A-10/GAU-8 LOW ANGLE FIRING VERSUS SIMULATED SOVIET TANK COMPANY-ETC(U)

MAY 80 R H STOLFI, R R MCEACHIN

UNCLASSIFIED NPS-56-80-005
COMBAT DAMAGE ASSESSMENT TEAM
A-10/GAU-8 LOW ANGLE FIRINGS
VERSUS
SIMULATED SOVIET TANK COMPANY (ARRAY 18)
(AEROJET LOT NUMBER AJD79A181-001)
(30 AUGUST 1979)
R.H.S. STOLFI
R.R. McEACHIN
MAY 1980

Approved for public release; distribution unlimited.

Prepared for: A-10 System Program Office
Wright Patterson Air Force Base
Ohio 45433
NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral James J. Ekelund
Superintendent

Jack R. Borsting
Provost

The work reported herein was supported by the A-10 System Program Office, Wright Patterson Air Force Base, Ohio. The reproduction of all or part of this report is authorized.

Russel H.S. Stolff
Associate Professor of History

Reviewed by:

Patrick J. Parker
Chairman
Department of National Security Affairs

Released by:

W.H. Tolles
Dean of Research
1. REPORT DOCUMENTATION PAGE

2. GOVT ACCESSION NO.

3. RECIPIENT'S CATALOG NUMBER

4. TYPE OF REPORT & PERIOD COVERED

5. PREPARE BY DATE

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(S)

8. PERFORMING ORGANIZATION NAME AND ADDRESS

9. PREPARED BY ORGANIZATION REPORT NUMBER

10. PROGRAM ELEMENT, PROJECT, TASK, WAVE NUMBER

11. CONTROLLING OFFICE NAME AND ADDRESS

12. REPORT DATE

13. NUMBER OF PAGES

14. MONITORING AGENCY NAME & ADDRESS (IF DIFFERENT FROM CONTROLLING OFFICE)

15. SECURITY CLASS. (OF REPORT)

16. DISTRIBUTION STATEMENT (OF REPORT)

17. DISTRIBUTION STATEMENT (OF ABSTRACT ENTERED IN BLOCK 20, IF DIFFERENT FROM REPORT)

18. SECURITY CLASS. (OF THIS REPORT)

19. SECURITY CLASS. (OF ABSTRACT)

20. LIMITATION OF ABSTRACT

21. KEY WORDS (CONTINUE ON REVERSE SIDE IF NECESSARY AND IDENTIFY BY BLOCK NUMBER)

22. ABSTRACT (CONTINUE ON REVERSE SIDE IF NECESSARY AND IDENTIFY BY BLOCK NUMBER)

This report describes firings of the A-10/GAU-8 weapon system on 30 August 1979 against a Soviet tank company simulated by 10 combat loaded M-47 tanks. The pilots making the firing passes attacked at low altitude and used correspondingly low dive angles in order to simulate movement through a hostile air defense system. Ammunition used in the attacks comprised three

<table>
<thead>
<tr>
<th>Key Words</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>automatic cannon ammunition</td>
<td>7. combat stowed targets</td>
</tr>
<tr>
<td>GAU-8 cannon</td>
<td>8. gun ammunition lethality</td>
</tr>
<tr>
<td>A-10 aircraft</td>
<td>9. MBT vulnerability & survivability</td>
</tr>
<tr>
<td>main battle tank (MBT)</td>
<td></td>
</tr>
</tbody>
</table>
of the U.S. MK 47 tanks used as targets. The pilots in eight successful firing passes (two targets were not attacked) fired a total of 484 rounds of which 143 impacted the targets. The projectiles impacting on targets achieved 13 perforations of the armored envelopes. Significant results include:

4 tanks immobilized and
1 tank silenced.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXECUTIVE SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>Attack Parameters</td>
<td>1</td>
</tr>
<tr>
<td>Weapon Effects</td>
<td>1</td>
</tr>
<tr>
<td>Damage Assessment</td>
<td>1</td>
</tr>
<tr>
<td>Test Conditions</td>
<td>2</td>
</tr>
<tr>
<td>Results</td>
<td>2</td>
</tr>
<tr>
<td>BACKGROUND</td>
<td>4</td>
</tr>
<tr>
<td>TEST PHILOSOPHY</td>
<td>4</td>
</tr>
<tr>
<td>SIMULATED GROUND COMBAT SITUATION</td>
<td>4</td>
</tr>
<tr>
<td>TARGET TANKS</td>
<td>7</td>
</tr>
<tr>
<td>TEST PERFORMANCE AND RESULTS</td>
<td>7</td>
</tr>
<tr>
<td>DAMAGE ASSESSMENT</td>
<td>15</td>
</tr>
<tr>
<td>Tank Number 41</td>
<td>16</td>
</tr>
<tr>
<td>Tank Number 38</td>
<td>19</td>
</tr>
<tr>
<td>Tank Number 35</td>
<td>24</td>
</tr>
<tr>
<td>Tank Number 34</td>
<td>27</td>
</tr>
<tr>
<td>Tank Number 29</td>
<td>29</td>
</tr>
<tr>
<td>Tank Number 27</td>
<td>31</td>
</tr>
<tr>
<td>Tank Number 4</td>
<td>33</td>
</tr>
<tr>
<td>Tank Number 7</td>
<td>39</td>
</tr>
<tr>
<td>SUMMARY AND CONCLUSIONS</td>
<td>43</td>
</tr>
<tr>
<td>APPENDIX A</td>
<td>45</td>
</tr>
<tr>
<td>APPENDIX B</td>
<td>50</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Russian T-62 Medium Tank</td>
<td>8</td>
</tr>
<tr>
<td>2.</td>
<td>U.S.A.F./Fairchild Republic A-10 Aircraft</td>
<td>10</td>
</tr>
<tr>
<td>3.</td>
<td>Fairchild A-10 Series Aircraft</td>
<td>11</td>
</tr>
<tr>
<td>4.</td>
<td>GAU-8/A-10 30mm Gun System</td>
<td>12</td>
</tr>
<tr>
<td>5.</td>
<td>30mm Armor Piercing Incendiary (API) Projectile</td>
<td>13</td>
</tr>
<tr>
<td>6.</td>
<td>Approximate Target Layout</td>
<td>14</td>
</tr>
<tr>
<td>7.</td>
<td>Tank 41, Impact Diagram, Left Side</td>
<td>19</td>
</tr>
<tr>
<td>8.</td>
<td>Tank 41, Impact Diagram, Rear</td>
<td>18</td>
</tr>
<tr>
<td>9.</td>
<td>Tank 38, Impact Diagram, Rear</td>
<td>20</td>
</tr>
<tr>
<td>10.</td>
<td>Tank 38, Impact Diagram, Right Side</td>
<td>21</td>
</tr>
<tr>
<td>11.</td>
<td>Tank 38, Impact Diagram, Left Side</td>
<td>22</td>
</tr>
<tr>
<td>12.</td>
<td>Tank 38, Photo, Rear</td>
<td>23</td>
</tr>
<tr>
<td>14.</td>
<td>Tank 35, Impact Diagram, Front and Rear</td>
<td>26</td>
</tr>
<tr>
<td>15.</td>
<td>Tank 34, Impact Diagram, Right Side</td>
<td>28</td>
</tr>
<tr>
<td>16.</td>
<td>Tank 29, Impact Diagram</td>
<td>30</td>
</tr>
<tr>
<td>17.</td>
<td>Tank 27, Impact Diagram, Rear</td>
<td>32</td>
</tr>
<tr>
<td>18.</td>
<td>Tank 4, Impact Diagram</td>
<td>34</td>
</tr>
<tr>
<td>19.</td>
<td>Tank 4, Impact Diagram</td>
<td>35</td>
</tr>
<tr>
<td>20.</td>
<td>Tank 4, Impact Diagram</td>
<td>36</td>
</tr>
<tr>
<td>21.</td>
<td>Tank 4, Photo, Rear</td>
<td>37</td>
</tr>
<tr>
<td>22.</td>
<td>Tank 4, Photo, Commander and Loader</td>
<td>38</td>
</tr>
</tbody>
</table>
LIST OF FIGURES (Concluded)

23. Tank 7, Impact Diagram, Right Side 40
24. Tank 7, Impact Diagram, Rear 41
25. Tank 7, Photo, Right Side 42
A-1. Array 18 Attack Aspect Parameters. 49

TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>Array 18 Summary of A-10 Aircraft in Low Angle Gun Attack versus Simulated Soviet Tank Company</td>
<td>3</td>
</tr>
<tr>
<td>II.</td>
<td>Comparison of Ideal & Practical Test Situations</td>
<td>5</td>
</tr>
<tr>
<td>A-I.</td>
<td>Array 18 Results Summary</td>
<td>46</td>
</tr>
<tr>
<td>A-II.</td>
<td>Array 18 Perforation Location Summary</td>
<td>47</td>
</tr>
<tr>
<td>A-III.</td>
<td>Array 18 Aircraft Attack Summary</td>
<td>48</td>
</tr>
</tbody>
</table>
COMBAT DAMAGE ASSESSMENT COMMITTEE (CDAC) EXECUTIVE SUMMARY

Under the technical direction of the Combat Damage Assessment Committee (CDAC), the Combat Damage Assessment Team (CDAT) conducted firings of the A-10/GAU-8 weapon system against an array of 10 tanks simulating a Soviet tank company deployed for an attack. The CDAT used M-47 tanks stowed with main gun ammunition, diesel fuel, lubricating oil, and crew manikins to simulate the Soviet tanks. The pilot of the A-10 aircraft used in the firings conducted firings at low altitudes and low dive angles which simulated attack below the altitude of effective engagement for opposing air defense networks employing acquisition and fire control radar. The purpose of the test was to evaluate the effects of the Aerojet 30mm API anti-tank ammunition (lot Number AJD 79Al&1-001) of the GAU-8 gun under challenging conditions of engagement for the A-10/GAU-8 system against realistically simulated Soviet main battle tanks.

