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Optimal Exit Probabilities and Differential Games

by

Wendell H. Fleming and Chun-Ping Tsai
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Abstract: The problem is to control the drift of a Markov diffusion

process in such a way that the probability that the process exits

from a given region D during a given finite time interval is

minimum. An asymptotic formula for the minimum exit probability

when the process is nearly deterministic is given. This formula

involves the lower value of an associated differential game. It is

related to a result of Ventsel and Freidlin for nearly deterministic,

uncontrolled diffusions.
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OPTIMAL EXIT PROBABILITIES AND DIFFERENTIAL GAMES

Wendell H. Fleming and Chun-Ping Tsai

1. Introduction. Let be an n-dimensional stochastic process

with continuous sample paths, defined for times t > 0. Let D

nbe a given bounded open subset of n-dimensional En . If (0) E D,

the exit time is the first time T such that (T) E aD. For

fixed T > 0 the exit probability is P(i < T).

In this paper, we suppose that is a controlled process,

which obeys the stochastic differential equation

(1.1) d = b[(t),y(t)]dt + Eldw,

where y(t) is a control applied at time t, e > 0 a parameter,

and w(t) an n-dimensional brownian motion. We assume that

y(t) E Y, where Y E Em is a given compact set. Moreover, the

control processes y admitted in (1.1) have the feedback form

y Ct) = y(t,{t))

where y is any Borel measurable function from [O,T] x En

into Y. As initial data we have &CO) = x, for given vector

x E D. For general background on these concepts see [FR1, Chap. VI].

Let us denote the exit probability by TE, to indicate
y

dependence on the feedback control law y and on e. Let

q - PC c < T). We seek a control law which minimizes the exit
y
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C
probability q " From the point of view of applications, this is

a reasonable criterion of performance of the control system, if D

is considered as a region of states in which the system operates in

an "acceptable" way. The minimum exit probability is denoted by

(1.2) q = win q E

In §2 we shall replace the initial time 0 by any initial time s,

0 < s < T. Then qE = q (s,x) is a function of the initial time
C

s and initial state x = F(s). The function q satisfies the

dynamic programming equation with suitable boundary conditions

(see (2.4), (2.5) below). In special cases, this boundary value

problem was solved numerically by Dorato and Van Melaert [DVM].

However, it is generally difficult to get effective information
C

about q and the optimal control law in this way. Instead, we
C

seek an asymptotic formula for q valid for small c. Our main

results (Theorems 4.1 and 4.2) assert that

(1.3) -lim C log q = I,

where I is the lower value of a certain differential game. The

proofs involve some technical complications. However, two

different heuristic arguments can be given to suggest the validity

of (1.3). Onef these is as follows (a second heuristic

derivation of (1.3) based on the dynamic programming equation for

q is given in §2.) Given a feedback control y the drift co-

efficient in- the stochastic differential equation (1.1) is
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(1.4) bzjt, ) =

If b is Lipschitz, then the Ventcel-Freidlin estimates

[Fr 2, Chap. 14] imply

(1.5) -lim E log q =I
E-V-O - Y

(1.6) I = min lb t ', (t)) 4t)l 2 dt,
,t EY 2  0 Yt

and where - is the class of all E € C([O,T];En) such that

0(0) = x and *(e) E 3D for some 0 E [0,T]. A stochastic

control proof of (1.6) is given in [F4, §7]. If we set

(1.7) *ct) = z ct), 0 < t < TV

then we can regard zCt) as a new control associated with the

minimum problem (1.6). Intuitively, minimizing q corresponds
y

in the limit as e - 0 to choosing y to maximize I. This

leads us to consider a differential game, described formally as

follows. Let

CI.8) L~x,y,z) = IbCx,y) - z12 .

In (1.6) we may replace the upper limit T by the first time 0

such that (0) E 3D, and take Ct) * b Ct,o(t)) for t > e.

The integral in C1.6) is then

L-- -= i, ... -=-- -" "- ____i_____ " -... ....... . __.. . ._-- --
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Cl.9) LCOCt),y~t),zCt))dt,
J0

where y(t) y y(t,O(t)) is chosen by the original controller

and z(t) is chosen by a new second controller who knows y. The

second controller then knows y(t) as well as 0(t).

In the formal description of the differential game, 0(t) is

the state of the game at time t, with initial data 0(0) = x,

x E D. The game dynamics are (1.7), subject to the restriction

that *(t) must reach aD at some time 6 E (O,T]. The original

controller seeks to maximize the payoff (1.9), and the second

controller seeks to minimize (1.9). Note that y(t) appears

in (1.9) but not in (1.7). Thus the role of the maximizing

controller is a passive one. The term "lower value" refers to

the advantage in information which the minimizing controller has

(see [Fr 1]).

The intuitive description above does not suffice to define

rigorously a differential game with lower value I. In the

rigorous treatment we shall obtain I as the limit of values of

corresponding discrete-time games, following the method of [F1].

We have been unable to obtain the limit in (1.3) directly from

the Ventcel-Freidlin estimates (1.5). The restriction by

Lipschitz under which (1.5) is derived is too restrictive for

the problem of optimal exit probability; and there is no guarantee

of uniformity with respect to y of the limit in (1.5).

The outline of the paper is as follows. In g2 we introduce

the function I - -c log q¢. Note that (1.3) asserts that

I o I as c o 0. This logarithmic transformation changes the

. MMMMM
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dynamic programming equation for q into the nonlinear parabolic

partial differential equation (2.7) for I C. As E - 0, this

equation degenerates into a first-order equation, which is just
Ethe Isaacs equation for the lower value I of the differential

game described intuitively above. The function I (s,x) tends

to += as s - T. We introduce a penalty function method, in

which IC is replaced by a solution I C of (2.7) with terminal

data M$(x) when s = T. As M I , increases to I In

§2 we give a priori estimates for Ie, based on standard estimates

for brownian motion and on the maximum principle for parabolic

equations.

In §3 we introduce penalized differential games, by a

discretization procedure similar to [Fl], [F2]. For technical

reasons, we impose a bound Izi < c for the second controller.

It turns out that for sufficiently large c > c(M), I is the

lower value of the penalized stochastic differential game. As

C - 0, IM - IM where IM  is the lower value of the corresponding

penalized deterministic differential game.

As M 4 , IM  increases to a limit I. In §4 we show that

*I as E - 0, and identify I as the lower value of the

differential game described formally above.

2. Preliminary Results. We make the following assumptions

throughout the paper. D is a bounded, open subset of E n , with

boundary aD a manifold of class C3. The control space Y is

a compact subset of En. We consider times in the interval [0,T].

The vector function b in (1.1) is of class CI(En x Y;En).
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Moreover, for some constants 81,B 2

Ib(x,y)I < Bi ,

IbCx,y) - bCy)l < B2 1x- I.

This is actually no restriction since b is C1  and we stop the

solution & to (1.1) when (t) leaves the bounded set D or

when t = T. The function L in (1.8) then satisfies

C2.1) ILCx,y,z) - L(7,y,z)l < ACl+Izl)Ix-3I.

C2.2) clIzI 2 - c2 < L,

for some constants A, c1 > 0, c2.

