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Optimal Exit Probabilities and Differential Games
by
Wendell H. Fleming and Chun-Ping Tsai
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~
Abstract: The problem is to control the drift of a Markov diffusion

process in such a way that the probability that the process exits
from a given region D during a given finite time interval is
minimum. An asymptotic formula for the minimum exit probability
when the process is nearly deterministic is given. This formula
involves the lower value of an associated differential game. It is
related to a result of Ventsel and Freidlin for nearly deterministic,

uncontrolled diffusions.
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OPTIMAL EXIT PROBABILITIES AND DIFFERENTIAL GAMES

Wendell H. Fleming and Chun-Ping Tsai

1. Introduction. Let & be an n-dimensional stochastic process

with continuous sample paths, defined for times t > 0. Let D
be a given bounded open subset of n-dimensional E'.  If £ (0) € D,
the exit time is the first time 1t such that £ (t) € 3D. For
fixed T > 0 the exit probability is P(t < T).

In this paper, we suppose that & 1is a controlled process,

which obeys the stochastic differential equation

(1.1) dE = b[E(t),y(t)]dt + €/ %aw,

where y(t) is a control applied at time t, € > 0 a parameter,
and w(t) an n-dimensional brownian motion. We assume that
y(t) € Y, where Y ¢ E" is a given compact set. Moreover, the

control processes Yy admitted in (1.1) have the feedback form

y (t) = y(t,8(t))

where y 1is any Borel measurable function from [0,T] x "
into Y. As initial data we have §&(0) = x, for given vector
x € D. For general background on these concepts see [FR1l, Chap. VI].

Let us denote the exit probability by t;, to indicate

dependence on the feedback control law y and on €. Let

€
y

q, = P(T; < T). We 'seek a control law which minimizes the exit

adeamlicn. e, i




cqs € . . . - . s
probability qx. From the point of view of applications, this is
a reasonable criterion of performance of the control system, if D
is considered as a region of states in which the system operates in

an "acceptable" way. The minimum exit probability is denoted by

(1.2) qe = m;n q;.
In §2 we shall replace the initial time 0 by any initial time s,
0 < s <T. Then qe = qe(s,x) is a function of the initial time
s and initial state x = §(s). The function qe satisfies the
dynamic programming equation with suitable boundary conditions
(see (2.4), (2.5) below). In special cases, this boundary value
g problem was solved numerically by Dorato and Van Melaert [DVM]. -1
However, it is generally difficult to get effective information

about qe and the optimal control law in this way. Instead, we

R

seek an asymptotic formula for qe valid for small €. Our main

results (Theorems 4.1 and 4.2) assert that

(1.3) -1lim € log qe = I,
e+>0

where I is the lower value of a certain differential game. The

proofs involve some technical complications. However, two

R

different heuristic arguments can be given to suggest the validity
of (1.3). Onedof these is as follows (a second heuristic

derivation of (1.3) based on the dynamic programming equation for

. g

qe is given in §2.) Given a feedback control y the drift co-

efficient in- the stochastic differential equation (1.1) is

i
F
4
%
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(1.4) bZ(t.E) = b(g,y(t,8)).

If bZ is Lipschitz, then the Ventcel-Freidlin estimates
[Fr 2, Chap. 14] imply

(1.5) “lim ¢ log q; - 1,
(1.6) I. = min & [le (t,9(t)) - é(t)|2dt
L ¢eF2lg L’ ’

and where ¥ 1is the class of all ¢ € Cl([O,T];En) such that
$(0) = x and ¢(®) € 3D for some O € [0,T]. A stochastic

control proof of (1.6) is given in [F4, §7]. If we set
(1.7) 6(t) = z(t), 0<st<T,

then we can regard 2z(t) as a new control associated with the

minimum problem (1.6). Intuitively, minimizing q;

in the 1limit as € » 0 to choosing y to maximize I_. This

leads us to consider a differential game, described formally as

follows. Let

(1.8) L(x,y,z) = % Ib(x,y) - z| 2.

In (1.6) we may replace the upper limit T by the first time ©
such that ¢(8) € 3D, and take ¢(t) = by(t,6(t)) for t > e.
The integral in (1.6) is then

corresponds
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(1.9) [oL(¢(t),y(t).z(t))dt.

where y(t) = y(t,¢(t)) 1is chosen by the original controller

and z(t) 1is chosen by a new second controller who knows y. The

second controller then knows y(t) as well as ¢(t). 7
In the formal description of the differential game, ¢ (t) is 1

the state of the game at time t, with initial data ¢(0) = x,

x € D. The game dynamics are (1.7), subject to the restriction
that ¢(t) must reach 93D at some time 6 € (0,T]. The original
controller seeks to maximize the payoff (1.9), and the second
controller seeks to minimize (1.9). Note that y(t) appears

in (1.9) but not in (1.7). Thus the role of the maximizing
controller is a passive one. The term "lower value" refers to

the advantage in information which the minimizing controller has
(see [Fr 1]).

The intuitive description above does not suffice to define
rigorously a differential game with lower value I. In the
rigorous treatment we shall obtain I as the 1limit of values of
corresponding discrete-time games, following the method of ([F1].
We have been unable to obtain the limit in (1.3) directly from
the Ventcel-Freidlin estimates (1.5). The restriction by
Lipschitz under which (1.5) is derived is too restrictive for
the problem of optimal exit probability; and there is no guarantee
of uniformity with respect to y of the limit in (1.5).

The outline of the paper is as follows. In §2 we introduce
the function 1% = -¢ log qe. Note that (1.3) asserts that

1+ 1 as ¢+ 0. This logarithmic transformation changes the
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dynamic programming equation for qe into the nonlinear parabolic
partial differential equation (2.7) for 1. As €+ 0, this
equation degenerates into a first-order equation, which is just
the Isaacs equation for the lower value 1° of the differential
game described intuitively above. The function Ie(s,x) tends

to +° as s + T, We introduce a penalty function method, in

which 1% is replaced by a solution 1 of (2.7) with terminal

€
M
data Md¢(x) when s =T. As M+ o, Iﬁ increases to Ie. In

§2 we give a priori estimates for Ie, based on standard estimates
for brownian motion and on the maximum principle for parabolic
equations.

In §3 we introduce penalized differential games, by a
discretization procedure similar to [Fl], [F2]. For technical
reasons, we impose a bound |z| < ¢ for the second controller.

It turns out that for sufficiently large ¢ > c(M), I; is the
lower value of the penalized stochastic differential game. As

€+ 0, I; > IM where IM is the lower value of the corresponding
penalized deterministic differential game.

As M+ =, IM increases to a limit I. In §4 we show that
1+ 1 as €=+ 0, and identify I as the lower value of the

differential game described formally above.

2. Preliminary Results. We make the following assumptions

throughout the paper. D is a bounded, open subset of En, with
boundary 9D a manifold of class C3. The control space Y is
a compact subset of E®. We consider times in the interval {o,T].

The vector function b in (1.1) is of class CI(En X Y;En).

oo e Ml A R




Moreover, for some constants Bl,B2

|b(x,y)| < By,

Ib(x,y) - b(x,y)]| < lex-fl.

1 and we stop the

This is actually no restriction since b is C
solution & to (1.1) when §&(t) 1leaves the bounded set D or

when t = T. The function L in (1.8) then satisfies
(2.1) |IL(x,y,2) - L(X,y,z)| < AQ1+|z])|x-X].
(2.2) c |z|2 - ¢, <L
* 1 2 - 7
for some constants A, ¢y > 0, Cye
Let % ©be the class of Borel measurable functions y from

[0,T] x E" into Y. For a feedback control law y € %, the

stochastic differential equations (1.1) take the form

(2.3) 4§ = b (t,6(t))dt + el/ 24y

with bZ as in (1.4). We consider (2.3) with initial data

E(s) = x, where 0 <s < T, x € D. (Later, we specialize by

taking s = 0.) This is a problem of completely observed controlled
diffusions [FR1, Chap. VI]. However, instead of the kind of
performance criterion considered in [FR1] we wish to minimize the

exit probability




q;B,ﬂ =PU;5 T),

with = the first time t > s such that &£ (t) € aD. Let

o™

Q = (OvT) X D» 6 = [O,T] x ﬁ’ 60 = 6 - {T} x 3D.

