FOREIGN TECHNOLOGY DIVISION

INVESTIGATION OF DETERIORATION OF DRILLS
WITH TREATMENT OF STEEL EI654

by

L. Sh. Shuster

Approved for public release; distribution unlimited.

JUN 25 1980
INVESTIGATION OF DETERIORATION OF DRILLS WITH TREATMENT OF STEEL EI654

By L. Sh./Shuster

Country of origin: USSR

Translated by: Martin J. Folan

Requester: FTD/TQTA

Approved for public release; distribution unlimited.

THIS TRANSLATION IS A RENDITION OF THE ORIGINAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR EDITORIAL COMMENT. STATEMENTS OR THEORIES ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE AND DO NOT NECESSARILY REFLECT THE POSITION OR OPINION OF THE FOREIGN TECHNOLOGY DIVISION.

PREPARED BY:

TRANSLATION DIVISION
FOREIGN TECHNOLOGY DIVISION
WP.AFB. OHIO.

FTD ID(RS)T-0753-80

Date 19 May 80

141600
U. S. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION SYSTEM

<table>
<thead>
<tr>
<th>Block</th>
<th>Italic</th>
<th>Transliteration</th>
<th>Block</th>
<th>Italic</th>
<th>Transliteration</th>
</tr>
</thead>
<tbody>
<tr>
<td>A a</td>
<td>A a</td>
<td>A, a</td>
<td>P p</td>
<td>P p</td>
<td>R, r</td>
</tr>
<tr>
<td>Б б</td>
<td>Б б</td>
<td>B, b</td>
<td>С с</td>
<td>С с</td>
<td>S, s</td>
</tr>
<tr>
<td>В в</td>
<td>В в</td>
<td>V, v</td>
<td>Т т</td>
<td>Т т</td>
<td>T, t</td>
</tr>
<tr>
<td>Г г</td>
<td>Г г</td>
<td>G, g</td>
<td>У у</td>
<td>У у</td>
<td>U, u</td>
</tr>
<tr>
<td>Д д</td>
<td>Д д</td>
<td>D, d</td>
<td>Ф ф</td>
<td>Ф ф</td>
<td>F, f</td>
</tr>
<tr>
<td>Е е</td>
<td>Ye, ye;</td>
<td>E, e*</td>
<td>K x</td>
<td>K x</td>
<td>Kh, kh</td>
</tr>
<tr>
<td>Ж ж</td>
<td>Zh, zh</td>
<td>Ц ц</td>
<td>Ч ч</td>
<td>Ч ч</td>
<td>Ch, ch</td>
</tr>
<tr>
<td>З з</td>
<td>Z, z</td>
<td>Ш ш</td>
<td>Ш ш</td>
<td>Ш ш</td>
<td>Sh, sh</td>
</tr>
<tr>
<td>И и</td>
<td>I, i</td>
<td>Ъ ъ</td>
<td>Шч, Shch, shch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Й й</td>
<td>Я я</td>
<td>Я, я</td>
<td>Ть ть</td>
<td></td>
<td></td>
</tr>
<tr>
<td>К к</td>
<td>K, k</td>
<td>Қ қ</td>
<td>Н н</td>
<td>Н н</td>
<td>N, n</td>
</tr>
<tr>
<td>Л л</td>
<td>L, l</td>
<td>Л л</td>
<td>О о</td>
<td>O, o</td>
<td>Yu, y</td>
</tr>
<tr>
<td>М м</td>
<td>М, m</td>
<td>М, m</td>
<td>Ш, sh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Н н</td>
<td>Н н</td>
<td>Н, н</td>
<td>Ш, sh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ч ч</td>
<td>Ч ч</td>
<td>Ч, ч</td>
<td>Ч, ch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ц ц</td>
<td>Ц ц</td>
<td>Ц, ц</td>
<td>Ч, ch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ш ш</td>
<td>Ш ш</td>
<td>Ш, ш</td>
<td>Ш, sh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Э э</td>
<td>Э э</td>
<td>Э, э</td>
<td>Э, e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Я я</td>
<td>Я я</td>
<td>Я, я</td>
<td>Я, ya</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Ye initially, after vowels, and after Ь, Ъ; қ elsewhere. When written as қ in Russian, transliterate as ye or қ.