Let !/ be the class of Borel measurable functions y from

[0,T] x En into Y. For a feedback control law y E 5, the

stochastic differential equations (1.1) take the form

(2.3) d4 - b (t, (t))dt + Ei/2dw

with b as in (1.4). We consider (2.3) with initial data
Y.

C(s) = x, where 0 < s < T, x E D. (Later, we specialize by

taking s = 0.) This is a problem of completely observed controlled

diffusions [FR1, Chap. VI]. However, instead of the kind of

performance criterion considered in [FRl] we wish to minimize the

exit probability

I I I .... ....... . .. .... •.



q C(s,x) =P(T C< T),

with T Cthe first time t > s such that (t) E 3D. Let
XI

Q =(0,T) x D, Q=[0,T] x qO qo - {T} x aD.

Given A E c and 0 < B < 1 we say that a function q(s,x)

has finite O-norm on A if there exists a constant K such that

Jq(s,x) - q(s',x')l < K(Ix-x'IO + ls~sI0/2)

01

and the gradient q in the variables x =(x
1 ...,xn) have

finite s-norm on A. If q~xqqXij i, j = 1,...,n have

finite $-norm on A, then we say that q EC 12()

The minimum exit probability q C(s,x) belongs to C1, 2 (A)

for any compact A a c and 0 E (0,1). Moreover, in Q0the

following dynamic programming equation holds:

C2.4) 0= q C + C~ A, q C+ min q .b~~
s X yEY

where A x is the Laplacean. See [FRl, p. 161], also the Remark

below. The boundary data are

(2.5) q C(s,x) =1 for s < T, x E WD q (T,x) =0, x E D.

Let
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(2.6) I (s,x) = - E log q (s,x).

By elementary calculus I satisfies the nonlinear parabolic

partial differential equation

(2.7) 0 = + AI + H(X,I[27)0 s  2 x

2)- 1 P2 + max p.b(x,y).

yE Y

Here P = CPl'"''Pn) denotes a row vector.

From C2.5) the boundary data are

C2.9) I (s,x) = 0 for s < T, x E aD; I (T,x) + , x E D.

The function L in (1.8) is strictly convex and quadratic

as a function of z. The function dual to L, in the sense of

duality for concave and convex functions, is

(2.10) H(x,y,p) = min [L(x,y,z) + p-z],
z

n
where the min is over all z E E An easy calculation shows

that

H(x,y,p) 1 p2 + p.b(x,y),
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and therefore by (2.8), (2.10)

(2.11) H(x,p) = max min [L(x,y,z) + p-z].
yEY z

Equation (2.7) then takes the form

(2.7') 0 = s + AI + max min [L(x,y,z) + Ix .Z].yEY z

This is the dynamic programming equation associated with a

stochastic differential game. Similar equations were considered

in [P2]. When E = 0, (2.7') reduces to a first order partial

differential equation, which is the Isaacs equation for the non-

stochastic differential game described formally in §1. This

provides a second heuristic argument for considering this

differential game, in addition to the heuristic argument given

in §1.

We shall approximate the infinite terminal condition

I E(T,x) = + by a large, but finite, terminal condition as

follows. Let O(x) be a function of class C2 (U) satisfying

(2.12) y, dist(x,OD) < t(x) < Y2dist(x,DD) for x E D

O(x) = 0 for x 0 D,

where y1 ,Y2 are positive constants and dist(x,aD) is the

distance between a point x and the boundary aD. For each

M > 0 let

S. .. 4
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(2.13) qM(s,x) = min E exp[ AT)

where as before E satisfies (2.3) with initial data (s) = x

and TAT = min[Te,T]. The minimum is taken among all feedback

controls y E 5. This is a stochastic control problem of the

kind cLnsidered in [FRI, Chap. VI, 94,6]. According to results
E

given there, qM satisfies the dynamic programming equation (2.4).

The function qe belongs to C' n c 2(A) for any compact

A c Q0 and a E (0,1). Moreover, q (s,x) is also the minimum

of the expectation in (2.13), taken among nonanticipative

Y-valued control processes [FRI, pp. 162-163].

Remark. By estimates for parabolic equations, and the fact

that q is uniformly bounded, the partial derivatives

s,(qM) xi,( x satisfy H6lder conditions on any compact

subset of Q0 which are uniform with respect to M for fixed

E > 0. See [LSU], also [FRI, Appendix E]. The boundary data are
I

qM(s,x) = 1, for s < T, x E DD; qM(T,x) = exp[- M( x E D.

S! S . E q1 (sx

Moreover, 0 < qC+1 < q < 1. The limit q (s,x) of qE(s,x) as

M + w is a solution of (2.4) belonging to C1 '2 (A) for any compact

A a Q0" Moreover, q has the boundary data (2.5). A Verification

Theorem [FRI, p. 159] implies that q = q and that q (s,x) is

the minimum exit probability. Actually, the proof of the

Verification Theorem in [FRI] must be modified slightly since



q is discontinuous at points (T,x), x E alD. This causes no

difficulty, since the random variable (T) is absolutely

n
continuous with respect to Lebesgue measure in E .Hence

P(T' = T) < P( (T) E 3D) = 0.

ILet
j(2.14) 1 C(s,x) = -e log q E(s'x).

Since M > ,qand q+qC as M

(2.15) M<~ IC M + I as M~w

Moreover, 16 is a solution of (2.7) (or equivalently (2.7'))

with the boundary data

(2.9m) I C(s,x) =0 for s < T, x E 3D; I C(T,x) =MO(x), x E D.

Let us now give some bounds for I and I . In these

e C

1 ~(2.16) I (s,x;T) = I (0,x;T-s), IM(s,x;T) = IF(,;-)

:4M

.1 Lemma 2.1. Let T' < T. There exists U such that

I (s,x;T) <U for 0< s < T', x E D, and for small F-. The
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constant U depends on upper and lower bounds for T - T', but

not on E.

Proof. By (2.16) we may take s - 0 and impose the bounds

0 < k < T < K. Since IbI < Bl , (2.3) implies

I(T) - x1 >-B 1 T + el/2(wl(T) . w1(0))

where x is the first component of x etc. Since D is

bounded, there exists a constant a such that I (T) x > a

implies T < T. Hence

PlfTl /2 1 -(T 1 / 2

2 T)  CT)-/ Ca+BIT)) < P(T E < T) = q"

Since T-1 /2w1 (T) has a standard normal distribution, we have

[Fel, p. 166]

lir X 2log PCT- 1 / 2 wI(T) > X) = - 1

Hence, for small e we have for all y

(a+B1 T) 2
-e log q <

By (1.2), I = -E log q satisfies the same inequality. In

Lemma 2.1 let U = k- (a+B1 K)2 .
!I
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Lemma 2.2. Let T' < T. There exists a positive constant

M0  (depending on T' but not on E) such that I (s,x;T) <

M0 dist(x,3D) for 0 < s < T' and for small E.