Given A c gn*l and 0 < B < 1 we say that a function q(s,x)

has finite g-norm on A if there exists a constant K such that
la(s,x) - q(s',x")| < K(|x-x'|B + |s-s1|B/2y

for all (s,x), (s',x') € A. We say that q € Cg’l(A) if q
and the gradient qQ, in the variables x = (xl,...,xn) have
= 1,...,n have

).
The minimum exit probability qe(s,x) belongs to Cé’Z(A)

finite g-norm on A. 1If q,9,,94> qxixj, i, g
finite g-norm on A, then we say that q € Cé’

for any compact A c 60 and g € (0,1). Moreover, in 60 the

following dynamic programming equation holds:

(z.4) 0 = qz t 3 b q ¢ még qi-b(x,y),
y

where A, is the Laplacean. See (FR1l, p. 161], also the Remark

below. The boundary data are

(2.5) qe(s,x) =1 for s <T, x € 3D; q (T,x) = 0, x €

Let

D.




(2.6) Ie(s,x) = - € log qe(s,x).

By elementary calculus 1° satisfies the nonlinear parabolic

partial differential equation

2.7) 0=1 +<na 1%

€
I * H(x,1.),

7
(S

(2.8) Hx,p) = - 3 [pl? + max p-b(x,y).
yeEY

Here p = (pl,...,pn) denotes a row vector.

From (2.5) the boundary data are

(2.9) 15(s,x) =0 for s < T, x € aD; I°(T,x) = +=, x € D.

The function L in (1.8) is strictly convex and quadratic
as a function of z. The function dual to L, in the sense of !

duality for concave and convex functions, is

(2.10) H(x,y,p) = min [L(x,y,z) + p-z], B
A M

;
where the min is over all z € E®, An easy calculation shows

that

H(x,y,p) = - % lplz + p'b(xo)')0
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and therefore by (2.8), (2.10)

(2.11) H(x,p) = max min [L(x,y,z) + p-z].

yEY z

Equation (2.7) then takes the form

(2.7') 0 = I; + % AxIE + max min [L(x,y,z) + Ii'z].
yeEY z

This is the dynamic programming equation associated with a

stochastic differential game. Similar equations were cecnsidered

in [F2]. When € = 0, (2.7') reduces to a first order partial

differential equation, which is the Isaacs equation for the non-
stochastic differential game described formally in §1. This
provides a second heuristic argument for considering this
differential game, in addition to the heuristic argument given
in 81. |

We shall approximate the infinite terminal condition
IE(T,x) = +o by a large, but finite, terminal condition as
follows.

Let ¢(x) be a function of class Cz(ﬁ) satisfying

(2.12) Y, dist(x,3D) < ¢(x) < deist(x,aD) for x €D

o(x) =0 for x¢ D,

where Yl’YZ are positive constants and dist(x,3D) is the

distance between a point x and the boundary 3D.
M>0 let

For each
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(2.13) qﬁ(s,x) = min E exp{-——————%-——

b4

where as before & satisfies (2.3) with initial data &(s) = x

€ . €
and T_ A T = min[7

Y L
controls y € 4. This is a stochastic control problem of the

,T]. The minimum is taken among all feedback

kind cunsidered in [FR1, Chap VI, §4,6]. According to results
given there, q; satisfies the dynamic programming equation (2.4).
The function q; belongs to Cg’l(ﬁ) n Cé’Z(A) for any compact
Ac 60 and B € (0,1). Moreover, q;(s,x) is also the minimum

of the expectation in (2.13), taken among nonanticipative

Y-valued control processes [FRl, pp. 162-163].

Remark. By estimates for parabolic equations, and the fact
that qﬁ is uniformly bounded, the partial derivatives

satisfy Holder conditions on any compact

€ € €
(qM) s? (qM)xi ’ (qM)xl j

X
subset of 60 which are uniform with respect to M for fixed

€ > 0. See [LSU], also [FR1l, Appendix E]. The boundary data are
q;(s,x) =1, for s < T, x € 3D, qﬁ(T,x) = exp[- Mﬁéﬁl]’ x € D.

Moreover, 0 < q§+1 < q; < 1. The limit q°(s,x) of q;(s,x) as

M > » is a solution of (2.4) belonging to Cé’Z(A) for any compact
Ac 60' Moreover, ae has the boundary data (2.5). A Verification
Theorem [FR1, p. 159] implies that ie = qe and that qe(s,x) is

the minimum exit probability. Actually, the proof of the

Verification Theorem in [FR1] must be modified slightly since
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qe is discontinuous at points (T,x), x € 3D. This causes no
difficulty, since the random variable & (T) 1is absolutely

. . . n
continuous with respect to Lebesgue measure in E . Hence

P(t® = T) < P(E(T) € 3D) = O.

Let

(2.14) Iu(s,x) = -€ log qy(s,x).

Since q; > qE, and q§ ¥ q8 as M > o

€

(2.15) Iy <15, Iy+I° as Mo,

2 m

Moreover, I; is a solution of (2.7) (or equivalently (2.7'))

with the boundary data

(2.9, I;(s,x) =0 for s < T, x € aD; I;(T,x) = Mé(x), x € D.

Let us now give some bounds for 1€ and Iﬁ. In these
lemmas we write Ie(s,x;T), I;(s,x;T) to emphasize dependence

on the final time T. Since H(x,p) does not depend on time, we have

(2.16)  1°(s,x;T)

1°00,x;T-5), Ig(s,x;T) = I4(0,x;T-s).

Lemma 2.1, Let T' < T, There exists U such that

Ie(s,x;T) <U for 0<s <T', x€ D, and for small €. The
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constant U depends on upper and lower bounds for T - T', but

not on €,

Proof. By (2.16) we may take s = 0 and impose the bounds

0 <kg¢Tg¢ K. Since |b] < By, (2.3) implies

ehm - xtaepy T s M2 m - Wl

where x1 is the first component of x etc. Since D is

bounded, there exists a constant a such that El(T) - x1 > a

implies i; < T. Hence

Pt Ay > (em) M2 (aeB ) < P(r; < T) = q; .

Since T‘l/zwl(T) has a standard normal distribution, we have

[Fel, p. 166]

1im A7 210g PV RA (M) > ) = - L
Ao

Hence, for small € we have for all Yy

(a+B,T)?
-€ log qX T -

By (1.2), 1 = -¢ log qE satisfies the same inequality. In

Lemma 2.1 let U = k'l(a+nlx)2.




Lemma 2.2. Let T'

M

M,dist(x,3D) for 0 <'s

0

-13-

< T. There exists a positive constant

0 (depending on T' but not on €) such that Ie(s,x;T) <

< T' and for small €,

Proof. By Lemma 2.1 it suffices to verify such an estimate

in a neighborhood of any

normal to 9D at x1

Xy € 9D. Let 2, be the exterior unit

; and let

D, = {x € D: dist(x,xl) < p}

where P is to be chosen later. By (2.7')

€
S

€ € €
I_ + 5 A I + max L(x,y,z,) + I_-z, > 0.
2 "x yEY ' 41 x “1 p

. * .
The maximum occurs at some Yy (s,x), measurable in (s,x)

[FR1, p. 199].
Choose any T" € (T'

process ¥ by

dy = 2q

Let 6% = min{T", exit ti

From Ito's formula

Ie(s,x;T) < E J

where y* = y*(t,p(t)).

