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This report provides a detailed description of the methods

used in the computer program CHAOS for calculating radar cross-sections.

1. INTRODUCTION

The object of this report is to provide a detailed description

of the methods used in the CHAOS computer program for calculating radar

cross-sections. The program is written in FORTRAN.

The various physical approximations are described. 4.--

Aactie-2-- These help to simplify Maxwell's equations. At first sight

these would appear to limit the scattering bodies to open wire

structures; however, extensions to surfaces both open and closed follow

by further approximation (se ton5.. The numerical methods used to

solve these equations are described i* se.tiso .

The problem of wire junctions is tackled in section 4 while

section 6 deals with finite conductivity and shows how lumped loads may

be attached to the structure. Some special techniques for dealing with

bodies having rotational or left-right symmetries are described in

section 7. Sections 8 and 9 briefly describe the sparse matrix

approximation and the complex frequency version of CHAOS respectively.

Three appendices are also provided. Appendix A deals with the

formulae used Jo calculate the impedance matrix elements and gives
reasons for various restrictions regarding segment length and radius.

Appendix B describes the conventions adopted throughout the programsme

concerning coordinate systems and polarisation. A list of frequently

used symbols is given in appendix C.
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2. THE DERIVATION OF THE CHAOS EQUATIONS

2.1 Maxwell's equations in the frequency domain

We start from Maxwell's equations. These are:-

Faraday's law of induction:

8BV^E .f - -, .... (1)

Gauss' law:

V.D f 0, .... (2)

Maxwell's generalisation of Ampere's law:

8DV^H - + J. ..... (3)

and finally

V.B 0. .... (4)

In these equations the symbols have the following meaning:-

E complex electric field,

D complex electric flux,

H -complex magnetic field,

B - complex magnetic flux,

J - complex conduction current,

p - complex electric charge,

t - time,

and the rationalised system of MKS units has been used. At this point we

have the choice of working in the time domain, so that we can deal with an

initial pulse which is some arbitrary function of time, or of specifying

some particular time behaviour. We choose the latter and assume a time

variation of e i t where w is the frequency of the electromagnetic wave.

This is known as working in the frequency domain. Thus, this type of
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approach is ideally suited to calculating radar cross-sections for

radars of the continuous wave type. For radars which send out short

pulses containing components spread over many frequencies# it is

necessary to Fourier analyse the pulse and do calculations for all the

frequencies in the pulse before combining together to get the scattered

field and radar cross-section. Despite the apparent clumsiness of this

approach, it appears to be more reliable than working directly in the

time domain.

By specifying that all the quantities in Maxwell's equations

have a time variation e i t, we obtain

V^%E=- iWB }
-E- - w

V.D- p - } (5)
VAH= iWD + J I-- --

V.B=0. I

2.2 Homogeneous materials assumption

There is a relation between the variables D and E and another

relation between the variables B and H. It is known that for some

materials these pairs of variables are linearly related and we have

D CE,

B - H,

where C and .i are scalars called the dielectric constant and perme-

ability respectively. For homogeneous materials C and U are independent

of position in the body. So equations (5) reduce to

vAE_- ll I )I
V ""

V^H =WE + J

V.H 0. }
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2.3 Helmholtz's equations for potentials

From the last of equations (6) we have

H V^A, . (7)

where A is the magnetic vector potential. The first of equations (6) may

now be integrated to give

E = - iWA -(8)

where $ is the electric scalar potential and is, at present, some

arbitrary function. By substituting in the remaining two equations we get

the Helmholtz equations:-

.. .(9)V2 A + k2 = - p/,

where k2 = w2e and we have chosen to impose on 4 the so called Lorentz

condition

V.A (0- i) .