Proof. By Lemma 2.1 it suffices to verify such an estimate

in a neighborhood of any x1 E D. Let z1 be the exterior unit

normal to aD at x1; and let

V1 f {x E D: dist(x,x1 ) < P}

where P is to be chosen later. By (2.7')

+ I + max L(x,y,z I) + Ix'Z1 > 0
yEY2m i ocur at somey *

The maximum occurs at some y*(s,x), measurable in (s,x)

[FR1, p. 199].

Choose any T" E (T',T). For s < T", x E D, define the

process i by

df zldt + 1/2dw, *(s) i x.

Let 0 min{T", exit time of '(t) from D}.

From Ito's formula

I (s,x;T) < E L(*1t),y ,zl)dt + I' (e ( ;

where y* = y Ct,*Ct)). Moreover, Ic(T",x;T) < U by Lemma 2.1,
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and I (s,x;T) 0 for x C 3D. Since L(x,y z,) is bounded

by some C*

IC(s,x;T) < C*E(OE-s) + UP(0 =T"),
P(0 =T") = P(e-s>T,,s) < (T"-s) E(6 s).

To prove Lemma 2.2 it then suffices to show that

(2.17) E(0 -s) < C dist(x,aD)

for x E D., 0 < s < T'. This is done as in proving [F3, Lemma 4.2],

as follows.

Let 01 = min(T", exit time of V(t) from D1), and

g (s,x) = E(0-s), gl(s,x) = E(0jIS).

Then gE,g both satisfy the parabolic equation

(2.18) Us + u+ x.z +1=0

in (0,T") x D, with g = g1 = 0 for x E 3D or s = 7", For
x C 3D1  3D, g = 0, 0 < g < T.

Let

1(t) = x + zl (t-s)



and 80 the exit time of *(t) from D. We choose

P <1 (T-T") and small enough that 0 - s < 2 dist(x,BD) for

all x E D1. The function g 0(sx) 0 o0 - s satisfies in

[0,T") x D the first order equation

(2.19) g + 0 + 1 0,
0 0

with g = 0 for x E 3D and g > 0 for x ED 1  3D or

s = T". Let P > 0 and g = (l+V)g . By (2.18) and (2.19), for

small e

g + EAg + + < 0.

Hence, by the maximum principle for parabolic equations g1 < g

on [0,T"] x DI. By It^'s formula

g (s,x) = E f dt + Eg (O ,q(01)).
s

Since the first term on the right is ge(s,x) and g < T,A1
(2.20) g C(s,x) f g(s,x) + TP(V'(8) C D1 - D).

By reasoning as in [F4, p. 488], for s < T', x E D

PCO(') E OD - 3D1) < £Bgl(s,x)
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te

for some B. Since g1 < g, (2.20) implies

g (s,x ) <i+1 g 0(sx) < 2(1+p) dist(x aD)-1-eBT - 1-EBT' "

For small E, we then have (2.17) with C = 3(1+p). This proves

Lemma 2.2.

Lemma 2.3. For T' < T, there exists a constant M1  such

that I~ Esx;T) < Ie(s,x;T') for all M > Ml, 0 < s < TxED,

and for small C.

Proof. Both I (s,x;T) and IM(s,x;T') satisfy (2.7).

By Lemma 2.2, for small e

I (T';x,T) < M0dist(x,aD),

and by C2.12)

IM(T',x;T') = M$(x) > Myldist(x,aD).

For x aD, I IM = 0. Let M1 = M0Y 1 By the maximum
principle for parabolic equations, I < IM  in the cylinder

-M

Q = CO,T') x D for any M > M1. This proves Lemma 2.3.

The minimum in (2.11) is taken among all z E E . For

technical reasons we wish to consider equations corresponding to

(2.7) when bounds are imposed on Izi.
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For c > 1 let

ZC= {z E En: Izi < c).

Let IMC be the solution in Q o

(2.21) (1 Mds + A xI Mc + H (x,(IMC)X)=0

(2.22) Hc(x,p) = max min [L(x,y,z) + p-z]
yEY zEZC

with the same boundary data (2.9M) as for IW The solution IM

belongs to C (A) for any compact A a Q0 and
'- 6

B E (0,1). Since Hc > H, we always have I Mc I M~ In

section 3 we will show that for c large enough (c > cM)

I See f3,15).

Lemma 2.4. There exists a constant B =B(M) such that

I c(s~x) < B dist(x,aD), for all (s,x) E Q and for small s

Proof. Since aD is of class C V D has the exterior

sphere property. Following [FS, p. 275], given x 1 E aD let

A be an n-dimensional spherical ball with center x, radius

xlx 2 l intersecting B in the single point xi. Let

=~x Ix-x 21 - xl-x 2 I and let z~lx) = 'x(x). For small E
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E Ax + z.Y <

for all x E D. As in the proof of Lemma 2.2 the function

i = I e satisfies

j+ e AC + j.z + L* Cx) Z 0,s x x

L Cx) max L(x,y,z(x)).
yEY

Moreover, L (x) < L,, for some LI. For B > 2LI

(B'+-J A + x(BY -J ) + (B-J <

s+(BT--JS)x 
< 0.

For x E aD, B'(x) - J (s,x) = BT(x) > 0. For B > B(M) > 2L1

we have

BT(x) - J (T,x) = BY(x) - M$(x) > 0,

for all x. D. The maximum principle for parabolic equations

implies BY - J > 0 in Q.

Given x E D, let xI be a point of 3D nearest x. Then

dist(x,aD) = T(x), which implies Lemma 2.4.

3. Penalized Differential Games. In the differential game

formally described in §1, the minimizing controller is required

to bring the game state *(t) to aD by some time 0 < T. We
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now omit that restriction and instead impose a penalty if DD is

not reached. Let us begin by describing formally the penalized

differential game, and the corresponding penalized stochastic

differential game for E > 0. The penalized game has the same

dynamics (1.7) as before, but instead of (1.9) the payoff is

6

(3.1) 0 L[(t),y(t),z(t)]dt + M0[0(0)],

where now = min{T, exit time of f(t) from D}. The penalty

Ms(6) = 0 if 8 < T by (2.12). For e > 0 the game state

4)(t) obeys a white-noise perturbation of (1.7):

d0 = z(t)dt + e 1/2dw.

The payoff is

C3.2) E L[,(t),y(t),z(t)]dt + MO[,(Oc)

with 0 = min{T, exit time of *(t) from D). For technical

reasons, we impose a bound Iz(t)I < c for the minimizing controller.

Moreover, we replace the initial time 0 in (3.1) or (3.2) by

any initial time s E [0,T], and consider the initial data

*(s) = p(s) = x. The Isaac's equation for the penalized stochastic

differential game is (2.21); for the deterministic game the

Isaac's equation is the first-order equation corresponding to

(2.21) when e = 0. We shall show below that Ic is the lower

value (in a suitably defined sense) of the penalized stochastic
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differential game and that its limit I as e 0 is the

lower value of the penalized deterministic game. We also show that

Ic E= I for large enough c > c(M).

In order to treat these games on a rigorous basis, we

discretize the game dynamics and payoff in the same way as [Fl),

[F2]. A somewhat different discretization procedure was used in

[Frl].

In the discussion to follow we fix M,c, and T. For

N = 1,2,... let

T tk N kk-I)T = 1,...,N + 1.