The CDAC assessed the results of the low angle cannon firings of the A-10 aircraft against the simulated Soviet tank company as follows:

1. **Attack Parameters:** The pilot of the A-10 aircraft attacked the simulated Soviet tank company for 19 minutes 54 seconds at low altitude and dive angles. The GAU-8 cannon has a ground selectable nominal fire rate of either 4200 rounds per minute or 2100 rounds per minute. The system was set to fire at the 4200 round per minute rate during this test. The pilot made a total of eight passes, each at a primary target tank. The passes resulted in projectile impacts on eight primary target tanks. The attack open-fire dive angles averaged four degrees for the eight passes against the targets. Open-fire slant ranges averaged 2791 feet. The pilot fired 484 rounds in eight bursts averaging 60.5 rounds and 0.88 seconds each.

2. **Weapons Effects:** The A-10/GAU-8 weapon system achieved 143 impacts on the array of target tanks. The ratio of direct impacts to total rounds fired was 0.20. Ricochet hits are also capable of causing damage. If the ricochet hits which can cause damage are added to the direct impacts, the overall ratio of impacts to rounds fired becomes 0.30. The weapon system achieved 13 perforations of the armored envelopes of the tanks with a ratio of perforations to total impacts of 0.09. The ratio of perforations to direct impacts was 0.13. Many projectiles, which did not perforate armor, severely damaged exterior track and suspension components of the tanks.

3. **Damage Assessment:** Two tanks were immobilized and silenced. One tank was immobilized and seriously degraded in firepower. One tank was immobilized. One tank was silenced and seriously degraded in mobility. Two tanks were not attacked and three others, though impacted or perforated, were not damaged sufficiently to degrade either mobility or firepower. The simulated Soviet tank company's overall combat capability was diminished by 50%.
4. **Test Conditions:** The target tanks were sited in open, flat desert terrain with no cover and little concealment. Aerial weather conditions were ones of unlimited ceiling and visibility. Shortly after the initial firing, clouds of white dust from projectile impacts were evident. Such conditions effectively simulated the actual obscuration which would have been presented to the pilots in combat.

5. **Results:** The overall results of the test are summarized in Table I. Appendix A contains graphical and summary information for this firing and Appendix B contains definitions of the terms used in this publication.
TABLE 1. Array 18 Summary of A-10 Aircraft in Low Angle Gun Attack versus Simulated Soviet Tank Company (30 August 1979)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>1/1</td>
<td>555.6</td>
<td>383</td>
<td>2666</td>
<td>-3.5</td>
<td>35</td>
<td>6</td>
<td>1</td>
<td>No</td>
<td>220</td>
</tr>
<tr>
<td>29</td>
<td>1/2</td>
<td>532.0</td>
<td>312</td>
<td>2677</td>
<td>-5.0</td>
<td>53</td>
<td>5</td>
<td>0</td>
<td>No</td>
<td>215</td>
</tr>
<tr>
<td>41</td>
<td>1/3</td>
<td>540.4</td>
<td>366</td>
<td>**</td>
<td>-4.0</td>
<td>47</td>
<td>31</td>
<td>2</td>
<td>Yes</td>
<td>211</td>
</tr>
<tr>
<td>38</td>
<td>1/4</td>
<td>545.5</td>
<td>308</td>
<td>2677</td>
<td>-5.0</td>
<td>62</td>
<td>19</td>
<td>1</td>
<td>Yes</td>
<td>210</td>
</tr>
<tr>
<td>7</td>
<td>1/5</td>
<td>564.1</td>
<td>323</td>
<td>2668</td>
<td>-5.0</td>
<td>70</td>
<td>24</td>
<td>3</td>
<td>Yes</td>
<td>163</td>
</tr>
<tr>
<td>4</td>
<td>1/6</td>
<td>555.7</td>
<td>305</td>
<td>2955</td>
<td>-4.5</td>
<td>62</td>
<td>32</td>
<td>3</td>
<td>Yes</td>
<td>145</td>
</tr>
<tr>
<td>35</td>
<td>1/7</td>
<td>560.7</td>
<td>333</td>
<td>2967</td>
<td>-4.5</td>
<td>85</td>
<td>25</td>
<td>3</td>
<td>No</td>
<td>141</td>
</tr>
<tr>
<td>34</td>
<td>1/8</td>
<td>574.2</td>
<td>332</td>
<td>**</td>
<td>-4.0</td>
<td>70</td>
<td>1</td>
<td>0</td>
<td>No</td>
<td>165</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td>NOT ATTACKED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>***Totals:</td>
<td>-4.1</td>
<td>484</td>
<td>143</td>
<td>13</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>***Averages:</td>
<td>553.5</td>
<td>333</td>
<td>2791</td>
<td>60.5</td>
<td>17.9</td>
<td>1.6</td>
</tr>
</tbody>
</table>

2 100% M & F
1 100% M
1 100% M, and
 Seriously Degraded in firepower
1 100% F, and
 Seriously Degraded in mobility

* 1/1 means pilot 1, pass 1; 1/2 means pilot 1, pass 2, etc.
** Position Uncertain
*** Based on HUD film

NOTE: Tanks 31 and 33 were not attacked. All ammunition expended.
Since February, 1978, the Armament Directorate, A-10 System Program Office, Wright-Patterson Air Force Base, Ohio, has conducted firing tests using the A-10/GAU-8 system in low-level, air-to-ground engagements of armored targets. The tests have been conducted within the framework of the GAU-8 30mm ammunition Lot Acceptance Verification Program (LAVP) - Airborne. The LAVP has the following objectives which apply to the present tests:

A. To evaluate the performance of existing production lots of GAU-8 ammunition when fired from the air under operational conditions.

B. To evaluate the lethality of GAU-8 ammunition against armored targets when fired at low level from A-10 aircraft using operational tactics.

To conduct the LAVP program, the Armament Directorate has cooperated with Headquarters, Tactical Air Command, Langley AFB, Virginia and, in turn, with the Tactical Fighter Weapons Center, Nellis AFB, Nevada. Within the framework of that cooperation, the Armament Directorate has set up a Combat Damage Assessment Team (CDAT) to plan and execute the firing tests and evaluate the results. The CDAT functions under the direction of a Combat Damage Assessment Committee (CDAC) which has prepared this report of the firing test of 30 August, 1979.

TEST PHILOSOPHY

To generate realistic data, the CDAC determined to use a highly empirical technique of destructive testing of actual tank targets. Tests have involved firings at individual tanks in November, 1977 and February - March, 1978, and, more recently, arrays of tanks in tactical formations. The experimental setup for the firings of 30 August, 1979 involved the use of a multi-target, tactically arrayed tank formation for attack by the A-10/GAU-8 system. The CDAT elected to simulate a Soviet tank company, as organized within a tank division, as the target array for two attacking A-10 aircraft. As few constraints as possible were placed on the attacking pilots in an attempt to develop as much realism as possible. Table II shows the test factors which would have been ideal in the test of 30 August, 1979 and the practicable setup which was achieved.
<table>
<thead>
<tr>
<th>Ideal Test Parameters</th>
<th>Practical Test Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Air Attack Realism</td>
<td>1. Air Attack Realism</td>
</tr>
<tr>
<td>a. Actual A-10/GAU-8</td>
<td>a. Actual A-10/GAU-8</td>
</tr>
<tr>
<td>b. 30mm API</td>
<td>b. 30mm API</td>
</tr>
<tr>
<td>c. European weather &</td>
<td>c. Nevada weather &</td>
</tr>
<tr>
<td>terrain</td>
<td>desert terrain</td>
</tr>
<tr>
<td>d. Optimum open-fire</td>
<td>d. Average open-fire</td>
</tr>
<tr>
<td>ranges (2000 ft)</td>
<td>range: 2791 feet.</td>
</tr>
<tr>
<td>e. Low altitude attack</td>
<td>e. Low altitude attack</td>
</tr>
<tr>
<td>angle (< 6 degrees)</td>
<td>angle (< 6 degrees)</td>
</tr>
<tr>
<td>a. Automatic cannon</td>
<td>a. Low-altitude, low-angle,</td>
</tr>
<tr>
<td>firing at aircraft</td>
<td>minimum-exposure attacks</td>
</tr>
<tr>
<td>b. Missile systems</td>
<td>b. Low-altitude, low-angle,</td>
</tr>
<tr>
<td>firing at aircraft</td>
<td>minimum-exposure attacks</td>
</tr>
<tr>
<td>c. Small arms firing</td>
<td>c. Low-altitude, low-angle,</td>
</tr>
<tr>
<td>at aircraft</td>
<td>minimum-exposure attacks</td>
</tr>
<tr>
<td>d. AD suppression by</td>
<td>d. No suppression simulation</td>
</tr>
<tr>
<td>aircraft</td>
<td>in test</td>
</tr>
<tr>
<td>3. Threat Targets and</td>
<td>3. Threat Targets and</td>
</tr>
<tr>
<td>Doctrine</td>
<td>Doctrine</td>
</tr>
<tr>
<td>a. T62/T64/T72 high</td>
<td>a. Simulated Soviet tanks</td>
</tr>
<tr>
<td>fidelity targets</td>
<td>b. Stowed combat loads</td>
</tr>
<tr>
<td>b. Stowed combat loads</td>
<td>(in US M-47)</td>
</tr>
<tr>
<td>(in T62/T64/T72)</td>
<td>c. Wooden crew manikins</td>
</tr>
<tr>
<td>c. Realistic crew</td>
<td>d. Static combat formation</td>
</tr>
<tr>
<td>station postures</td>
<td>e. Stationary targets</td>
</tr>
<tr>
<td>d. Dynamic combat</td>
<td></td>
</tr>
<tr>
<td>formation</td>
<td></td>
</tr>
<tr>
<td>e. Maneuvering evasive</td>
<td></td>
</tr>
<tr>
<td>targets</td>
<td></td>
</tr>
</tbody>
</table>
SIMULATED GROUND COMBAT SITUATION

