invoked by
*hash <file list>"

where * <file list >"" is the name of the file discussed
above. The keyword files in the <file list> file are
opened and read in order; each is scanned for key-
words, and identifying data on each keyword are
written to a temporary file. This temporary file is an
array of struct elements defined as follows:

struct marker /* word marker structure layout */

int file; /* keyword file number

int idnum; /* rel word # within file

long beginbyte; /* byte offset of work in file

int hashv{3]; /* hash value

Next, the ‘““hash” program calls a subroutine
named ‘“‘maketable,” which rearranges the contents
of the temporary file into a hashtable. The ““hash-
table” file is also an array of struct elements defined
as above; it is about half-empty at this point in the
“hash” program, with the empty slots marked by
setting the ““file” field equal to —1. Slots occupied
by struct elements corresponding to keywords from
the keyword files are positioned as follows:

1. The total number of slots in the “*hashtable’
file minus a maximum overflow allowance defines
a modulus.

2. The hash value included in a word marker
struct is used to define a long integer.

3. The remainder of the long integer divided by
the modulus yields a trial position in the hashtable.

4. The marker struct element is inserted into the
first empty slot following the trial position.

The reader should consult the “maketable” sub-
routine source code (Appendix C) to see the actual
mechanics of the temporary file of word markers
reorganization into the ‘“‘hashtable” file.

Once the “hashtable™ file has been created, the
“lookup™ subroutine can be called from a "“"C" pro-
gram to retrieve identifying data on any character
string. The “lookup” routine computes a trial

ot e - i el L AL S 51 1 O 5015 A0t i A N 5402 e m

position in the hashtable just as in steps 1, 2, and 3
above. Then the hashtable is searched until the first
empty slot is encountered. The marker struct ele-
ments matching the given keyword are passed back
to the calling procedure.
Setup Subsystem

The “setup” program scans files of IICEP data on
contacts to prepare for retrieval of this data by the
HICEP information retrieval program. The “‘setup”
program is invoked by typing

“setup <file list>"

The argument * <file list>"’ is a file which names
the IICEP files containing contact data. These

names should be listed in the * <file list>" file,
one ger line: for example,

pc.0

pe.62

pc.125

pc.181

pc.241

pc.309

pc.377

pc.444

pc.518

pec.595

pc.678

pe.764

pe.841

pc.937

The files of contact data are named “‘pc.x,” where
“x" stands for the contact number of the first con-
tact in the file. It is important that the files listed in

“pelist’” be ordered so that contacts are encountered
in strictly increasing order. Each file contains data

18

T e R

on one or more contacts, and each contact has the

format given below:
<contact number >
<category number > : <keyword string >

<category number > : <keyword string >

< category number > : <keyword string >
&

<text data, including name, title, address, phone,
comments >

In the format description above, the <contact
number> field is a numeric string giving the
number of the particular contact. Contacts are
numbered beginning with zero and must be ar-
ranged in increasing order. Gaps are permissible,
but tend to slow down the retrieval of data.

In the next section, each line gives a keyword
string and the category (e.g., “‘agency,” “region™) to
which it belongs. Presumably, the given string will
be found in the keyword file numbered with the
given category number. For example, the string for
category two will be found in the keyword file for
category two.

The latter section must be terminated by a line
consisting of a single “&"” character.

Succeeding lines contain text data about the con-
tact; the next line containing a “‘#" character in
the first column marks the beginning of a new
contact.

The following is an example of data for a specific
contact:

#61

0: doc

e 4o o

T,

1: office of the secretary
4: socioeconomics

S: economic development
3:us

&

Jerry Jasinowski, Assistant Secretary for Policy
8-77

14th Street, N.W.
Washington, DC 20203
(202) 377-2113

The “setup” program opens and reads the data
files in the order they are listed in the “pclist” file.
As “setup’’ scans the data, messages are printed, if

1. The numbering of the contacts is not con-
secutive.

2. A keyword is not present in the alleged
keyword file.

3. The “&" line ending the keyword section is
missing.

Under any of these conditions, the line number in
the file is printed along with an appropriate mes-
sage.

As the “‘setup” program scans the data files, the
keyword data are digested and written to special
files that will later be employed by the retrieval
program. For each keyword category, a file named
“pekey. X" is created. The “X" stands for the
number of the corresponding keyword file. Each
file lists the id numbers of the keywords pertaining
to the contacts in the data files. A “‘pckey” file can
be thought of as an array of integers. If the keyword
id numbers for a given contact have no keywords
from a given category, or if there is a gap in the
contact numbers, then the —1 entry is still present
to signify an empty list of keywords.

The “setup” program also creates an index file as
it scans the contact data. Each entry in the index file
contains the location of a given contact. This

location consists of

1. The number of the “pc” file in which the con-
tact occurs

2. The byte offset of the beginning of the contact
3. The byte offset of the text data for the contact.

If there is a gap in the numbering of the contacts,
the missing entries in the index are marked with a
—1 in each of the above three fields.

The Retrieval Program

When the *“hash™ and “setup” programs have
been successfully run, the retrieval program “‘iicep”
can be used. A complete description of the retrieval
commands can be found in Chapter 4. The following
discussion focuses both on the files required by the
“iicep” program and on their functions. Five
families of data files are used by the ‘‘iicep™ pro-
gram:

1. The “key.” files containing keywords and
comments

2. The “hashtable” of pointers to the *’key." files
3. The*pc.” files of textual contact data

4. The “pendx” file indexing the ““pc.” files

5. The ‘‘pckey” files of keyword id numbers.

When the “iicep” program in invoked, a sub-
routine named “‘initlist” is called to construct a
list of all the contacts in the data base. This is done
by reading the “pendx” file and noting those entries
not marked as being empty. Thus, gaps in the
sequence of contacts are detected and left out of the
list of contact numbers. The list of contact numbers
is represented as an array of integer entries and
written to a disk file. An entry of —1 marks the end
of the list.

The selection commands ““find,” ““and,” “‘or,” and
“except” modify this list. Each of these commands
takes a keyword as an argument. The hashing
lookup mechanism converts the keyword string into
data specifying the appropriate keyword category
and id number within that category. Next, the
appropriate “pckey."” file is scanned by the “keypcs™

POV URPEDIE T

e ml g

routine to list those contact numbers in which the
given keyword appears. Finally, the *“bool” sub-
routine is called to perform the appropriate logical
operation on this list of contact numbers and the
previous list of contact numbers.

The “list” command scans the current list of
contact numbers and the appropriate “pckey.” file
to determine which keyword id numbers from a
given category are associated with the contacts in
the current list. The result is a list of keyword id
numbers and the number of contacts in which they
appeared. Also listed is the number of a specific
contact and the location within that contact where
the keyword appeared. When this list is completed,
the “pendx” file is used to locate the contacts where
the keywords are listed. The ‘“‘pc.” files are then

opened and read in order to retrieve the actual key-

* word strings so that they can be printed to the user's

terminal.

The “‘show” command runs through the current
list of contact numbers and displays the data for
each contact. This is done by finding the location of
the contact data in the “pcndx” file and then read-
ing the data from the appropriate “pc.” file.

The “‘help” command uses the hashing lookup
mechanism to convert a character string into data
specifying the category number and byte offset of
the string within the given keyword file. The keyword
file is then read, and any comments following the
keyword string in that file are displayed on the
terminal.

i
¥
;
3
{
H
f
]

APPENDIX C:

SQURCE CODE

| Jul 6 14:09 1979 commandefs.i Page 1
‘ 1 /+ this file is included by both iicep.c and select.c
r 2 /= 3t defines coxmand numbers for switch statements
E 3

4 #de tine FIND 0

5 Hdetine AND 1

6 #define R 2

4 #de fine EXCEPY 3

2 #define SAVE 4
3 Y #define RESTORE 5
: 17 #define SHOW]
: 1 tdefine GulT 1

12 #detine PEEK 8

13 #define HELP 9

14 #define LIST 1C

/
v/

Jul 6 14:09 1979 keynaaes.i Paje 1

char *keynames()

“agency”,
"sub-ajency*®,
“region",
"state”, 3
“topic”,
“sub-togic”, E
“wrogran®,
0,

D@ DCTH N VS WN -

- b

TR

Jul

6 14:30 1979 params.i Page

Hdefine
#de fine
#define
Ade fine
Hdefine

Hde fine
4define

4define

KEYNAME
HASHTBL
FCKEY
PCNDX
PC

MUMTYFS
MESSAGES

ALL

“Jusr/tmp/iicep/datalkey.”
“fusr/tnp/iicep/raference/hashtatie”
“fusr/twp/itcep/reference/pckey.”
“/fusr/tmp/iicep/reterence/pencs™
“"fusr/tmpg/iicep/datal/ec.”

14
7

vat”

[- e e LT

T e v e uge e 9P X 8 . e B e e e 4 o [3F] - e - @ “«ap'..‘..‘ W ee.0 ®¢

Jul 6 16:09 1979 structdefs.i Page 1
4 1
3 2 Hdetine bUFRSIZ 256 .
3 .
4 struct keybufr
] LI ¢ :
3 6 int descrips /« tile descriptor «/ i
. 7 int snext; /* next empty slot in bufr s/ :
4 3 int sendcufrs 7+ marks end of byfr a/ 4
3 9 int bufr{BUFRS12). /* buffer for keyword id numters s/ i
1 10 }:
1 i
12 i
15 struct marker /* word marker structure layout »/ ;
14
15 int file; /* keyworcd tile number «/]
16 int icnum; /* rel word # within file «/ 5
17 long bLeoinpyte, /* byte offset ot worc in file «/
1= int hashv{3], /+ hash value */
19 b
2C
21]
22 struct getibuf /+ tor buffered input by Lline «/
23 {
24 int fildes’ . /+ tile aescriptor of the given file s/
25 int nleft, /* numuer ot chars left in butter */
| 26 char »nextp’ /+ pointer to next char in buffer o/
3 27 char buffl(S512); /* tor.butfered reads ./ r
E 28 32
29
31
31 3
32 3
: 38 t#detine NOXS1Z 256
1 54
X 35 struct ndx
E 36 {
i 37 int filenum; /* number ot file where entry occurs “/
2 33 lonny keylines; /* byte offset of keyline section ~/
8 3v long datalines; /+ byte offset of gata section ~/
3 49 b H
3 41
i w2
43 struct ndxbufre
Lo
(3] int fidndxs /*» descriptor of ndx file o/
46 struct ndx *nextndx; /* next open slot in buffer &/
47 struct nux *endndx; /* marks end of buffer ./
48 struct ndx bufndx[NDXSIZ2]; 1+ buffer for index entries o/
49)2
S5u
i 51
52 struct keycheck
4 53 {
S4 int keycount: /* nunber of occurences “/
; 55 int pcnue; /* iy of p¢c where fourd LY
4 56 int keynum; /* number of key in ¢ keylines o/

24

Cef @ oc-cse st -l LY) G %eBtecc @ o P T v 0e® ¢ o Y) L XY (B 3 . JEX) Y e 3 & e 8 LY X e .. ® e o @

e

Jul 6 14:09 1979 structdets.i Page 2 ‘ P
57 b
b14
5¢
60 struct keymarker
61 {
62 int keytygpe, /* category of the keyword (¥4
&3 cnar s*keystring’; /* points tc the keywcrc string */
64 b
65
r 66
i 67 #de fine MAXKEYS sSC /+ max keys per single gc¢ o/
) 64 #define MAXCHARS 1C24 I+ max chars in ull keys per gc =/
69
k- 71 struct keydata -
4 7" (
7¢ int totkeyss, /* number of keys in a gc ./
B 73 struct keymarker keyptr[AAXKEYS]: /+ point to all keys for a pc */
g 74 char keybuf[MAXCHARS]; /* hoids keystrings fcr a g¢ 2/
4 75),
A

Jul 6 15:17 1979 d{icep.c Page 1

1 »
g 2 ’Qﬁl'Q‘tt.t.'Qﬁt-.t.'i.tit.ﬁt..C...t.tt...tt.i.‘tt.ttit.‘t.iillltl.‘itti.ttttli
i 3
1 4 NAME:
3 S
6 jicep (main program)
?
.3 FUNCTIORN:
9
12 Irplerent the commands of the 1ICEP system.
1
12 ALOLORITHM:
13
14 The program begins by performing certain system initialization tasks.
15 In poerticular, "iam()" is called to select a unique nzme tor the
1% process, and scratch files are created. The scratch files are uses :
17 for (isting the current and grevious (ists ot contacts ana they are i
1% initialized to list all the contacts in the data base. ;
19 1
2 when the above operations are conclucad, the proqram enters the
21 main comaand loop where the user is prompted to enter a comrand and
22 control is transfered to the sub-routine agpropriate to executing
23 that command, .
24
25 CALLS:
26
27 iam() i
23 corcat() !
29 initlist () {
30 resp () '
31 cepy ()
32 execute()
33 toble()
34 select ()
35 sove()
36 restore()
37 show ()
3 38 peek()
39 help() 4
43 keyword ()
41 List()
42 E
43 Also, Unix routines:
&4
i 45 printf()
. 40 exit ()
1 47 signal () .
w3 creat() N
49 perror() .
‘ 52 oren()
K 51 setexit() 3
52 unlink() ;
d $3 s
Y 54 HISTORY: s
55 .
h 56 written by Oan Putnam - spring 1979, ‘

i
] B
!
t

- e A——— AT ——

D ennT vy

* -
A e Y T8 @ e w <@ o. o, e .

* se @ ssene

Jul 6 15:17 1979 dicep.c Page 2

5?7

58 ﬂlliiﬁ..il.itﬁiiti.lt.tt.l'iﬁ.it‘iili"ltilliilittlliiilt.t..l‘..l.lltl.!tt.’t[

59

6L .

61 Kinclude “structdefs.i” /s defines getltuf s/

62 ##include “commandefs.i" /+ gefines commands e/

63 #include “keynames.i"

64 #include “params.i"” /* needea for KEYNAME only!! -Dan Putnam */

65

66 char *commtbll) /% command names, must be consistent with commnancefs.i ¢/

67 {

68 "find",

&9 *and",

7U l'(‘r”l

7 “except”,

72 "uave',

72 “restore*, :

74 "shouw",

75 ”Quit"l ,‘

76 “peek”, ;

77 “help”, ;

78 “List", |

7y [.