For simplicity we do not indicate the dependence of 6 and tk

on N. Let n',k= 1,...,N, i = 1,.. .,n, be mutually random

variables which assume the values 1 and -1 each with probability

1 In order to avoid certain analytical questions of integrability

and the existence of a value, we shall arrange that each of these

games is finite. Let

Y1 C Y 2 a ... C: Y, Z1 Z 2 a E

where YNP ZN are finite sets for each N, the union of the sets

N
YN is dense in Y, and the union of the sets ZN is dense in E

For c > 1 let

zc = {z: Izl c), Z= Zc n Z

N N'"

ff l I I -I II I 1[ . .. I~"I . . , ' ' i'2 i -I
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We shall define for initial data (s,x) with s = tj,

t = 1,...,N, x E D, a game with 2(N-£+l) moves. At move 2k - 1,

the first controller chooses some Yk E YN' and at move 2k the

second controller chooses some zk c k k,...,N. Both

choices are obtained using strategies, as described below. The

state Pk+l after move 2k is determined from the system of

difference equations

(3.3) *k+l = + 6Zk + 6i/ 2 i/2 nk' * - x.

At each move 2k - 1 or 2k the controllers know all previous

moves and also nV... nkl . The game stops at the first step FE

when either C D or = N. We call t - (: -1)6 theF +1 F €

exit time for *k' After play stops, the first controller receives

the payoff

(3.4) TC(s,x) = I 6 L(Qk,Yk,Zk) + M" ) }.

When e = 0 we consider the corresponding deterministic

game whose states k obey

(3.5) Ok+l =  k + 6 Zk' , z = x,

with payoff

F
(3.6) I(s,x) I X 6 L(OkykZk) + M(#F+l)

k= t
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where tF is the exit time for k"

The game is described more precisely by introducing the idea

of strategy (also called a 6-strategy). For the deterministic

game a strategy for the first controller is the (N-Z+l)-vector

r = (r ... rN) such that r is any point y. E YN and r

k = Z + 1,...,N is any function of zm, Z < m < k taking

values in YN' A strategy for the second controller is the

(N-£+l)-vector A = (A ,... such that Ak , k = 9,...,N, is

any function of ymYk, 9 < m < k with values in ZN . For

the stochastic game (e > 0) strategies for both players are

defined similarly except that the functions r kAk , k = £ + 1,...,N,

can depend on nm, m = 9,...,k - 1 too. A strategy r for the

deterministic game defines a strategy for the stochastic game in

the obvious way. On the other hand, given the random inputs

91= £...,N a strategy r for the stochastic game induces

a strategy (denoted by r/4) for the deterministic game. Similar

remarks apply to the second controller. Given a pair of

strategies (r,A), and a vector of random inputs 4 in the

stochastic game, the successive moves are found by taking y£ at

move 29 - 1 and setting

z = At (yd' yz+I 0 r Z+l

Let us indicate explicitly dependence on the strategies r,A by

writing the payoff in (3.4) as c (s,x,r,A). Similarly, we write

7r(s,x,r,A) in (3.6) when e - 0. Note that the game is biased
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in favor of the minimizing controller, who knows Yk before

choosing zk. The concept of strategy used in [F2] is slightly

different, but equivalent to the present one.

Given the initial data (s,x) and N, each of these games

has a finite number of possible positions. There are a finite

number of control choices for each controller at each move. From

the theory of positional games, the stochastic difference game has

a value WE(s,x) and optimal strategies *,A* exist:

(s,x,r,A* < WN (,X < (s~x~r*,A)

IN

for every r,A, with equality when r = A = A In fact,

WNCs,x) can be defined by backward induction by the functional

equation

C3.7) W (s,x) max min E[6L(x,y,z) + WC(s+6,)], s = t£ < T, x C D,

YN ZN

(3.8a) WN(s,x) O, x t D

C3.8b) W (CT, x) = M1Wx),

where

I
=X + 65z + * 2l2t

and the components ni of n are independent random variables,

each with values tI with probability ,



-24-

When C = 0 the deterministic difference game has a value

WN(s,x) satisfying the functional equation corresponding to (3.7)

6nd the conditions (3.8). We shall show that as N - -, c - 0,

WN and the function 1c defined at the end of §2 tend to the

same limit. Moreover, this limit IM does not depend on c,

for large enough c. See Theorem 3.3 and formula (3.15).

We begin with a series of lemmas which give uniform estimates

for W6 - WN and for WN(sx') - WC(sx).

Lemma 3.1. There exist constants C1 = C1 (M) and N1  such

that for N > N1 and small e

W (sx) < Cldist(x,3D) + CI(6+n(6c)1/2), s = t, 9, = 1,...,N, x E D.

Proof. Given x0 E D, let xI be a point of DD nearest

x0 . Choose x2 and (x) = Ix-x2 I l- xx 2 I as in the proof of
Lemma 2.4. Let the minimizing controller use the control zk  chosen

as follows. Given N, divide Z1 = 071 < 1} into nonoverlapping

Borel measurable sets A1 ,...,A, such that each Ai contains exactly

one point zi E Z and max diam A. - 0 as N . LetN l<i<V1

z(x) = z if -Y (x) E A. Since IT I = 1 there exists N1  such
1 x

that

z(x).ix (X) < - , x E D, N > N1 .

We take z* = z( k); since we always take c > 1, zk E Zc. In (3.3)

*k+l Vk + 6z* + (60)1/2

k k k'
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Let the maximizing controller choose to maximize L@kyz)

and let

M k = C 'P(I k) W N(tkPk), if (k D,

where Cl i hsnblo.I (and hence k > F)6 we let

1k = M F + 1  F( +1

For E D, k < N, we have by (3.7) and choice of

W t < E[6 (+ vvL 6l~,vk*I

< <61,1 + E[W N(t k+6,tpk+l )R k],

where IL(x,y,z(x)I < L 1  and ~k = rk--1~-) By expanding

T( ~ by Taylor's formula about l k,

=+)1k +(k 6z (Yi + +((6+(6F~/))

Since zx) (x) M < 1 for all x E D, we have for small

and JE D

E'(Ik+l)I~kI (*k 4

6C1
EIk+lI~k] < Mk 4 1i-+~
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if 4L 1< C. if ( D, then M k+l = M k* Therefore,

E[M k+lI4kI Mk, which implies by iterating

E(M ) MN+l) < MV

Choose C1 > 4L1  large enough that C1 '1(x) -M(x) > 0 on D.

If F =N and Nl E D,



-26-

MN+l I N+1 - M4C*N+Id > 0.

Otherwise,

MN+l 1 q'ip FE > CI['rV - tCF]
M +1 C1 C F1+I C y FE+I FE

since 'F E E D and T'(x) > 0 on D. Since {'x' = 1 we have

in the second case

N+1  l IE - F - -C1 (6 + n(8€)

Since M. Cl1(x0) - W6(s x0 ),

/2) < Cl(X 0) - WN(S,X0 )

Since 'Hx0 ) = dist~x0 ,DD) and x0 E D is arbitrary, this proves

Lemma 3.1.