The firing test of 30 August, 1979 simulated the attack by two A-10 aircraft on a Soviet tank company. The CDAC hypothesized the Soviet tank company to be the lead march security detachment for its battalion, which in turn, is the advance guard of a larger mobile formation. The lead detachment operates approximately five kilometers in front of the Soviet battalion column. The mission of the advance company is to ensure the uninterrupted advance of the battalion and provide security against attack. Upon meeting heavy resistance, the company deploys into an appropriate combat formation to reduce the resistance, or form a base of fire for offensive action by the remainder of the battalion.

A Soviet tank company, which is simulated in the firing test, would probably have other units attached to it for its support. Attached units might include any one or all of the following elements: (1) motorized rifle platoon; (2) engineer detachment; (3) chemical defense specialists; (4) 122mm howitzer battery; (5) air defense element. The lead detachment simulated in the firing test consisted of tanks alone. The pure tank formation was arranged with two platoons up and one back, simulating an assault posture. The tanks used in the firing test were US M-47 tanks, largely intact, containing crew manikins, and stowed with ammunition, fuel, and oil. The tanks were not maneuvered during the firing test and the formation remained essentially a snapshot of the company at a single point in time.
TARGET TANKS

The most effective tanks available in sufficient numbers to simulate Soviet T-55 and T-62 (Figure 1) tanks were the US M-47 tanks. Both of the Soviet tank models are similar in armor protection to the M-47. With the appropriate purging of the gasoline fuel system of the US tanks, the CDAT managed to field a tank similar in survivability to the T-55 and T-62 tanks from the viewpoint of ignitable internal material. Few data are available on the Soviet T-64 and later model tanks from the viewpoints of armor protection and the arrangement of internal material. The decision was made, accordingly, to simulate the earlier model Soviet tanks with the readily available US tanks.

The M-47 tanks used for targets were in excellent condition from the viewpoint of damage assessment. The exterior components were complete and the tanks have proven to be effective targets for the collection of exterior mobility damage. Interior components were less complete in the target tanks. All of the most essential items were present, e.g., main gun, engine, transmission, fuel tanks, ammunition racks, etc., but other items such as oil coolers, range finders, vision devices, and radios, have not been present in all tanks.

The most sensitive internal items from the viewpoint of catastrophic kills and high percentage Mobility (M) and Firepower (F) kills are the following, which were placed in the test tanks as noted:

<table>
<thead>
<tr>
<th>Generic Sensitive Item</th>
<th>Test Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ammunition</td>
<td>US Cartridge, 90-mm TP-T</td>
</tr>
<tr>
<td>2. Fuel</td>
<td>Number 2 Diesel</td>
</tr>
<tr>
<td>3. Oil</td>
<td>Oil in Engine, Transmission and Drive Components.</td>
</tr>
<tr>
<td>4. Personnel</td>
<td>Articulated Plywood Manikins</td>
</tr>
</tbody>
</table>

The tanks were static during the test and their engines were not running, with the result that the fuel and oil were much cooler and more inert than would have been the case with a moving tank or a static vehicle with its engine running. The kill ratio achieved in the firing test of 30 August, 1979, therefore, is probably conservative from the viewpoint of fires resulting from ignited fuel and oil.

TEST PERFORMANCE AND RESULTS

Conduct of the test consisted of bringing together the ammunition, gun, aircraft, pilots, and combat arrayed and loaded tanks into a several minutes simulation of combat. In essence, the
FIGURE 1. Russian T62 Medium Tank
decisive elements which were fed into the test immediately prior to the firing were the following:

1. Aerojet 30mm API ammunition, Lot Number AJD 79A181-01.
2. General Electric GAU-8 Gatling gun.
3. Fairchild Republic A-lØ attack aircraft.
4. USAF Fighter Pilots.
5. US Designed M-47 main battle tanks.

The combat simulation itself comprised the aerial fire and maneuver of the attacking A-lØ aircraft. A realistic way of presenting the combat simulation is to outline the sequence of pertinent events in each firing pass. These events and the pertinent data which the CDAT attempted to collect, in order to reconstruct the simulated combat firing of 3Ø August, 1979, were as follows:

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Event</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Aircraft Approach</td>
<td>Speed, Altitude</td>
</tr>
<tr>
<td>2.</td>
<td>Aircraft Attack</td>
<td>Open-fire Range, Dive Angle</td>
</tr>
<tr>
<td>3.</td>
<td>Aircraft Attack</td>
<td>Burst Time, Rounds Fired</td>
</tr>
<tr>
<td>4.</td>
<td>Aircraft Attack</td>
<td>Cease-fire Range, Dive Angle</td>
</tr>
<tr>
<td>5.</td>
<td>Gun Effects, (Accuracy)</td>
<td>Impacts on Tanks</td>
</tr>
<tr>
<td>6.</td>
<td>Gun Effects, (Lethality)</td>
<td>Perforations through Armor</td>
</tr>
<tr>
<td>7.</td>
<td>Tank Damage</td>
<td>Catastrophic (K-Kill),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mobility (M-Kill), and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Firepower (F-Kill) Kills</td>
</tr>
</tbody>
</table>

The data noted immediately above were collected through the combined efforts of the CDAT and range support personnel at Nellis AFB, working together and using TSPI equipment, motion picture and still cameras, the industrial efforts required to repair, refurbish, and field the tank targets, and various systematic research techniques used to describe weapon effects and combat damage. The most basic materiel used in the test; i.e., the aircraft, gun, and projectile are illustrated in Figures 2, 3, 4, and 5. The tanks were arrayed in the tactical formation of a Soviet tank company as shown in Figure 6.

The pilots making the attack flew from the base area in a two-ship, mutually supporting element and employed operational tactics immediately before and during the firing passes. The pilots approached the target area at low altitude and simulated target acquisition with the help of a forward air controller. Upon arrival in the target area, the pilots noted that one aircraft had not been loaded with ammunition. The CDAT decided to conduct the test with the single loaded aircraft. The pilot proceeded to attack the acquired targets at low altitudes and dive angles, simulating operation below the altitudes for effective acquisition and engagement by opposing air defense missile and gun systems. The pilot with the unloaded aircraft made several diversionary passes in support of the firing aircraft.
FIGURE 3. Fairchild A-10 Series Aircraft.
FIGURE 5. 30mm Armor Piercing Incendiary (API) Projectile.
FIGURE 6. Approximate Target Layout.
DAMAGE ASSESSMENT

The damage assessment conducted by the CDAT is presented on the following pages. The attacking aircraft was loaded with enough ammunition for the originally postulated attack on five tanks and did not have enough ammunition to attack all 10 tanks in the company array. Consequently, tanks 33 and 31 were not attacked or impacted, and are not discussed further. Appendix A, following the damage assessment section contains graphical and tabular information relative to the mission in general, for example, aircraft attack parameters, weapon effects, and summaries of damage.

Terms used in the damage assessment summaries are defined in Appendix B.

Impacts on tanks were arbitrarily numbered for identification purposes. The impacts were numbered sequentially, first at the turret level, then at the hull level. If additional impacts were discovered during the combat damage assessment (as was sometimes the case) they were given the next sequential number, i.e., no attempt was made to "correct" the sequence. THE READER IS CAUTIONED THAT THIS NUMBERING SYSTEM HAS NO RELATIONSHIP WHATSOEVER TO THE ARRIVAL SEQUENCE OF PROJECTILES ON THE TANK OR TO THE PORTION OF THE BURST IMPACTING THE TANK.
TARGET TANK DAMAGE SUMMARY

M-47 Tank Number 41

1. Description:

The target tank was impacted at an attack aspect of 211 degrees (left rear) during one firing pass at low altitude and low dive angle. The A-10 expended 47 rounds in the firing pass.