2.4 Solution of Helmholtz's equations for conductors

Now we can formally solve the Helmholtz equations and since for

conduztors it is known that the current J and charge p reside on or very

close to the surface, the vector equation gives

-ikR
A(r) I = (r') e--1 -R ds i )

where R is the distance between the observation point r and some point r'

on the surface of the conductor. The scalar equation gives

Or , ) e-ikR
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In both these expressions ds' is an element of area of the surface of the

conductor and the integrations are over the whole surface. There is one

further equation relating the current J and the charge P which is the law

of conservation of charge obtained by differentiating the third of

equations (5)

V.J=- iP..... (13)

2.5 Boundary conditions

At a boundary between two different materials, the following

conditions are observed:-

(E(0) _ IF(2) )^-n 0,

(1 (2)

n.(1(1) - D(2)) = PS,

_ (H H ()) = I,...(4

n.(B(1) _ B(2)) = 0,

where the superscripts (1) and (2) refer to the fields on either side of

the material boundary, and n is the unit normal to the surface pointing

into region (1). Here ps and Js are electric surface charge and current

respectively. Since we are solving for the electric field it is the first

two which concern us.

2.6 Thin wire approximation

The integrals in (11) and (12) can be further simplified by

assuming that we are dealing with thin wires rather than surfaces. While

this may appear to restrict the program to dealing with wire structures

only, we shall see in section 5 that surfaces can be modelled by wire

meshes and this appears to be the best method available for dealing with

arbitrarily shaped surfaces of finite conductivity.
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Following from the thin wire assumption, we assume that the

circumferential current is negligible and replace the axial surface

current and the surface charge by a line current, 1, flowing along the

wire axis and a line charge Y. So we have

I - 2 aJ, .... (15)

o = 2nap, .... (16)

where a is the wire radius. This leads to

-ikR
A(r) =p f _1(1') ) d', .... (17)

wire 4 R

-ikR
- wire d' .

aft) V.I(L) id 1().(19)

where L is the measure of length along the wire. We only try to satisfy

the boundary condition on the axial component of the electric field:-

( ) - E(2)) = 0tan -tan) .... (20)

where the subscript tan denotes the component of the electric field

parallel to the wire axis.

2.7 Currents due to plane wave excitation

Let us now assume that the scattering body will be illuminated

by a plane electric wave, Ei, of known amplitude and polarisation. Then

the total electric field may be written

E = E i + Es . (21)

where E is the unknown electric field scattered from the body. Bearing

in mind equations (8), (17) and (18) let us write

p



SL
E =- A 8 .... (22)

-ikR
e .(2ir3)w

A 8 (r) - f I(L') e d9, ...
- - wire -

I8( =- ~,)e'ikRU...(4
- wire dr. ... 24

It will be noticed that the superscript s has been omitted from I and a in

equations (23) and (24). This is because a plane wave satisfies Maxwell's

equations (6) with p w 0 and J = 0, so that the whole of the current and

charge distributions induced on the body's surface by the incident plane

wave contribute to the scattered fields as one would expect.

The boundary condition (20) may be written

i + E(2) 0. .. (25)
(Etan + tan --tan)""

2.8 Equation for the currents

We use equation (25) because this relates the scattered field
iIon the body surface to the incident field E and the field inside the

(2) (2)wire E For a perfect conductor E is zero while for a wire of

finite conductivity, it may be calculated approximately and in section 5

an expression of the form

E ()=Z I...(6.-tan W-

will be derived where 2 is the known impedance matrix of the wires.

So by substituting equations (19), (22), (23), (24) and (26)

into equation (25) we obtain an equation for the currents I of the form

ZWI -tan if ' +- V ( r) dX'. .... (27)wire. "" "t4n

This equation is sometimes referred to as the potential integro-

differential equation to distinguish it from other variants such as

Pocklington's equation, the magnetic vector potential equation and

Hallen's equation.
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3. NUMERICAL REPRESENTATION OF THE PHYSICS

3.1 Representation of the currents

We now expand the currents in terms of a finite series of known

basis functions with unknown amplitudes. If we were dealing with a single

wire, the obvious choice would be a set of whole wire functions like, for

instance, a Fourier series expansion. However, we wish to be able to deal

with bent wires and arbitrarily shaped wire meshes so it is more useful

to divide the wires up into a series of short segments and define a set of

functions each of which is non-zero over a few segments only.