RUSSIAN AND ENGLISH TRIGONOMETRIC FUNCTIONS

<table>
<thead>
<tr>
<th>Russian</th>
<th>English</th>
<th>Russian</th>
<th>English</th>
<th>Russian</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>sin</td>
<td>sin</td>
<td>sh</td>
<td>sinh</td>
<td>arc sh</td>
<td>sinh</td>
</tr>
<tr>
<td>cos</td>
<td>cos</td>
<td>ch</td>
<td>cosh</td>
<td>arc ch</td>
<td>cosh</td>
</tr>
<tr>
<td>tg</td>
<td>tan</td>
<td>th</td>
<td>tanh</td>
<td>arc th</td>
<td>tanh</td>
</tr>
<tr>
<td>cctg</td>
<td>cot</td>
<td>cth</td>
<td>coth</td>
<td>arc cth</td>
<td>coth</td>
</tr>
<tr>
<td>sec</td>
<td>sec</td>
<td>sch</td>
<td>sech</td>
<td>arc sch</td>
<td>sech</td>
</tr>
<tr>
<td>cosec</td>
<td>csc</td>
<td>csch</td>
<td>csch</td>
<td>arc csch</td>
<td>csch</td>
</tr>
</tbody>
</table>

Russian	English
rot | curl
lg | log
The present work was conducted with the purpose of establishing optimal modes of cutting in the treatment of heat-resistant and acid-resistant steel EI654 with drills made of fast-cutting steel R18 (GOST 888-60). Here, we used shortened drills with a diameter of 15 mm, possessing increased resistance to vibration ($f<8\mathrm{mHz}$).

Strength tests were accomplished on the machine tool model 2A135 with the following modes of cutting: $s=0.10; 0.17; 0.28\ \text{mm/turn}$ and $v=4.6; 6.6; 9.2; 12.8$ and $18.5\ \text{mm/min}$ (cooling of drills was not done). We machined blind passages in billets fastened on the table of the machine with the aid of vices.

For measuring the value of deterioration along the rear surface of the drill, we used the MIR-1 microscope with micrometric adapter AM9 fastened in a special attachment. Here, we fixed width h_3 of the streak of wear at a distance of 0.2 mm from the periphery of the cutting edge of the drill. Upon achieving h_3 value of 0.3 mm, the test was discontinued and the drill was resharpened on the sharpening tool model 3659A.

Temperature investigations were done by the method of natural thermocouple.

In this work, the deterioration of drills was estimated by the period of resistance T min, the total length L mm of the drilled hole and by the average relative wear

$$h_e = \frac{h_4}{T},$$

(1)
where \(l \) - length of the cutting path;

\(h_3 \) - width of the streak along the rear surface of the drill, corresponding to length \(l \).

Observations of wear of drills showed that it occurs basically along the rear surface, in which regard its value grows from the center to the periphery of the drill, and graphs \(h_3 = f(l) \) have a classic character: with the period of running in and with the zones of normal and catastrophic deteriorations.

Usually, [1] the period of resistance of the drill \(T \) is the initial value with determination of the speed of cutting from expression

\[
v = \frac{C}{h_3},
\]

(2)

acquired on the basis of test data. As we can see from Figure 1, with drilling of steel EI654 dependence \(T-v \) is nonmonotonous and to write it with one formula like the type in (2) is impossible. Moreover, indicator \(m \) of the relative resistance depends, also, on value of feed \(s \). All of this makes more difficult the acquisition and practical use of expression (2) in cutting of steel EI654.

Moreover, as was shown in works [2,3], the resistance period \(T \) cannot serve as the indicator of expediency of a selected cutting mode. Actually, the number of parts treated with a drill before becoming blunt depends on the intensity of its wear (value \(h_0 \)) and is determined by the total length \(L \) of the drilled hole (with an assigned diameter of the drill).