2. Kill Assessment:

100% M-Kill and 95% F-Kill resulting from the following observed projectile effects (Figure 7 and 8):

a. Perforations : 2
b. Significant Impacts : 6
c. Insignificant Impacts: 23

TOTAL IMPACTS : 31

3. Rationale for Kill Assessment:

a. M-Kill: The assessment of 100% M-Kill was based on impact 29 which penetrated the left track adjusting idler hub, cumulative damage to the track and suspension system from impacts 12, 14, 24, 25, and 28, and impacts 3 and 5 which perforated the left turret and caused casualties to the commander, gunner, and loader.

b. F-Kill: The assessment of F-Kill was based on the commander, gunner and loader casualties.
Legend:
- ⭕ - Perforation
- ⚫ - Hit
- ○ - Ricochet Off Ground

FIGURE 8. Tank 41, Impact Diagram, Rear.
TARGET TANK DAMAGE SUMMARY
M-47 Tank Number 38

1. Description:
 The target tank was impacted at an attack aspect of 210 degrees (left rear) during one firing pass in which the attacking aircraft expended 62 rounds.

2. Kill Assessment:
 100% M-Kill based on the following observed effects (Figures 9, 10, and 11):

 a. Perforations : 1
 b. Significant Impacts : 5
 c. Insignificant Impacts: 13

 TOTAL IMPACTS : 19

3. Rationale for Kill Assessment:
 100% M-Kill based on impact 7 which perforated the rear of the hull (see Figure 12) and penetrated into the transmission case; impact 10, which penetrated into the right final drive; and cumulative damage to the track and suspension system caused by impacts 4, 11, 18, and 19.

Legend:

- • - Perforation
- * - Hit
- ○ - Ricochet Off Ground
FIGURE 10. Tank 38, Impact Diagram, Right Side.

Legend:

- : Perforation
- : Hit
- : Ricochet Off Ground

(Probable ricochet from another target)

14 15 16 17 19 (inside)
Legend:

- Perforation
- Hit
- Ricochet Off Ground

Note impacts 7 and 10 which perforated the hull and the right final drive casting respectively and contributed to the assessment of 100% M-Kill.

FIGURE 12. Tank 38, Photo, Rear.
TARGET TANK DAMAGE SUMMARY

M-47 Tank Number 35

1. Description:

 The target tank was impacted at an attack aspect of 141 degrees (right rear) during one firing pass in which the attacking aircraft expended 85 rounds.

2. Kill Assessment:

 95% M-Kill and 100% F-Kill resulting from the following observed effects (Figures 13 and 14):

 a. Perforations: 3
 b. Significant Impacts: 7
 c. Insignificant Impacts: 15

 TOTAL IMPACTS: 25

3. Rationale for Kill Assessment:

 a. M-Kill: A 95% M-Kill was assessed based on impacts 1, 3, and 4 which perforated the right turret causing casualties to the commander, gunner, and loader degrading mobility (90%) and on cumulative damage (5%) to the track and suspension system by impacts 13, 14, 17, 18, and 22.

 b. F-Kill: A 100% F-Kill was assessed based on impact 4 which perforated the turret ring and jammed the turret so that it would not traverse, and on the commander, gunner, and loader casualties inflicted by impacts 1 and 3. Impact 24, which penetrated the bore evacuator, made a minor contribution to the kill.
TARGET TANK DAMAGE SUMMARY

M-47 Tank Number 34

1. Description:

 The target tank was impacted at an attack aspect of 165 degrees (right rear) during one firing pass in which the attacking aircraft expended 70 rounds.

2. Kill Assessment:

 No degradation in mobility or fire-power.

 a. Perforations : 0
 b. Significant Impacts : 0
 c. Insignificant Impacts: 1

 TOTAL IMPACTS : 1

3. Rationale for Kill Assessment:

 The single impact on tank 34 partially penetrated the right side of the turret (Figure 15) with no behind-the-plate effects.
FIGURE 15. Tank 34, Impact Diagram.
TARGET TANK DAMAGE SUMMARY

M-47 Tank Number 29

1. Description:

The target tank was impacted at an attack aspect of 215 degrees (left rear) during one firing pass in which the attacking aircraft expended 53 rounds.

2. Kill Assessment:

No degradation in mobility or fire-power.

a. Perforations : 0
b. Significant Impacts : 0
c. Insignificant Impacts: 5

TOTAL IMPACTS : 5

3. Rationale for Kill Assessment:

None of the impacts on tank 29 (Figure 16) contributed to the assessment of either an M- or an F-Kill.

Legend:
- Perforation
- Hit
- Ricochet Off Ground
TARGET TANK DAMAGE SUMMARY

M-47 Tank Number 27

1. Description:

 The target tank was impacted at an attack aspect of 220 degrees (left rear) during one firing pass in which the attacking aircraft expended 35 rounds.

2. Kill Assessment:

 No degradation in mobility or firepower.

 a. Perforations : 1
 b. Significant Impacts : 0
 c. Insignificant Impacts: 5

 TOTAL IMPACTS : 6

3. Rationale for Kill Assessment:

 All of the impacts on the target were ricochets off the ground. Impact 3 (Figure 17) perforated the rear hull armor but did not possess enough residual energy to penetrate into the transmission case. The remaining five projectiles impacted the track and suspension system, hull, and turret with no harmful effects on mobility or firepower.
Note: Perforation resulted from ricochet off ground

Legend:

● - Perforation
● - Hit
○ - Ricochet Off Ground

FIGURE 17. Tank 27, Impact Diagram, Rear.
TARGET TANK DAMAGE SUMMARY

M-47 TANK NUMBER 4

1. Description:

The target tank was impacted at an attack aspect of 145 degrees (right rear) during one firing pass in which the attacking aircraft expended 62 rounds.

2. Kill Assessment:

100% M-Kill and 100% F-Kill resulting from the following observed effects (Figures 18, 19, and 20):

a. Perforations : 3
b. Significant Impacts : 7
c. Insignificant Impacts: 22

TOTAL IMPACTS : 32

3. Rationale for Kill Assessment:

a. M-Kill: The assessment of a 100% M-Kill is based on impacts 15 and 16 (Figure 21) which perforated the rear hull armor and penetrated into the engine compartment, severing two oil cooler lines and penetrating the transmission case; and on cumulative damage to the track and suspension system caused by impacts 19, 25, 28, 30, 31, and 32. Crew casualties caused by impact 1 contributed to the kill.

b. F-Kill: The assessment of a 100% F-Kill is based on impact 3 which hit in the turret ring and jammed the turret so that it would not traverse, and on impact 1 (Figure 22) which perforated the turret and caused casualties to the commander, gunner, and loader.
NOTE: Hits 19 and 20 impacted on the inside of the left compensating idler wheel and the left track respectively.

Note impacts 15 and 16 which perforated rear hull and penetrated into transmission case and oil cooler lines.

FIGURE 21. Tank 4, Photo, Rear.
Note fragmentation effects on commander and loader manikins from impact I.

FIGURE 22. Tank 4, Photo, Commander and Loader.
TARGET TANK DAMAGE SUMMARY

M-47 Tank Number 7

1. Description:

The target tank was impacted at an attack aspect of 163 degrees (right rear) during one firing pass in which the attacking aircraft expended 70 rounds.

2. Kill Assessment:

100% M-Kill and 100% F-Kill resulting from the following observed effects (Figures 23 and 24):

a. Perforations: 3
b. Significant Impacts: 6
c. Insignificant Impacts: 15

TOTAL IMPACTS: 24

3. Rationale for Kill Assessment:

a. M-Kill: The assessment of a 100% M-Kill is based on impacts 12 and 13 which perforated the rear of the hull penetrating into the transmission case, and on cumulative damage to the track and suspension system caused by impacts 14, 17, 18, 19, and 24.

b. F-Kill: The assessment of a 100% F-Kill is based on impact 1, which perforated the right side of the turret killing the gunner and damaging the commander's main armament controls, and impact 2 which jammed the turret so that it could not be traversed (Figure 25).
NOTE: Impacts 4, 7, 8, 9, and 10 are not shown. These impacts struck the top surface of the tank and resulted in minor external damage.

Legend:
- • - Perforation
- ◆ - Hit
- ○ - Ricochet Off Ground

FIGURE 24. Tank 7, Impact Diagram, Rear.
Note impacts 1 (perforation) and 2 (hit, which jammed turret).

FIGURE 25. Tank 7, Photo, Right Side.
SUMMARY AND CONCLUSIONS

On 30 August, 1979 at Nellis AFB, Nevada, the Combat Damage Assessment Team (CDAT) conducted firings of the A-10/GAU-8 weapon system against an array of 10 tanks simulating a Soviet tank company deployed for an attack. The purpose of the firing test was to evaluate the effects of Aerojet Lot Number AJD 74AL61-UUI 30mm API anti-tank ammunition of the GAU-8 gun under challenging conditions of engagement for the A-10/GAU-8 system against realistically simulated Soviet tank formations. The CDAT used M-47 tanks stowed with main gun ammunition, diesel fuel, lubricating oil, and crew manikins to simulate the Soviet tanks. The pilot of the A-10 aircraft used in the firings conducted the attack at low altitudes and low dive angles which simulated attack below the altitude of the effective engagement for opposing air defense systems using acquisition and fire control radar.