,T). For s < T", x € D, define the

i ek

dt + El/zdw, v(s) = x.

Sl

me of Y(t) from D}.

€

L C(t),y*,zp)de + 15(8%,9(6%);T)
S - 3

9

Moreover, I®(T",x;T) < U by Lemma 2.1,
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and Ie(s,x;T) = 0 for x € 3D. Since L(x,y*,zl) is bounded

by some cC*

I%(s,x;T) < C*E(8%-s) + up(eSern),

P(O°=T") = P(8%-s>T-5) < (T"-s) "1E8%-s).

To prove Lemma 2.2 it then suffices to show that

(2.17) E(8%-s) < C dist(x,sD)

This is done as in Proving [F3, Lemma 4.2],

H

i
H for x € Di» 0 <s < T,
4

| as follows.

:
{
|

Let ef = min(T", exit time of ¥ (t) from D,), and

g (s,x) = E(8%-s), gy (s,x) = E(ef-SJ-

Then gE, * both satisfy the parabolic equation
g1

E
(2.18) u, + 3 Axu + ux-z1 +1=0

in [0,T) x D, with g% =g =0 for xe ap or s = T
1 1
X € aD1 - aDb, gf =0, 0 < ge < T.

|
;} Let
|

. For

¢(t) = x + zl(t-s)
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and 60 the exit time of ¢(t) from D. We choose

p < % (T-T'") and small enough that Go - s < 2 dist(x,3D) for

all x € Dl' The function go(s,x) =00 . s satisfies in
[0,T") x D1 the first order equation

0 0 -
(2.19) 8 + 821 +1-=20,

with g0 =0 for x € 3D and go >0 for x € 9Dy - 3D or

s =T"'. Let uw>0 and g = (1+u)g0. By (2.18) and (2.19), for
small €

€
Bs * 7 A48 * 82y v 120,

Hence, by the maximum principle for parabolic equations gi < g

on [0,T"] x D By Ito's formula

1

eE

1
€ € o€ €
g5(s.0 = B | at + BgfefveD).

s
Since the first term on the right is g;(s,x) and ge < T,

(2.20) g°(s,x) < g(s,x) + TP(¥(9;) € 3D, - 3D).

By reasoning as in (F4, p. 488], for s < T', x € D1

P(¥(8;) € 3D - 3D;) < eBg (s,X)
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for some B. Since gi < gf (2.20) implies

€ + 0 2(1+ :
g (s,x) < %T%ﬁ? g (s,x) < Tégﬁ%l dist(x,dD).

For small €, we then have (2.17) with C = 3(1+u). This proves

Lemma 2.2.

Lemma 2.3. For T' < T, there exists a constant M, such

that Ie(s,x;T) < I;(s,x;T') for all M>M 0 <s<T', x€0D,

1’
and for small €.

Proof. Both Is(s,x;T) and I;(s,x;T') satisfy (2.7).

By Lemma 2.2, for small €
15(T';x,T) ¢ Mydist(x,3D),
and by (2.12)

I (T',x;T') = Mo(x) > My,dist(x,aD). 1

€ 1

= I; = 0. Let M1 = MOYi . By the maximum

principle for parabolic equations, 1€ < I; in the cylinder

For x € 9D, I

& ansmdbisnetontodiinit

Q' = (0,T') x D for any M > M.. This proves Lemma 2.3.
S |

The minimum in (2.11) is taken among all 1z € E". For

technical reasons we wish to consider equations corresponding to '

lz].

(2.7) when bounds are imposed on
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For ¢ let

"WV
-

2€ = {2 € E": |z] < c}.

Let I;c be the solution in Q of

[ [ € €
(2.21) (IyJds * 7 8 Iye * HO(x, (1)) = 0,
i
(2.22) H¢(x,p) = max min [L(x,y,z) * p-z] }
yeEY z€Z€ g

with the same boundary data (2.9M) as for I;. The solution I;c

belongs to C%’I(Q) n CE’Z(A) for any compact A c 60 and

ki
& B € (0,1). Since H® > H, we always have I&C > I&. In
' section 3 we will show that for ¢ 1large enough (c > c(M)), :

€ €

Iy = Iy See (3.15).

Lemma 2.4. There exists a constant B = B(M) such that

Iﬁc(s,x) < B dist(x,dD), for all (s,x) € Q and for small e, :

3

: Proof. Since 3D is of class C”, D has the exterior ;

Xy € 3D let

1 . sphere property. Following [F5, p. 275], given
A be an n-dimensional spherical ball with center Xy, radius

le-le intersecting D in the single point x;. Let

| ¥(x) = |x—x2| - le—le and let z(x) = - ¥ (x). For small €




| for all x € D. As in the proof of Lemma 2.2 the function

€ € . e
J = IMC satisfies
3 € € *
JS * 5 AxJ + Jx'i + L (x) 20,
*
L (x) = max L(x,y,z(x).
y€Y

Moreover, L*(x) < Ll’ for some Ll‘ For B > 2L1
€ € € €
(BY-J )S+ 3 Ax(BW-J } + (BY-J )x-g < 0.

For x € aD, B¥(x) - J°(s,x) = B¥(x) > 0. For B > B(M) > 2L,

we have

BY (x) - JE(T,x) = BY(x) - Me(x) > 0,

for all x € D. The maximum principle for parabolic equations
implies BY - J* > 0 in Q.
Given x € D, let Xy be a point of 9D nearest x. Then

dist(x,9D) = ¥(x), which implies Lemma 2.4.

3. Penalized Differential Games. In the differential game

formally described in §1, the minimizing controller is required

] to bring the game state ¢(t) to 03D by some time © < T. We

L

TRV &
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now omit that restriction and instead impose a penalty if 23D is
not reached. Let us begin by describing formally the penalized

differential game, and the corresponding penalized stochastic 1
differential game for € > 0. The penalized game has the same ]

dynamics (1.7) as before, but instead of (1.9) the payoff is
® ]
(3.1) [ L), y@,z@ee + Moo @)1, |

where now Y = min{T, exit time of ¢(t) from D}. The penalty

s

Mp(@®) =0 if © < T by (2.12). For € > 0 the game state

y(t) obeys a white-noise perturbation of (1.7):
av = z(t)de + e/ 2qu. E
The payoff is

€

0
(3.2)  E jo LIV (t),y(t),z(t)]dt + Mo[v (e )Ib,

with 8¢ = min{T, exit time of ¢(t) from D}. For technical

reasons, we impose a bound |z(t)| < ¢ for the minimizing controller.
Moreover, we replace the initial time 0 in (3.1) or (3.2) by

any initial time s ¢ [0,T], and consider the initial data

¢(s) = ¢(s) = x. The Isaac's equation for the penalized stochastic g
differential game is (2.21); for the deterministic game the

Isaac's equation is the first-order equation corresponding to

(2.21) when € = 0. We shall show below that 15 is the lower

Mc
value (in a suitably defined sense) of the penalized stochastic
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differential game and that its limit I;C as e+ 0 1is the
lower value of the penalized deterministic game. We also show that

€ €
Mc IM for large enough c¢ > c(M).

I
In order to treat these games on a rigorous basis, we
discretize the game dynamics and payoff in the same way as [F1],
[F2]. A somewhat different discretization procedure was used in

[Frl]}.
In the discussion to follow we fix M,c, and T. For
N=1,2,... let

_ (k-1)T

= T -
§ =ty = -, k=1,...,N+ 1

For simplicity we do not indicate the dependence of ¢ and ty
on N. Let ni, k=1,...,N, 1 =1,...,n, be mutually random
variables which assume the values 1 and -1 each with probability

% . In order to avoid certain analytical questions of integrability

and the existence of a value, we shall arrange that each of these

games is finite. Let

n
Y1 c Y2 c...cY, Z1 c Z2 < ... cE,

where YN,ZN are finite sets for each N, the union of the sets

YN is dense in Y, and the union of the sets ZN is dense in EN.