A X, H

81 : i

| X4 struct getlbuf buting /* tor Line criented input s/

3 char Line(256); /* used with bufin LY

feé int count/ /* character count returned frorm getl »/

35

8¢ int fidscratcn(2l; ’ /* tile cescriptors s/

87 int ghase C: /* used to alternate between files */

88

EY; char *keyprefix KEYNAME; /* name of the keyword files */

Q9

g1

92

93 m3in(aracrargv)

e int argcs

375 char sharay;

95 (p

G7 int r2set(); /* used with setexit to handle treaks */

9F char bufter{256]; /* bufter for user response [Y)

39 char comm(256); /* puffer for corrmand string */ ‘
1C0 char *src; /* utility pointer used with cogy() */ 3
161 char *dst, /* utility pointer used with cogy() s/

102 char mel1C); /* tutfer tor my unigue nome ./
1:3 char scratchi21015); /* pames nt scratch files Y]
1C4 int opcode; /* command number LY
1C5 int quitflag, /+ Loop control: main commang loop »/
1C6 int num; /* number of pcs returned from initlist ¢/
12?7 struct marker *keyword(): /+ returns pointer to keyword data o/
168

1C9)

11C signal(2, 1)’ . /* {anore interrupts *!

c e e@ o & 10g o o~ g gD ocog ¢ o -

Jul 6 15:17 1979 idicep.c Page

13 printf("Wetcome to the 1ICEP intcrmation retrieval prcgras\r*),;
114 printf(“for helrp, type 'helop iicep coamands®\n");
115
116
117 /xsanxx create scratch files */
112 Jeesaer ye will need to read and write on them, so close ancd recpen #/
119
120
121 iftiam(me) < 0)
122 {
123 printt(®can't create unique name, aborting\n");
124 exit();
125)
125
127 concat(me, "Oscratch™, scratch(C));
concatime, "tscratch”, scratchl11);
129

131 fidscratch(0) creat(scratch{0l, 0666),;
132 fidscratch(1) creat(scratch(1], 0666);

if(fidscratceh(f) <« 0 |} fidscratch(1)
{

perror(“pams, creat"),

exit();
>

close(fidscratch(0))2
close(fiuscratinl1)):

= open(scratchl0l, 2);
= open(scratch(1], 2);

fidscratch{0)
fidscratch(1]

if(fidscratchl{2]l < v || ftioscratch(1] < C)
{

nerror(“pams, open®).

exit();

/eavssa jnitialize scratch files to Llist all pcs */
num = initlist(fidscratch(0)):

printf("%d contacts in curront List\n", num)’
copyfile(fidscratehlD), fidscratch(1l)/

/aswarn this is the main coamana Lo0p

for(quitflag = 0; quitflag == 05)
[

setexft();

signal (2, reset);

1

. - .
Te e ab, o @ *ee o-o.n.nq-o.o--.'-o--'%o'0..-‘50oo..u- e ® e o 00 @ .:--...cqi
3
L1

Jul 6 15:17 1979 jicep.c Page 4
169 printf("\n\nWwhat next?\n"); .
179 :
171 resp(buffer), /% get user response «/
172
172 src = huffer’
174 dst = buffers
:75 copy(3src, édsts, 0, sizeof(bufter)); /« omit extra blanks “/
70
177
178 /+axnts see if user wants to execute a Unix comrand */
17¢
134 if(wgufter == *1°*)
1at {
182 execute(buffer + 1); 4
123 continue; /* go back to top of command loop w/
164)
1385
186
187
188 /o*xxen ccpy characters into commanc string «/
189
199
191 src = buffers)
192 dst = comm; . ;
193 cupy(%srcs, Bdst, * ', sizeot(coamam)), :
194
195 : E
196 if(C(upcode = table(comm, conmtbl)) == =1)
197 (
199 printf(”*%s® not a command\n”", comm);
199 continues
20U b
201
272 /rekakrr copy() has left src pointing at command argunent strinag »/
2C3
2.4 switch(opcode)
205 {
256 /a*s+xxk these commands select the current pc list */
LG
2(R case FIND:
209 case AND:
et case OR:
211 case EXCEPT:
212
213 sianal(2, 1), /+ ianore interrupts here Y
214
215 select(opcode, src);
216 Lreaks
217 .
213
219 case SAVE:
220 signel(2, 1)s I+ icnore inteerupts here X
221 save(src);
§ 222 break’;
' 223
224
|
j 29 i

e A e i T SR e G NMIABNED D S WA D Nt AR 2 T e BV AT T T e T E - - B e ——

Jul 6 15:17 1979

N AR L IR ERY BREX B S Y -o..»i

iicep.c Page H

225 case RESTORE: -
226 signal(2, 1), /+ jgnore interrupts here ./
227 restore(src);

228 treak; .

229

230

231 case SHOW:

232

233 /eaxxse don't janore interrupts here «/

234 show(fidscratchl phase 1, src);

235 oreak’

236

237

23R case QUIT: .

239 quitflagy = 1, /* tnis will jget us out ot Locp +/
24} btreak,

241

242

243 case PEEK:

244 Leek(src);

245 treaks

24¢

247

248 case HELP:

249 help(0, keyword(sr¢c))/ /+ L = standard outgut s/
250 treaks

251

252

253 case LIST:

254 List(fidscratchlpghase), sre)?

255 treak,

256

257

2S¢ defaulte:

259 printft(”*Xs® is not yet implemented\n®, butfer),
26) treak:

261 }

262 3

263

264

265 unlink(me),

266 unlink(scratchl(2))}

267 unlink(scratchl(1])¢

263)

6 14:04 1979 eatdata.c Paje

#

/..it.tttﬁtttttﬁttt.ﬁ.iiiit.tt..ii.itt..Ait'.tt‘.!..i!ttl!iih.iil.‘it'.“t..nt‘
NAME:
eatdatal()

FUNCTION:

S A NGV NN -

Read the keyword lines for a contact into a "keydata"™ struct
su that they can be more easily referenced.

CALLING SFQUENCE:

int pcid

int fidpe

long cffset

struct keydata #*pcdata
PARAMETERS:

pcid hccession number of the point of contact whose
Jata s beiny read.

fidpe File descriptor of the contact data file where the
data for the given pc resides.

offset Byte offset of the data in the given file.

pcdata Pcints to the structure which gets the key cata
to be read from the file.

RETURLS :
nothing.

ALGORITHM:
The routine seeks into the tile and reads the header,
11 these operations are successful, the routine enters

a lo2og and reads the keyword lines into the "keydata™
struct indicated ty "pcdgata”.

seekl ()
qetl ()
copy ()
Also, Unix routines:

princt()

CALLED BY:

Jul

6 14:04 1979 eatdata.c Page
sauow()
List ()
VISTORY

written ty Dan Putnam - spring 1979.

RARRARRANANAN SRR IR R DA ARAR I AN AR RN RACNRAANR A NN N SA R AR AR R AN RO RAR AR NS ARAR AR RAARARN AR/
.

%inctude “structdefs.i* /* define getlbuf struct

eatdatal pecid, fidpc, offset, pcdats)
int pcid; /* number of source permit
int figpes /+ file gescriptor of pc data file
long offset’ /* byte offset of data for aiven pc
struct keydata *pcdata; /* gets lines of keyJord data
{
int keynumber; /% counts number of keys in pec
struct keymarker *markptr,- /* points thru keyptrs of pcdata
char *bufptr; /* points thru keybuf of pcdata
char *endptr; /* points off end of keyouf
char *src; /+ utility pointer used «ith copy()
char &dst; /* utility pointer used with cogy()
char *end; /+ marks end of pcdata buffer
char tagl(1003; /* tor corabbing tag off of 3 line
char Linel(2563; /* gets line Lines from netl ()
int nitytes; /* returned from getl
struct gettbuf bufr; I+ used by geti()

tufr.fildes = fidpces
buftr.nleft = 0;

if(offset < 0 || seeki(fiagpc, oftset) < 0)

{
printt("can®t seek to data on pc %d\n“, pcid);
returng

(nbytes = getl(line, &bufr)) <= 0)

printf(”can®t find dasta on pc Xd\n", pcid)s
return;

keynurher = Q;
bufpter = gecdata -> keybuf,

A ot

Boe oo fe . we @8 CC @ NG PE ¢+ ac @ @ Toesf cotecs S A et
Jul 6 14:04 19/9 eatdata.c Page 3
] 113 markptr = pcaoata -> keyptr;
: 114 while((noytes = getl(Line, kbufr)) > C)
115 {
116 Vine(nbytes =~ 1) = 07 /% replace *\n' by null “/
: 117 :
118
11y ifC Line(0) == *&*)
§ 125 breaks /* marks 2na of keywords o
11
X 122 src = line;
: 123 dst = taqg,
124 copy(Rsrc, %dst, *:°%, sizeof(tay))/
125
i 126 it(keynumber > MAXKLYS)
3 127 {
128 printt("MAXKEY limit exceedec\n”);
4 127 braak,
3 133 ¥
3 131
1 132 markptr -> keystring = tufptr’
133 markptr -> keytype = atoi(tag)’
134
135
136 .
137 if(copy(&srcs PLbufptr, 0, B(pccata => keybuf[MAXCHARS]) - bufptr) < ()
134 {
139 printf("MAXCHARS Llimit exceeaed\n"),
140 vreaks
141)
142
143 keynumber++;
144 morkptree;
145)
146
147 pcdato => totkeys = keynumber,
14%)

3

M i e 5 i AT RN S 0 S A s w7 00

Jul

L=

NSV SN e

20

45

54

6 14:U04 1979 getndx.c Page 1
»
I.iiii...it.tiitttitiiiitlitili.i'ii..i‘..‘il.tiﬁ..t!ttttt'l.nt‘.i..tii.ln.ni'.
NAME:
getndx()
FUNCTION:
fFind the {ocation of the data for a jiven contact, anc
return a tile descriptor for the data tite.
CALLING SEQUENCE:
int pcid
struct ndx #*pc_ptr
int getndx() .
PARAMETERS:
pcid The accession number of the contact of interest.
pc_ptr Points to the index struct to be filled in with the
data giving the location uf the given contact. ~
RETURNS :
R-turns a file descrirtor of the contact data tile cortaining
the given contact.
ALGORITHM:
This routine may be interrupted if the user hits the “rub-out”
kevy., It this happens, the index file wen't get closec. To
handle this problem, the descriptor is stored in 4 stetic variable.
The routine begins by examiring this variable to see if it is
non-zero. If so, the file is closed and the descriptcr is set tc¢
zero to wark the file as tein: closec.
The routine next ofens the index file to read the index struct
giving the tocation data for the given contact. Thens, the
data file containina the given contact is opened anc the
file descrigtor is returned.
CALLS:

Various Unix routines.

close()
seek ()
read()
perror()

CALLED BY:

show()

s

PP IR SR U S L
o oo e oo - e e A @ cond ot ¢
Jul 6 14:04 1979 getndx.¢ Page 2
57 List ()
Sk
56 HISTOwr:
60
61 Adapted trom the ‘"getndx()” routine of the PANS syster = spring 19579.
6¢
63 Q..‘Qt.A.ilthnt.tQitﬁitl‘ﬁ.ti....lti.-i"t.lit.t.'.ﬁ..it‘tt.t‘tn‘ti.“.iti-.tll
&4
65
o5 ginclude "structdefs.i” /* Jetines pc index structure ./
67 #include "params.i" /« defines PCNDX ./
[%)
S jetndx{pcids, gec_ptr)d
71 int jcid; /* nurber of ¢ that we want */
71 struct ndx sp¢_ptr; /* index to p¢ that we want »/
72 {
73 char getile(3C); /* name of pc ftile s/
74 int files /* rc file number where pc is s/
75 long offset; /* byte offset into a file 2/
75 int tidpcs /* descriptor of pc fite a/
77 static int fidndx/s /* gescriptor for pt incex file #*/
72
79y
80 .
81 Jeakarxr make sure we close olc tiles before using */
8¢
83 if(fidnoax '=)
&4 (
85 close(fidndx)7
4o fidndax = 27 l* und mark it as closed s/
87)}
B
89
9'.
81
G2 ifC (fidndx = open(PCNDX, Q)) < Q)
G2 {
94 perrar(”aietndx can't open pendx file”)s
s return(-1)7
Go }
97
93 offset = pcids
39 offset =+« sizeof(=pc_gtr)7
1€ ift seexlitiondx, ottset) < C)
101 {
1C62 perror(”getndx can't seek into jc index™);
1Cc3 raturnt -1);
104)}
145
135 §f¢ read(tidndx, pc_pte, sizeof(apc ntr)) < sizeof(spc_ptr))
1c?7 {
108 printf("can't read pc index file\n");
1,9 return(-1)/
10 b
11 close(fidndax)/
112 fidndx = (; /*» mark it as closed ./
35

o,
————

<« IR o @/ # & 3 g e B Y) Y 3 0o o . @ L 3 L4 - .. ¢ o9 o PY . ® ¢ 01 @ o . « ® 8@ vee o o0 !

Jul 6 14:064 1979 getndx.c Page 3

112

114 file = pc_ptr => filenum; I+« this is gc¢ file number t/
115 concat(PC, locv(0, file), pctile)s

116

117

115 if¢ (fidpec = ovpen(pcfile, 0)) < 0)

119 {

120 perror(®aetndx can*t open pc file”)s
121)

122

123

124 return(fidpc)./

125)

L
]
£
3

L et pm—

e

3

Jul

DN WM E W

. w o o 228 @ % 8 o o

6 14:04 1979 initlist.¢ Page

¥

/ﬂtt‘itiiiitiﬁit'itiitQQtiﬁ.titiii.!itt't.ttt.i.t!'tiittit‘ittiit‘...tﬁ.ltﬁ‘..t
NAME ¢
initlist Q)
FUNCTION:
Initiulize a file to list alt the cuntacts in the data Lase.
CALLING SEQUENCE:

int fidpe
int initlist()

PARAMETERS:

fidpe file descriptor of the cutput list of pc accessien
numbers .

RETURNS :
Returns the number of accession numbers in the output list.
ALGUR]ITHM:
The rciutine opens the index file and reads from it in a loog.
Enpty inJdex structs are marked by having their “filenum™ fielcs
szt to -1, wWwhenever & struct is encountered that is rot eapty.
the curresponding accession number is inserted into the outgput
buffer,
CALLS:
Unix routines:
srek ()
open()
pecror ()
exit()
read ()
write()
close()
CALLED BY:

iicep (main program)
s2lect()

HISTORY:
written ty Dan Putnam - sgring 19?9,

CRREARA ARG R AN AR R ANA R AR AR N ARA R TR AP A AR R R A RO R AN AN R A RN A NI SN AARDADRARERARoanARRIEe)

37

chania

et ek

Jul 6 14:04 1979 initlist.c Page 2

5¢ #include “structdefs.,i"
59 #include “params.i®

Ll

61 #define pPCSIt 256
[-¥4 Hde fine NOXS1Z 256

64 initlist(ftidpc)

65 int fidpcs /+ descriptor of output list of pc ids #/
66 {

o7 int pchufl{PCS12]: /* output buffer for List of pc ids */
63 int *pcptrs /4 points thru pctut) ./
69 int fidndx; /* descriptor of input incex tile ./
Iay struct ndx ndxbufINDXS12): /»* input buffer fcr index file %/
71 struct ndx *ndxgptes /* points thru ndabuf s/
7? register int n; /+ tast loop counter «f
73 int pcids /* id of current pc in index list */
74 int countuc, /+ tounts nurter of pc's in irdex s/

7 seek (fidrc, G, 0); /* be sure to start at beginning */

79 if¢ (fidnex = open(PCNODYX, C)) < 0)
80 {
31 perror(™initlist can’t cpen pcndx"™);
82 exit();
)

/% pc ids beqgin with zero */
I* no pc's sc far »/

b5 pecid = 9
t6 counti ¢ Js
8y pcptr = pcbuts

"o

9 while((n = reau(fidrnox, ndxbut, sizeot(ndxbut))) > C)
97 {
91 n =/ sizeof(+ndxbuf), /* n = # of ndx entries */

73 nixgtr = ndxbuf,

3 5 do
90 4
97 it(ndxptre+ =-> tilenum 'z -1) E
93 < 4
99 Ixtsasa got one! */

101 countpgte;
102 rpcptr+s = pcids

104 if(pepte >= hpebofCPCSIZY)
<

-
b=]
w
ey

1c it write(fidec, ccbuf, sizeoflpctuf)) < sizeof(gcbuf))

N 107 {
108 perror{™initlist can't write pc iad's");

E 139 exit()s
)

112 pcpte = pecouf, -

ik et 21

Jul 6 14:04 1979 initlist.c Paqe 3

113)
114

115) H
116 i
117 pcidees; /* bump pcid to id of next incex entry @/
118

119 while(--n), /+* count dowr on nunter of entries */
124)

121 :
122

123

124 /xxawrr flush remaining pc id®s in pcbuf */
125

120 rccptreds = =15 /* null terrinate List w/ 3
127]
122 n = (pcptr - pcbuf) » 2;

129

13C ifl write(fidpc, pctufr, n) < n)

131

132 perror(”initlist can't flush pc list"),
133 exit();

134 >

135

136 close(fidndx).

13?7

138 return{ countpec),

139)

P,

i L

Jul

:“: b1n

iy 55

Make a list of the contacts associated with a given keyword.

CALLING SEQUENCE:

int type

int fidin
int fidout
int keypes()

PARAMETERS:

RETURNS ¢

type 1d number of the given keyword.

fidin File descriptor of the “pckey.” file tor the category

of the yiven keyword.

fidout File descriptor ftor the output file which will Llist

the accession numbers of the contacts associoated
with the given keyword.

R.turns the numher of contacts associated with the given keyword.