The firing test can be summarized in terms of the following data which were collected and/or extracted from the firings:

Aircraft Parameters

1. Speed (average)---------------------523 ft/sec
2. Altitude----------------------------333 feet
3. Dive Angle (average)---------------4.1 degrees
4. Open-fire Slant Range (average)----2791 feet
5. Burst Length/Rounds (averages)-----1.15 sec/60.5
6. Number Passes (primary)----------8
7. Target Aspects (predominantly)-----right rear,
 left rear

Weapon Effects

1. Rounds Fired---------------------464
2. Impacts--------------------------143
3. Ricochets (off ground)----------46
4. Direct Impacts-------------------97
5. Perforations---------------------13

Target Damage

1. K-Kills-----------------9
2. M+F-Kills-------------2
3. N-Kills--------------2
4. F-Kills----------1
5. Light damage--3
6. Not attacked--2

These data and the more detailed base from which they were extracted can be arranged into measures of effectiveness for the A-10/GAU-8 system under conditions similar to those in the firing test, i.e., empirical combat simulation. The following values of effectiveness are based on the firing test on 30 August 1979.
Measures of Effectiveness

<table>
<thead>
<tr>
<th>Accuracy Related Ratio:</th>
<th>Lethality Related Ratio:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Impacts = 0.30</td>
<td>Perforations = 0.09</td>
</tr>
<tr>
<td>Rounds Fired</td>
<td>Total Impacts</td>
</tr>
<tr>
<td>Direct Impacts = 0.20</td>
<td>Perforations = 0.13</td>
</tr>
<tr>
<td>Rounds Fired</td>
<td>Direct Impacts</td>
</tr>
</tbody>
</table>

Weapon System Effectiveness Ratio

<table>
<thead>
<tr>
<th>Tanks Immobilized = 0.50</th>
<th>Tanks K-Killed = 0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passes</td>
<td>Passes</td>
</tr>
</tbody>
</table>

The eight target tanks were attacked predominately from the right rear, rear and left rear and suffered the damage shown in Table I and Table A-1.

The data and measures summarized above, and the other data contained in this report, support several conclusions:

1. The A-10/GAU-8 weapon system in realistic simulation of combat is capable of inflicting M- and F-Kills on M-47 and similarly protected main battle tanks, e.g. Soviet T-55 and T-62 tanks.

2. The weapon system, in low level attacks, can perforate specifically the side and rear surfaces of the hulls and turrets of M-47 and similarly protected main battle tanks.

3. The weapon system is an effective killing agent against the side and rear surfaces of M-47 and similar tanks when firing moderate length bursts of 0.65 to 1.45 seconds containing 35 to 85 rounds.

4. From the viewpoint of GAU-8 30mm API ammunition effects and resulting damage to combat stowed main battle tanks, the tactic of low-level attack in this firing test was shown to be a successful one.
APPENDIX A

Graphical and Summary Information

Table A-I contains a summary of the results of Mission 18 of 30 August, 1979. Table A-II contains a summary of damage assessment based on perforation locations. Table A-III contains a summary of aircraft attack parameters. Figure A-1 depicts aircraft attack aspect by tank number as a function of open-fire range.
<table>
<thead>
<tr>
<th>Target Tank No.</th>
<th>Damage Assessment*</th>
<th>All Target Impacts</th>
<th>Direct Impacts</th>
<th>Rounds Fired</th>
<th>Total Perforations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(M%) (F%) (K%)</td>
<td>6</td>
<td>0</td>
<td>35</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>--- --- ---</td>
<td>5</td>
<td>2</td>
<td>53</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>--- --- ---</td>
<td>31</td>
<td>18</td>
<td>47</td>
<td>2</td>
</tr>
<tr>
<td>41</td>
<td>100 95 ---</td>
<td>19</td>
<td>12</td>
<td>62</td>
<td>1</td>
</tr>
<tr>
<td>38</td>
<td>100 --- ---</td>
<td>24</td>
<td>20</td>
<td>70</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>100 100 ---</td>
<td>32</td>
<td>26</td>
<td>62</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>100 100 ---</td>
<td>25</td>
<td>19</td>
<td>85</td>
<td>3</td>
</tr>
<tr>
<td>35</td>
<td>95 100 ---</td>
<td>1</td>
<td>0</td>
<td>70</td>
<td>0</td>
</tr>
<tr>
<td>34</td>
<td>--- --- ---</td>
<td>NOT ENGAGED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>--- --- ---</td>
<td>NOT ENGAGED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>TOTALS:</td>
<td>143</td>
<td>97</td>
<td>484</td>
<td>13</td>
</tr>
</tbody>
</table>

*K = Catastrophic Kill; M = Mobility Kill; F = Firepower Kill
TABLE A-II. Array 18 Perforation Location Summary
(30 August 1979)

<table>
<thead>
<tr>
<th>Target Tank</th>
<th>Damage Assessment*</th>
<th>Turret Perforations (Fighting Compt)</th>
<th>Hull Perforations</th>
<th>Total Perforations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(M%) (F%) (K%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>--- --- ---</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>--- --- ---</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>41</td>
<td>100 95 ---</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>38</td>
<td>100 --- ---</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>100 100 ---</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>100 100 ---</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>35</td>
<td>95 100 ---</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>34</td>
<td>--- --- ---</td>
<td>NOT ENGAGED</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>33</td>
<td>--- --- ---</td>
<td>NOT ENGAGED</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>--- --- ---</td>
<td>NOT ENGAGED</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Totals: 7 0 0 6 13

*K = Catastrophic Kill; M = Mobility Kill; F = Firepower Kill
TABLE A-III. Array 18 Aircraft Attack Parameters
(30 August 1979)

<table>
<thead>
<tr>
<th>Acft Pass</th>
<th>Tank No.</th>
<th>Open Fire Slant Rng (feet)</th>
<th>Dive Angle Open/Close (degrees)</th>
<th>Altitude (feet)</th>
<th>Velocity Open/Close (ft/sec)</th>
<th>Burst Length (seconds)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>27</td>
<td>2666</td>
<td>-4.0/-3.0</td>
<td>138</td>
<td>555.7/555.7</td>
<td>.58</td>
<td>HUD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2545</td>
<td>-5.1/-4.1</td>
<td>169</td>
<td>557.4/557.4</td>
<td>.5</td>
<td>TSPI</td>
</tr>
<tr>
<td>1/2</td>
<td>29</td>
<td>**</td>
<td>-2.0/-2.0</td>
<td>63</td>
<td>537.1/537.1</td>
<td>.83</td>
<td>HUD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>**</td>
<td>-2.9/-2.0</td>
<td>103</td>
<td>542.2/542.2</td>
<td>.5</td>
<td>TSPI</td>
</tr>
<tr>
<td>1/3</td>
<td>41</td>
<td>**</td>
<td>-4.0/-4.0</td>
<td>138</td>
<td>555.7/537.1</td>
<td>.75</td>
<td>HUD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>**</td>
<td>-4.3/-2.5</td>
<td>135</td>
<td>548.9/548.9</td>
<td>.7</td>
<td>TSPI</td>
</tr>
<tr>
<td>1/4</td>
<td>38</td>
<td>2677</td>
<td>-5.0/-5.0</td>
<td>138</td>
<td>545.5/545.5</td>
<td>.96</td>
<td>HUD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2208</td>
<td>-3.9/-2.6</td>
<td>140</td>
<td>554.3/550.6</td>
<td>.7</td>
<td>TSPI</td>
</tr>
<tr>
<td>1/5</td>
<td>7</td>
<td>2688</td>
<td>-5.0/-5.0</td>
<td>63</td>
<td>564.0/564.0</td>
<td>1.08</td>
<td>HUD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2471</td>
<td>-3.2/-1.5</td>
<td>125</td>
<td>586.1/577.6</td>
<td>.9</td>
<td>TSPI</td>
</tr>
<tr>
<td>1/6</td>
<td>4</td>
<td>2955</td>
<td>-5.0/-4.0</td>
<td>138</td>
<td>555.7/555.7</td>
<td>1.29</td>
<td>HUD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2479</td>
<td>-3.2/-1.4</td>
<td>133</td>
<td>582.7/572.6</td>
<td>1.1</td>
<td>TSPI</td>
</tr>
<tr>
<td>1/7</td>
<td>35</td>
<td>2967</td>
<td>-5.0/-4.0</td>
<td>83</td>
<td>564.1/557.4</td>
<td>1.33</td>
<td>HUD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2281</td>
<td>-3.0/-1.3</td>
<td>125</td>
<td>587.8/574.2</td>
<td>1.1</td>
<td>TSPI</td>
</tr>
<tr>
<td>1/8</td>
<td>34</td>
<td>**</td>
<td>-4.0/-4.0</td>
<td>83</td>
<td>574.2/574.2</td>
<td>1.08</td>
<td>HUD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>**</td>
<td>-4.0/-4.0</td>
<td>122</td>
<td>592.8/594.5</td>
<td>.7</td>
<td>TSPI</td>
</tr>
</tbody>
</table>

****Averages: 2823 -3.4 118.5 561.0 0.88****

Nominal HUD film tolerances:
- Slant Ranges: Plus zero minus 300 feet
- Dive Angles: Plus or minus .5 degrees
- Velocities: Plus or minus 8.44 ft/sec
- Burst Times: Plus 0. minus .083 seconds

* Pass 1/1 means pilot 1, pass 1; 1/2 means pilot 1, pass 2, etc.
** Position uncertain
*** HUD average is 1.15 seconds
**** Averages include Cinephotodolite TSPI data. Due to TSPI camera positioning TSPI data is considered less accurate than HUD camera film data.
APPENDIX B

DEFINITIONS

The terms used in this report are defined below:

IMPACT -- Any evidence of a projectile strike against any portion of the target. Ground ricochets striking the target were classified as "impacts".