For ¢ > 1 let

c _ ,C
N =2 N2y

2€ = {z: |z| <c}, 2

e e e i g e GG S W
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We shall define for initial data (s,x) with s = tz,

£ =1,...,N, x € D, a game with 2(N-2+1) moves. At move 2k - 1,
the first controller chooses some Yg € YN’ and at move 2k the
second controller chooses some zy € Zg, k =2¢2,...,N. Both
choices are obtained using strategies, as described below. The

state ¢k+1 after move 2k 1is determined from the system of

difference equations
. _ 1/2_.1/2 =
(3.3) Wk+1 = Wk + sz + 6 £ nk, Wz = X.

At each move 2k - 1 or 2k the controllers know all previous

moves and also NgseonsM q- The game stops at the first step F€

when either ¥ ¢D or Fé = N, We call t _ = (Fs-l)é the
F+1

exit time for wk' After play stops, the first controller receives

the payoff

€
F
(3.4) T (s,x) = E RILICRITL R Mo o )

+1

When € = 0 we consider the corresponding deterministic

game whose states ¢k obey

(3.5) Py = Oy * Bz, 9, = x,

with payoff

F
(3:6)  T(s,x) = L SL(0yYp,7) + MO(OE,)

S e T
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where tp is the exit time for ¢k'
The game is described more precisely by introducing the idea
of strategy (also called a §-strategy). For the deterministic

game a strategy for the first controller is the (N-2+1)-vector

2 L k

r = (T ,...,FN) such that T is any point Yq € YN and T,

k=2+1,...,N is any function of 2 2 <m < k taking
values in YN' A strategy for the second controller is the

(N-2+1)-vector 4 = (Az,...,AN) such that Ak, k =2,...,N, is

any function of Yo Yk? 2 <m < k with values in Z;. For
the stochastic game (& > 0) strategies for both players are

defined similarly except that the functions Pk,Ak, k=2 +1,...,N,

can depend on n, m= £,...,k -1 too. A strategy T for the
deterministic game defines a strategy for the stochastic game in
the obvious way. On the other hand, given the random inputs

g = (nl,...,nN). a strategy T for the stochastic game induces

a strategy (denoted by T/g) for the deterministic game. Similar
remarks apply to the second controller. Given a pair of
strategies (I',A), and a vector of random inputs ¢ in the
stochastic game, the successive moves are found by taking Yy, at

move 22 - 1 and setting

2+1
2, = 88 r,)s Yo = TYT rgangdse e

Let us indicate explicitly dependence on the strategies TI,A by

writing the payoff in (3.4) as ﬂe(s,x,r,A). Similarly, we write

n(s,x,I',A) in (3.6) when € = 0. Note that the game is biased

e

i

Bk iciaiii
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in favor of the minimizing controller, who knows Yx before

choosing Zy- The concept of strategy used in [F2] is slightly

different, but equivalent to the present one.
Given the initial data (s,x) and N, each of these games

has a finite number of possible positions. There are a finite

number of control choices for each controller at each move. From

the theory of positional games, the stochastic difference game has

a value W;[s,x) and optimal strategies F*,A* exist:
18 (s,x,T,8%) < Wg(s,x) < 1°(s,x,T*,8)
for every T,A, with equality when T = F*, A =4% In fact,
WN(s,x) can be defined by backward induction by the functional
equation
(3.7) W;(s,x) = max min E[6L(x,y,z) + W;(s+6,W)], s=t, <T, x€ D,
Yy 2§
(3.8a) Wy(s,x) =0, x&0D
€
(3.8b) WN(T,x] = M¢(x),
where

Y = x + 8§z + Gl/zel/zn

and the components nt of n

are independent random variables,
each with values 1 with probability % .
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When € = 0 the deterministic difference game has a value
WN(s,x) satisfying the functional equation corresponding to (3.7)
end the conditions (3.8). We shall show that as N + =, ¢ + 0,

WN and the function I;C defined at the end of §2 tend to the

q same limit. Moreover, this limit IM does not depend on c,

A for large encugh c. See Theorem 3.3 and formula (3.15).

| We begin with a series of lemmas which give uniform estimates

£ €
for WN - WN and for WN(s,x') - Wﬁ(s,x).

Lemma 3.1. There exist constants C1 = Cl(M)and N1 such

that for N > Ny and small €

. We(s,x) < Cdist(x,D) + ¢ (6m(s)?), s =t , 2=1,...,N, x €D.

2”
3 Proof. Given x0'€ D, let Xy be a point of 9D nearest
|
1 X,- Choose x, and ¥(x) = |x-x2| - |x1-x2| as in the proof of

Lemma 2.4. Let the minimizing controller use the control zi chosen
1

cea g
il

as follows. Given N, divide 2~ = {]z| < 1} 1into nonoverlapping

Borel measurable sets A1”"’Av such that each A-1 contains exactly

#
‘ one point z' € Zﬁ and max diam A, » 0 as N + =, Let
1<i<v 1
z(x) = 21 if -Wx(x) €A,;. Since ]le = 1 there exists Ny such

that

1
E(x)-Wx(x) <- 3%, XE D, N > Nl'

We take z; = 5(Wk); since we always take ¢ > 1, z, € Zﬁ. In (3.3)

*
k

A et e o e o e e o i

Viep = Vg * Sz} (se)l/2

—_—

nk'

T
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Let the maximizing controller choose Y to maximize L(wk,y,z;),

and let
where C1 is chosen below. If wk ¢ D (and hence k > Fe) we let

M. = M = C.Yw _ ).
ko pfyp 1 RS

For ¢k € D, k < N, we have by (3.7) and choice of Yk

€
WN(t

1A

* €
Vi) € BISLULy .20 + Wy(t+8,0, )18, ]

'A

€

where IL(XAGZIX)I < L1 and Ck = (“z""’“k-1)' By expanding
¥(¥y,1) by Taylor's formula about wk’

ELY (0, 1) (5] = YO0 + 8zf-v (¥,) +o((6+(8e) /)%,

Since z(x).¥,(x) < - % for all x € D, we have for small ¢

and wk €D

ELY (o) 18] < vy - 5,

8C,
E[M, 18] € M - —= + 6L < My
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; if 4%15 Cl. If wk ¢ D, then Mk+1 = Mk’ Therefore,
E[Mk+1|Ck] < M, which implies by iterating

A ks

E(MN+1) < M.

RELIZEIRT

e

Choose C1 > 4L1 large enough that Clv(x) - Mé¢(x) >0 on D.

If F° =N and ¥,.. €D,

N+1

T R




Otherwise,

M

N+l CIW(WFE+1) 2 CI[W(WFE+1) - W(WFE)]
since ¥ _ € D and ¥(x) > 0 on D. Since ¥, =1 we have
F
in the second case
1/2
M > -C, v =¥ | > -C,(8 + n(se) %y,
N+1 1Wee, 7 Ype 1

) _ _wE
Since M2 = C ¥ (xq) Wy(s,x4),

-C; (s+n(e8) /2y < ¢ ¥(xy) - WECs,x,)

Since w(xo) = dist(xo,aD) and Xy € D 1is arbitrary, this proves

Lemma 3.1.

Remark. Similarly, when € = (0, an estimate

WN(s,x) < Cl[dist(x,aD) + 6] holds.