Remark. Similarly, when e = 0, an estimate

WN(sx) < Cl[distCx,DD) + 6] holds.

1 Lemma 3.2. There exists C2  depending on M and c such

that for small e and N > N1

1W (Sx)- W(sx)I < C2[E1 I2 (T-s) 1/2 + 6 + (6c)11]
N'SX N' -x(1)C21]

s = t1, 2 - I,...,N, x E D.

.. ... ......4.



-27-

Proof. Given (s,x) let r be an optimal strategy for the

maximizing controller in the stochastic game and & an optimal

strategy for the minimizing controller in the deterministic game.

Let G = min(F ,F) with Fc,F as in (3.4), (3.6). The strategy

A is played against r in the stochastic game, giving by

dynamic programming arguments

G
WN ( s , x ) < E{ I 6L(k k z  + G+,+)N k=Z +=9+

Given a vector g = of random inputs to (3.3), the

strategy r/; is played against A in the deterministic game.

We have

G
(**) WN(s,x) I I 6 L(OkYkZk) + WN(tG+IOG+l),

k=k

for each 1. Hence, the same inequality holds if we take the

expectation of the right side.

By (3.3), (3.5)

S1/2
*k+l Ok+l = E/wk

where

k 1/2 k

By (2.1), L(.,y,z) is Lipschitz with some constant K1 , for

j zi < c. Moreover, 0 is Lipschitz with some constant K2.



-28-

Let Ilwil = max{lwk1: k = £,...,N+11. Then

G 1/2k . 6 1 L( k,yk,Zk) - L(Ck,Yk,zk)l < KI(T-s)I liwil,

IMO(PN+l) - M"($N+1)l < MK 2e
1/2 lwli.

We subtract the expectation of (**) from (*), and recall that

WN(tG+1, € G+l) > 0 together with (3.8):

W N(S,X) WN(SX) < (K (T-s) + MK )E/ EwIIj

+ E{WN(tG+I,+1); G < N, 'G+1 E D}.

Now G < N, G+I E D imply fG+I ( D, and

dist(PG+l,9D) < IG+I-OG+ I < £I/2 11w11.

By Lemma 3.1 we have

E{W-(tGIG+; G < N, EGI DI

<ClC1l/2 EIIwil + 6S + n(6 :)1/2 .
i i := ... , forma

Since the sequence of components wk, i = ..,

martingale with w 0 we have [D, p. 311]

Si,2)1/2 1/2

(3.9) El 1w < 2nElw N < 2n(ElwN " = 2n(T-s) .!I
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Therefore, for some constant C2

W E s,x) WN(s,x) < C2 1 /2 (T-s) + C2 (6 + (6F-)1/)

The opposite inequality is proved in the same way, by taking r

optimal for the deterministic game and A optimal for the

stochastic game, and using the Remark after Lemma 3.1.

Lemma 3.3. There exists a constant R depending on M,

such that for small e and N > N1

IWN(s,x) WN(s,x')l < RIx-x'l + R(6 (6e)112

s= t, = ,...,N, x, x' E D.

Proof. Let r be an optimal strategy for the maximizing

controller, for initial data (s,x); and let A be an optimal

strategy for the minimizing controller, for initial data (s,xt),

in the stochastic game. We use the strategies r,A both in the

game with initial data (s,x) and in the game with initial data

(s,x'). Let k1 be the solutions to (3.3) with

(s) = x, I'I(s) = x'. [Recall that strategies are expressed in

terms of past control choices and random inputs, but not in terms
oftestts k ] Lt iiC' FC C'

of the states )'k Let G min(F ,F C where F ,F are the

corresponding stopping times in C3.4). Then
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G
W N(SIx) <E{ I 61L( ktykpzk) + WN(tG+l 41 l 1

k=Z N ..

> E G~ CLI~y~k +W(t ''
WN(s,x') k=E2I6, k'kZO+W G+l' G+l)'

By (3.3), *k - =x - x'. We then have as in the proof of

Lemma 3.2

G

(* N~sx WN~ k=.t SQktyk'zk) - (I'Yklzk)I

+ MK2I-' + ENE( ~,PGl; G < N, P 1~ E D}.

The terms on the right side of (*) are estimated as follows. BY

(2.1) and (2.2), for some A1

ILIk9Yk~zk) - L~t yk'zk)Il + L(iyk'zk))Ix -x'I

Since A is optimal for initial data (s,x'),

E I 6L,( P kkzk) < WNsx)
k= L

If G < N, ~GlE D, then CP D and

dist(* G+l1 aD) 14I'G+1 '*6+l' lx-xi.

On the right side of (*), we have:

1st term < A (T-s+W iC ')I-xI
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By Lemma 3.1

1/2
3rd term < Clix'-xi + C1C64n(6E)l .

Since dist(x,DD) < diam D < , another application of Lemma 3.1

Fives a bound on WN(SX'). Hence, for some constant R

WC(sx) - W(SX') < Rjx-x'j + R(6+(6e) 1/2)

Since the roles of x and x' can be exchanged, this proves

Lemma 3.3.

We will next show that, for fixed c, WN tends to Mc

as N + w. The main step in doing this is Lemma 3.5. To make

the backward induction in that Lemma, we use the following slightly

different payoff for the discrete-time stochastic difference game.

Let D P be the p-neighborhood of D. Let J be an extension

of I c to a cylinder [0,T] x Dp, for some p > 0, as follows:

Ji (s x) - I C(s,x), if x E I ,

J 5 (s,xl+rz(x1 )) = JE(S,X-rz(xl)) + 2rJC(s,x1 )

for x1 C BD, Z(x1) the exterior unit normal to D at x ,Jv

V[
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the normal derivative, 0 < r < P. The function Jc belongs to

C a1 ((0,T] x D ) and to C '2 ((0,T'1 x for any T' < T and

8 E (0,1). Moreover, if dist(x,aD) < p,

(3.11) lJc(sx)l < sP

where S = 3B with B = B(M) as in Lemma 2.4. Instead of (3.4)

we take the payoff

F C

i(s,x) = E{ I SL(W k,yk,zk) + j E(t , C
k= F+I F +1

Let wN(s,x) denote the value of the stochastic difference game

with payoff ie(s,x), x E D. For x E Dp - D let Wi(s,x)

JECs,x). If FE = N and YN+I E D, the last term is M¢PN+l)

as in (3.4). Otherwise, *F E D, u l ( D. By (3.3) and the

fact that In l = 1, zk < c,

dist(F+ FC+I3) < 1 - < P

provided N > N1  where N1  is large enough that

(3.12) c6 + ne 1 / 2 61/2 < p.

By (2.12) (F+1 = 0 if F+ D. By (3.11) we have
FE+l FE+1

for N > N1 , lI -nl < Sp for every pair of strategies r,A.

Hence
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(3.13) iWN(s,x) - WN (s'x)I f SP,

for all s = t, = l,...,N, x E D.

For fixed E and N let

(3.14) qt supi(tX) - tx) .
xED N

By choice of N+l = 0. In Lemmas 3.4 and 3.5, M'cE are

fixed. The constants appearing in those lemmas may depend on

Mc,F-.