PERFORATION -- Any rupture of the armored envelope caused by an impacting projectile which results in a complete rupture of an armored surface by the projectile or spall fragments. A perforation can occur only when the armor is impacted. The word "Perforation" was deliberately selected to avoid the ambiguities which may occur through use of the word "penetration". Behind-the-plate effects may or may not result from a perforation.

HIT -- Any impact not classified as a perforation.

MOBILITY KILL (M-KILL) -- Loss of tactical mobility resulting from damage which cannot be repaired by the crew on the battlefield. A tank is considered to have sustained a 100% M-Kill when it is no longer capable of executing controlled movement on the battlefield. Mobility is DEGRADED when a tank can no longer maintain position in its formation.

FIREPOWER KILL (F-KILL) -- Loss of tactical firepower resulting from damage which cannot be repaired by the crew on the battlefield. A tank is considered to have sustained a 100% F-Kill when it is incapable of delivering controlled fire from its main armament. Firepower is DEGRADED when a tank can no longer maintain its "normal" rate-of-fire, velocity, accuracy, time to shift targets, etc.

CATASTROPHIC KILL (K-KILL) -- A tank is considered to have sustained a K-Kill when both an M-Kill and a F-Kill have occurred as the result of killing fires and explosions from ignited fuel and/or ammunition. A tank which has suffered a K-Kill is considered not to be economically repairable, and, by U.S. standards, would be abandoned on the battlefield.

ATTACK ASPECT -- The angle of approach of the aircraft with respect to the orientation of the tank with zero degrees representing the front of the tank (gun forward) and 180 degrees representing the rear of the tank.
SIGNIFICANT IMPACTS -- Impacts which damage systems, components or sub-systems resulting in their destruction or partial loss of function. This type damage contributes to the assessed kill.

INSIGNIFICANT IMPACTS -- Impacts which damage non-critical structural, convenience, or accessory components and which may result in their destruction or partial loss of function, but with no impact on mobility or firepower considerations. Good maintenance practices contemplate repair or replacement of such items at the earliest opportunity consistent with accomplishment of the mission.
DISTRIBUTION LIST FOR LAVP RESULTS

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Address</th>
<th>No. Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Mr. R.L. Saley</td>
<td>Aerojet, 1025 Connecticut Avenue, N.W., 12th Floor, Washington, DC 20036</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>Mr. Marshall Hoyler, Analyst</td>
<td>Congressional Budget Office, 2nd & D Streets, S.W., Washington, DC 20024</td>
<td>1</td>
</tr>
<tr>
<td>3.</td>
<td>Dr. John Barmby</td>
<td>U.S. General Account Office, 441 C Street N.W., Washington, DC 20548</td>
<td>1</td>
</tr>
<tr>
<td>5.</td>
<td>Lt. Col. Donald E. Madonna</td>
<td>BQ AFSC/XRLA, Andrews AFB, MD, Washington, DC 20331</td>
<td>1</td>
</tr>
<tr>
<td>8.</td>
<td>354 TFW/DOW</td>
<td>Myrtle Beach AFB, SC 29577</td>
<td>5</td>
</tr>
<tr>
<td>9.</td>
<td>81 TFW/CC</td>
<td>RAF Bentwaters, APO NY 09755</td>
<td>1</td>
</tr>
</tbody>
</table>
10. 81 TFW/DO
RAF Bentwaters
APO NY 09755

11. 23 TFW/DO
England AFB, LA 71301

12. USAF/TFWC/TE
Nellis AFB, NV 89191

13. Mr. Jerome H. Stolarow
U.S. General Accounting Office
441 C Street, N.W.
Washington, DC 20548

14. MGEN Bernard E. Trainor
Education Center
MCDEC
Quantico, VA 22134

15. Maj O.W. McCormack
Supporting Arms Instruction Division
Education Center
MCDEC
Quantico, VA 22134

16. Capt J.L. Dawson
Supporting Arms Instruction Division
Education Center
MCDEC
Quantico, VA 22134

17. Mr. William Lind
Office of Senator Gary Hart
254 Russel Building
Washington, DC 20510

USMC
102 Clemson Court
Jacksonville, NC 28540

19. Deputy Chief of Staff for Intelligence
Headquarters
Tactical Air Command
Col. Herrmann
Langley AFB, VA 23665

20. Mr. James O. Carson
Central Intelligence Agency/OSR
Washington, DC 20505
21. Mr. Robert Korn
 Central Intelligence Agency
 Washington, DC 20505

22. Mr. John Cuzzordo
 Central Intelligence Agency
 Washington, DC 20505

23. Mr. Richard R. Hallock
 Intrac, Inc.
 606 Wilshire Boulevard - Suite 400
 Santa Monica, CA 90401

24. Mr. C.M. Gordon
 GE
 777 14th, N.W.
 Washington, DC 20005

25. Maj. M.F. Janay, USMC
 HC DARCOM - Code DRCGS-P
 5001 Eisenhower Avenue
 Alexandria, VA 22304

26. Mr. Raymond R. McEachin
 P.O. Box 273
 Hazlehurst, GA 31539

27. L.C. Hayes, USMC
 Headquarters, Marine Corps
 Washington, DC 20380

28. K.R. Town, USMC
 Headquarters, U.S. Marine Corps
 Washington, DC 20380

29. John C. McKay, USMC
 Headquarters, U.S. Marine Corps
 Washington, DC 20380

30. Mr. Tyler W. Tandler
 1012 Deadrun Drive
 McLean, VA 22101

31. Mr. E. Elko
 AOMC
 9236 Rast Hall Road
 Downey, CA 90241
32. Mr. K.H. Wolvington
GE
Lakeside Avenue
Burlington, VT 05401

33. Mr. Kwai Chan
U.S. General Accounting Office
441 C Street, N.W.
Washington, DC 20548

34. HQ TAC/DO00
Langley AFB, VA 23665

35. USAF Academy
Library
USAF Academy, CO 80840

36. Herrn Dr. Horst Boog
Wiss Oberrat
Militargeschichtliches Forschungsamt
7600 Freiburg im Breisgau
West Germany

37. Albert F. Simpson
Historical Research Center
Attention: Mr. Fletcher
Maxwell AFB, AL 36112

38. CMR Naval Air Systems Command
Attention: PMA 235 B
Washington, DC 20361

39. DASD/ISA/ED
Room 4D696
The Pentagon
Washington, DC 20301

40. Lt. Col. Howard J. Pierson
139 Booker Street
Little Rock, AR 72204

41. USAF
DCS/Plans & Operations Tactical Division
BF9396
The Pentagon
Washington, DC 20301
<table>
<thead>
<tr>
<th></th>
<th>Name</th>
<th>Address</th>
<th>State</th>
<th>Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.</td>
<td>USAF</td>
<td>DCS/Programs & Resources</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Director of Programs Tactical Branch</td>
<td>4C152</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Pentagon</td>
<td>Washington, DC 20301</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.</td>
<td>USAF</td>
<td>DCS/Research & Development</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Directorate of Operational Requirements & Development Plans</td>
<td>Tactical Division</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Pentagon</td>
<td>Washington, DC 20301</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.</td>
<td>HQ TAC/DO AT</td>
<td>Langley AFB, VA 23665</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.</td>
<td>HQ TAC/DO O</td>
<td>Langley AFB, VA 23665</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46.</td>
<td>Mr. Andrew W. Marshall</td>
<td>Director Not Assessment</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Room 3A930</td>
<td>Pentagon</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20301</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47.</td>
<td>Dr. James A. Ross</td>
<td>Institute for Defense Analyses</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>400 Army Navy Drive</td>
<td>Arlington, VA 22202</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.</td>
<td>Lt. Col. Lanny T. Lancaster</td>
<td>HDQ TAC/CCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Langley AFB, VA 23665</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49.</td>
<td>Mr. Thomas E. Gaines</td>
<td>P.O. Box 225907</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vought Corporation</td>
<td>Dallas, TX 75265</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50.</td>
<td>Mr. Emil H. Seaman</td>
<td>Aerojet Ordnance Company</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9236 East Hall Road</td>
<td>Downey, CA 90241</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51.</td>
<td>Mr. Charles E. Myers</td>
<td>2000 S. Eads #113</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arlington, VA 22202</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
52. Mr. David G. Opheim
Honeywell, Inc.
600 Second Street, N.E.
Hopkins, MN 55343

53. Mr. John D. Pafenberg
HQ USAF/ING - Pentagon, Room 4A882
Washington, DC 20330

TFW/DO
APO NY 01923

55. HQ TAC/DOOF
Langley AFB, VA 23665

56. HQ TAC/XP
Langley AFB, VA 23665

57. USAF TFWC/SA
Nellis AFB, NV 89191

58. 57 FWW/DO
Nellis AFB, NV 89191

59. 12 AF/DO
Bergstrom AFB, TX 78743

60. 9 AF/DO
Shaw AFB, SC 29152

61. CINCUSAFE/DO
Ramstein AFB
APO E9012

62. CINCUSAFE/DOOF
Ramstein AFB
APO E9012

63. CINCUSAFE/DOOT
Ramstein AFB
APO E9012

64. CINCUSAFE/DOST
Ramstein AFB
APO E9012

65. USAF Maj. Gen. Kelly
TFWC/CC
Nellis AFB, NV 89191
66. 66 PWC/CC
Nellis AFB, NV 89191

67. Thomas P. Christie
DAED (Tactical Air Program)
PA&E
Room 2E330
Pentagon
Washington, DC 20331

68. Maj. Davies (ASD/YXA)
USAF/Aeronautical Systems Division
A-10 System Program Office
Directorate of Armament
Wright-Patterson AFB, OH 45433