Lemma 3.2. There exists C(C

2 depending on M and c¢ such

that for small € and N >Ny

[Wg(s,x) - Wy(s,x)| < ¢, le2(1-5)12 + 5+ (se)1/?,

s =t,, £=1,...,N, x € D,

e

[ o SN
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Proof. Given (s,x) let T be an optimal strategy for the
maximizing controller in the stochastic game and A an optimal
strategy for the minimizing controller in the deterministic game.
Let G = min(F°,F) with F°,F as in (3.4), (3.6). The strategy
A is played against I in the stochastic game, giving by
dynamic programming arguments

G

*) W (s,x) B L SLOLYoz) Wy (topVoep)?-

‘A

Given a vector ¢ = (nz,...,nN) of random inputs to (3.3), the
strategy I/t 1is played against A in the deterministic game.

We have

G
L

(**) Wy(s,x) >
NEED 2l

6L(¢k’yk’zk) + wN(tG+1 ’¢G+1) ’

for each . Hence, the same inequality holds if we take the
expectation of the right side.
By (3.3), (3.5)

1/2

=e wk

Vel - Px41

where

By (2.1), L(*,y,z) 1is Lipschitz with some constant Kl’ for

[z] < c. Moreover, ¢ is Lipschitz with some constant K,.
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Let ||w|| = max{lwkl: k = 2,...,N+1}. Then
G 1/2
kZLdIL(Wk’yk’zk) - L(‘pk’ykvzk)l < Kl(T‘S)E |‘WH’
1/2
Mo Chyg, 1) - Mooy, )| < MK, e/ 2[jw]].

We subtract the expectation of (**) from (*), and recall that

wN(tG+1’¢G+1) > 0 together with (3.8):
Wy(s,x) - Wy(s,x) < (K (T-s) + MK))el/ 2E[ ||
+ E{W\(tg,1,¥geq)5 G < N, ¥g,q € D).
Now G < N, wG+1 €D imply ¢G+1 ¢ D, and
dist($g,1,3D) < Vg, -0geq) < 21w
By Lemma 3.1 we have

€ , .

< ¢ (e 2E[[w]| + & + n(se)l/?y.

S ince the sequence of components wi, i=1,...,n, form a

martingale with w;_l = 0 we have [D, p. 311)

(3.9) ElIwl] < 2nEjwl] < 2n(Elwi1HY/% = 2n(1-5)1/2,
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Therefore, for some constant C2

WE(s,x) - Wy(s,x) < C,et/%(T-5) + c, (8 + (66)1/2).

2

The opposite inequality is proved in the same way, by taking T
optimal for the deterministic game and A optimal for the

stochastic game, and using the Remark after Lemma 3.1.

Lemma 3.3. There exists a constant R depending on M,

such that for small € and N > N

1

[WS(s,x) - WE(s,x")| < Rlx=x'| + R(8 + (617,
s = tZ’ £ =1,...,N, x, x' € D.

Proof. Let T be an optimal strategy for the maximizing
controller, for initial data (s,x); and let A be an optimal
strategy for the minimizing controller, for initial data (s,x'),
in the stochastic game. We use the strategies TI,A both in the
game with initial data (s,x) and in the game with initial data
(s,x'). Let wk,Wi be the solutions to (3.3) with
¢z(s) = X, wi(s) = x'. [Recall that strategies are expressed in
terms of past control choices and random inputs, but not in terms

]
of the states wk.] Let G = min(Fe,Fe )} where FE,FE' are the

corresponding stopping times in (3.4). Then
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G
Wy(s,X) € BC L SLOKLY Lz ) + WRlte, ¥, ),

k=2

G
€ ' [] € 1
WN(S,X ) 7 E{kEZGL(wk’Yk’zk) + wN(tG+1’wG+1)}.

By (3.3), Wk - wi = x - x'. We then have as in the proof of

Lemma 3.2
* € € ] G (]
( ) WN(S’X) - WN(S,X ) f E ngdIL(wk’yk’zk) - L(wkvyk’zk)l
] € .
+ MK2|x-x | + E{WN(tG+1,WG+1), G <N, ¥o,, € D}.

The terms on the right side of (*) are estimated as follows. By

(2.1) and (2.2), for some Al

lL(wk’yk’zk) - L(Wi,yk.zk)|f Al(l + L(wi,yk,zk))lx - x'{.

Since A 1is optimal for initial data (s,x'),

G
E L SLO L oz S Wils,xt).

If G < N, wG+1 € D, then Wé+1 ¢ D and
dist(¥g,,,9D) < |WG+1'wé+1| = |x-x']|.

On the right side of (*), we have:

1st term < Al(T-s+W§(s,x'))|x-x‘|.




By Lemma 3.1

3rd term < Cylx'-x| + C1(54n(5e)1/2)_
Since dist(x,9D) < diam D < «, another application of Lemma 3.1

gives a bound on W;(s,x‘). Hence, for some constant R

W;(s,x) - Wﬁ(s,x') < Rlx-x'| + R(6+(6€)1/2).

Since the roles of x and x' can be exchanged, this proves

Lemma 3.3.

We will next show that, for fixed ¢, W;(s,x) tends to Iﬁc

as N »+ o, The main step in doing this is Lemma 3.5. To make
the backward induction in that Lemma, we use the following slightly

different payoff for the discrete-time stochastic difference game.

.

Let D, be the p-neighborhood of D. Let J® be an extension

of I;c to a cylinder [0,T] * Dp, for some p > 0, as follows:

Je(s,x) = I;c(s,x), if x €D,

I€(s,x +12(x)) = I5(s, % -T2(x))) * 2rI5(s,x))

€

for X4 € 9D, z(xl) the exterior unit normal to D at xl’Jv

sk




the normal derivative, 0 < r < p. The function J® belongs to
cg*!(l0,T1 x D)) and to cg’?([0,T'] x D) for amy T' < T and

B € (0,1). Moreover, if dist(x,3D) < p,

(3.11) 13%(s,x)] < sp

where S = 3B with B = B(M) as in Lemma 2.4. Instead of (3.4)

we take the payoff

€

~€ E €
T (s,x) = E{ 1 SL(v,,y,,2,) + J°(t
=%

. e ¥ ¢ L

F'+1 F +1

Let Wﬁ(s,x) denote the value of the stochastic difference game
with payoff #%(s,x), x ¢ D. For x ¢ Dp - D let W;(s,x) =
J€(s,x). If F® = N and ¥n+1 € D, the last term is Mo (yy,;)
as in (3.4). Otherwise, y . €D, y c ¢ D. By (3.3) and the

F F

+1

fact that |ni| =1, |zk| < ¢,

-y
FS+1 F

< P

dist (¥ aD) < |y
( F€+1’ ) - l el

provided N Ny where Ny is large enough that

(3.12) cs + nel/2s1/2 o

By (2.12 =0 if
y ( ) ¢(¢Fe+1] i wF€+1

for N » Ny, [7€-n€| < Sp for every pair of strategies T,A.

¢ D. By (3.11) we have

Hence

g
3
j
i
i
i
v;
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(3.13) lﬁ;(s,x) - WS(S.X)I < Se,

for all s = t, .

For fixed € and N let

L =1,...,N, x € D,

(3.14) q, = suplWe(t x) - Je(t x)].
£ x€D N“-"g? R’

By choice of ﬁs, Ayey = 0. In Lemmas 3.4 and 3.5, M,c,€ are

fixed. The constants appearing in those lemmas may depend on

M,c,€,

Lemma 3.4. There exist SI’NZ such that

Wy(s,x) - e < §;-5)2 w50

for N> N

X 0<T-s <1, x €D,

Proof. Consider any pair of strategies T,A for a

stochastic game with initial data s = tegr, X = wz. We have, for

some B, 0 <L<B on QXYX z®. Choose N such that (3.12)

2
holds for N > N, Then

|7€(s,x) - 6(x)| < B(T-s) + ME[o(¥ . ) - o(x)]
F+1

€
+ E|J (t 'V ) - Mo(y )
| FE+1 FS+1 F€+1 l

The last term is 0 if F° = N, Wysp € D; otherwise o(¥ . )

F+1

. I

P N PICTRYe |




kPl = o

and dist(¥ »9D) < p by (3.12). By (3.3), (3.9) and the

FE+1

fact that |zk| < c,

1/2.