Lemma 3.4. There exist SIN such that

1'2

iWcs'x) - P(x)l < SI(T-s) 1/2 + SlP

for N > N2 , 0 < T - s < 1, x E D.

Proof. Consider any pair of strategies r,A for a

stochastic game with initial data s = t£, x = We have, for

some B, 0 < L < B on Q x Y x Z Choose N2 such that (3.12)

holds for N > N 2 Then

"li(s,x) - O(x)l < B(T-s) + MEO(, ) -(x)

,'+ EIJC(t~ ~ ) - Vf0(V, U+1
F +l'* FC+l F +1

The last term is 0 if F = N, *N+l E D; otherwise t( F = 0

! F +I
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and distC*F e+ ,3D) < p by C3.12). By (3.3), (3.9) and the

fact that IzkI _ c,

EI' F {e+ -xi < c(T-s) + 2ne/ 2 (T-s)1/2

Let K be a Lipschitz constant for P. Then, for 0 < T s < 1,

I1e(s,x) - t(x)I < B(T-s) + MK(c+2nel/2)(T-s) + SP

with S as in (3.11). We take

= 1/2
S1 = max[B+MK(c+np ),S].

Since the above inequality holds for any r,A we get Lemma 3.4.

Since J is H;lder continuous on Q, IJE(s,') - ECT,.)I

is uniformly small on D if T - s is small. Since J (T,x) =

o(x) for x E D, from Lemma 3.4 we have the:

Corollary. Given a > 0 there exist k > 0 and N2  such that

q < a if 0 < T - s < k, s = tZ , N > N

Lemma 3.5. Given T' < T there exist constants A > 0,

0 < a such that the following is true: given p > 0

there exists No  such that for N > N0

qX <- (P+A6 )(TI-s) + qrm

for s = t< tm < T'.

. .... " I F

• ]11 I I i -4
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Proof. The function is of class C 1 ([0,Tl] x

for any 0 E (0,1). Let a = a/2. As above we take N > N 2

large enough that, for any x E D, Izi < c, n = (n ,...,n ) with

iTi = -±i,

x + 6z + 61/2 1/2

belongs to Dp. By Taylor's formula

jE-(s+6,(p) = jC(5 ,') + ES' t".

JC(s,,)= J (s,x) + J (s,x)'(-x)
x

n
+ 1 (s'xlC(P-xil 'xJ) + 2+ 1,J=l xx

where for suitable constants AI,A 2

Al61+a, -A2a

1(1l <. A1 ~, I® 2 l < A221P-xl2+2a B =

Since

1Js(s,') " o (s ,x)l < A3 l 2a-xl

we have

J (s+6,) = j (S,X) + 6JsSX) + J (s,x)'( -x)
1_ n C ix i  jx+ 1 J Cs,x) 0 -x )(* -xJ) +

2 xx 3
i,j=1~~
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where

l~a2at 2+2aS@~3[ < A4(6"+6 1* -x 2  + fq-xl

By taking expectations, we have

EJ (s+6'f = JE (sx) + 6[JF (sx) + J (sx)jz

+ X

= + A +0

Now L is uniformly continuous on ff x Y x Z and J Eis

uniformly continuous on Q. By (2.22), given P > 0 there

exist N 0 > NI  and a function y from Q into the finite set

YN such that

L(x,y*(sx),z) + J (sx).z > H (XJe (s,x))
x

for all (s,x) E Q, Izj < c.

If Y < 3

11I 11

IJ-xl y = 16z + C72 flIr < AS(6" + (CJ6Z nl) Y)

and Elnil y = 1, i = 1,...,n. We have

El@031 < 6161+Q + 61+2a + 62+2a].
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For N 0  large enough, 6 < 1 and

I®H < A6 +a

for suitable A.

Since J E= I Mc is a solution of (2.21) in Qwe have for

x E D, Y= y (s,x)

E{6L(x,y*,z) + J (s+6,'P)} > J (s,x) - 6P- A6l.

Let us now estimate q.in terms of q By (3.14)

J (s+6,4' < q x+1 + W N(s+6'P)

if 4) E D. This inequality holds also for 'P(D, since J6 = W

by definition in that case. Hence, for all z E Z c

E{6L(x,y*,z) + W6(s+6,f' >JP)1)-6P-A'a k,

Since satisfies the functional equation (3.7), this implies

jW-(3'X) > - 61.X) A 61 ' -~

A similar argument, choosing z = z*(s,x,y) with values in

zc such that
N0

L(x,y,z *) + j C.z < H (xJ C (s,x)) +Px x
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for all (s,x) E Q, y E Y, shows that

WN (s,x) < JE(s,x) + 6p + A6'"+ qt+1"

Therefore,

qg 6(<+A6) + q+l"

Since 6(m-£) = tm - t£ P< T' - s, this proves Lemma 3.5.

By (3.12) the number P in (3.13) can be chosen arbitrarily

small if N is large enough. By (3.13), Lemma 3.5, and the

Corollary to Lemma 3.4 we have:

Theorem 3.1. For fixed e,WN(sx) I (sx) andN Mc(SX n

WN(sx) - IMc(SX) tend to 0 as N , uniformly for x E D,

s = t,, £ = 1,...,N.

As in [F2 we call I c the lower value of the penalized
Mc

stochastic differential game, for initial data (s,x) E Q. From

Lemma 3.3 and Theorem 3.1 we have the following uniform Lipschitz
E

condition for IMc(s,' ).

Theorem 3.2. There exists a constant R = R(M), such that

for small e

IIMc (sx) - I c.s,x')l < RIx-x'I , x,x' E D, 0 < s < T.

-I
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Theorem 3.2 implies the a priori estimate on the gradient

I(I Mcx I < R.

By (1.8) the minimum over z E En of L + p.z is attained

at z = b + p. Since Ib(x,y)I < B1 , JPj < R implies

Ib+p) < B1 + R. Hence, by (2.11), (2.22)

CH (x,p) = H(x,p), IPI < R, c > E + R.

Let p - )
1 cx, c(M) = B1 + R(M). By (2.7), (2. 9 M) and (2.21)

(3.15) E c>

Mc IM' c > c(M).

Let us now take s = 0. Since b = b(x,y) the problem is

autonomous, and hence this is no real restriction (see, in

particular (2.16)). Lemma 3.2 gives a uniform estimate for

WN - WN, which tends to 0 as N -) ., 0. Since J= Mc

on Q for c > c(M), we have

Theorem 3.3. As E -) 0, IM(0,x) tends to a limit IM(0,x).

Moreover, WN(O,x) - IM(0,x) tends to 0 as N + w, uniformly

for x E D.

As in [F21 we call IM(O,x) the lower value of the

deterministic penalized game starting at x E D. As in §2 let us

also denote this lower value by IMCO,x;T) to indicate dependence

on the final time T. By (2.15), IM is nondecreasing in M, and

by Lemma 2.1, 1M is bounded above for fixed T > 0. Hence,

*1 is
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IM(O,x;T) is nondecreasing in M and bounded above. Let

(3.16) I(0,x;T) = lim IM(O,x;T), x E D.