69. Battelle
Columbus Laboratories
Tactical Technology Center
Room 13-4127
Attention: Mr. J. Tuck Brown
505 King Avenue
Columbus, OH 43201

70. HQ USAF
DSC/RDF
Pentagon - 4D283
Washington, DC 20330

71. Lt. Gen. (USA Ret) H.R. Aaron
7722 Kalaroma Road
Annandale, VA 22003

72. Maj. Robert K. Redlin
Commandant of the Marine Corps
Code R&P
Headquarters, U.S. Marine Corps
Washington, DC 20380

73. Lt. Gen P.X. Kelly, USMC
Deputy Chief of Staff,
Requirements & Programs
Headquarters U.S. Marine Corps
Washington, DC 20380

74. Lt. Col. G. W. Keiser (Code RP)
U.S. Marine Corps
Requirements & Programs
Washington, DC 20380
<table>
<thead>
<tr>
<th></th>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>Mr. John F. Blake</td>
<td>9312 Crown Place, Alexandria, VA 22308</td>
</tr>
<tr>
<td>76</td>
<td>Mr. Richard Eppard</td>
<td>Central Intelligence Agency Office of Logistics, Washington, DC 20505</td>
</tr>
<tr>
<td>77</td>
<td>Mr. Rudolf A. Endors</td>
<td>101#1 Colebrook Avenue, Potomac, MD 20854</td>
</tr>
<tr>
<td>78</td>
<td>Maj. Gen. Thomas P. Lynch</td>
<td>Commanding General, U.S. Army Armor Center, Fort Knox, KY 40121</td>
</tr>
<tr>
<td>79</td>
<td>Lt. Col. John H. Ridge</td>
<td>U.S. Army Armor Center, Fort Knox, KY 40121</td>
</tr>
<tr>
<td>81</td>
<td>HQ TAC/CC</td>
<td>Langley AFB, VA 23665</td>
</tr>
<tr>
<td>82</td>
<td>Library, Code 0212</td>
<td>Naval Postgraduate School, Monterey, CA 93940</td>
</tr>
<tr>
<td>83</td>
<td>Dept. Chairman</td>
<td>Dept. of National Security Affairs, Naval Postgraduate School, Monterey, CA 93940</td>
</tr>
<tr>
<td>84</td>
<td>Professor R.H.S. Stolfi</td>
<td>Dept. of National Security Affairs, Naval Postgraduate School, Monterey, CA 93940</td>
</tr>
<tr>
<td>85</td>
<td>AFIT/CIP (Library)</td>
<td>Wright-Patterson AFB, OH 45433</td>
</tr>
<tr>
<td>86</td>
<td>AFIS/INH</td>
<td>Ft. Belvoir, VA 22662</td>
</tr>
<tr>
<td></td>
<td>Name</td>
<td>Address</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>87</td>
<td>Brig. Gen. Reed</td>
<td>355 TFW/CC Davis Monthan AFB, AZ 85707</td>
</tr>
<tr>
<td>88</td>
<td>Col. Wayne E. Davis</td>
<td>1411 Gemini Circle Moody AFB Valdosta, CA 31601</td>
</tr>
<tr>
<td>89</td>
<td>Brig. Gen. W.S. Harpe</td>
<td>14 TFW Columbus, MS 39701</td>
</tr>
<tr>
<td>90</td>
<td>354 TFW/DCM</td>
<td>Myrtle Beach AFB, SC 29577</td>
</tr>
<tr>
<td>91</td>
<td>TAC/DR</td>
<td>Langley AFB, VA 23665</td>
</tr>
<tr>
<td>92</td>
<td>CIA/HQ</td>
<td>Washington, DC 20505</td>
</tr>
<tr>
<td>93</td>
<td>General Elwood Quesada (Retd.)</td>
<td>L'Enfanc Plaza Washington, DC 20024</td>
</tr>
<tr>
<td>94</td>
<td>Mr. P.M. Sprey</td>
<td>Box 264, R.D. 1 Glenn Dale, MD 20769</td>
</tr>
<tr>
<td>95</td>
<td>Mr. Mike Mecca</td>
<td>Fairchild Industries Germantown, MD 20767</td>
</tr>
<tr>
<td>96</td>
<td>Industrial College of the Armed Forces Library</td>
<td>Ft. Lesley J. McNair Washington, DC 20319</td>
</tr>
<tr>
<td>97</td>
<td>Mr. Bernard Kornhauser</td>
<td>System Planning Corp. 1500 Wilson Blvd. Suite 1500 Arlington, VA 22209</td>
</tr>
<tr>
<td>98</td>
<td>Maj. Gerald H. Felix, USAF</td>
<td>112 TFG Greater Pittsburgh Airport Pennsylvania Air Guard Pittsburgh, PA 15180</td>
</tr>
<tr>
<td>Number</td>
<td>Location</td>
<td>Details</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>---</td>
</tr>
</tbody>
</table>
| 99. | USMCDEC | Firepower Division
Air Branch/Code DP92
Attention: Ms. Kearns
Quantico, VA 22134 |
| 100. | USAF TAWC | Eglin AFB, FL 32542 |
| 101. | Headquarters U.S. Marine Corps | Chief of Staff
Arlington Annex
Room 2010
Columbia Pike & Arlington Ridge Road
Arlington, VA 20370 |
| 102. | USAF Air University Library | Maxwell AFB, AL 36112 |
| 103. | CMDP, Naval Weapons Center | Attention: Mr. Bates
China Lake, CA 93555 |
| 104. | Col. Robert M. Gomez/DRXSR | Deputy Director/Commanding Officer
Ballistic Research Laboratory
Building 328
Aberdeen Proving Ground, MD 21005 |
| 105. | GE, Armament Systems Dept. | Director
Lakeside Ave.
Burlington, VT 05401 |
| 106. | HQ TAC/DO | Langley AFB, VA 23665 |
| 107. | 354 TFW/CC | Myrtle Beach AFB, SC 29577 |
| 108. | 23 TFW/CC | England AFB, LA 71301 |
Myrtle Beach AFB, SC 29577 |
| 110. | USAC 4SEC | Ft. Leavenworth, KS 66227 |
111. 355 TFW/DOW
Davis Monthan AFB, AZ 85707

112. 355 TFW/DO(A-7)
Davis Monthan AFB, AZ 85707

113. 355 TFW/DO(A-10)
Davis Monthan AFB, AZ 85707

114. 333 TFTS/CC
Davis Monthan AFB, AZ 85707

115. 333 TFTS/DO
Davis Monthan AFB, AZ 85707

116. CLAC 4444 OPS SQ (ISD)
Davis Monthan AFB, AZ 85707

117. 355 TTS/CC
Davis Monthan AFB, AZ 85707

118. Herrn Dr. Stahl
Bundesarchiv-Militärarchiv
78 Freiburg im Breisgau
Wiesental 10
West Germany

119. Mr. Richard E. Tuck
U.S. General Accounting Office
441 C Street, N.W.
Washington, DC 20548

120. Col. Paul N. Chase
HC USAF
AF/SAGP
Pentagon - ID373
Washington, DC 20330

121. Mr. Peter McDavitt
Honeywell
600 Second Street, N.E.
Hopkins, MN 55343

122. Col. Carl Case
Fighter Division
Air Force Studies & Analysis
Pentagon - ID380B
Washington, DC 20330
<table>
<thead>
<tr>
<th></th>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>Lt. Col. John L. Welde</td>
<td>354 TFW/DO MB AFB, SC 29577</td>
</tr>
<tr>
<td>124</td>
<td>Dr. Dieter H. Schwebs</td>
<td>U.S. General Accounting Office 441 C Street, N.W. Room 6478 Washington, DC 20548</td>
</tr>
<tr>
<td>125</td>
<td>Col. Michael L. Wardinski</td>
<td>HQ Department of the Army DAMI-RT Pentagon - BF722 Washington, DC 20310</td>
</tr>
<tr>
<td>126</td>
<td>Mr. John Sloan</td>
<td>HQ Department of the Army DAMI-RT Pentagon - BF722 Washington, DC 20310</td>
</tr>
<tr>
<td>127</td>
<td>Mr. W.R. Beuch</td>
<td>HQ Department of the Army DAMI-RT Pentagon - BF722 Washington, DC 20310</td>
</tr>
<tr>
<td>128</td>
<td>FMC Corporation</td>
<td>1105 Coleman Avenue Box 1281 Attention: Mr. Don Loughlin, MD510 San Jose, CA 95108</td>
</tr>
<tr>
<td>130</td>
<td>Edward Fuge (Major, Retired, USAF)</td>
<td>Department of Political Science University of New Mexico Albuquerque, New Mexico 87131</td>
</tr>
<tr>
<td>131</td>
<td>Mr. Arthur G. Hanley</td>
<td>Central Intelligence Agency Procurement Management Staff Washington, DC 20525</td>
</tr>
<tr>
<td>132</td>
<td>52 TFW/CC</td>
<td>APO NY 09109</td>
</tr>
</tbody>
</table>
133. 50 TFW/DO
 APO NY 09109