ALGORITHM:

The rcutine reads throcujh the "pckey.” file given by the “ficin™
file cdescriptor. Each -1 entry in the file bumps the current

pc nurber by one in order to keep track of which pc accessicn
number is current., When an entry matches the “type"” arasument.

the current pc accession number is inserted into the cutput
buffer. The "previous” variaktle keers track of the last accessicn
number to be put into the output list, and the routine checks to
be sure that no accessicn numher is inserted twice. This step

is neccessary in case a keyword has been entered twice in the sare
contact in the data base,

CALLS:
Unix routines:
seek ()
read()
write()
CALLED BY: ¢

6 14:04 1979 keypcs.c Page 1
‘ .
Ii..ﬁ.t.'t'.t..ih't't..ﬁ..ﬁ-t‘t..'t.ﬁ'.tt.‘.i..ii....tt.'ii.'tl.‘..!.ttt...tit.
NAME ¢
keypes()
FUNCTION:

i
i
i
1
i
’.
i
3
j

Jul 6 14:04 1979 keypcs.c Page 2

57 select()
S&
59 RISTORY:
60
61 written by Dan Putnam - sgring 1979,
62
63 '.iiitiii-i'iilt...hﬁﬁ'i.iii'itﬂ'ﬁiiiﬁ.’t!‘ﬁﬂtiﬂi"i‘ﬁ.tt".i‘i.ﬂ‘..!li.lt..tl’
.13
65
66 fdefine INS1Z 1C24 /*x size of input Luffer »/
67 3
68 #define oUTS1Z 256 /* size of out kuffer ./ ‘
£9
3 keynes(types,titinstidout) 1
71 int type; /* locate pc®s with this key ./
72 int fidin/ /* gescriptor fcr pc key file */
73 int fidnut; /*» descriptor for quatified pc tile o/
74 {
1 75
5 76 int count; /+ counts nurter ot qualified pc's »/
77 int inbufCINSIZ); /* input hHutter tor pc key file "/
75 int outbuflOUTSiIZ]; /* output buffer tor gualifiec gc’s */
77 int *outptr, /* points to next open slot ir cutbuf ./
el int pcid’ /* current p¢ g number */
81 int previous’; /* id number of last pc put in cutbyf ./
a8z register int nJ; /* tor Lloop counting thru pc key Llist s/
83 register int *idptr; /* grabs id numbers out of Llist ./
&4 register int idkey’, /* equals id ¥ of current key in Llist «/
i €5
- 86
1 &7 count = 0;
: A pcid = 02
k1 89 previous = -1;
: EN outptr = cutouf:’
31
f G2 seek(fidin, 0, C); /x start at beginniry s/
j 83 se2ek(tidout, 0, Q); /+ start at teainning s/
; 94
s 95 whilel (n = read(tidin, inbut, INS1Z * 2)) > 7)
. S {
¥ 97 n =/ ¢; /I n = # ot entries in buffer ./
1 93
99 idpte = inbuf;
N 1C0
4 161 do
7 102 {
. 123 if((idkey = tidptre+) == =1)
1C4 pcides;
1C5
106 else
1€7 L&
1C8 if(idkey =z tyge &2 pcid > previous)
169 {
110 Jeanxanr ut one! *r/
LRR)
112 count e,

41

e e e

Jul 6 14:04 1979 keypcs.c Page 3

113 previvus = peid’ /* to avoid reretion . «/
114 *outptre+ = pcids
3 115]
4 116 itCoutptr >= foutbutlOUTSIZI) 1
o 117 {
11s write(fidout,outbuf,(outptr - outbuf) » 2);
119 outptr = outbut’
123)
121)
4 122 b
2 123)
124 while(==n)’
125) 3
126 /*xxranx terminate List and write out */ F
127
128 *outptrés = =1;
127
132 write(fidout,outbuf,(outptr = outbuf) » 2);
13 return(count);
132)

e B & o AV 3

iy

42

Jul A 14:06 1979 Llist.c Page 1

1 »

2 /ti'illtht.titltt.iit.iﬁt’iti'.liittt.k'.iﬁilti'i.tihtlttlt’t!‘lt-.t‘...n'ﬁ!.l'

3

4 NAME ¢

S

6 List()

? |
N FUNCTION: k
v

1 Implesent the "list” commana ot JICEF.

11

12 CALLING SEQUENCE:

13

14 int fidpclist

15 char =ar)

17 PARAMETERS:

19 fidsplist tile descriptor of the current list of contact
e% accession numbers.

22 arg Points to string containing keyword céteqory names
23 that cre to be listed.

2% RETURNS:

27 nothing.

29 ALGORITHM:

3

31 The List command can be interrupted by the user by hittina the

32 "rubout”™ key. This operation can leave ogened files. To deal

33 with this problem, file descriptors are stored in static variatles.
34 The routine reains by exarining these veriables tc see if they are
35 non-zern. 1f su, the files are closed and tne descrigtors are

36 s=t to 2zero to mark the files as being closeao.

2 The next operation that is performed is to pdarse the crcument

$? strini 2iven by “arg™, The string is broken down intc sub=-strin-s
4 delimited by blanks. The "keynames™ array is searchec to see

&1 if these sub-strings are indeod valid keyword category rames.

42 1* sa, the index in the array which natches a sub-string is savec
43 to identify the cateqory.

45 The first category named in the argurent string drives the operatior
Y3 ot the List command.

48 The routine loops to pick up the keys from the first argurent

49 c.tegcry that occur in the current list of contacts.

S0 This is accorplished through the call to "listcheck ()" which

51 drives the lcop. This sutb=-routine fills out the “checklist" array
52 which keeps track of:

54 1. The number of contacts in the current (ist which contsin
55 a niven keyword.

S e A ORI -, S

VAR AT R 2 LI TNP. QPSP PO GRS WP DEICET N NOE Bt S RP ORI S

ox

oA o 4 o

Jul 6 14:04 1979 List.c Page 2
5?7 2. The accession number of one ct the contacts that -
b1} contains a yiven keyword.
59
60 3. The number of keywords from the given catecory which precede
61 the keyword in the contact namec by item 2 atove.
82
63 Items 2 and 3 provide a way of recovering a keyword ir order to
64 print it. Number 2 gives a contact where it occurs ard numter
65 3 indicates which of the keys it is. Since the “listcheck()" array
66 has Limited lenith, it covers just 3 sub-rance of the gossibtle
a7 k:yword id numbers on each loop iteration. On each call, "listcheck()"
68 returns the smallest id number of a keyword occuring in the current
69 tist cf contacts which has not yet been cunsiderec in the
7¢ “checklist™ array. This provides a lover bound for the next iteration.
71
?2 Once the "checklist array has been filled out for an iteration,
73 the routine prints out the keyword data for the checked keys. If the
Iz “checklist” struct for a key Las not oeen checked, then nothing is
7?5 printed. Otherwise, the contact data is read and the given
76 keyword string is printed as it appears in the contact cata file.
7 It any other categories were named in the argument list, ther the
4] keywords from those categories which occur in the contact data
79 are also printed.
[-4¢]
21 CALLS:
82
a3 copy ()
84 table()
85 concat Q)
86 r:sp()
a7 listcheck()
88 g:tnda()
39 estdata()
27
91 Alsos, Uniax routines:
92
93 close()
94 printf()
95 locv ()
96 open()
97 perror()
9a
g9 CALLED BY:
1C0
101 show ()
102
103 h1STORY:
1C4 .
105 written ty Dan Putnam - spring 1979,
:gg Ql.ﬁ..'Q.l"...ﬂ'.......t"Q.i..Q.Q..'....t.."..'t..t!.".'.........t.I.l...'l
1C8
109
111
" #include "structdefs.i”
112 ¥include “params,.i*

%
4
3
3
i
:

D Er————

Jul 6 14:064 1979 Llist.c Page 3
113
114 #define CHECKSIZ 256
115
116
117
3 Me
3 119
120 List(tidnclists, arq)
121 int fidpctlist, /» tile descriptor of current gc Llist ./
122 char arqgll,; /+ contairs arguments of Llist commana ./
123 {
124 struct keycheck checklist{CHECKSIZ2]: /* marks founc keys “/
125 struct keycheck #*checkptr; /* points thry checklist */
126
127 int types: /+ aumber of chosen category s/
1254 int argtyge., /+ type cf other arjuments */
3 129 int keynusber; /+ number of key amonq keys of a pc¢ “f
130 int i, /* counts keys ct a given type s/
131 int occurs. /* number of current pc's with this key #/
3 132 extern char *keynames(); /+ names of keyword cztegories */
133 struct keydata pcdatas /+ picks up keywora Lines for pcs *x/
134 struct keymarker amarkptr; /* points thru keyrarkers in pccata */
135 int arglist{2Cl, /+« argument numbers of Show x/
136 int invalid; /* flag = 1 it an arjument is invalic ./
137 int argnum; /+ loop control: counts arquments */
13 int num; /+ 3d number of an argument «/
139 char regly(256), /*» gets user repconse to promgt */
14, int tos /* Low 10 in ranuv passed to listcheck =/
141 int hi; /+ hinh id in ranie prssed to listcheck »/
142 char =string, /*» points to indiviaual arqg strings ./
143 char »sre; /+ utility pointer usec with copy() a/
164 char »dst, /+ utility pcinter used with cory() “/
145 char ¢key, /+ points to keyword string in fpcdata 1Y)
146 regyister int peids /* id number of contact in Llists */
147 struct nda pcincdex; /» offsets of data in pe file LA
T4 char ~ckeyfilel100); /* tor tuilding pckey fitlename o/
143 static int fidee, /2 tile gescriptor for pc date tile ./
152 static int fidpckey, /* tile aescriptor for pckey cata file +/
151
152
153
154 /rrrxer mayke sure file descriptors are closed before using anair ./
155
156 ittt tidpc '= 0)
157 {
158 close(fidpc);
156 fidpe = 02
160)
161
162 ifC fidpckey !'= 1)
163 {
164 close(fiapckey)»
145 fijdpckey = "7
166 >
167
168

45

—z

Jul

169
170
171
172
173
174
175
176
17?7
178
179
183
151

182
183
124
185

185
187
1838

1&9
190
191

192
193
194
195
196
197
19¢

199
203
2321

2%2
2.3
294
2u5
2C4
2C7
2032
209
213
211

212
213
214
215
216
217
218
219
223
221
222
223
224

6 16:046 1979 List.c Paqe &

Ixrskare ,3rse argument string

invalid = 0
argnum = (7

src = aras

strine = srcs

dst = src,

while(cogy(¥srcs 8dst, * °*,
{

x/

/+ assume at{ araquments ok

10C) > 1)

if¢ (num = tablel string, keynames })) < 0)

<

printt(**%Xs® is not a valid argurent\n“, string);

invalid = 12
}

arglistl argnum++ J = nums
string = srcs

)
it (invalio)

returns’ I+
arglistl argnum 3 = -1; I/«

if(argnum == 0})
{
returng

)

type = arglisti(),

I+ sagve start of string

try again

terminate List of argument ccdes

concat(PCKEY, locv(O, tyre), pckeytile),

1f((fidpckey = open(pckeyfile, 0)) < 0

<
perror(”list can®t open pckey file”),;
return;

)

lo = 07

hi = CHECKSIZ - 1/

do
<

*/

*/

*/

Jul

225
22¢
2217
2248
229
23>
23
23¢2
233
234
235
236
237
235
239
24t
241
262
243
244
245
246
247
248
249
25¢C
251
252
253
254
255
256
257
258
259
26
261
22
263
264
255
266
267
268
269
273
2N
272
273
274
275
276
2T
278
279

6 14:C46 1979
lo =
hi =

faor(
{

b
Juhile(

close(¢
fidpckey

ist.c Page S

listcheck(tigpclist, fiapckey, checklists, Lo, hi);
Lo ¢+ CHECKSIZ - 1,

checkptr = checklist, checkptr < 8checklist[CHECKSIZ2])]

it{ checkptr => keycaunt =3 ()
tontinue;

pcid = checkptr => pcnda;
keynumber = checkpte => keynum;
otcurs = checkptr -> keyctount,

it ((tijdpe = netnox{ pcids, &pcinuex)) < ¢)
continue;

eatdata(pcid, tidpcs, pcindex.keylines, &pcdatads

close(tidpc),
tidpe = 0, /+* mark it as being closed

i = Cs

for(markptr = pcdata . keyptr; Jsmarkptre+)
{
if¢ markptr -> keytype == tyge)
{
it(i++ == keynumber)
break;

printt("%s \(%d \)\n", markptr -> keystring, occurs);

for(argnum = 15 € arstype = aralistl argnum)) t= -1}
{

checaptres)

*/

5ranumed)

for(keynumber = ; keynumber < jcdata . totkeys; keyrumrert+)

{
it(peduta . keyptr[keynumter] . keytype ==
{

argtype)

key = gcdata . keyptrl keynurter) . keystring,

printf(” Xs: As\n\n", keynames[argtygel,

break;

)
lo >= 0);

idpckey),
= 0/ /* mork it as being closed

47

key),

o/

S — < -

Jul 6 14:04 1979 Listcheck.c Page 1
N .
AR R A R A AR R AR AR AR A R RS RN R AR R G A AR A R A AN R AR AR AN AN AR A AR ARG RN F AR AR AR ARAR SR AR ARR GRS AR
NAME:
listcheck()
FUNCTION:

Fill in 2 checklist indicatiny the presence of keywords
in a List ot contacts.,

CALLING SEQUENCE:
int tidpclist

int fidpckey
struct keycheck *checklist

B e e T T J QO Sy
WENOWVEUWNDOOE NV S WN

int lu
int hi
20C
21 PARAMETERS:
22
23 fidpetlist File descriptor tor the Llist of current contact
24 accession numbers.
25
26 fidpckey File descriptor tor the “pckay,.” file tisting
27 keyword id numbers of keywords occurina in
28 contacts.
29
3 max Maximum number ot keywords per contact
31 from the given category. Effectively qives :
32 the Llenath of the "rows® of the pckey file, 1
33
34 checklist The structs in this srray cive inforretion
35 atout the occurence of keywords in the current
36 contact List:
37 1
38 1. The numter of permits in the current 1
39 List which contain a aiven keyword, 3
b
41 2. The accession number of one cf the
42 cuntacts that containrs a giver keywcro.
43
44 3. The number of keywords fror the civen
45 cateqory which precede tne keyword in the
46 ccntact nameoc by item 2 shove,
47
4B flag 1f this flag is set, only want to get keyworos whose
49 high tits are set to denote non-compliance.
S0
51 to pefines the low end of the ranje covered by
52 the checklist array.
53
54 hi pefines the high end of the rance covered by
55 the checklist array.
56

Jul

€ 14:04 1979 Llistcheck.c Page 2

RETURWS :

Returrs the smallest id number of the keywaorus occuring in the current
lList of contacts, but not yet checked in the “checklist™ array.
Presurably, this value «ill be used tor the "lo" raraneter cr the

next call to this routine, If there 18 no such srallest id numbers
the rcutine returns =1 to signify that all the keyworcs have bLeer
covered,

ALGORITHM:

A passs is made through the "checklist” array to initialize it to
enpty. Thens, the input tufter fcr the current contact Llist

is filted te pregpare 1or the main loop. In the main loop, each
iteration considers an accession numter ot a contact in

the zurrent Llist of contacts. The rcutine moves through

tne "pckey." ftile to locate the “row” correpconding tc the given
contact nurcver. The keys listed in this row are checked

in the "checklist” provided that they fall into the range

defined by "lo” and "hi", and they match the “flag"™ parameter.
CALLS: B

seekl ()

Also, Unix calls:

seek ()

read ()

perror()
CALLED BY:

tist()
HISTOY:

written by Dan Putnam = sgring 1979,
’t."i".i..’.ilit.!Q.tii..‘lhﬁt".ﬂtt..i...h...tt't.t.'tt.itti..‘Q.ﬂ.ttl.t."/
#Hinclude "structdefs . i" f*+ define keycheck struct ./
Hdefine PCLISTSIZ 25n /e Luf size for currert pc Llist »/
#define PCKLYSI2 68 /* tut size tor pckey file . !
Listcheck(fiopclist, fidrckev, checklist, Lo, hi)
int fidpclist, /+« sescriptor tor current List ct pcs o/
int fidpckey’ /* Jescriptor ftor pckey file o/
struct keycheck checklist(],; /s used to keep track of tounc keys ./
int los /% key 0 # ct Lase entry in checklist ¢/

49

PAPTAPR e

Jut

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
127
130
1351
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
147
150
151
152
153
154
155
156
157
15¢
159
160
161
162
163
164
165
166
167