We choose triangle functions as used by Chao and Strait (1],

Mautz and Harrington [2] and Kuo and Strait [3]. As shown in figure 1(a),

each triangle function, Ti, is based on four segments and overlaps its

neighbour by two segments. It is of unit height. Thus, we expand the

current as

N

-- . i=1 .- (

where N is the number of triangle functions needed to cover the wires. In

this way a piecewise linear approximation to the currents is obtained as

depicted in figure 1(b). The amplitudes I. are the unknowns which we

require to find.

Other commonly used basis functions are step functions,

sinusoidal functions and a three term function consisting of constant,

sine and cosine terms.

3.2 Choice of weighting function

Since we have chosen a finite number of basis functions T. (i

I, ... N), we need to derive N equations from equation (27) to enable us

to solve for the unknown amplitudes I.. We do this by multiplying
i

equation (27) in turn by N weighting functions and integrating over the

wire length. These weighting functions could be the delta function
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positioned at the centre of each triangle function and in this way we

would satisfy equation (27) exactly at these points. However, the

solution could be badly in error away from these points and it has been

found better to use the basis functions as weighting functions. In this

way we do not satisfy equation (27) exactly anywhere, except by accident,

but we minimize the overall error of the solution for the current in the

least squares sense. This latter scheme is known as the Galerkin

procedure, while the former is called point matching or collocation.

There is an added attraction to the Galerkin procedure in that the

resulting matrix of impedances is symmetric as will be seen shortly.

Thus, only half the matrix need be stored in the computer and the

principle of reciprocity is automatically satisfied. This is not the

case for any other set of weighting functions.

3.3 Form of impedance matrix

By substituting (28) into (27) and carrying out the Galerkin

procedure we arrive at the set of equations

N
SZ. .i. = V., j N ... (,..1:1 .3 1 .(29

where the impedance matrix is given by

z. fi d!Z T (9)T ( .) + iwi f dft f d VT () .T (' ) e .... Iwires wires wires R 4WR

~dT.(R.) -ikR
f dtT.().V f di' d. e
wires wires dR,' 47r- .... (30)

and the excitation voltages are given by

v. = f d1T.(Z).E (
J wires -3 -tan

From the form of the last term in equation (30) it appears that Z j is not

symmetric. However, we can manipulate the last term to obtain

12



dT.(W) -ikR
L f dtT.().V f dL.' e
OF wires - wires _ dT 'ilR

i dT. ') -ikR
f dT .(L) f dt. I e

E wires J wires

tdT W') -iki

S. wires wires
wires0

Now the first term is zero because the currents at the free ends of the

wires are assumed to be zero. Thus, Z.. can be written
J1

Z.. f dZ .T.(ZV.T.(k)
J1 wires CO-3 -1 .... (32)

+ i f dA f d'[J(T.t).Ti(V') - d T() d T( eikR
wires wires LC d- T-id- i -R

which is symmetric in i and j which means that the principle of

reciprocity is automatically satisfied. At first sight it may appear that

equation (32) is only valid for a set of unconnected wires with both ends

free. However, once the method of joining wires together is described (in

section 4) it will become clear that (32) holds for any wire structure.

It is perhaps worth pointing out that if we were using a

surface patch approximation rather than the thin wire approximation, the

impedance matrix analogous to that given by equation (30) would be

unsymmetric even if Galerkin's technique were used. It is not possible to

devise an equation analogous to equation (32) because the current at the

edge of a patch is not necessarily zero. Thus, to get a symmetric matrix

one must work this in from the start by using the principle of

reciprocity. This is the approach adopted by Richmond [4] in his thin

wire treatment.

In CHAOS the voltages given by equation (31) are for plane wave

excitation. It would not be difficult to modify this equation to cope

with a point source, as is seen in antenna problems, so that radiation

patterns could be calculated rather than radar cross-sections. However,

this has not been done.
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3.4 Matrix factorization

Equation (29) for the unknown current amplitudes is solved
using the Harwell matrix factorization routine NA29 [5] modified for

complex elements. The method is due to Fletcher [61 and the factorization

takes the form

Z = LDLT  .... (33)

where L is lower triangular and D is block diagonal, the blocks not

exceeding 2 x 2 in size. As a check on the reliability of the factori-

zation the ratio of the maximum and minimum elements of D is examined.