E|y -x| < c(T-s) + ZnEI/Z(T-s)

F&+1

Let K be a Lipschitz constant for ¢. Then, for 0 < T - s < 1,
~E 172
[T (s,x) - &(x)| < B(T-s) + MK(c+2ne ' “)(T-s) *+ Sp

with S as in (3.11). We take

S, = max[B+MK(c+npel/?), s].

Since the above inequality holds for any TI,A we get Lemma 3.4.
Since J® 1is Holder continuous on Q, |J€(s,-) - JE(T,-)I

is uniformly small on D if T - s is small. Since JS(T,x) =

o(x) for x € D, from Lemma 3.4 we have the:

Corollary. Given a > 0 there exist k >0 and N, such that

q, < a if 0<T-s <k, s = tz , N> NZ'

Lemma 3.5. Given T' < T there exist constants A > 0,

0 <o < % such that the following is true: given u > 0

there exists N, such that for N > N,

q, < (AT (T'-s) * q

= ]
for s t, < tm < T,




Proof. The function J° 1is of class C;’Z([O,T'] x ﬁp)

for any B € (0,1). Let o = B/2. As above we take N > N2

large enough that, for any x € D, |z| < c, n = (nl,...,nn) with

nl = t1,

p = x + 6z + 61/2€1/2n

belongs to D, . By Taylor's formula

JE(s+8,9) = JE(s,¥) + &3(s,v) +@,,

J8(s,y) = I%(s,x) + I (s,x)" (¥-x)

1 1 e i iy, o3
+ 5 2 J (S,X) (q) -X )(‘P =X ) + ’
2 i,j=1 X;X; (:)2

where for suitable constants Al’AZ
1+c 2+2a
1@, 1 <A™, 1@, < A lv-xI®T%, 8 = 20,
Since
€ € 20,
IJS(S,lP) - JS(S:X)I < Azlw'xl ’
we have

I (s+8,0) = I°(s,x) *+ 85(s,x) + I5(s,x) - @-x)

€ i i i i
=1inxjcs,x)(w - elad) « @ g,




1+ 20 . 2+20
|(:>3| S AL8TTTH8[v-x[TT + [U-x] ).
By taking expectations, we have

EJE(s+6,¥) = J5(s,x) + G[J:(s,x) + J2(s,x) -z
* % AXJE] * <:>’

2 n ..
§ i_j.¢€
= E + Y z727J .
(:> <:>3 7 i,j=1 XjX;

Now L is uniformly continuous on D * Y x z€ and Ji is
uniformly continuous on Q. By (2.22), given u > 0 there
exist Ny > N; and a function y* from Q into the finite set
YN , such that

0

Lix,y"(s,%),2) *+ Jo(s,x)-2 2 HO(x,J (5,X)) - n

for all (s,x) € Q, [z| < c.
If v <3

11 1

1
ly-x|Y = |6z + EzdznlY < AS(GY + (6762

InH")

and ElnllY =1, i=1,...,n. We have

E|(H) ] < A([81% + 6172 o+ 6272%),

i
1
1
i
|
4
{
¢
:
i




[Pt S Sl AN

—— —— ‘4' —— e et

e A K SRR it 210 s o it A i
-37-
For N0 large enough, & < 1 and

| @] < Asl*®

for suitable A.

Since J& = I;c is a solution of (2.21) in Q, we have for

x € D, X* = X*(S)X)
1+a

E{SL(x,y",2) + J(s+8,¥)) > J%(s,x) - &u - Asl*®,

Let us now estimate q, in terms of Age1- By (3.14)

JE(S"'(S,‘,’) S qz.'.l + W;(S+6’w)

if ¥ € D. This inequality holds also for ¥ € D, since J= = W;
by definition in that case. Hence, for all 1z € A
~E € a
E{SL(x,y*,2) + Wy(s+6,9)} » J%(s,x) - ou - as!™™ - q ..

-~

Since W§ satisfies the functional equation (3.7), this implies

~E . € ) ) l1+a
Wy(s,x) > J%(s,x) - 8 - AS Qq- i

.. . * * . .
A similar argument, choosing z = 2z (s,x,y) with values in

Z§ such that
0

Lix,y,2*) + 322" < HS(x,5(s,2)) + w
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for all (s,x) € Q, vy € Y, shows that
~E € 1+
WN(s,x) < J (s,x) + du + AS * Qp4q-
Therefore,

(¢ ]
qy < S(MHAST) + qp, .

Since &{(m-2)

]

t ty ¢ T* - s, this proves Lemma 3.5.
By (3.12) the number ¢ in (3.13) can be chosen arbitrarily
small if N 1is large enough. By (3.13), Lemma 3.5, and the

Corollary to Lemma 3.4 we have:

Theorem 3.1. For fixed E,W;(s,x) - IMc(s,x) and

W;(s,x) - IMc(s,x) tend to 0 as N - =, uniformly for x € D,

s = tz’ £ =1,...,N.

As in [F2] we call I;c the lower value of the penalized

stochastic differential game, for initial data (s,x) € Q. From

Lemma 3.3 and Theorem 3.1 we have the following uniform Lipschitz

- €
condition for IMC(s, ).

Theorem 3.2. There exists a constant R = R(M), such that

for small €

|I§c(s,x) - I;c(s,x')l < Ri{x-x'{, x,x* €D, 0 <s <T,

¥ BRE LSO At 3 Ol ol 1~
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Theorem 3.2 implies the a priori estimate on the gradient

I (IMC)XI 5 R.

3 By (1.8) the minimum over 1z € E" of L + p-z 1is attained
!

at z =b + p. Since |[b(x,y)| < By» Ip| < R implies
jb+p} < B, *+ R. Hence, by (2.11), (2.22)

A

D AT MR it 25
R AP Raiings LR

H®(x,p) = H(x,p), |p] <R, c > B, +R.

1

i c

i} Let p = (IMC)X, c(M) = B1 + R(M). By (2.7), (2.9M) and (2.21)

a} > €

(3.15) IMC = IM’ c > c(M).

k-

bﬂ Let us now take s = 0. Since b = b(x,y) the problem is
autonomous, and hence this is no real restriction (see, in

.£ particular (2.16)). Lemma 3.2 gives a uniform estimate for
W; - WN, which tends to 0 as N -+ o, € + 0. Since J¢ = I;C

fi on Q for ¢ > c(M), we have

&

Theorem 3.3. As € > 0, Iﬁ(o,x) tends to a limit IM(O,x).
Moreover, WN(O,x) - IM(O,x) tends to 0 as
for x € D.

e o e

N + <, uniformly

As in [F2] we call IM(O,x) the lower value of the

e e —

deterministic penalized game starting at x € D. As in §2 let us

also denote this lower value by IM(O,x;T) to indicate dependence

on the final time T. By (2.15), IM is nondecreasing in M, and

by Lemma 2.1, IM is bounded above for fixed T > 0.

Hence,
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IM(O,x;T) is nondecreasing in M and bounded above. Let

% (3.16) 1(0,x;T) = lim I,,(0,x;T), x € D.