6 14:04 1979

tistcheck.c Page

int hi; /* key id # of last entry in checklist
{
int newlo, /% smallest key id > hi
int pclistC[PCLISTSIZI, ’ /+ tuffer tor current pc Llist
int »pclistptrs /% points thru pclist
int #*endpclist, /+ points off end of pc Llist
int pckeylist(PCKEYSIZ], /» buffer for pckey file
int s#rckeyptr; I+ points thru pckey entries
int #2ndpckey’ /* marks end of pckey buffer
int pcid, /* id number of pcs in pclist
int kcypcs /* id of pc of pckey entries
int keywvat; /* keyworo value in pckey tile
int keynumber; /+ number of keyvol in Llist
int ntytes; /* returned from reaos
struct keycheck acheckptrs /% runs thru check List
int ¥ /+ loop control: checklist
newlo = 0077777; /% taraest pes integer
keypc = C; /» pc of first keys

/exna2rt injt checklist to none found ./

checkptr = checklist,

for{ i = Los; i <= hi’; i+¢)
{

checkytr => penum = -1,

checkptrts -> keycount sz 3
2}
seek(tidpelist, Q0r C)/ /*+ be sure to start at the becinning
seek(fidpckeys, Do U /+* be sure to start at the becinning
Jeaaare 5101 up pc Llist buffer to get started s/

§fC (nbytes = read(fidpclist, pclist, PCLISTSIZ * 2)) < C)
<

parror(”list can®t read current pc Llist™)’

return;

b

pclistptr = pclist,

endpclist peclist ¢ (nbytes / 2); /* pts offt enc of List

Jennena £ill up pckey buffer to qet started »/

*/
*/

A\
~/

e/

PP

Jul 6 14:04 1979 Llistcheck.c Paye 4

169

17¢C ift (nbytes = read(fiapckey, pckeylist, PCKEYSI2 * 2)) < ()

171 {
172 perror("list can't read pckey file")’
173 return’
1724)
175
176 pckeyptr = peckeylist,
177 endpckey = pckeylist + (nhytes / 2), /* cts off enc of Llist o/
178
179
15l
141 /exsaxs run thru current ¢ list to get keys for each one «/
122
183 while((pcid = ~pclistptr+s+) != =1) /* null termirated */
134 {
185 /xarear first check if we have used up g¢ buffer */
186
187 i1 pclistptr >z endpclist)
1438 {
189 /uxarxaa refill buffer ana reset pclistptr */
190
191 if((nbytes = reau(fivpclists, pclists PCLISTSIZ # 2)) < C)
192 {
193 perror(”list can't read current pc List™);
164 return,
195)

3 196

4 197 pclistptr = pclist,
198 endpclist = peclist + (nbytes / 2); /+* pts otf enc ct list #*/
199 3 '

;- 209

X 2C1

3 2C2 /+*x#22x naxt, read up to proper section of pckey file ./
243

it 24 dhile(keype < pecid)

2 205 {
2C6 itl spckeyptrts == -1)
207 keypc++:) /* run thryu unwanted key 0% */
27
29
210G if(pckeyptr >z endpckey)
21 {
212 it¢ (nbytes = reaz(fidprckey, prckeylist, PCKEYSIZ * 2)) < C)
213 {
214 perror(”list can't read cckey file™);

. 215 return;
216)
217

3 214 ptkeyptr = pckeylists

! 219 endpckey = pckeylist + (nbytes / 2)/
22))
221)
222
223
224 /assr22e run thru keys for pcid and put in checklist ./

Jul 6 14:04 1979 Llistcheck.c Paae

:
) 225
226
227 tor(keynumber = (; (keyval = wspckeyptrts) = -1, keynumbert¢s)
224 .
226 it(pckeyptr >= endpckey)
230 {
231 it((nbytes = reao(fiapckey, pckeylist, FCKEYSIZ * 2)) < Q)
232 {
233 perror("list can't read pckey file")/
234 return;
235)
236
237 pckeyptr = pckeylists
238 endpeckey = pckeylist ¢+ (nbytes /°2),;
239)
240
241
242 it(keyval < Lo)
243 continue;
244
245 ifC keyval > hi)
246 {
247 if(keyval < newlo)
248 newlo = keyval,
249
250 continues
251 b
252
253 checkptr = checklist ¢+ (keyval - lo)’
254
255
256 /eeraks don®t bump count if cuplicate keyword in contact n/
¢57
253 if(checkptr -> pcnum '= pcio)
X 259 {
i 267 checkptr =-> keycount#++;
E 261 e checkptr => ptnum = pcid;
262 N checkptr -> keypum = keynumber;
263)}
264)
265
266
267
268 keypc = pcid + 15 /+ above loop uses up keys for pcid */
269
27¢)}
271

272
‘ 273 Jeaxrxx if newlo has its cvriginal value return -1 all done */
: 274
'y 275 if¢ newlo == Q772777)
] 276 return(-1);

277 else

278 return(newlo)/

279
280)

52

Jul 6 14:D5 1979 select.¢c Page 1 !
i
1]
2 finclude “structdefs.i"
3 #include “commandefs.i"]
g Finclude "params.i”
6 3
7
3 -
0
1) select(opcode, term)
1M int opcodes /+ iy numter of command ./
12 char term(3}; /* null terminated string, argument of command #*/
13 {
14 extern int phase; /+* tor seitching between scratch ftiles »/
15 extern int tiascratch(?2); /* tile vescriptors for scratch files */
3 16 int fiagpckey, /+ descriptor for pckey file LY}
. 17 char pckeytilel256]; /* used to build prckey file name ./
1» int old; /+» tile descriptor for scratch file »/
19 int n2uw; /+ tile ogescriptor tor scratch file n/
2C char bufter(2%61; /+ buffer for user repconse */
21 char *srcs /+ utility pointer used with cogpy() */
22 char «dst, /+ utility pointer used with cogpy() */
23 struct marker *termptr, * /* points to struct describing term */
24 int num/ /+ number of pcs from bool or keypcs ./
25 int filenunm; /* cateqory of keywora ./
26 int ignumber; /* number of keyword in category */
27 int onepcl2l; /+ butfer for writing list of one pc s/
238
29 /axaxrs 31 term is nulls, use current anc olec lists =/
E 39 3
31 ifC term(CY == 0)]
32 (
33 it(ogcode !'= FIND) b
34 { 3
35 /4earas note that we don'’t change phase on this cre */
& 36
9 37 nes = fidscratchl phase 3}, /+* new pec Llist will te in phase */
: 3e old = fidscratchl 1 - phasel; /* out of phase v/
39
47, num = bool(oldsnewsnewsopcode);
i 41 printt("Xd in current List\n", num),;
E 42)
g 43
X3 raturn,
45)
46
47 /exnsae {00k at term(G] to see it user wants just one pc ./
‘ L¥
‘ 49 itC term(C) == *¢*)
. 53 {
51 onepcld) = atoi(term + 1),
52 onepclt] = -1,
53
‘ 54
 $ 55 ghase = 1 - phase; /+« maps ((to 1 and mars 1 to | s/
. S6 new = fidscratchl phase 3, /» new g¢ List will be in phase ¢/
A S3

TN SN

Jul

100

172
163
104
155
1C6
107
108
199
110
1M
112

6 14:05 1979 select.c Page 2

old = fidscratechl 1 - phased; /* old will be out of phase’ s/

seek (news, C» 0);
if(write(new, onrepcs &) < &)

perror(”"select can't write to pc list"”);
exit();

printt(“pc Xd selected\n”, onepc(0));

1¢(opcode 'z FIND)

¢ num = bool{old,new.,newsropcode);
printf(”Xd in currert List\n", num);

)
return;

/«eanns gpecial case: user wants Llist of all pc's «/

if(compar(term, ALL) =2 0)

{
phase = 1 = phase, /* maps O to 1 and mags 1 to 0 /7 .
new = fidscratchl phase 1,/ /* new pc Llist will ke in phase #/
old = fidscratchl 1 - phasel; /* ol3 will be out of phase ./
num = initlist(new)/
printf(”"% in current List\n", num);
ifC cpcode !'= FIND)
{
num = tool(oldsnewsnewsopcode);
printf(”%20 in current List\n", num);
b
return; :
b]

/xeauas here is where we handle ordinary keywords o/

ot imn

if((termptr = keyworcd(term)) != 0)
{

filenum = termpte => files
jdnumter = termptr ~> {dnums

if¢ filenum >= MESSAGES)
(
help(0, termpte)i /* print cut messaje for user 'Y

Jul 6 14:05 1979 select.c Page 3

113 return;

117 /a*2sas reset phase to switch new and old fites «/

119 phase = 1 - phase, /+* maps C to 1 and mags 1 tc O ¢
121 new = fidscratchl phase 17 /* new gc List will be in phase »/
121 old tidscratchl 1 - ghasel; /% old will be out of phase «/

noa

125 concat(PCKEY, lccv(d, tilenum), pckeyfile);

127 if((tidrckey = open(pckeyfite, C)) < 0)
122 {

129 perror(“select, pckey open”);

13C return;)

135 le2aeaa use keypcs to yet List ot pecs fcr non-event keyword */

137 num = keypcs(idnumber, fidpckey, new)’

144 printf("%2d found\n", rumd; 1

4 142 close(fidpckey);
’ 143)
144
145 if(opcode *= FIND)
146 {
147 num = bool(oldsnewsnewsopcode);

14y printf("%d in current List\n", num);
159) '
151 return;

‘

l

ST L e OV iy, ettt -

Jul

6 14:05 1979 show.c Page 1

1 []

2

3 #include “structdefs.i"

4 #include “params.i"

5

[} #de fine LSTSI2 256

7

8

9

L)

11

12 show(fid)

13 irt tid, /» file descriptor of current pc list

14 {

15 struct getlbuf butin; /+ buffer for getl() routine

1eé char line(256]; /* gets lLines from getl()

17 int nbytes’ /+ char count from getl

13 char *key; /* points to keyword string

1¢ int tyges /% ingex to categories

20 int printflag, I+ flags printing first key of a type
21 struct keymarker smarkptr; /+ points thru keyptr array ot gcdata
22 extern char *keynames(]; /% names of keyword cateqories

23 int keynumber; /* counts filleo in keyptr entries
24 struct keydata pcdatas /= picks up keyword Lines for pcs
25 char *sr¢, /* utility pointer used with copy()
26 char #*dst; /* utility pointer used with cogy()
27 int pclist{LSTS1Z), /% buffer for input and output lists
2F register int js /+ fast loog counter

29 register int pcids /* id number of scurce permit in lists
39 int 2pctistrte; /*» points thru List buffer

31 int xendlist, /* marks end of pclist array

32 struct ndx pcindexs; /+ offsets of data in p¢ file %/
3z lonc oftset, /*+ temp copy of pcincdex cffsets

34 static int fidpe; I/« file descriptor for pc data tile
35

36

37

I [+exses make sure fidpc is closed before using aaain */
39

&0 ifC fidpe '= 0)

41 {

&2 close(fidpc)/

43 fidpe = C; /* mark it as beina closed «/
44)

45

46

47

43 seek(fid,C,Q0); /+ make sure we get wholte file

49

50 while(¢j = read(fid, pclist, LSTSIZ * sizeof(+pclist))) > C)
" 51 {

952 j =1 2, /* j = number of ints read

53

5S¢ pclistptr = pclist: '

55

56 while(j~= &% (pcid = spclistptree) !z -1)

[———

*/

./

s/

Jut

6 14:05 1979

show.c Page 2

it((ticpc = getnax(ccids 8pcinvex)) < G)
continue;

printf("pc #%c\n"., pcid);

satdatal pcid, fitpe, prindex.heylines, Ko cdata),

fer(type = (s type < NUMTYPS, type¢s)

{
yrintflag = 0,
Aarkptf = pcidcts . keyptrs
tor(keynumcer = C; keynumber < pcdata . tOtkeysS; keynumter¢s)
{)
it(markptr -> keytype == type)
{
it(printtlag+s == ¢)
printf(* \nXs:\r", keynames(type 1);
printf(" %s\n", markgtr => keystrirqg),
b
markptr+s;
)
)

/aesarr pow print text data */
printt(“\n\n"),;
offset = pcindex . catalines;
if(attset < ¢ || seekil(fiapc, offset) < C)
¢ printt(”can’t seek tn data\n");
continue;

}

bufin.fildes = fidpecs
vufin.nleft = 0,

while((nbytes = acetl(line, &butin)) > 0)

(

Linel nbytes 1 = (J

it(Linel0) == *#*)

treak;

printt(”2s”, line):
)
close(fidpc)/ /+ gll cone with this one »/
fidre = 07 /* mark it 2as being closed s/

57

Jul 6 14:05 1979 show.c Page 3

13
114 printf(“saxnasr\n\n®);
115 b
116
117 if(pcid == ~1)
2 118 break:
1‘ 119
f 129)
3 121)
!
4 i
3
) %
5 .
4
;
{
!
S8 i
!

Jul

TV SN NS WA=

6 14:04 1979 Llookup.c Page 1

:.h..t...t..il'!‘.ﬁt...ilﬁ"i........l..‘.I.‘.....l‘ﬁ'.i.!t.ll..l.......’1‘.‘...
NAME:

tookup ()
FUNCTION:

Look in the hash table file for the word marker structs corresporoing
to a given string.

CALLING SEQUENCE:
char *word

int fileid
int checktla)

struct marker afindptr
int max
PARAMETERS:
word Points to the string to be looked ug in the hashtatle.
fileid The number of the keyword file in which the word

should te locateo. 1f this flag is -1, ther all the
keyword files are searched.,

checkflay 1t this flag is G, then o struct whose I hash values
matcn those of the given worc is assumec to match the
-word. 1f this flag is ron-zero, then the keywore
corresponding to Suck a struct is reac from its

keyword file, and compareas to the given word,
findptr roints to an array of structs which is fitled in
vy "lcokup()" with the structs which rmatch the giver
wOfrQg,.
LB} Gives the size ot the above array so that "lookug()*

can aveid overwritiny that array.
RETURNS ¢
The number of struct elements matching the given word.

1f an error condition is encountered on an "open()", "seek()" or
a "read()", then "exit()" is called to terminate the grogranm.

ALGDRITHM:

On the first calls, the hashtable file is opened and the file
descriptor is saved in a static vdriable to save time or sutsequent
calls. At this tine, "fstat()"” is c:lled to cetermine the Llenath

nt the hashtable file measured in marker structs. The CVERFLGW
psrameter is subtracted from this lenath to determine the "rodulus™.
Obviously, this parameter must agree with its counterpart in the

59

Jul 6 14:04 1979 Llookup.c Page 2

b X4
3
59
67
61
62
63
64
65
1.}
&7

CALLS:

CALLED B

HISTORY:

“hash” program, \
Yo look up the given wora in the hashtatle, the "hashfn()" routire

is called to compute the 3 hash values of the word. The index

into the hash table is corputea from the hash values anc the “moculus”.
A calculation is perfurmed to determine the numter of structs that

can be read bejinning with the index, that will nct cross a 512 tyte
boundary in the file., This makes the initial reud from the hash tatle
about twice as fast as if it crossed the bouncary, anc the first

read almost always encompasses the collision list.

The structs in the collision list are scrutinized to see if they
motch the input word ancd those that do are copied intc the array

of structs indicated ty “findptr™. If this array runs out of rocm,
the structs are no longer copieds but the count of matching structs
still continues,

hashfn() To compute hash values of the input wcrao.

seekl () To perform seeks at long offsets.

cancat() Yo concatenate strings. (borrowed from CELDS)
qet L () To tead keywords from the keyword files.

capy) To extract the keywords from the line on which

they are declareo.
compar() To compare strings. (becrrowed from CELCS)
Alsos, the following Unix calls,

spen()

fstat() To get the size of the hash table file.,
read()

exjit ()

parror()

grintf)

Y:

Virious programs thet need to look up keywords.

written ty Dan Putnam - fall 1978

This routine is essentially fdentical to the "lookup()™ used in
tte PAMS system. The "include” ftiles are the only major
ditterence, and this chanae was needed only to redefine the
“KEYNAME" parameter, Adaptations were wace, spring 1976, by
Dan Putnam,

REREP IR R AN RN ANRNAC R ORARARARRAARASRRRRRRARRARORRARARSAARRRCOARARRARNRARSIROROARTR/]

kot oo

C0 o T TR TR et T TRy TR T NS TR T T

StHL nehueiiiyy

Jul

113
114
15
116
117
118
119
1243
121
122
123
124
125
reen
127
12¢
12v
1306
13
132
133
134
135
136
137
138
137
145
161
142
143
144
145
146
147
145
149
154
151
152
153
154
155

166
167
168

6 14:04 1979

#include
#Hinclude

riefine
#define

Lluokup.c Page

“structdefs.i”

“params.i"

HASHBUFSIZ
OVERFLOW

32
1C0

/% fits in one block

lookup(word,tileidochecktflaa,findptromax)

char *a40r
int filei
int check
struct ma
int maxn,
{
struc
{
c
c

ds
ds
ttaa,

rker tfinupte;

t filestruct /*

nar jnk(9],
har sizeO;

int sizel:

c

har)nk2l243.