For a 2 x 2 block in D the square root of the determinant of the block is

used. It has been found that if this ratio exceeds 20000 when using a 32

bit computer word length, then the factorization may be unreliable. The
matrix Z should be properly scaled and this is usually done automatically
by the CHAOS program. '

In section 4 the various different wire junction treatments

are discussed. Some of these give rise to unsymmetric matrices. For these

cases the Harwell routine MA23 [7] is used to factorize the matrix as

Z - L.U, .... (34)

where L is lower triangular and U is upper triangular. The reliability of

this factorization is checked by examining the ratio of maximum to

minimum elements of the diagonal of U. If this exceeds 20000 using a 32

bit computer word length, then the factorization may be unreliable. Again

the matrix Z should be properly scaled.

In those cases where the ratio exceeds the value 20000, the

calculation is imediately terminated and nothing can be done to get

answers, except by modifying the computer program. This latter is not

advised.
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3.5 Calculation of electric fields

Once the current amplitudes I.i of the expansion (28) are known,

we can find the charge distribution from equation (19) and the scattered

electric fields at any point in space from equations (22), (23) and (24).

The calculati-i of fields far from the scatterer leads to some simplifi-

cations in these expressions. From figure 2 we see that the distance R,

which is the distance from a point on the wire scatterer to the

measurement point (receiver), is just

R2 = r2 + r2 - 2r r cos .... (35)
r n r n n

where r and r are the distances from the origin to the point n of the
-nt -r

scatterer and to the receiver respectively while &n is the angle

subtended by these two points at the origin. In radar cross-section

studies, for which CHAOS is designed, the distances R and rr will be large

so that we may expand R,keeping terms to 1/r only, to get from equations
r

(23) and (28)

-ikr
e r N)ikr cos

A(r = 1.) cos d, .... (36)
- -rr ii wires

(r ) 0... (37)

r
r

Thus, the components of the far electric field in a spherical coordinate

system become

Er - o(1 2 }
r r r

_- iWA68,

iE - WAS~-- A5 . }

The transverse component of the electric field at large distances is

- ikr
8e r ikr cos . (9

E.u IPr - Ir Ii J u .T.(t)e d9, .... (39)
= -r 411rr 1i1 wires -r -1

where ur is some unit vector transverse to r r , the direction of the

receiver.
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The program could be modified to give near fields as well as

far but this has not been done. Should it ever be attempted in future,

the fields close to the structure will exhibit singularities and may be

unreliable since the charge distribution on the wire structure goes

through a discontinuous change at the start and end of each triangle

function. It would be necessary for very careful thought to be given to

the problem of avoiding wrong results due to these discontinuities. It

may only be possible to obtain fields on a grid of carefully chosen

points close to the structure with interpolation being used for points

not on the grid.

3.6 Radar cross-sections

The radar cross-section g(e, ) is defined as the area for which

the incident wave contains sufficient power to produce, by omni-

directional radiation, the same back scattered power density. So we have

4wr l.U 12
g(e ,$) ---.... (0
oo)M-n P. ,

in
where the power of the incident wave P.i is

in n (41)

1
=-for a unit plane wave,

where n .... (42)

CHAOS will accept any polarisation, linear, elliptic or circular, for the

incident plane wave and will calculate the radar cross-section for a

receiver having any linear, elliptic or circular polarisation. The

receiver need not be in the same placekas the transmitter so that CHAOS

will calculate bistatic as well as monostatic radar cross-sections.

3.7 Numerical evaluation of impedance matrix elements

The numerical evaluation of the impedance matrix elements

given by equation (32) needs some explanation since the integrand

contains a singularity and involves a double integration. Let us write

Z.. as

16



I .Z. .. + . . . ...(43)
-1i 3

where Z.. I iwij f dt f dV'T.().T.(Z') e-(kR

E I d d - ik R

Z ii IN --- f UJ f dt ' dT T€ • ( -0"w TO(O') ! ''"(4)wires wires

Z Id ff d£Zi:j()T') .... (46)

ji wires w 1

The three terms are due to the magnetic vector potential, the electric

scalar potential and finite conductivity respectively which accounts for

the superfixes of M, E and C. As each triangle function T. is non-zero

only over four segments (see figure l(a)), the integrations reduce to

integrals over at most eight different segments. These are replaced by

sums over these segments by representing the basis function and its

derivative by a sum of four step functions, as illustrated in figure 3.