4. Main Results. In this section, we show that I = -E log q

tends to a limit I as E - 0, and interpret I as the lower

value of the differential game described formally in §H. In

view of (2.16) it suffices to consider initial time s = 0, as

already noted at the end of §3. The discrete time games in §3

then start with t = 1. We recall that the value WN(0,x) of the

deterministic penalized game in §3 depends also on M and c. For

T' < T, let a = T'T 1. In the following lemma, WN (O,x) denotes the

value of the corresponding game in which T is replaced by T' and c

by a-1 c.

Lemma 4.1. Let 1 T < T' < T. There exist constanls RI,NI,*

(depending on T) such that WN(,x) - Wh(0,x)l < RI(T-T') for any
M, N > Nil c > C

Proof. Let 6 = TN, 6' = a6 = T'N For any pair of

strategies (f,A) for the discrete time deterministic game in 3 with

time-step 6, we consider the corresponding strategies (I',A') for a

game with time-step 6', in such a way that

O1k = x, yi = Yk' z= a zk9 k = 1,...

where 0 denotes the state and yl,z the controls for the

latter game. By (3.5) we have 0 = k for all k. We wish to
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estimate the difference of the respective payoffs ir,iR'* By

(1.8), (3.6)

- , 1F6[(1- )Ib + (1-a 1)1 21
2k= 1

where b k b(k k) Since 0 < a < 1, the first term in the

sum is positive, and the second term is negative. Since IbkI <B 1 ,

7r ~ < + BT(l-a).

Since this is true for any r,A, and since Ta TI

(* WN(0,x) f (0,X) + B~ I (T-T').

On the other hand, from (2.2), (3.6), and 0 > 0

~'< n + a IF6 1 k < Tr + (ir+ cT
k~l 1

Wk(0,x) < WN~(0O)+ i4 (NOx) + 2c 2TTy N.

4 Let us show that WN (0,x) < K for N _ N1 t C > C* where K, N1  and

C* dpen ony o T.For hispurose coside an z Ziwi1c* eped oly n . Fr tis urpse cosidr ay 0  N wt

>zl 1/2. Let the minimizing controller use the constant control

z C*ZOPwhere 1c * T > diam D. With this choice, there exists Nl

suc tatexit occurs by step F < N for N > N. Moreover, the payoff

nT satisfies iT< SFL* < TL where L* is a bound for L(x,y,z)

EMMEMI
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when IzI < c*. Let K =TL*. Since TI < T < 2T'

()Wh(0,x) <WN(O~) + L c) (T-T')

By ()and (*) Whco~xI WN(0,x)I < R1(T-T') where R, does not

depend on M. This proves Lemma 4.1.1

We have by Lemma 4.1, Theorem 3.3, and (3.16):

Corollary 4.. IM(O,X;Tl) - (O,x;T)l < R (T-T')

II(O,x;T') -I(0,x;T)I < R (T-T').

By combining results above we obtain the first main theorem.

Theorem 4.1. 1(0,x;T) = ur I (0,x;T) for every x E D

and T > 0. .0

Proof. Consider T' T. By Lemma 2.3 and Theorem 3.3,

for large enough M

e
lim sup I (0,x;T) I I(O,x;T').

Since I < I , for each M

lim inf I E(0,x;T) > lim Ic(0,x;T) =MOx;)

Hence by (.3.16) and Corollary 4.1
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lim sup IC (O,x;T) < I(0,x;T) + RI(T-T')
E+ 0

lim inf I (O,x;T) > I(0,x;T).
E4 0

Since T - T' can be made arbitrarily small, this proves

Theorem 4.1.

It remains to characterize I as a lower value. Let us

discretize time as in §3, and define a deterministic game as

follows. The dynamics are again (3.5), and strategies r,A

are as in §3. However, instead of (3.6) the payoff is now

F
(4.1) 7r(0,x;r,A) = 6L(¢kykZk ) + X

k=l

where x = +0 if F = N and N+l E D and x = 0 otherwise.

Let

(4.2) Vc (0,x;T) = inf sup 7T.(0,x;r,A).
I(A,.c r

The notation JI[ < c means JAkI < c for each k; this is the same

bound imposed in §3. We now write WN(0,x;T) for the value WN(0,x)

for the penalized deterministic game in §3; recall that WN depends

also on M and c.

Lemma 4.2. Let 0 < 8 < There exist c*,M1,N 1 (depending

on T and 8) and a constant L1  such that

WNCO,x;T) < VC(O,x;T) W(,O,x;t) + LI(T-TO)
_( N

N

, ~ .
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for all M > M1 , = N6, N1  A < N, T -T > OT, c > c1.

Proof. The payoff n(= 71 in (3.6) satisfies T 7 .

Hence, we have the left-hand inequality in Lemma 4.2. To obtain

the right-hand inequality, let the maximizing controller choose

any strategy r. We define a strategy A for the minimizing

controller as follows. Let A be an optimal strategy for the

penalized game with N moves. The strategy A agrees with A

on moves 2k, k = 1,...,N. Let F be the first step when

I^ ( D or F = N. If 0_ f D, the choices zk for

F+l F+l

k = N + 1,...,N are arbitrary. If F = N and 4^ E D, then
N+1

I 6 L( kykzk ) + M$( ^ ) < W^(O,X;T)
k=l N+l N

since Ais optimal. Let = 4T diam D. For c>c 1, the

right side is bounded, as shown in the proof of Lemma 4.1. By (2.12)

and the fact that L > 0,

dist(OA ,31D) < CM-1

N+1

for some C. Let A be the c-neighborhood of 3D, for suitable

CL < OT. We choose a small enough that, for every x E A, there

exists z(x) 6 Z2 such that x + sz(x) D for some s > 0, s < a.

t M1 C -t When F N and E CD, then E CA for M > M1
N+l A N+1

In this case, let Zk ( ) for k = N + 1,...,N. For N large,
N+l

the first F when *F+l * D satisfies F < N since T - T > 8T > c.
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If D, then F =F. Otherwise,

6(F-F) f 6(N-N)= T.

When Izi ~ 2, L(x,y,z)I L1  for some Ll. Then

F F
7T. I L(O klyk z k) + L(O klyk~z(p )

k=1 kF1N+ 1

<W (O'x;T) + L1 (T-T).
N

For this strategy A,

sup 7T,,(O,x;r,A) < WA(O,x;T) + L(-)

r N

which gives Lemma 4.2.

The function V C in (4.2) is clearly a nonincreasing function
N

of c. Let VN = lrn V N Then

(4.3) VN(O x;T) =inf sup iT(o,x;r,A)
A r

where the strategy A for the minimizing controller is now chosen

without the constraint JAI f c. Let y = (yl1 IY2 *' '"N denote any

sequence of control choices for the maximizing controller, Yk E £

Thus y N is an open loop strategy. Then
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vc(Dx;T) inf sup 3T.(O,X;yN PA)
YN~,XJ =IAc N

(4.4)y

V N(O x;T) =inf sup (O,x;y NA).

y

To see this, clearly >holds in (4.4). On the other hand, any pair

of strategies r,A and initial state x define sequences y,z with

r y1  and

- A'(yl), yz = r2 (z 1), z2 = A2 (y1,Y2) ....