} filedatos

struc
{
[+
c

t /*

bhar hi_oyte,;
har highests

int (lod4d_words

3

struc
{

t I

int hidits;
int lobits;

};

int nun;

rrgister

reais

struc
int n
char
char
char
char
char
tong
long
regis
int h

struct
struct

marker
ter marker
t jetlbuf bufr;
tytess
filername(2561];
keyline(2561];
keystring(2561;
*Src,

=dst,

indexs

roundary,

ter int readbytes’
ashvat(31;

/
/»
/»
1 »
/»

used
/*
/»
/%
/s
used to

/

[*

used to

/a

tsrecntes
sastptr,

/=
/%
] »

points to word we are looking for
if -1, any file, if >= 0, specific
it 1, then check characters

tor narkers ot found words

length of find.tr array

tor oetting length of hashtable

don't need this stuff

high tyte of file size

low word of tile size

don®t need this stuff either

toad sizeC and sizel into s long
of filestruct
long

of filestruct

corresponds to sizel
high order byte of a
corresponcs to sizel

access hijh and low words cf a lcn2

tor returning number of finds

/+points thru hashtable
/% tuor roving founao markers

struct used Lty getl() routine

char count returned from qetl

for tuiloing keyword file rane

for readina line from keywcro file
gets keyword string out of keytire
used with cogpy routine

usea with copy rouutine

index into hashtable

512 bLyte tounoary after incen
bytes in rarkers ugp to boundary
hash values :

/+ tuffer for hashtable

struct marker hashbut[HASHBUFSIZ]):

«/

o/
./
¢/
*/
x/

*/

./
v/
*/
*/

+/

./

x/
./

=/

“/

./
./

Y
Y

./
s/
o/
o/

Y
s/
Y

e/

TR

alke oo

ki

Jul

169
1?70
R4
172
173
174
175
176
177
178
1?9
180
181
182
183
184
185
180
187
188
189
190
191
192
193
194
195
196
197
1938
199
200
2
2u2
2.3
2C4
2us
2.6
277
204a
299
2110
211
212
213
214
215
216
217
213
219
22C

6 14:06 19¢9

lookup.c Page

struct marker vendbut; /* eng ct markers in hashtut
int evenword; /* number of bytes in hastbut

static int fidhash; /% cescriptor of hashtatle
static Long modulus’ /+* modulus for hash algcrithm

Jeraxex fiprst call initialization ./

if(fidhash == 0)
{
it((fidhash = open(hASHTBL, 0)) < 0)
{
perror(”lookups can'st open hashtable™)/
exit()s
)
Jxxxxnx get size of hashtable to compute modulus x/

fstat(fiohash, Rtiledata);

modulus = 07

modulus .hi_byte = filedata.sizeO;

modutus.low_word = fitedata.sizel’ /* size of hashtable
modulus =/ sizeof(#*hashbuf); /+ npumber of keyword markers
modulus == OVERFLOW;

/asrnna compute hash values ot word and ook into hashtable »/

hashfn(word, hashval);

index.lobits
index.hibits

hashvallyul;
hashvall1) & 0C?77777:;

index = index X modulus;
index =+ sizeof(thashbuf);

/«txsar compute number of bytes from index to 512 byte btoungary

readbytes = 512 - (index.low_word & 0777);

readbytes = (readbytes / sizeof(#hashbuf)) & sizeof(shashbutl);

{f¢ readoytes > sizeof(hashobuf) || readbytes == 0)
readbytes = sizeof(hashbuf)/

./
«/

%/
*/

*/
®/

~/

Jul

225
226
227
228
229
238
231
232
233
234
235
236

241

242
243
244
245
246
247
248
249
250
2951

252
253
254
255
256
257
2538
259
260
261
262
203
264
265
266
267
2638
259
27
271
272
273
274
275
276
277
278
279
280

6 16:04 1979 (pookup.c Paje S

it(seekl (fidnash,index) < 0)

printf(”"failed on seek into hashtable\n®");
exit();

/=xawars ook at hashtable entries until an empty slot is found

num = Q; /I« none found so far
dstptr = finapte, /%« copy to register pointer for extra sgeed

zhile((nbytes = read(fichash, hashbuf, readbytes)) > 0)
readbytes = sizeof(hashbuf); /* next time fill buffer
endbut = hashbuf *+ (nbytes / sizeof(*hashbut)),
tor(srcptr = hashbuf;, srcptr < endbuf; srcptret)

/oaxera ftirst check to see if empty #*/

ifC sreptr -> tile == -1)
return(num). /+ thats all folks
)
t(srcptr -> hashv{0Q) '= hashvall(0])
continue; /* not found

it srcptr => hashv(1) '= hashval(1])

continue; /+ not found
if(srcptr -> hashv{2] !'= hashvat(2))
contirue; /* not found

itC tileid >= 0 &% srcptr -> file '= fileid)
continue, /+ not in the riaoht file

it(checkflag)
/erax»r check Strings to be atsolutely sure */

concat (KEYNAME, locv(0s, srcptr =-> file), filenane)s

it((bufr.filaes = open(filenare, C)) < C)

{
perror("lookug can't open keyword tile"):

exit();
b

bufr.nleft = Qs

63

»/

«/
«/

*/

v/

v/

./

s/

i,

i o

Jul

.

231
2u2
283
284
285
286
287
258
289
250
291
292
293
254
295
296
297
294
299
360
361
302
303
3934
3cs
3006
307
398
3Cy
31C
311
312
313
314
315
316
317
31~
310
32¢
31

6 16:04 1979

}

lookup.¢ Pagye 6

it(seekl(bufr.fildes, srcptr -> beginbyte) < C)

{
perror(”lookup can’t seek to keyword");
exit(),; .

it((nbytes = getl(keyline, 8bufr)) < 0)

printf(”lookug can't reac keyword tile\n");
exit();
}

cltose(bu¢r.fildes),
keytinelnbytes - 1) = 0/

src = keyline + 1;

dst = keystring.,

copy(Bsrce, Rdsts *':7, 256)/

it compar(keystring, word) != 0)
continue; /* no match

num++ < max)

dstptr =-> hastv{Q) = sreptr => hashv(0];
dstptr -> hashv{1) = srcptr => hashv(1);
dstptr -> hashvl2) = srcpte -> hashv(2]:
dstpter -> tile = srcptr -> tile,

dstptr => idnum = srcotr => tdnum;

astptr -> beginbyte = srcptr -> beginbyte;
dstptree;

./

printt(”bad reac in lovokup, index = %D readtytes = Xd\n".incex,readbytes);

Jul

-
- QY NV NN -

6 14:04 1979 help.c Page 1

I o e e RN AR AR AR R AR AR R R AR AN RN R R R R AN RARA AR AR A RAR A AR A AR R A A S AR AR RA AR AN AR AN S hhagnd

NAME :

help ()

FUNCY10N:

CALLING

Print any lines fcollosing the Lline wnich ceclares a keyword in
a keyword file.

SEQUENCE:

int fid
struct marker xtermptr

PARAMETERS

RETURNS :

fid File descriptor for output messages, Set tc 1
for output to the user's terminal,

termpte Points to a word marker struct identifying a aiven
keyword.

nothing.

ALGCRITHM:

CALLS:

The routine examines "termptr™ and returns immediately if it is

a null pointer. Otherwise, the cateqgqory number is agrenced to

the keyword file rrefix and the keyword file is orened. The offset
storeg in the marker is used to seek into the keyword file.

Note that 1 is added to the offset to skip over the '"#' character
which marks the keyword, This line is nct printeds, bLt subseaquert
Lines 4re grinted until a line beginning with '#*' is founa or

until the end of file.

concat()
scekl ()
qgetl ()

Alsos, Unix calls:

open()

perror ()
write()
close()

CALLED BY:

ficep()

65

H
4
i
i

{
}
!
¥
: Jutl 6 14:04 1979 help.c Page 2
‘E..
i 57 s:lect)
: 58 4
[56 HISTORY:
6*
b 61 written by Dan Putnam = fall 1978 -~ for PAMS system.
62 Adapted for use by the IICEP system ~ sgpring 1979 - by changing the ;
‘ 02 “inctude” files to define the "KEYNANME"™ parameter differeatly. i
3 646 .
! 85
] 66 tttti.t.'lliliﬁi.ﬁtii..i*tﬁﬁtﬁtl!‘t‘tl.itttiilitlﬂﬂll'ﬁtiii'ttttﬁ..i'it't!i..'t/ E
e7
4 ng
1 &9
7" #include “structdefs,§"
71 finclude “params.i”
72
73
74 help(fids, termpte)
75 int fid; /% descriptor of output:file ./
7¢ struct marker wtermptr; /* describes keyword */ i
7?7 {
R char tileramel30l; ;
3 79 char Linel301; . /* ingut line from file w/ 3
i 8y struct getlbuf butffer: /+« used by aetl routine s/ 5
81 int nchars; /* number of chars in line */
82 int linecount; /+ number of lines printed */
e3
B4
95 it(termptr == (0)
86 {
87 J#xxa2x nothing to print x/
88
; 39 returns
; 9 }
2 91
g 92
*i 93 concat(KEyiaMe,locv (O termptr=>tile), ftilename); i
3 S4 if(Ctuffer.fildes = cpen(filename,l)) < C) i
9y {]
94 perror("help, can't open”); !
R? return;
GRr }
9]
166 !
1c1 bufter.nleft = 0; 1
1c? if(seekltbuffer.fildes,termptr->beginbyte ¢ 1) < Q) H
1C3 { .
2 104 perror(”helps, can't seek to keyward\n"): .
1G5 close(buffer.fildes)s ¥
1C6 return;
1C7)
¢ 18
109 linecount = 07
LA R while(Cnchars = getl{ line, Zbufter)) > 0 88 tinelD) !'= *»%)
mMm 4

112 ’ if(linecauut+e == Q)

™

Jul

113
114
115
116
117
118
11y
12u
121

6 14:04 1979 help.c Page 3

continue; /* skip over first line 2/

tinelncharsl = 0s /* insert null after the end-ot-line. s/

write(fid, line, nchars);
}

close(buffer.fildes):

67

Jul 5 15:09 1979 /cerl/pams/source/iam.c Paye 1
{
g 1 L)
2 Iﬁﬁi.‘.i.ii.hhl.Q.Ql...t.i‘.l...‘..Inﬁ...ii.il.i.‘ttltﬁﬁﬁ* thaddAdAddoatnandaeng
3
4 NAME : i
S
6 iam()
3 7
1 R FUNCTION:
3 7
13 Create a3 unique name which can be concatenated with scratch file
11 names to grevent multiple instances of a program from overwriting
12 each cthers scratch files.
13
14 CALLING SEQUENCE:
15
16 char »me
1?7 int iam()
1 13
- 19 PARANMETERS:
2¢
21 me - po2ints to a character buffer of at least 3 characters.
22 This tuffer receives the unique name, which consists cf a lower
23 case letter, followed by a "A"™ character and a null character.
4 24
25 RETURNS :
26
27 positive integer it name creation was successful.
28
. 29 nejstive integer otherwise.,
3
31 ALGORITHM:
3 3¢
- 33 The rcutine uses the “"creot" system call to astterpt tc create
) 54 a file ramed with the string "me”. The "creat” fails if a file
§] 35 atready exists with this name anc does not have write access.
b 30 It this occurs, then the name is alterec anc the process continucs
»{ 3?7 uatil a unigyue name is found or else the lower cPse pre-tixes have
32 teen exhausted. In the lLatter caser, -1 is returned tc signify 1
39 fisilure in creating the unique name. When the proteg.re succeeds
4 47 in creating a unigue namer, the file openea ty iar() is closea
K (3] before returning., It is not expected that this file will be [
L2 used for anything except to mark its name a3as already teing in use.
43
L4 CALLS:
45
46 creat() Unix system call to create files.
47 .
i 48 CALLED BY:
i 43 1
53 usually a main progranm,
51
52 HISTGRY: 3
53
54 written by Dan Putnam - fall 1978 *
;Z Q.tOﬁl...n.i.t..i.h.......'.....‘!.i...'Qt...i‘..t.'i.t'i'l'.i'.!...0.0.....0.,

]
h
%)
i

5 15:69 1979 /cerl/pams/source/iam.¢ Page

iam(me)
thar *me;
{
int i,
int fid;
me(0] = *a*;
mel1] = 'r*;
mel2]1 = 0
for(i = 37 i < 267 i++)
{
it (fid = creat(me,(444)) < 0)
{
mel 33+,
else
{
close(fid);
return(tid);
)
)

return(tid);

69

b e ki

AL

a

Jul S 15:C9 1979 /cerl/gams/source/concat.c Page 1 3
1 /* C ONCAT (Note: Borrowed from CELDS, Thanx!)
; 2 . 3
1 3 * Concitenate two strincs into one string. (Concat returns a ;
4 « rointer to the end of the resultant strin) so that successive calls
S *+ to concat may be made easily.
6 *®
7 * Ar,uments: tirst pcinter to first string
] » second pointer tn second string
9 * result pointer to end of resulting string }
10 - E
11 + Returns: pointer to end of result string
12 * K
13 « Calts: none . L
14 »/ “
; 15 j
E 16 char *concat (first, second, result) char *first, 2
17 tsecond,
13 sresult;
' 19 {
3 23 while (aresult+s = afirste+); /* Copy first string to result «/
f 21 -~result, /» Back up over nul «/
5 22 while (ar8sulte+ = 2second++); /+ Copy second string tc result =/
J 23 -=result; /* ©Back up cver nul «/
‘ 24 return (result);
) 25)

70

Jul

DO NOWN S WN -

S 15:09 19?9 /cerl/pams/source/cogyfile.c Page 1

"
[AR R ARG AR P R AR R AR R AR AR R R AN AN RS AN SRS A AR PN AR R AR A A A SR AR AN AN SR AN ad R RNt hanghnr

NAME :

copyfile()
FUNCTION:

Copy the contents of one open file to another.
CALLING SEQUENCE:

int fidin
int fiiout

PARAMETERS :
fidin file descriptor of source file opened fcr readinc.
fidout File descriptor of destination file opered fcr uriting.
RETURNS =
nothing.
ALGORITHM :
The routine first seeks to the start of both files in case cther
proceaures have used the file descriptors. Then the routine reacs
from the source file in a Loop and writes the same nurber of bytes
to the destination as it read.
CALLS:
Unix calls:
s ek()
read ()
write()
perror()
CALLED BY:
pams (main program)
restorel)
save ()
HISTURY:
written by Dan Putnam - fall 1978

AR ARSI RARARARRA S AN R R ARARR RN AAAN AR P AR ARRNANARORRARNRRRRARAARSARARARRRARRASARRNSER]

n

— g s

Jul S 15:09 1979 /cerl/pams/source/copytile.c Page 2

57 copyfile(fidin, tidout)

52 int fidin; /+ descriptor of source file
59 int fidout:; /+ descriptor of destination file
6J <

61 int nbytes;

62 char buffer(5123,

63

64 seek(fidin, 0, 0)/ /* from beqinning
65 seek(fidouts, 0, 0); /*» from beginning
bo while((nbytes = read(fidin, buffer, 512)) > 0)

¢? {

64 §¢(write(fidout, buffer, nbytes) < nbytes)

69 {

73] perror(”save write error”);

7 close(tidout)i

72 return;

73 3

74)

75

76

77 if(nbytes < Q) .