M-

. . €
4. Main Results. In this section, we show that I

-€ log q°

podige

tends to a limit I as € + 0, and interpret I as the lower

e iifach A A e Tl
L aan Ll

value of the differential game described formally in §1. 1In

view of (2.16) it suffices to consider initial time s = 0, as

e T

already noted at the end of §3. The discrete time games in §3

3 then start with 2 = 1. We recall that the value W (0,x) of the

g deterministic penalized game in §3 depends also on M and c.

For
: T'" < T, let a = T'T'l. In the following lemma, W&(O,x) denotes the
a2
” value of the corresponding game in which T is replaced by T' and <c¢

by a lc.

DI =

Lemma 4.1. Let 5 T < T' < T. There exist constants Rl,Nl,c*

(depending on T) such that \wN(O,x) - W&(O,x)\ < Ry(T-T")

for any
({ M, N> Ny, e >t

Proof. Let ¢ = TN'l, §' = as = T'N'L,

For any pair of
strategies (I,A) for the discrete time deterministic game in 3 with
»rj time-step 6, we consider the corresponding strategies (I'',A') for a
5

game with time-step 6', in such a way that

©

b
]

©
]

1 x’ YI'(=Yk) zl‘(=a zk, kzl,o.-,N,

where ¢i denotes the state and yé,z& the controls for the

K latter game. By (3.5) we have ¢; = ¢, for all k. We wish to

L mweie e R s »
i, 31y . 39 57 .- -

Sl el s i ol ik A RS v
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estimate the difference of the respective payoffs u,m', By
(1.8), (3.6)

F
T - W' = %_ kzlal(l_a)lbklz + (l-a-l)|zk|2]

where bk = b(¢k,yk). Since 0 < a < 1, the first term in the

sum is positive, and the second term is negative. Since Ibkl < Bl’

T Mo+ % B,T(1-a).

5 Since this is true for any T,A, and since Ta = T',
*) Wy(0,x) < Wi(0,x) + 3 By (T-T").

On the other hand, from (2.2), (3.6), and ¢ > 0

5o 12 a1
lzkl AL ch (H+CZT)’

=

A

=

+

[+

]

[
I e~

1

Wi (0,x) < Wy (0,x) + }é}}T (Hy(0,x) + c,T).

|
1
{ .
ft; Let us show that WN(O,x) < K for N _ Nl’ c > c* where K, N1 and
" c* depend only on T. For this purpose, consider any 2 € Zh with
} IzOI > 1/2. Let the minimizing controller use the constant control
{
{

;.§ 2y = c*zo, where % c*T > diam D. With this choice, there exists Ny
:
i

such that exit occurs by step F < N for N> Nl‘ Moreover, the payoff

z
|
W% T satisfies T < SFL* < TL* where L* is a bound for L(x,y,2)
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when |z| < c*. Let K = TL*. Since T' < T < 2T'
(L*+c2)
(**) wr:l(ovx) < wN(Oix) + "—cl_ (T'T')

By (*) and (**), |W&(0,x) - WN(O,x)I < Ry (T-T") where R, does not

depend on M. This proves Lemma 4.1.

We have by Lemma 4.1, Thzorem 3.3, and (3.16):

Corollary 4.1. IIM(O,x;T') - 1(0,x;T)|

A

Rl(T-T')

|1¢0,x;T') - 1(0,x;T)|

A

Rl(T-T').

By combining results above we obtain the first main theorem.

Theorem 4.1. I(0,x;T) = 1lim IE(O,x;T) for every x € D

€+(
and T > 0,

Proof. Consider T' < T. By Lemma 2.3 and Theorem 3.3,

for large enough M

lim sup Ie(O,x;T) < IM(O,x;T').
€-+0

Since I; < Ie, for each M

lim inf I°(0,x;T) > 1lim Ig(0,x;T) = Iy (0,x;T).
€+( e-+(

Hence by (3.16) and Corollary 4.1

oot
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lim sup I%(0,x;T) < 1(0,x;T) + Ry (T-T")
€->(

lim inf 1%(0,x;T)
€+>0

(AY4

I1(0,x;T).

Since T - T' can be made arbitrarily small, this proves
Theorem 4.1.

It remains to characterize I as a lower value. Let us
discretize time as in §3, and define a deterministic game as

follows. The dynamics are again (3.5), and strategies T,A

PRI TR

are as in §3. However, instead of (3.6) the payoff is now

F
(4.1) m,(0,x;r,4) = k216L(¢k,yk,zk) * X

where x = 4o if F = N and ¢N+1 € D and x = 0 otherwise.

Let

4

(4.2)  VR(0,x;T) = inf sup 7_(0,x;T,A).
[af<c T

The notation |A| < ¢ means lAkl < ¢ for each k; this is the same
bound imposed in §3. We now write WN(O,x;T) for the value WN(O,x)
for the penalized deterministic game in §3; recall that WN depends

alsoon M and c.

Lemma 4.2. Let 0 < B < % . There exist c*,Ml,N1 (depending

on T and B) and a constant L

ot anc 1

such that

Wy (0,x;3T) < VR(0,x;T) < Wﬁ(O,x;T) + Ly (T-1)
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for all M> M, T=R6, Ny <R <N, T-7%>0r, c> ci-
Proof. The payoff (= ﬂM) in (3.6) satisfies @ ¢ 7.

Hence, we have the left-hand inequality in Lemma 4.2. To obtain
the right-hand inequality, let the maximizing controller choose
any strategy TI. We define a strategy 4 for the minimizing
controller as follows. Let A be an optimal strategy for the
penalized gaﬁe with N moves. The strategy A agrees with A
on moves 2k, k = 1,...,&. Let F be the first step when

¢, €D or F =N If ¢ . € D, the choices zy for
F+1 F+1

k = ﬁ +1,...,N are arbitrary. If F=N and o, 1€ D, then
N+

N
L ALYz ¢ M

) < W_(0,x;T)
N+1 N

>

since A is optimal. Let cI = 41" ldiam D. For ¢ > cI, the

right side is bounded, as shown in the proof of Lemma 4.1. By (2.12)

and the fact that L > 0,

dist(¢, ,3D) < cM™!
N+

1

for some C. Let A be the a-neighborhood of 3D, for suitable

@ < BT. We choose o small enough that, for every x € A, there

exists z(x) € Zﬁ such that x + sz(x) ¢ D for some s > 0, s < &,

Let M1 > Ca'l. When F = N and ¢, €D, then ¢, €A for M>M
- N+1 ~ N+1
In this case, let 2y = z(¢, ) for k=N+1,...,N. For N large,
N+1 R
the first F when 9., ¢ D satisfies F <N since T - T > 8T > a.

i

1.

D T m—
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If ¢, ¢ D, then F
F+l

]
e v}

Otherwise,
S(F-F) < 6(N-R) = T - T.

When |z| < 2, L(x,y,z)]| < L, for some L

1° Then
F F
Mo = L L(Oyihz) + L L(Oy,y.2z(6, )
k=1 Kkefel ~ N+l

IA

W (0,x;T) + Ly (T-T).
N
For this strategy A4,
sup 7,(0,x;T,8) < W _(0,x;T) + L,(T-T),
r N

which gives Lemma 4.2.

The function Vﬁ in (4.2) is clearly a nonincreasing function

of c. Let Vy = lim Vﬁ. Then

CH+o

(4.3) Vy(0,x;T) = inf sup 7_(0,x;l,4)
N A r ®

where the strategy A for the minimizing controller is now chosen
without the constraint |A]| < c. Let yN = (yl,yz,...,yN) denote any
sequence of control choices for the maximizing controller, Yk € YN'

Thus yN is an open loop strategy. Then |

f L O AT T ey
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VE(0,x;T) = inf sup 7 (0,x;yN,n)
|a]<c N
< y
(4.4)

Vy(0,x;T) = inf sup (o,x;yN,A)-
A N
y
To see this, clearly > holds in (4.4). On the other hand, any pair
of strategies TI,A and initial state x define sequences y,z with

1
r* = Yy and
1 2 2
2y =87(yy)s vy, = T7(2y)s 2, = 87(YysYp)se.

and T_(0,x;y",8) = T_(0,x;T,A).