NN

be such that 7T(z) =z if z E ZN (recall that ZN ZN l zj < c).
N NN N

Given a sequence z N (z 1,.. .,z N)' let 'k = 7IN(zk) . Given a strategy

A = (Al,...,AN) let A=(' ,N) where =k N eAk. As in (3.5)

define k" k by

k+1 k dk, k+l k + 6 k, 1 = 1 =X

For I < F < N, we use the notation

max
=111 1<k<F+l I

Lemma 4.3. Given K > 0 there exists B =B(K) such that

F Z tz 1j2 < K implies 11 41IIF < 2Kc 1l and
k!16
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F F
26L(,k k  I 6L(kk, ) + Bc - 1 .

k=l k=l

Proof. Let A = {k: IzkI > c} and JAI its cardinality. By

Cauchy's inequality

c61AI < E dIZk1 < (61AI) 1/2K"/2,
A

and therefore 61A I <Kc
- 2

I 6lik1 I 6I zkI < Kc-1

A A

Since IikI < IzkI

I1<- (E 61z-ik) 2  < 61AI 1 61zk- k1 2

2 2

461AIK < 4K2c2

This proves the first assertion. From the definition (1.8) of L and

kI < IzkI,

F
I [6L( k,yk,zk) - 6L(Ok,yk, k)1

k=l

1 F k12  Ibkl - F
> Olb k 6(b~z k -k kk

1k=l k=l

where bk = b(k'yk), bk = b('k'yk)" Now b(xy) is bounded and

Lipschitz in x. Hence lb1 2  is also Lipschitz in x, and for

suitable B1
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F - 2) >I .B K-1
F lb-k1  ISkl) >-BIII¢-IIF. -2B1Kc

k-i

F -1
£ 6bk(zk-zk) < B1 X 61ZkZkl < 2B1 Kc

k-i A

F FI6(bk- bk) zk < B11I -"11F 1ik= 1

k=l k=1

-*2 c 1.T1/2. K1/2< B1 2K

In the last step we have used Cauchy's inequality and IZki < Izkl.

By combining these inequalities we get Lemma 4.3.

Lemma 4.4. Let 8 > 0. There exist NI,cI,B (depending on T

and 8) and L1 , such that

Vc(0,x;T) < VN(Ox;T) + Bc 1 + LIOT
N

if c > c1 , N1 < N < N, T = N6, T - T > 8T.

Proof. By (1.8) given K1 there exists K such that

F K 2
I 6L(OkYkzk) < K, implies £ 61Zkl < K.

k=l -k=l

Let K1 > VN(O,x;T), and consider any strategy A for the game with

N
N steps (2N moves) such that for any open loop y (YI ... YN)

F N

k1 i 6L (Ok yk Zk) - (O x ;y .A ) K 1.
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As before F is the step at which exit occurs (or F = N). We must have

€F+1 D even in case F = N, since otherwise no, = . For the game

with R steps we define a strategy Z with [JE < c as follows. For

1 < k < F, let Ak = NoAk be defined by truncation. If DF+l ,

the new game stops after F < F steps. Suppose that FF+I E D. Since

OF+1 D, by Lemma 4.3

dist( F+l' D) < 11"11[ F < 2Kc-i.

As in the proof of Lemma 4.2 let A be the a-neighborhood of aD,

where a < BT is sufficiently small. Then *F+1 E A for large

enough c. For k = F + 1,...,N, let Zk = !('F+l )' where z(x) is

defined as in the proof of Lemma 4.2. This defines the strategy A.

For large enough N1, i. 4 D where 6(F-F) < OT. For each open loop
N F+l

y we then have

7T (O,x;yN,A) = 61( k,Yk,i k ) + F6L(ikyk, ('F+l))

k=l k=F+l

Let L1  be as in the proof of Lemma 4.2. By Lemma 4.3
1P

TrNF -1
.(O,x;yA) k £ 6L(Ok,yk,zk) + Bc + L1 OT

Nk-l

= 1T(O,x;y ,A) + Bc -1 + LIOT.

Hence,
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V c (,X;T) < sup ff (O,x;yN,) <N

su VN(OOXx N_6 c- TyN

sup 7ro.(O x;yN,A) + Bc- + L1 8T.

Since the inf over A of the first term on the right side is

VN(O,x;T), this gives Lemma 4.4.

By exactly the same change of time scale argument as for Lemma 4.1:

Lemma 4.5. Let T < T. Then there exist R1,NIc such that

Vc(0,x;T) V~c(0,x;T)l < R (T-T)

for all N > N1 , c > c

Theorem 4.2. VN (O,x;T) I(0,x;T) as N .

Proof. For each M and c > c(M) Theorem 3.3 implies

IM(O,x;T) = urn WN(0,x;T) < lim inf VN(O,x;T).
N-)-* N-oo

Let 8 > 0. Choose N, T i46 as in Lemma 4.4 such that

T <T- T < 28T. For c > cI , N > N1

vC(ox; ) < VN(Ox;T) + Bc + L1 OT.

By Lemma 4.5, for c > c*



IVt(O,X;i) -VC (O,x;T)j < R (t-T) < 20TR.

Therefore,

M(O,X;T) < lrn inf VN(Ox;T) +Bc
1 + OT(L +2R1 ).

However, c is arbitrarily large and 0 arbitrarily small. From

(3.16) we then have

I(O,x;T) < lirn inf V N(O,x;T).
N-~oo

To prove the opposite inequality, let 0 < 1 For N large

we can choose T = ~as in Lemma 4.2 with T <T -T < Z6T. Then

VN(O,x;T) < Vcj(0,x;T) < W (0,x;T) +L 1(T-T).

4 By Lemma 4.1

IWA(0,x;T) - W,(0,x;T)i < R1 (T-T)
N N

provided 6 = TN1  is small enough that N > N1. Since T -T <20T,

Theorem 3.3 implies

lim sup V N(O,X;T) < lim W (O,x;T) + 20T(R 1+L1 )

I M(O,x;T) +* 20T(R +L1 )

for c > c(M). Since 0 is arbitrarily small andIM i
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lim sup VN(O,x;T) < I(O,x;T).

This proves Theorem 4.2.

Theorem 4.2 justifies calling I(O,x;T) the lower value.

Concluding remarks. It should be possible to show that

I(s,x;T) = I(O,x;T-s) satisfies for almost all (s,x) the

Isaacs equation, which is the first order equation obtained

from (2.7') when e = 0. However, we have not done so. One

could perhaps show that I(.,.;T) is Lipschitz for s < T' < T,

and then use an argument like the proof of [F2, p. 1005].

The lower value I(0,x;T) is a nonincreasing function

of T. Let

I*(x) = lim IfO,x;T).
T-wo

It would be interesting to investigate various properties of

I*Cx). For instance, is I(O,x;T) = I*(x) for some finite T?

That kind of result is suggested by examples treated by the

method of characteristics for the Isaacs equation.

.. .!I.i "2.. .. . . .. . .. _ i I , ., .,
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