78 {

79 perror(”copytile, read error”);

un)

31)

72

*

s/
s/

*/
/

Jul S 15:10 1979 /Jcerl/pams/source/resp.c Paye 1

1 [}

2 [l‘l.ﬁ...tt.ﬂi....t..t.t‘tlli.ﬁQ....t..t.'.'.l..ﬁt.ttﬁt.t.ﬁ.'tl..‘...i..i.‘t...
3

4 NAME :

5

[} resp()

7

a FUNCTION:

9

10 Get a Line ot user response form the terminal.

11

12 CALLING SEQUENCE:

13

14 char *bfr

15 int resp()

1%

17 PARANETERS:

1%

19 btr roints to buffer for user response.

(4
21 RETURNS ¢

22
23 Returns the number of characters in the response exclusive of ‘\r‘,
24 or returns -1 on end-of-file,

25

26 ALGORITHM:

27

28 The routine works with 3 tuilt in Linit ot 8C characters per resgonse.
29 Characters are read from the terminal uantil either 8C ars reac¢ or

3a an end-of-line or end-of-file is encountercc. It the last character

31 is an enda-of-line, then it is overwritten with a null.
32

33 CALLS:

34

35 nothing.

36

37 CALLED BY:

38

35 p'ms { main program)

L s~lect()

41 keyword ()

42 lList ()

43 g=teft()

4l qrtsmons ()

45

46 HISTORY:

67

43 written by van Putnam ~ tall 1978

%)

Sq QQﬁ0".ttﬁt.‘i.iﬁi"iﬁt.'ﬂ.i.!ﬁt.it.t...t..ti...'.t.Q'ﬁt..iﬁit.lh..ﬂ.i.lt.'i."
51

52

53 Ade fine MAXCHR B8O /+* maximym response length s/
S4 :

55

56 resplbfr)

73

WHL e ke AT whe B | e T = e B e e LSS L A A - e e arvama— e o

b

:
|

Jut 5 15:10 19?9 /cerl/pams/source/resp.c Page 2

57 char *bfr; /* character buffer for user response ./
58 <

59 register int countdown;

6J rejister int chr:

61 register char 4ptrs

64 countdown = MAXCHR;
65 pte = tte;

o7 do
63 {
69 *utr++ = chr = aqetchar();

72 if(chr == *\Q*) -
73 returnt -1);

75 }
76 while(--countdown &R chr !z *\n');

§ 78 if(chr 1= *\p*)

H 79 {

K B¢ while(getchar() 'z "\n*); /+ flush input ./
z 81 *ote = (7

83 etse

84 { 1

85 Al{~-=ptr) = I /* reclace CR by nult */ :
3]

(s < ot
o0 0o
~N O

34 raturn(ptr =~ bfr);

74

Jul 5 15:09 1979 /cerl/jpams/source/copy.c Page

[
X R A R R X R R R N R A R R R R R R R N RN R R R R R R RN SR RA]

NAME @
copy ()
FUNCTION:

Move chasracters from one string to another and update pcinters
to scurce and destination for subsequent calls.

CALLING SEQUENCE:

char **source
char »+dest
char ocetimiter
int mexchars

L e T e JAT S
DO NG VWD TIC L NPV NN -

PARAMETERS: .

snurce is the address of a pointer tc the source character strinz,
tnis pointer is updated tu point past the lzst character movec.

dest is the address of a rointer to the destination string.
This Lointer is left pointing past the null character terminating
tke string that was mnved.

4delimiter is the character signalling the end ot the source string.
1f this character is not encountered, a null character will halt
the transfer of characters.

maxchars is the size of the destination string, 1If there are
more characters to be moved than maxchars, a -1 is returned
and copy does not overwrite the end of the tuffer.

RFETURNS

-1 if the size limitation given by maxchars can not te met.

otherwise copy returns the number of characters moveo irclucina
the null character terminating the cestination string.

ALGORITHM:

The ccpy routine skips over leading tlank or tab characters.
Embeaded substrincs of tlanks or tats in the source string

are condensed to one vlank., The transfer of characters stogs
when the delimiter character or a null character is erccuntered
or when the size Limitation given ty maxchars is met.

The source pointer is never movec past a null character.

In this case, subseguent calls to copy move an enpty string.

If the aelimiter is not null and it is encountered before a nutl.,
then the source gointer is moved past the delimiter.

Thus, successive calls can move substrinjs seriarated ty the celiniter.
The destination strins is null terminated and the destination

Jul 5 15:09 1979 /cerl/pams/source/copy.c Page 2 -

57 pointer is left pointinno past the null. Thus, regeated calls
58 ty copy can move strings into a3 shared tuffer.
59
69 CALLS:
3 61
d 62 nothing
X 63
64 CALLED BY:
55
66 att kinds of procedures that move strings around.
57
638 COMMENTS :
3 69
7c copy() can be used for several different purposes:
71
72 1. cleaning a string to eliminate extra blanks or tabs.
73
74 2. parsing a Lline into fields.
3 75
3 76 3. counting the number of fields on a Lline.
3 77
78 HISTORY:
79
80 written by dan Putnam - fall 1978
81
82 itﬂiiitit.iﬁ.t.litﬁi*ﬁ'.ﬁ’i‘ﬁﬁ.ttli'.itt..t‘i.ii.tt.tlttt.tttit‘ti‘t‘i'ti".ﬁ‘l
33
84
85 copy(source, dest, delimiter, maxchars)
3 £6 char *#source, /+ points to a gointer to source striny ¢/
4 a? char »=»dest; /%« points to gointer to destination */
3 ER char delimiter; /+ stop copying when this char is fcund #*/
3 A% int moxchars’ /* size of aestination ./
3 9" {
7 91 reqister char #src; /* cory of source for speed, esthetics */
! G2 reqister char chr. /* temp tor #*src to save inairectior */
E 63 register int slack, /+ room Left in destination */
3 9% char »dst; /* points to destination “/
95 int ret; /+ return vatlue */
A 96 E
97
98
99 Src = *source;
100 dst = #dest;
101 slack = maxcharss /+* available room ./
1c2
: 113 if(slack <= ()
B 1C4 <
3 105 return(=1),
4 1mns b
. 107
163
4 109 Janonse firgt throv away leading blanks arnd tabs eesesenesy
i 110
‘ 111 while(essrc == * * || w#src =z *\t*)
112 srcée;
76

gy Praey s -~ ~se— - . co L T I R R R

‘ Jul 5 15:09 1979 /cerl/pams/source/copy.c Page 3 i
‘ A
113

114
. 115
‘ 11e /#e42% now run through the rest of the stripg **+snnes/
L 117
_ 118 do
| 19 {

120 if((chr =
p 121 Lreak;
; 122
; 123 STCHe; /* not nutl., so move on ./
: 124
i 125 ifC chr ==
126 break;
127
124 ’
129 itCchr == * * || ¢chr == *\t*) /+ it blank or tat «/

*src)

delimiter)

132 Srcte;
133
134
3 135 if(chr == 0)
136 break; !
137 '
133
139 ifl che == delimiter)
140 {
141 srehe; /» meve past delimiter v/
142 break;
143 }
144
145
146 chr = * *;
147)
143
149 *3st4+ = chr;
154 7
151 Jahilse(==slach) . 4
152
153]
154 if¢ stack > G)
155 {
156 ret = maxchars - stack ¢+ 1;
157)
154 else
159 {
160 /+aearr looks like we didn't fino the erd but ran out of roon o/
161
162 ~=-dst,
163 ret = =1;
164
165 /»kranr move src past delimiter or up to null byte */
166
167 anile((chr = #sr¢) '= velimiter &8 chr !'= 0)
168 Srcts;

139 {
131 dhileC (chr = ®spc) == * ¢ || che =2 "\¢t*) g

77

x
¥

¥
3

9

Jul

167
170
171
172
173
174
175
176
177
178
179
189

5 15:09 1979 /cerl/pams/source/copy.¢ Page ' 4

iflchr '= 0)
Srcte;

)
*dste++ = C;
*source = srcs

*gest = dst;
return{ ret);

/* leave dst pointing past null byte

78

*/

e

o

Jul

OO0 NG VS W -

S 15:

3 % % % % % * » % % » % % B B * %

~

09 1979 /cerl/pams/source/execute.c Page 1

EXECUTE (Note: Borrowed from CELDS, Thanx!)
execute - send a strino to sh to be executed

caecute (command) ; char *command /

fForks otf a process to execl the shell with a one-line
command in the strinyg "command”. Waits tor return of
the child rrocess.

Signals are set up so quits will interrupt the child
frocesss, not the parent.

Calls: fork, signal, execl, wait
Globals: noune
Last modification: 31 mar 77

execute (command) char #command;

I *

register int child,
signalstatus/
int waitstatus;

if (Cchild = fork O)) < Q) /* Set up the fork »/
return (=1);

The child dones the execl using the argument string #/
if (child == 0) (
signal (2, Q)7
execl ("/tin/sh”", "sh", "-c¢", command, 0),

3

sianatstatus = sicnal (2, 1)

while (wait (Kwaitstatus) != child); /* Wwait for child =/
signal (2, signalstatus)’

raturn (0)7

79

¢
H
i
i

T TR T T

Jul 5 15:10 1979 /cerl/pams/source/table.c Page 1
1 '}
2 /kl!ii‘.ﬁ‘thttiﬁ'lh*ti.ﬁttiﬁi*'ttii.tt-'ttﬂtitit!ttttittii.ttlt.i‘t..tilltit‘t.
3
4 NAME :
5
6 table()
7
& FUNCTION:
9 :
1] To Look up a character strina in an array of string pointers.
1
12 CALLING SEQUENCE:
13
14 char *string
15 char *2ptrarcay
3 15 int table()
17
12 PARAMETERS:
1 19
g 20 string - points to a null terminated string of characters.
21
3 22 ptrarray - points to 2 null terminated array of character pointers.
23 -
24 RETURNMNS ¢
25
26 -1 if the string is rot found in the array of pointers,
27 3
28 otherwise table() returns the inaex of the first pointer
29 in the array pointing to an jdentical string.
335
! 3 EXAMPLE
3 32
: 33 pefine “name” and "nametable” as follows:
s 34
] 35 char *name “jody™;
| 36
37 char *nametable(]
33 {
3y “tred”,
| 40 "jody”,
' 41 “cat”,
42 n
‘ 63),
| hé
‘ 65 Then the catl "table(name, nametable)” returns 1 to incicate
46 that "nametable{1]” pnints to the same strin) as "name",
%4 However, “table("joe”, nez :able)" returns =1, since “joe"

i3 not listed in "nametable".

ALGOR]ITHM: :

o
—

|
- -
(s)

-
-~

The "ptrarray” s searched sequentially, and if a poirter in the |
array points to a strinn 2q9greeing with that indiceteo by the
“strin)™ arjument, then "table” returns the index of that element
in the array. 1f a null pointer is found in the array, then -1
is returned.

»
-

- r

Jul 5 15:10 1979 /cerl/pams/source/tatle.c Page 2

57
S8 CALLS:
Sy
61 compar() A routine borrowed from CELDS to test whether
61 string pointers point to identical strings.
62
63 CALLED BY:
64
65 usually routines that need to parse comrand striras or check
86 for "legal” values of string variables from amany those in a
67 small, pgre~defined Llist.
o8
69 HISTORY:
70
3 7 written by Oan Putnam - fall 1978
E 72
73 tﬁiltt’iti.*i-titi.ﬁtttﬁtt...tttﬁitltkt.!tﬁ.ifﬁt't'tiitttiii.littttl!it.ltlit./
74
75
76 table(string,ptrarray)
77 char *string. /* pts at null terminated strino */
g 78 char #*«ptrarray, /+ pts at null term array of char ptrs =/
= 9 {
i 81 register char =*ptrptr, /*» copy ot ptrarray fcr speed */ i
4 81 register char *ptrs /* copy of *ptrptr for speed ./
: g2 register int i35 /* tast loop counter */
; 83
' 84
85 ptrptr = ptrarray; 1
£6 for€(i = C; (tr = *ptrptret); i+¢)
87 {
38 if(carpar(string.pter) 3= ()
R9 return(i);
93)
91
2 raturn(=1);
] 93 }

81

T AN I 1 38 o o s R

Jul

OCNMNO VS N~

$ 15:10 1979 /cerl/pams/source/save.c Page 1

"

/.t.‘ﬁ...i.itnttttitttttﬁit'ttlt.‘.ittttl.'tﬁttt.tttﬁt..l..it.. ARBR S Ah AR RS RSN S
NAME 3

save ()
FUNCTION:

Save the contents of the current scratch file of id numters in
a file named by the input character string.

CALLING SEQUEWCE:
char stilenane

PARAMETERS:

filename Points to the string nasing the output file.
RETURNS :

nothing.
ALGORITHM: .

The routine attemgts to create a file named by the "filename"”
argument. If this attempt fails, the routine prints a sessage
to that etfect and returns. If it succeeds, then the "copyfile()"
routine is used to copy the contents of the current scratch file
to the file which has been created.

CALLS:
copyfile()
Also, Unix calls:
creat()
szek()
perror()

CALLED BY:
pems (main program)

HISTORY:
written by Dan Putnam ~ falt 1978

ARARAIR AR SO N PR A AR R G RARRS AR A ARRARRANARAARRARRANARAANNRAP et onatponRantntnnetoe/

save(filename) //
char filensmel); /s string naming output file Y.

AT 1 Y by o0 .y s]

P

R g XNCrod

o> S

Jul

5 15:10 1979 /cerl/pams/source/save.c Page

extern int phase;

extern int fidscratchl(2];
int fidin;

int fidout,

tidin = fidscratehl phase 1}
seek(fidin, C» 0)7

if¢ (fidout = creat(filename, 0666))
{
perror(”save can't create file”):
raturn,
)

copyfile(fidin, fidout)’

83

<

c

Jul 5 15:1D 1979 /cerl/pams/source/restore.c Paje 1]
3 1 [
. 2 /titiitt.t.tﬂtt'iltltt‘..‘.tt.'litit'.ﬁilttitt"i.'!t.titti.t‘tltt...i.'h.t.!t. a
3
" & NAME:
3 5]
: 6 restore()
4
R FUNCTION:
9
1? Restore & List of data accession numbers to current status.
1
12 CALLING SEQUENCE:
13
14 char *filename
15
16 PARAMZTERS: -
1?
18 filename Points to string naming the file of accession numbers.
19 It filename points to a null string, then the previous
29 list is restored to current status,
3 21
22 RETURNS :
g 23
24 nothing,
25
26 ALGORITHM:
27
2F The "filename"” parameter is checked to see if it points at a null
29 strini. 31t sa, then the gtobal “phase™ variable s reset to switch
30 the scratch files. 1f the “tilename” parameter points at a non-null
31 strin:, then the routine attempts to open the tile. 1If the cpen
32 is successful, then "phase” is reset and “copyfile()" is called
33 to copy the cantents of the input file into the current file.
34 ’
35 CALLS: :
36 i
37 copyfile() ;
38 -
39 Also, Unix calls:
4 4
41 apea()
42 perror()
43
44 CALLED BY:
45
44 pams (main program)
47
43 HISTORY:
49 .
50 written by Dan Putnam - fall 1978 ‘
51 :
52 AN BNIRRARAAR I IR R R ARSI ARAAN AR PR R R AR AR AR NP AR R A AAR NS CARI RSSO RbRRRORRRNRRAORARS/
53 ;
54 i
$S i
56 restore(filename) i
1
84
i
e !
P " Lol q

Jul

5?
58
59
69
61
.62
63
64
65
66
67
648
69
7
7
72
73
74
75
76
7
78
79
80
81
82
83
84
&5
8¢&

5 15:13 1979

char filenamel]l; /*
<
extern int phase; /*
extern int fidscratch(2]s /%
int fidin. /*
int fidout: /I«

ift sfilename == 0)

/cerl/pams/source/restore.c Page

2

names file to be rea¢ in. /

tor switchina scratch files a/
scratch file descriptors */
descriptor for restored file «/
capy of scratch descrigtor »/

{
/+«wxak% phase switch effectively restores old List */
phase = 1 - phases
return; /* that's all there is to it s/
)
iftC (fidin = open(tilename, C)) < 0)
{
perror{”restore can’t open file");
return;
>
ghase = 1 = ohase; " /+ switch scratch files s/
fidout = fidscratchl{ phase 1 I+ write to in-phase file »/

copyfile(fidin, fidout);

Jul 5 15:1C 1979 /cerl/pams/source/peek.c Page

]

IRk A R R AN A N A Ak R S R R A AN AR AR AR T AR AR AN RS A AN AN A A AR R A RS AR N AN AR RS R AP R R R atARaann
NAME:

paek ()

NOWVEWN =

FUNCTION:

-
Leg B = e 4

Invoke the editor on thc keyword file corresponding to the
citeqory name given by the input oraument string.