134. 50 TFW/DO
 496 TFS
 Attention: Maj. Ratley
 APO NY 09109

135. Energy Efficiency System
 Attention: Mr. Verdi
 187 W. Orangethorpe Road
 Suite P
 Placentia, CA 92670

136. Col. Richard C. Head
 Council on Foreign Relations
 The Harold Pratt House
 58 East 68 Street
 New York, NY 10021

137. General Hermann Balck
 7144 Asperg
 Egerstr. 23
 Federal Republic of Germany

138. Col. Faybanic
 AWC/DAUM
 Maxwell AFB, AL 36112

139. Mr. Cobleigh
 Hughes Aircraft
 Canoga Park, CA 91304

140. Boeing
 Attention: Mr. Bud Nelson
 P.O. Box 3999, M/S 40-30
 Seattle, WA 98124

141. IDA
 Attention: Dr. Whittemore
 400 Army Navy Drive
 Arlington, VA 22202

143. Lt. Gen. Mahlke
 2350 Heikendorf
 Steenkamp E
 Federal Republic of Germany
<table>
<thead>
<tr>
<th>Number</th>
<th>Address</th>
</tr>
</thead>
</table>
| 144. | HQ USAF
Attention: Lt. Gen. John Pustay
Office of Chief of Staff
Pentagon
Washington, DC 20330 |
| 145. | Studiengruppe Luftwaffe
Suchrunga Akademie der Bundeswehr
2000 Hamburg 55
Manteuffelstr. 20
Federal Republic of Germany |
| 146. | Gen. Wilke
31 Alle
Schlepegrellstr. 30
Federal Republic of Germany |
| 147. | General F.W. von Mellenthin
Box 67759
Bryanston 2021
Johannesburg
Republic of South Africa |
| 148. | Herrn Brigadegeneral a.D. Paul-Werner Hozzel
Salierster. 4
D7500 Karlsruhe
Federal Republic of Germany |
| 149. | 91 TFS/CC/Dow
APO 09425
New York, New York 09012 |
| 150. | 78 TFS/CC/Dow
APO 09405
New York, New York 09012 |
| 151. | 92 TFS/CC/Dow
APO 09755
New York, New York 09012 |
| 152. | Military Attache
U.S. Embassy (Rome, Italy)
APO 98794
New York, New York 09012 |
| 153. | Military Attache
U.S. Embassy (Bonn, Federal Republic of Germany)
APO 09980
New York, New York 09012 |
154. Military Attache
U.S. Embassy (Saudi, Arabia)
APO 9697
New York, New York 10012

155. Military Attache
U.S. Embassy
Attention: Air Attache
New Delhi, India

156. Military Attache
U.S. Embassy
Attention: Maj. McBaron
Canberra, Australia

157. AFIS/INC
Attention: Col. Kuiper
Building 520
Bolling AFB, DC 20332

158. Mr. William Jenisch
Aerojet Ordnance Manufacturing Company
9336 East Hall Road
Downey, CA 90241

159. USAFE/DOOW
Attention: Maj. Lindsey
APO New York, New York 10012

160. Mr. James Simon
Central Intelligence Agency
Washington, DC 20505

161. Mr. David Keener
Central Intelligence Agency
Washington, DC 20505

162. Mr. Aris Pappas
Central Intelligence Agency
Washington, DC 20505

163. Mr. Andrew Hamilton
Congressional Budget Office/NSIA
4th Floor HOB, Annex 02
U.S. Congress
Washington, DC 20515

164. Mr. Pat Hillier
Congressional Budget Office/NSIA
4th Floor HOB, Annex 02
U.S. Congress
<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>165.</td>
<td>Dr. Dov Zakheim</td>
<td>Congressional Budget Office/NSIA, 4th Floor HOB, Annex #2, Washington, DC 20515</td>
</tr>
<tr>
<td>166.</td>
<td>Mr. John Hamre</td>
<td>Congressional Budget Office/NSIA, 4th Floor HOB, Annex #2, U.S. Congress, Annex #2, Washington, DC 20515</td>
</tr>
<tr>
<td>167.</td>
<td>Ms. Grace P. Hayes</td>
<td>T.K. Dupuy Associates, Inc., P.O. Box 157, Dunn Loring, VA 22027</td>
</tr>
<tr>
<td>168.</td>
<td>Mr. C. Curtiss Johnson</td>
<td>T.N. Dupuy Associates, Inc., P.C. Box 157, Dunn Loring, VA 22027</td>
</tr>
<tr>
<td>169.</td>
<td>Ms. Lucille Patterson</td>
<td>T.N. Dupuy Associates, Inc., P.O. Box 157, Dunn Loring, VA 22027</td>
</tr>
<tr>
<td>170.</td>
<td>Col. A.J. Kettering</td>
<td>OED/OSD/DR&E, Pentagon, Washington, DC 20301</td>
</tr>
<tr>
<td>171.</td>
<td>Mr. Robert S. Dotson</td>
<td>Senate Armed Services Committee, 212 Russell Senate Office Building, Washington, DC 20510</td>
</tr>
<tr>
<td>172.</td>
<td>Mr. Steven Canby</td>
<td>10871 Springknoll Drive, Potomac, MD 20854</td>
</tr>
<tr>
<td>173.</td>
<td>Director</td>
<td>U.S. Army Aberdeen Research & Development Center, Army Materiel Systems Analysis Activity/DRXSY, Aberdeen Proving Ground, MD 21005</td>
</tr>
<tr>
<td>174.</td>
<td>Mr. Michael W. Iten/DRXSY-C</td>
<td>U.S. Army Materiel Systems Analysis Activity, Aberdeen Proving Ground, MD 21005</td>
</tr>
</tbody>
</table>
175. Mr. G.A. Zoller
U.S. Army Materiel Systems Analysis Activity/DRXSY
Aberdeen Proving Ground, MD 21005

176. Maj. J.F. Balda
U.S. Army Materiel Systems Analysis Activity/DRXSY
Aberdeen Proving Ground, MD 21005

177. Mr. Arif R. Zaky
U.S. Army Materiel Systems Analysis Activity/DRXSY
Aberdeen Proving Ground, MD 21005

178. Mr. Arthur W. Garrett
U.S. Army Materiel Systems Analysis Activity/DRXSY
Aberdeen Proving Ground, MD 21005

179. Mr. T.A. Romanko
U.S. Army Materiel Systems Analysis Activity/DRXSY
Aberdeen Proving Ground, MD 21005

180. Mr. Stanley Eibertz
U.S. General Accounting Office
441 C Street, N.W.
Washington, DC 20548

181. Mr. Fredic S. Feer
Analytical Assessments Corporation
P.O. Box 9162
Arlington, VA 22209

182. Mr. Dan Costello
OMB
New Executive Office Building
R1026
Washington, DC 20503

183. Mr. Gordon P. Lynch
Boeing Aerospace Company
Box 3999 - M/S 47-63
Seattle, WA 98124

184. Lt. Col. George W. Burkley
1875 Temple Hills Drive
Laguna Beach, CA 92651

185. Mr. Gerald Mayefskie
Quest Research Corporation
6845 Elm Street
McLean, VA 22101
186. Dr. John E. Tashjean
 BDM
 7915 Jones Branch Drive
 McLean, VA 22101

187. Mr. David A. Brinkman
 U.S. General Accounting Office
 441 C Street, N.W. - Room 6478
 Washington, DC 20548

188. Mr. Wayne H. Coloney
 P.O. Box 5258
 Tallahassee, FL 32301

 Wayne H. Coloney Company
 P.O. Box 5258
 Tallahassee, FL 32301

190. Mr. Richard W. Oates
 General Electric
 Lakeside Avenue
 Burlington, VT 05401

191. Lt. Col. James Cord
 Command and Staff College
 Marine Corps Development & Education Command
 Quantico, VA 22314

 Deputy Chief of Staff, R&D and Studies
 USMC
 Arlington Annex
 Washington, DC 20380

193. Mr. Jim Erickson
 Grumman Aerospace
 BOS-05
 Bethpage, NY 11714
194. Professor Andrew Cyorgy
Sino-Soviet Institute
George Washington University
2029 G Street, N.W.
Washington, DC 20052

195. Mr. Charles Bernard
Director, Land Warfare
OSD/OUSDRE
Pentagon
Washington, DC 20301

196. 162 TFG/FWS
P.O. Box 11037
Tucson, AZ 85734
Attention: Lt. Col. O'Donnell

197. Mr. P. Nichols
Ayres Corp.
P.O. Box 3090
Albany, GA 31706

198. Herrn Brigadegeneral a.D. Loytved-Hardegg
41 Odenbergerstr.
5800 Nurnberg
Federal Republic of Germany

199. Herrn Oberst a.D. Poetter
21-2 Alter Remise
8941 Kronburg
Federal Republic of Germany

200. Dr. Richard Staar
Dir. International Studies Pgms.
Hoover Institute
Stanford, CA 94305

201. Armament Systems, Inc.
712-F N. Valley St.
Anaheim, CA 92801
Attention: Mr. Tom Gilbert

202. Defense Technical Information Center (DTIC)
Cameron Station
Alexandria, VA 22314

203. Dean of Research
Naval Postgraduate School
Monterey, CA 93940