We use the following truncation procedure. Let W, : Z. »> &

N° °N N
be such that 7 (z) =z if z € Z; (recall that Zﬁ = Iy n{z| < cl.
. N ~ .
"Given a sequence z = (zl,...,zN), let 2y = NN(zk). Given a strategy

A = (Al,...,AN) let & = (51,...,5N) where ik = HN°Ak. As in (3.5)

define ¢k’$k by

~

¢k+1 = ¢k + sz, ¢k+1 = ¢k + sz, ¢1 = 51 = X.
For 1 < F < N, we use the notation

[1ollg = max |0

I .
1<k<F+1 K

Lemma 4.3. Given K > 0 there exists B = B(K) such that

1

F ~ -
I 8|z, % < K implies |[|¢-8||p < 2kc™! and
k=1

SRR Ty MNP AP e
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1

=
il o~
[

F .
6L($k’yk’zk) < kaL(¢k’yk’zk) + Bc

Proof. Let A = {k: Izkl > c} and |A] its cardinality. By

Cauchy's inequality
c|Al < I 8lz | < (slap/ 22,
A

and therefore &|A| < Ke™ 2,

L8l ] <1 8lz, | < ke™L,
A K- K-

T

Since Iik| < |zk|

ITEAIE

tA

~ 2 ~ 2
(E alzk‘zkl) < 8]A| E Glzk'zkl

2072,

1A

48]A|K < 4K

This proves the first assertion. From the definition (1.8) of L and

Izkl < 'zkl’

: F
+ kEI[GL(¢k’Yk’zk) - 5L(¢k,Yk:zk)]

> 1§ 6llby)? - 15:12] - § by - BiZ)
2 7 Lol k o 8Pk T Bk

where by = b(9,,y,), b, = b(&;,y,). Now b(x,y) is bounded and

Lipschitz in x. Hence \blz is also Lipschitz in x, and for

suitable B1




Foo 12 &2 ~ -1
) d(lbkl - Ibkl ) 2 'B1||¢'¢|IF > 'ZBIKC ’

o=
~
(3]
o=
'
3]
w
Nt
A

F i
~ ~ -1 ;
§ b < By E 6|zk-zk| < 2B, Kc ?

ey

8|z, |

[ g les]
[

F . -
L 6oy -bE, < Bylle-dllg

s

In the last step we have used Cauchy's inequality and IZkI < Izkl.

By combining these inequalities we get Lemma 4.3.

Lemma 4.4. Let B8 > 0. There exist Nl,cl,B (depending on T

and B) and L,, such that

1

vE(0,x;T) ¢ Vy(0,x;T) + Bc™ + Ly6T
N

Proof. By (1.8) given K, there exists K such that

F K

. 2
Y SL(9y,yYr»2,) < K implies ¥ 68lz,|° < K.
L e £ 5 AL L

Let K, > VN(O,x;T), and consider any strategy A for the game with

N

1

N steps (2N moves) such that for any open loop y = (yl,...,yN)

F
N
k§16L(¢k’7k'2k) = T,(0,x;y,8) < K.




As before F 1is the step at which exit occurs (or F = N). We must have

Prsy ¢ D even in case F = N, since otherwise m_ = . For the game

~

with N steps we define a strategy A with IEI < c as follows. For

1 <k <F, let ik - "N°Ak be defined by truncation. If $F+1 ¢ D,
the new game stops after F < F steps. Suppose that $F+1 € D. Since

Orey ¢ D, by Lemma 4.3

ccv( 5 -1
dist($p,,,3D) < [[¢-¢]|p < 2Ke™".

As in the proof of Lemma 4.2 let A be the a-neighborhood of 9D,
where o < BT is sufficiently small. Then $F+1 € A for large
enough c. For k = F + 1,...,&, let Ek = 5($F+1)’ where 2z(x) is
defined as in the proof of Lemma 4.2. This defines the strategy A.

-~

For large enough N;, ¢. ¢ D where &(F-F) < BT. For each open loop

N F+1
y  we then have
T P T
To(0,x5y " ,8) = 6L(9y5Yys2y) * SL(9y,Y152(9g, 1))
Let L1 be as in the proof of Lemma 4.2. By Lemma 4.3
T_(0,x;yN,4) < 5 SL($,¥,,2,) + Bc™l + L BT
o Vs, ] —_ ’ ’
k=1 k?’k’“k 1
= 1,0,x;y",8) + Bc™l + L BT,

Hence,
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vi(0,x;T) < sup 7 (0,x;yN,8) <
N

sup T_(0,x;yN,8) + Bc™!

p + LlBT.
y

Since the inf over A of the first term on the right side is

VN(O,x;T), this gives Lemma 4.4.

By exactly the same change of time scale argument as for Lemma 4.1:

Lemma 4.5. Let T < T. Then there exist Rl,Nl,c* such that

IVE(0,x:T) - VS0, x;T)| < R (T-T)

for all N > N;, ¢ 2 c*.

Theorem 4.2. VN(O,x;T) + I(0,x;T) as N > =,

Proof. For each M and c¢ > c¢(M) Theorem 3.3 implies

lim Wy (0,x;T) < lim inf V;(O,X;T).

N-eo N-seo

Iy (0,x;T)

-~ -~

Let B8 > 0. Choose N, T = N6 as in Lemma 4.4 such that

BT < T - T < 28T. For c>c;, N2 N

1 ]
+ LqBT. :

A

ve(0,x;T) Vy(0,x;T) + Bc
N

By Lemma 4.5, for c > c’

- ¢ i = P il




[VE0,x;T) - VE(0,x;T)| < Ry (F-T) < 28TR,.
N N

Therefore,

1,(0,%;T) < lim inf Vy(0,x;T) + Bc ™!

+ BT(L,+2R,).
Moo 174%

However, ¢ 1is arbitrarily large and B arbitrarily small. From

(3.16) we then have

I(0,x;T) < 1lim inf VN(O,x;T).

N-soo

To prove the opposite inequality, let 0 < B < % . For N large

we can choose T = 8 as in Lemma 4.2 with 8T < T - T < 28T. Then
Vy(0,x;T) < V;(O,X;T) < WN(O,x;T) + Ly (T-T).
By Lemma 4.1

Iwﬁ(o,x;%) NI R, (T-T)

provided 6 = TN'! is small enough that N > N;. Since T - T < 28T,

Theorem 3.3 implies

e e e e greeminge -

1lim sup VN(O,x;T) lim Wﬁ(O,x;T) + 28T(R1+L1)

Naow WE)

1A

IM(O,x;T) + ZBT(R1+L1)

aati g tati
]

for ¢ > c¢(M). Since # is arbitrarily small and I, < I,
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lim sup VN(O,x;T) < I(0,x;T).

N-+oo

This proves Theorem 4.2.

Theorem 4.2 justifies calling I(0,x;T) the lower value.

Concluding remarks. It should be possible to show that

I(s,x;T) = I(0,x;T-s) satisfies for almost all (s,x) the
Isaacs equation, which is the first order equation obtained
from (2.7') when € = 0. However, we have not done so. One
could perhaps show that I(-,-;T) is Lipschitz for s < T' < T,
and then use an argument like the proof of [F2, p. 1005].

The lower value I(0,x;T) is a noninzreasing function

of T. Let

I*(x) = 1lim I(0,x;T).
T
It would be interesting to investigate various properties of
I*(x). For instance, is I(0,x;T) = I*(x) for some finite T?

That kind of result is suggested by examples treated by the

method of characteristics for the Isaacs equation.
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