-
-

CALLIKNG SEQUENCE:
char »scategory

PARAMETERS:

b ad b wd ad b D mb
N~ wnswn

category String naming the category that the user wants
to insgpect.

~N
-

RETURNS ©

NN N
LRV NN

nothinj.

~
w

ALGORITHM:

NN
0 ~N O

The rcutine begins by checking to see that “category" matches

an entry in the "keynames” array. The index of a matching

string in that array is the keyword file nurter cf the corresponcing
tile of keywords. This number is appended to the keynord file
pretix and the editor is invoked on this file using “execute()".

29
37
31
32

(VR NV RV
[« WV I RV

taible)
concat ()
execute()

W W
oo~

Also, Unix routines:

LR o
N =

Llocv ()
CALLED BY:
pams (main program)

HISTORY:

LV I A kol
OCX~NC VW

written by 0an Putnam - fall 1978

v
s

AR RARR RN N AR R ARRARAARANARNARP AR SN AANARARPAARRRSARARAAER Rt Aonpanbtantsbnanttone/

W
w N

(V. RV NV]
W

peek(category)

Jul

5 15:10 1979 /cerl/pams/source/peek.c Page 2
char *cateyorys I+ name of a keyyord Category */
{
char commanal®0]; /+ argument strin- for execute routine #/
extern char *keyprefix; /+ keyword file name prefix */
extern char *keynames(Jl; /+ nanes of cateyories s/
int num; /+ category number “/

if((num = table(category, keynames)) < C)

{
printf(”*Xs* is not a keyword category\n", category);
return;

concat("ed ", keypretia, command),;
concat(command, tocv(Q,num), commana),

execute(command),

Jul 5 15:C9 1979 /cerl/gams/source/keyword.c Page

Iiﬁiiiiii...'i.t.ti.'...li..ﬁititl‘.ﬁ.t'.it...ﬁ.-.it.itt.‘.ﬁ.i'.iit..t.ﬂ.......
NAME :
keyword ()

FUNCTION:

A O NGPOWVEWN =

-
-

Looku, a string and prompt for correct cateaory in case of cguplicates,
CALLINMG SEQUENCE:

char #*term
struct marker *keyword()

PARAMETERS :

- h b b b b b ek b
VE N WV WN =

term Points to the string to be looked up.

NN NN
WN =)

RETURNS :

keyword() Pcints to a marker struct which contains data on the
strina which has bLeen Looked up.

NN
w &

NN
~ O

ALGORITHY:

Most of the work is done by the "lookup()" routine; this routine

is primarily just a user interface to “lookup()". A call tc
"lookup ()" is performed with the parameters set to find all
oceurences of the string in the catatase and check the spelling
character tor character., 1t no instances are found, then a message
to that effect is printed and @ zero rointer is returrec.

If more *han one instance is found, the user is prompted to

nsme which cateqory he wants, A pointer to the appropriate

marker struct is returned.

lookug ()
resp()

CALLED BY:
letter()
pims ¢ main program)

select()

HISTORY:

written by Dan Putnam ~ fall 1973

.Oﬁ‘..t.t..‘.tt.'.'....'QQQQQQQ.l..'.i.i.t..t....t....‘i"'i...l..l.....‘...'./

Jul 5 15:09 1979 /ceril/pams/source/keyword.c Paae 2

bY4 #include “structdefs.i" /* marker decl &/
5¢ #define “AXFIND S$C s+ tound array size ./

1 keyword(term)
61 char »term; /+* Lookup this term o/
62)
63 extern char *keynames(]). 1+ nanes of keyword catejories o/ :
64 char bufferl?u): I+ for qettinu user resgonse */
65 int index,; 1+ toop contrcl: founc words L0
66 int filenum; t« file number of a fcund word */
&7 static struct marker copylistUMAXFIND]; /+ identical cofies ./
68 int copies; /+ counts number of copies «/

73 /anxsrnar LoOkup: any cateaory, check strings »/
T4 copies = lookup(term, -1, 1, copylist, MAXFIND),

77 frx2nax §if ccpies > 1, prompt for correct category */

9 it(copies <= 0)
{

81 printt(”can’t find *Zs*\n", term);
82 return(0);)
83 3

85 if{ copies == 1)

86 L4

87 index = 0, /* copylist{C) goints to the only find «/
33)

§9 else

90 {

91 /+xoeax prompt tor the correct category */

93 printf(“wWwhich category?\n");

95 for(;:

96 (

97 fcr(index = 0; index < copiess index+¢)

9e (

G9 tilenum = copylistl index 1 . files

1 printt(“Xd: XZs\r.”", index ¢+ 1, keynames[filenum 1);

101 }

103 resp(tufter);

1S index = atoi(butfer) ~ V.

1607 if¢(index >= J Rk index < copies)
1048 breaks I+ a valid resgonse s/

i 89 .

o A Sty - R VN - .

5 Jul 5 15:09 1979 /cerl/pams/source/keyword.c Page® 3

3 113
T‘ 114
115)

return(Rcopylistl index 1)i

Jul

TNV NN -

S 15:09 1979 fcert/pams/source/hashfn.c Page 1
#
/t!‘t'iltt..tt..iti*tﬂktttt.t.lt..t..ﬁt.t...tt..‘t.!tttttﬁ!i“!...'i.Ittt"lllt
NAME :
hashfn()
FUNCTION:

Convert & null-terminated character string to a8 3-worc array
of integer hash values.

CALLING SEQUENCEL:

char *»string

int thashout
PARAMETERS:
strin: - points to null-terminated string to te hashec,
hishout - points to outprut array of 3 hash values,
RETURNS :
nothing.

ALGORITHM:

0ne pass is made through the string for each of the 3 outiut
nash values. On a given pass, hashfn() treats the characters
in th2 input string as 5, 6, or 7 kit strinus, respectively.
This is accomplished vy mcsking off the arprouriote number ot
high order bits in each character (i.e. 5, 2, Oor 1).

The alygorithm effectively treats the ingut string as a tit
string, which it "wraps around” the cutput hash value irteger.

The routine initializes the hash values tc 2ero and processes
the input characters until the null terminator is enccunterea.
As ea2ch inrput ctharacter is consicerec, tne lcw order tits

are exclusive~ored into the hash value 3fter beina shifted
pust the bits from the srevious character. if this results

in losing bits off the eno of the integer, the lost bits

are exclusive-ored onto the low crder bits.

for example, when the first hash value is computecs the

first three characters cf a strinj ccntritute their lcw order

5 bits tn give the low orcer 15 tits cf the irteuer hash valee.
The Low order S bits of the next charscter are exclusive-areo
into the output intejer as tollows. The low arder bLit is
exclusive~ored onto the remaining high tit of the integer, and
the nert 4 bits are exclusive-ored onto the tirst 4 Ltits of the
inteter., The fifth cnaracter is shifted into place beginnino
4ith the fitth bit of the outiut inteqer.

Jul

S 15:C9 1979 /cerl/pams/source/hashfn.c Paoe 2

nothing.

CALLED BY:

hash The program which creates the hashtable file.
Lookug () The routine used to look up terms in the keyword
files.
HISTORY :

WJritten by Dan Putnam ~- fall 1973
COMMENTS:

The three hash values generated by this routine virtually
iientify strings uniquely. The three hash values are essentially
orthogonel in the sense that if two terms collioce under one

ot the hash functions, there is no increased Llikelyhood that

they will collide under either of the other two.

In 3 file ot about 13,000 english words, no two woros were

found that collided under both of the first two hash functicns.

when the third function is also consideread, it seems virtually
assured that if two terms agree in all three hash values, then

the twd words are identical., If it is assumed that the bit patterns
of the hash values are random, it may be computed that the chances
o¢ finding a collision in a collection of 106,000 worcds is less

than cne in a million.

EAR N AR AR R RN AR R AR AR AR R R AN R R R R AN RN N AR A AR RN AN AR AN AR RN AN R AR A s/

int msskarrayl]

{
157,
977,
0177,
b H
int nbitarrayt)
{
He
6,
7,
b
hashfn(striny, hashout)
char *string; /* string to te hasheg */
int *hashout/ /+*+ 3 word output array »/
{

register int numbits; /+ number of bits usec in hash ¢/

Jul 5 15:09 19?9 /cerl/pams/source/hashfn.c Page 3

113 int mask; /* masks low numbits ./
1146 char *cpts /% points thru string . ./
115 ragister int chr, /* temp copy of *cpt s/
116 register int shift; /* shift chr bty this mary bits ¢/
117 int hzshvs /* gets hash value ./
118 int i; . /* lcop control: 3 hash values +/
115
120
121 fort i = 07 § < 37 i+4)
122 {
123 mask = maskarray[(i1;
124 numbits = nbitarcraylil;
125 hashvy = £,
120 shitt = 0
127 cpt = strinag
12% while(chr = =»cpt++)
129
) 130
3 131 che =% mask; /* remove unwanted tits of
: 132 hashv =~ (chr << shift); /+ snift into place s/
‘ 133 shift = (shift + numbits) & C17; /+ =+ numbits mcd 1¢ x/
134
135 it(numbits > shitft) /* if we urap around word */
136
! 137 hashv = (chr >> (numbits - shift));
138)
139
147 hashout[il = hashv;
141
142)
143 >

93

AD-aU85 991 COMSTPUCTION FNGIMEERIMG RESEARCH LAB (ARMY) CHAYMPAIGN Il F/6 &/1
INTERAGENCY/11TERGOVERNMENTAL COORDINATION FOR ENVIROMMENTAL PL~=fFTC (1)}
MAV 80 R D WFBSTER: D E PUTNAM

UHCLk.-SIFIFD ERL-TR~N=87

ool PN FE
s

ol

"m e =

e
=

e

OE

o

Illll !

MICROCOPY RESOLUTION TEST CHART
NATIONAL RUREAU ¢F STANDARDS 1962 A

= T 2

Jul

[. R ey
QU NPWVEWNLLOW NI WS NN

NN
N -

LYY
LY. "]

5 15210 1979 /ceri/pams/source/seekl.c Page 1

N
/28 ARRNACE AR AR R AR O ASNEANARARAE AR RRRACA RO R R A ARROGRARRARAARONANARASIRRoANEPRRRd

NAME:

seekl O
FUNCTION:

Perform seeks into files with long offsets.
CALLING SEQUENCE:

int fid
Long offset

PARAMETERS:
fid is the file descriptor of an open file.

oftset is the offset from the beginning of the file to which
seekl () «ill seek. .

RETURNS 5

returns the same value as the seek() system call returnsg to seekl(),
-1 signats an error condition,

ALGORITHM:
s«ekl() tests offset to see {f the seek can be performec as an
ordinary short integer seek, If not, then seekl() first seeks
by blocks (512 bytes) and then seeks the rest of the way ty
bytes,
CALLS:
seek() = Unix system call.
CALLED BY:
sll kinds of routines that read trom random tocations §n large files.
HISTORY:
written by Dan Putnam ~ fall 1978

ARABRERBRRRERANRANRARNAARIRRPARARARNNAFARARAC NG AAAIORSnt et antbnnbtddadtoaee/

seekl(fid, offset)
int féas

long oftset;

<

struct /o for sccessing hi snd (o words of offget Y}

S maamd

Jul

57
58
59
60
61
62

64
65
66
67
68
49
7ﬂ
7
72
73
74
75
76
7

S 15:10 1979 /ceri/pams/source/seekl.c Page 2

)

regi
regi

if(o
<

)
else

int hi;
int to;

stee int code:
ster int §3

ffset.hi = O)

P YO RIS WS N e

/* return code from seek

§¢t (code = seek(fid, (i = offset./ 512), 3)) < O

{
)

return(code)’

else
return(seek(fid, (i = otfset X 512),

return(sech (fid, uftset.lce, 0))/

95

Ip RN

Jul 5 15:09 1979 /cerl/pams/source/compar.c Page

P

COMP AR (Note: Borrowed from CELDS, Thanx!)
compar two null-terminated strings

The characters at "s1* and “s2" are compared until one tersinates.
It the last characters comgarec are equals, z2ero is returnecs

it the char from “s1” is > “s2“, a positive value is returned.,
otherwvise a negative value,

Calls: none
Globals: none
Lest moagification: 31 mar 77

->
QWO NOVHWN=

-
-

L B B N R N R R B

3
-~

compar (s1, s2) char ts 1,
"g2;

~

register char »#p,
LY
register int greater;

12
13
14
15
16
1
13
13

p = s13

q = $2;

while ((yreater = #p = w«qes) == (0 8L *pees != 0);
return (greater),

NN
VS WN =20

TR D100 g IR A Y 0 e 4

frew

Jul 5 15:09 1979 /scert/pams/source/bool.c Page 1

1 F
2 Ittﬁitttitttit.'Qttitt.ttﬁttb.tii.ttl.ii.tiittttt.i.‘!..'iii.i.til‘itt..!"!itt
3
4 NAME :
S
6 bool ()
?
L] FUNCTION:
9
10 Perform Uoolean operations on files.
11
12 CALLING SEQUENCE:
13
14 int fida
15 int tidb
16 int fidc
1?7 int ogpcode
18 int bool ()
19
20 PARAMETERS:
21 .
22 fida File descriptor of the first argument file.
23
24 fidb File descriptor of the second arqument file.
25
26 fide File descriptor of the output tile.
27
28 opcode Specifies the operation to be performed:
29
30 1 - file(a) anD file(d)
31 2 -~ tile(a) UR file(b)
32 3 -~ file(a) EXCEPT file(d)
33
34 RETURNS:
35
36 Returns the number of items Llisted in the output file.
37
35 ALGORITHM:
39
&1 The input files are read and their contents are used as indices
3] into the “check"™ array. uvits are set in the “check™ array elements
42 to indicate whether a given entry is present in either cr tcth
&3 ot the input tiles,
44
45 Wwhen the above step is completed, 3 cass is macde through the
46 eneck array. The index o1 3 "check®” array element is written to
&7 the output butter dependinag on its membershicp in the ingut files
48 and the value of the “opcode”.,
49
Sy AND belongs to file(a) and to file(t).
51 ' UR belonns to tite{a) or to file(b) or both.
52 EXCEPT belongs to file(a) but not to file(t),
53
54
55 Note: The "check™ array is an array of SPMAL chaeracters, where
56 SPMAX is currently cefined at Suf0. This parameter shoula

97

Jut

5?
58
59
60
81
62
63
64
65
66
67
68
89
73
7
72
73
)
75
76
7
78
79
80
81
82
83
24
85
86
§7
ae
a9

91
92
93

95

86

97

86

99
100
1C1
152
193
1C4
105
1G6
167
108
109
110
m
112

5 15:09 1979 /Jcerl/pams/source/bool.c Page 2

be larje enouch for some time to come, anc could te set sttt
higher without exceedina core Limitations. However, soreboay
probably ought to rewrite this routine so that it loops to

write the output file in segments. That is, the routine would
make a complete piss through toth input tiles in each iteration,
Only those values in the current segment range would te marked

in the "check"” array.
CALLS:
Unix calls:
seek ()
read()
arite()
CALLED BY:
select() }
HISTORY:
written by Dan Putnam - falt 1978
RERRRRARRRRNAA AR P RRARARAIRRAARR IR AR RN AAR R RN AN ARARACRAIR DN B RN NS I...!.ltt.'l‘...l[
Hiefine AND 1
#define oR 2
Hdefine EXCEPY 3
#define MASKA 01
tdefine MASKB 010
fdetine SPMAX 5C00
#idefine LSTS12 256
vool(tida,fidt,tidecr,opcode)
int fida; /» tite descriptor of first operand */
int ftidb: /e tile cescriptor of second cperang ./
int fides /+ tile aescriptor of resultant s/
int opcode; I+ &b, GR or EXCEPT s/
<
char check{SPMAX]; /* check List for merbership in lists LY
int listlLSTSI12); /e ruffer for input and output Llists s/
register int js /» tast (o0p counter o/
rejister char scheckptr; /* points thru check array o/
register int spid’ /% i¢ number of source permit in Lists o/
int «listptr, /*» pofnts thru List buffer o/
int sendlist’ /+ marks ena of List array ./
int maxa; /* max sp id in file 2 1Y)
int mazb: /e wax sp id in file b */
int maxcs /+ upper bourd of elements §in result e/
int count; /+ tor returning size of resutltant file »/
Ianssan tirgt, clear check array s/
98

Jul

113
114
115
1106
17
13

5 15:09 1979 /cerl/pams/source/vool.c Paye

checkptr = check:
j = SPMAX;
do
acheckptr+e = 02
while(==j);

Jeanaaser pyn thru tile a checking sp's found in List

seek(fida,0,0)/; /+« make sure we yet whole file
maxa = -1%; /+ init to find max in file a

whileC (j = read(ftida, list, LSTSIZ » sizeof(elist))) > 0)

/* j = numter of ints read
Listptr = lists

while(j==- &8 (spid = slistptres) 1= <1)
{

maxa = maxa > spid ? maxa : spids

check(spidl =| MASKA;
)
if(spid == -1)

break:

/e#x2xs run thru tile b checking sp's found in List

seek(fidb,0,0)7 /+ make sure we qget whole file
maxb = ~1; /% init to tind max in fite b

white((j = read(fidb, list, LSTSIZ ¢+ sizeof(alist))) > C)
{

j = 2; /« j = nunber of ints read

Listpte

dhitle(j=- BR (spid = slistptres) = -1)
<

maxb = maxb > spid ? maxb : spids
checklspid) =| MASKB?