The dependences \(h_0 = f(v) \) presented in Figure 2 for various feeds have identical extremal character from the point of minimum at optimal speeds of cutting \(v_0 \) [2] and equal optimal temperature of cutting \(\theta_0 \approx 500^\circ C \). At cutting temperatures less than \(\theta_0 \), the adhesion wear of drills [3] is predominant, which for fast-cutting tools is changed little in connection with the change in cutting temperature [4]. Therefore, the left branch of curves \(h_0 = f(v) \) is extremely flattened. At cutting temperatures greater than \(\theta_0 \), diffusion wear of drills [3] is predominant, which for fast-cutting tools begins to appear at 500-550\(^\circ C\) and intensifies with its increase in view of the fact that the speed of diffusion is connected with the temperature of exponential dependence [4]. Therefore, we can say that the right part of curves \(h_0 = f(v) \) reflect, by their nature, the influence of cutting temperature.
A comparison of speeds \(v_0 \) with the economic* \(v_3 \) showed that they practically coincide according to value (the difference is no more than 5%). Thus, with treatment of steel EI654 with drills made of R18, is it most rational to designate the speeds of cutting equal to \(v_0 \), since here, during the period of resistance of a drill, we can treat the largest number of parts with with lowest expenditures. From Figure 2 it is apparent that the optimal speeds of cutting \(v_0 \) which correspond to an increase in \(s \) decrease (but the temperature of cutting \(v_0 \) remains practically identical by value). A change in speed \(v_0 \) is such that the technological productivity, equal to
\[
\Pi = 10v_n \cdot s \cdot \text{cm},
\]
increases with an increase in feed (Figure 3). This stimulates, with drilling, the designation of possible feeds and optimal speeds of cutting which correspond to them.

Here, as follows from Figure 3, before feed of 0.17 mm/turn, not only the cutting productivity increases, but the total length \(L_0 \) of the drilled hole increases, and, consequently, consumption of the durtting tool decreases. In feeds greater than 0.17 mm/turn, we observe in drills with a diameter of 15 mm strong adhesion of shavings to the drill, which hampers shaving-removal and leads to intensification of wear of the drill and a decrease in length of treatment \(L_0 \).

Therefore, drilling of steel EI654 with the use of a drill with a diameter of 15 mm must be done on feeds of about 0.17 mm/turn and at cutting speeds \(v_0 \), determined from expression
\[
v_0 = \frac{4}{\pi d} \text{ m/min}
\]

CONCLUSIONS
1. The earlier-established invariability of optimal temperature of cutting relative to feeds and speeds of cutting with sharpening, boring and milling of construction materials [2] found support, also, with treatment of steel with drills made of fast-cutting steel R18. This substantially expands the capabilities of use of temperature investigations for determining optimal conditions of cutting with

*We call economic a speed of cutting which ensures, with treatment of conditional parts, the lowest value of changing fraction of cost.
2. With determination of the speed of drilling, we must begin not with the resistance dependence (2), but from expression (4), which preliminarily designates the maximum possible feed. Here, during the period of resistance of the drill, we will treat the maximum number of parts with the lowest costs.

3. With treatment of steel EI654 with fast-cutting drills of R18 with a diameter of 15 mm, it is most rational to designate feeds about 0.17 mm/turn.

BIBLIOGRAPHY

1. Справочник нормировщика машиностроения. М., Машизд, 1961, т. 2.
4. Лоядзе Т. Н. Износ режущего инструмента. М., Машизд, 1958.
Figure 1. Dependence of period of resistance on speed of cutting and feed: 1) S=0.1 mm/turn; 2) S=0.17 mm/turn; 3) S=0.28 mm/turn.

Figure 2. Influence of speed of cutting and feed on average relative wear of drills and temperature of cutting: 1) s=0.1 mm/turn; 2) s=0.17 mm/turn; 3) s=0.28 mm/turn.
Figure 3. Technological productivity and total length of drilling depending on the feed with work at optimal speeds of cutting.