)
if(spid == =1)
oreak;

)

Jaasass now run thru the check array to get output

Jul

169
170
171
172
173
174
175
176
127
178
179
180
159
162
183
134
185
186
187
158
189
190
191
192
193
154
195
196
197
19¢
199
27
201
2c2
253
274
205
206
2¢7?
203
209
210
21
212
213
214
215
216
217
213
219
229
221
222
223
224

S 15:09 1979 /cerl/pans/source/boal.c Page [
listpte = List;
endlist = List ¢ LSTSIZ:
checkptr = check;
seek{fidc,D2.,0); /% start at the beginning of the file s/
count = Q; /+ init count to zero */

suwitch(opcode)
{

case AND:
maxc = maxa < maxb ? manxa : maxb’

for(j = 0 j <= maxc, j*+)
{

if(#checkptr+e == (MASKA | MASKB))
{

slistptres = j;
counted;
it(listptr >= endlist)
write(fideco(listptr = Llist),(endlist - Llist) « 2);

»
breaks /+ end case AND LX)

case OR:
Maxe = maxa .> maxb ? maxa : amaxb;

tor(j = 07 j <= maxcs j¢+)

if(scheckptree = 0)

{
*listetree = j;
count+s;
it(listptr >= endlist)
write(fide,(listpter = list),(endlist - Llist) » 2);
)}
)
breaks /+» end case OR s/

case EXCEPT:
Mmaxe = maxa;s

for{j) = 32 j <= maxc; je+)
/eavans §if a and not b 2/

11C (scheckptr % MASKA) &% !Cecheckptr 3 MASKE))
K¢

elistptree 2 j;
countes;

100

TN RS

Rt

S

T AT

o e a ———c———.

 Ars U Pt b s A el A s

Jul

225
226
227
228
229
230
231
232
233
234
235
236
237
238
237
240
241
242
243

5 15:09 1979 /cerl/pams/source/hool.c Page H

ifClistptr >= endlist)
write(tideo(listptr = List)o(endlist = List) * 2);
)
checkptre++;

>
breaks /» end case EXCEPT o/

Jansaax terminate lLlist and write out the rerainder #/
dlistptres = =1,
write(fidcs, Lists (Listptr - List) » 2);

return{count),;

101

Chief of Engineers
: Yech Monitor
ATTN: DAEN-RD
ATIN: DAEN-MP
ATIN: DAEN-IC
ATTN: DAEN-CW
ATTN: DAEN-RM
ATTN: DAEN-CCP
ATIN: DAEN-ASI-L (2)

US Army Engineer Districts

ATTN: Library
Alaska
Albatin
Albuquerque
8altimore
Buffalo
Charleston
Chicago
Detroit
Far East
Fort Worth
Galveston
Hunt ington
Jacksonville
Japan
Jidda
Kansas City
Little Rock
Los Angeles
Louisville
Memphis
Mobile
Nashville
New Orleans
New York
Norfolk
Omaha
Philadelphia
Pittsburgh
Portland
Riyadh
Rock Istand
Sacramento
San francisco
Savannah
Seattle
St. Louis
St. Paul
Tulsa
Vicksburg
Walla Walla
Wilmington

US Army Engineer Divisions
ATTN: Library
Europe
Huntsville
Lower Mississippt Yalley
Middle East
Middle tast {Rear)
Missouri River
New England
North Atlantic
North Central
North Pacific
Ohio River
Pacific Ocean
South Atlantic
South Pacific
Southwestern

Waterways Experiment Station
ATIN: Library

Cold Regions Research Engineering Lab
ATIN: Library

US Government Printing Office

Recetving Section/Depository Copies {2)

Defense Technical Information Center
ATIN: DDA {12)

Engineering Societies Library
New York, NY

FESA, ATTN: Library
ETL, ATTN: Library
Engr. Studies Center, ATTN: Library

CERL DISTRIBUTION

Inst. for Water Res,, ATTN: Library
Army instl. and Major Activities (CONUS)

DARCOM - Dir., Inst., & Svcs,
ATIN: Ffacilities Engineer
ARRADCOM
Aberdeen Proving Ground

Army Matls. and Mechanics Res. Ctr.

Corpus Christi Army Depot
Harry Diamond Laboratories
Dugway Proving Ground
Jefferson Proving Ground
Fort Monmouth

Letterkenny Army Depot
Natick Research and Dev. Ctr.
New Cumberland Army Depot
Pueblo Army Depot

Red River Army Depot
Redstone Arsenal

Rock Island Arsenal
Savannah Army Depot

Sharpe Army Depot

Seneca Army Depot
Tobyhannz Army Depot
Tooele Army Depot
Waterv:iet Arsenal

Yuma Proving Ground

White Sands Missile Range

FORSCOM

FORSCOM Engineer, ATTN: AFEN-FE
ATTN: Facilities Engineers

Fort Buchanan

Fort Bragg

Fort Campbell

Fort Carson

Fort Devens

Fort Drum

Fort Hood

fort Indiantown Gap

Fort Irwin

fort Sam Houston

Fort Lewis

Fort McCoy

Fort McPherson

Fort George G. Meade

Fort Ord

Fort Polk

Fort Richardson

Fort Riley

Presidio of San Francisco

Fort Sheridan

Fort Stewart

Fort Wainwright

Vancouver Bks.

TRADOC

HQ, TRADOC, ATTN: ATEN-FE

ATTN: Facilities Engineer

Fort Belvoir

Fort Benning

Fort Bliss
Carlisle Barracks
Fort Chaffee

Fort Dix

Fort Eustis

Fort Gordon

fort Hamilton
Fort Benjamin Harrison
Fort Jackson

Fort Knox

Fort Leavenworth
‘Fort Lee

Fort McClellan
Fort Monroe

Fort Rucker

Fort Sil1

Fort Leonard Wood

INSCOm - Ch, Inst), Div.

ATIN: Facilities Engineer
Vint Hill Farms Statton
Arlington Hal) Station

WESTCOM
ATTN: Facilities Engineer

Fort Shafter

MOW

ATTN: Facilities Engineer
Cameron Station
Fort Lesley J, McNair
Fort Myer

HSC
HQ USAHSC, ATTN: HSLO-F
ATTN: Ffacilities Engineer
fitzsimons Army Medical Center
Walter Reed Army Medical Center

USACC
ATT¥. Facilities Engineer
Fori Huachuca
Fort Ritchie

MTMC
HG, ATTN: MTMC-SA
ATTN: Facilities Engineer
Qakland Army Base
Bayonne MOT
Sunny Point MOT

US Military Academy
ATTN: Facilittfes Engineer

USAES, Fort Belvoir, VA
ATTN: FE Mgmt, Br.
ATTN: Const. Mgmt. Br,
ATTN: Engr. Library

Chief Inst. Div., I&SA, Rock Island, IL

USA ARRCOM, ATTN: Dir., Instl & Svc
TARCOM, Fac. Div.

TECOM, ATTN: ORSTE-LG-F

TSARCOM, ATTN: STSAS-f

NARAD COM, ATTN: DRONA-F

AMMRC, ATTN: DRXMR-WE

HQ, XV1I[Airborne Corps and
Ft. Bragg
ATTN: AFZA-FE-EF

HQ, 7th Army Training Command
ATTN: AETTG-DEH (5)

HQ USAREUR and 7th Army
0DCS/Engineer
ATTN: AEAEN-EH (4)

V Corps

ATTN: AETVDEH (5)
Y11 Corps

ATTN: AETSDEH {5)

21st Support Command
ATTN: AEREH (5)

Us Army Berlin
ATTN: AEBA-EN (2)

US Army Southern European Task Force
ATTN: AESE-ENG (5)

US Army Installatfon Support Activity,
Europe
ATTN: AEUES-RP

8th USA, Korea
ATTN: EAFE
Cdr, Fac Engr Act (8)
AFE, Yongsan Area
AFE, 20 Inf Div
AFE, Area Il Spt Det
AFE, Cp Humphreys
AFE, Pusan
AFE, Taegu

DLA ATTN: DLA-N!

USA Japan (USARJ}
Ch, FE Div, AJEN-FE
Fac Engr (Honshu)
Fac Engr (Okinawa)

ROK/US Combined Forces Command
ATTN: EUSA-HHC-CFC/Engr

!
i
E

tNS Branch Distribution

icatinny Arsendl
ATIN: SWPA-YP)

Directorate of facitities Enqr
Miami, kL 34004

DARLOM ST1T-EUR
A New York 09710

west Point, NY 10996
ATIN: Dept of Mechanics
ATIN: Library

WODA (SGRD-EDE)

Chief of Engineers
ATTN: DAEN-MPO-B
ATTIN: DAEN-MPR
ATIN: DAEN-MPO-U
ATTN: DAEN-MPZ-A
ATTN: DAEN-ROL
ATIN: DAEN-ZCE

Nationa) Defense Headquarters
Director General of Construction
Uttaws, Ontario KIAOKZ

Canada

Airports and Const. Services Dir.

Technical Information Reference
Centre

KAOL, Transport Camada Building

Place de Vville,

Dttawa, Ontario KLAONS

Canada

British Liaison Gfficer (5)
9.5, Army Mobility Equipment
Reserach and Dev Center

fr. Belvoir, VA 22060

Averdeen Proving Ground, MO 21005
ATTN: AMXHE/J, D. Weisz

Ft. Belvoir, VA 22060

ATTN: Learning Resources Center
ATTN: ATSE-TD-TL (2)

ATIN: Kingman Bldg, Library
ATTN: MAJ Shurb (4)

Ft. Leavenworth, KS 66027
ATZLCA-SA/F. Wolcott

Ft. Monroe, VA 23651
ATTN: ATEN-AD (3)
ATTN: ATEN-FE-E

Ft. Lee, VA 23801
ATTN: DRXMC-D (2)

FORSCOM
ATIN: AFEN-CD
Ft. McPherson, GA 30330

Sth US Army
ATTN: AKFB-LG-E

6th US Army
ATTN: AFKC-EN

S Army Engineer District

New York

ATTN: Chief, NANEN-E

ATIN: Chief, Design Br.
Pittsburgh

ATTN: Chief, Engr Div
Philadelphia

ATTN: Chief, NAPEN-E
Baltimore

ATTN: Chief, Engr Div
Norfolk

ATTN: Chief, NAOEN-R
MHuntington

ATTN: Chief, ORHED-P

US Army Engineer District

Wilmington

ATTN: Chief, SAWEN-PP

ATTN: Chief, SAMEN-PM

ATIN: Chief, SAWEN-E
Charleston

ATIN: Chief, Engr Div
Savannah

ATTN: Chief, SASAS-L
Jacksonville

ATTN: Env. Res. Br.
Nashville

ATTN: Chief, ORNED-P

Memphis

ATTN: Chief, LMMED-PR
Vicksburg

ATTN: Chief, Engr Div
touisville

ATTN: Chief, Engr Div
St. Paul

ATTN: Chief, ED-ER
Chicago

ATTN: Chief, NCCPD-ER
St. Louis

ATIN: Chief, ED-B
Kansas City

ATIN: Chief, Engr Div
Omaha

ATTN: Chief, Engr Div
Little Rock

ATIN: Chief, Engr Div

Tulsa
ATTN: Chief, Engr Div
Fort Worth

ATIN: Chief, SWFED-PR

ATTN: Chief, SWFED-F
Galveston

ATIN: Chief, SWGAS-L

ATTN: Chief, SWGCO-M
Atbuguerque

ATTN: Chief, Engr Div
tos Angeles

ATTK: Chief, SPLED-E
San Francisco

ATTN: Chief, Engr Div
Sacramento

ATTN: Chief, SPKED-D
Far East

ATTN: Chief, [ngr Div
Seattle

ATIN: Chief, NPSEN-PL-WC

ATIN: Chief, NPSEN-PL-ER

ATIN: Chief, NPSEN-PL-BP
Walla Walla

ATTN: Chief, Engr Div
Alaska

ATTN: Chief, NPASA-R

US Army Engineer Division

New England

ATTN: Laboratory

ATTN: Chief, NEDED-E
South Atlantic

ATTN: Chief, SADEN-E
Huntsville

ATIN: Chief, HNDED-CS

ATIN: Chief, HNDED-M
Lower Mississippi Valley

ATTN: Chief, PD-R
Ohio River

ATTN: Chief, Engr Div
North Central

ATTN: Chief, Engr Planning Br.
Sout hwestern

ATTN: Chief, SWDCO-0
South Pacific

ATTN: Laboratory
Pacific Ocean

ATTN: Chief, Engr Div

ATTN: Chief, PODED-P
North Pacific

ATIN: Laboratory

ATTN: Chief, Engr Div

McClellan AFB, CA 95652
2852 APG/DE (LY David C. Hall)

Peterson AFB, CO 80914
HQ ADCOM/DEMUS (M. J. kerby)

Tinker AFB, OK 7314
2854 ABG/DEEE (John Wall)

Patrick AFB, FL 32925
Base CE Sqdn (James 1. Burns)

AF /ROXY
WASH DC 20330

AFESC/PRT
Tyndall AFB, FL 32403

Little Rock AfB
ATTN: 314/DEEE (Mr. Gillham)

Kirtland AFB, NM 87117
ATTN: DEP

US Naval (keanographic Office
ATTN: Library
8ay St. Louis, MS 39522

Naval Facilities Engr Command
ATTN: Code 04
Alexandria, VA 22332

Port Hueneme, CA 93043
ATTN: Library {Code LO8A)
ATTIN: Morell Library

washington, DC

ATTN: Building Research Advisory Board
ATTN: Transportation Research Board
ATTN: {ibrary of Congress (2)

ATTN: Dept. of Transportation Library

Dept of Transportation
ATTN: 4. N. Lofroos, P. E.
Tallahassee, FL 32304

LT Neil B, Hell, CEC, USNR (Code 100)
884-6366

US Navy Public Works Center

Box 6, fPO San Francisco 96651

W) AFESC

ATTX: DEYP/CPT R. Hawkins (100)
ATIN: TST/Ltbrary (2)

Tyndal) AFB, AL 32403

109

——a

Webster, Ronald Dwight
Interagency/Intergovernmental Coordinatfon for Environmental Planning (1ICEP):

systems considerations / by R. D. Webster, D, E, Putnam. -- Champaign, IL : Con-

struction Engineering Research Laboratory ; Springfield, VA : availadle from NTIS,

1980.

101 p.; 27 cm. (Technical report ; N-87)

1. State governments -- directories-data processing. 2. Environmental policy-
directories-data processing. 3. U.S. Air Force-environmental aspects. I, Putnam,
Daniel E. II. Title. IIl. Series: U.S. Army Construction Engineering Research
Laboratory. Technical report ; N-87.