The weight function and its derivative are replaced by a sum of four

impulses, as shown in figure 4. This enables the double integrals in

equations (44) and (45) to be replaced by a sum of sixteen terms as

follows:-

H t. tin * in .... (47)

31 I I: n Jm in ja m

m~a, n-1

wre 13. is the anr~~ prduc been evectrs nthe drecionsh

Ejm - r.,, and r.1+ - r.i and where r.j is the vector from the

origin to the start of segment m under triangle function j. This notation

is illustrated in figure 5. Finally, the * function is defined as

in NO 1 1 1ii-I +n I e-ikR
jm 41T(i+ n - 2i2  d' , .... (49)

2i- 2+n

in which R is the distance between the field point adjacent to the

midpoint of segment m under triangle function j and the source point on

the n th segment under triangle function i. The index m causes the

17



summation to extend over the four segments forming the base of triangle

function j while the index n causes the summation to extend over the four

segments forming the base of triangle function i. The formulae used to

evaluate the integral in equation (49) have been derived by

Harrington [8] and are tabulated in appendix A.

The alert reader will have noticed the use of the rather

imprecise term "adjacent" in the previous paragraph. The integral in

equation (49) contains a singularity when the field point coincides with

a point on the line source. In order to remove this singularity, it has

generally been decided to consider the line sources as situated on the

axes of the wires while the field points are situated on the surfaces.

The position of the field point on the wire surface is illustrated in

figure 6 and is determined as follows: a line is drawn from the source

point to the axis of the wire on whose surface the field point is to be

situated. At right-angles to both this line and this axis, another line

is drawn. This line cuts the wire surface in two points. One of these

points is taken as the field point; while there is still ambiguity in

which point is the field point, there is no ambiguity in the distance R.

1. is the same from both points. In the degenerate case of a field point

on the same segment as the source, any point on the circumference will do

and each point gives the same distance R.

For two reasons the impedance matrix calculated in the manner

described here will no longer be exactly symmetric. The first is that the

mathematical representation of the weighting function (shown in

figure 4) is different from that used for the basis function (shown in

figure 3). The second is the method of avoiding the singularity in

equation (49). Harrington [2] has found that little difference is made to

the radar cross-sections by averaging the off-diagonal elements of the

impedance matrix. This has also been confirmed by our own calculations

and this averaging is usually performed by CHAOS although the unsymmetric

matrix can be used if desired by specifying the appropriate option. The

advantages of symmetry are substantially reduced computer storage needs

and the exact satisfaction of the principle of reciprocity.

18



3.8 Numerical evaluation of the voltage vector

The numerical evaluation of the voltage vector given by

equation (31) is straightforward. In the CHAOS program the source is

assumed to be a plane wave of the form

Er E e - ik. r  (50)E'(r) wEe --...

The form of I determines the polarisation of the wave as described in--o

appendix B. The weight function is represented by a set of impulse

functions (as in figure 4) and so we get

V.= A.-.E k. (r. .+r. )/2
V. =  T. A..-E e - -k.r im+1+ -j~m)/ .... (51)

J m=1 jm-jm -o

where A. is the vector representing the length and direction of the mth
-Jm

segment of triangle function j.

4. JUNCTIONS OF WIRES

There are two conditions that must be satisfied at a junction.

The first is Kirchoff's law which states that the sum of the currents

entering a junction equals the sum of the currents leaving the junction.

The second states that the scalar potential is continuous across the wire

surfaces at the junction. Kirchoff's law is relatively easy to satisfy

but the condition on scalar potential has not been satisfied in any

computer program known to the author. This is because the unknown

variables in method of moments solutions are the currents and their

derivatives, the charges. Thus, we really need a condition on the charge

not the scalar potential. It is possible to write down an analytical

expression for the charge but it is not very suitable for a computer

program. So various authors have put forward a variety of approxi-

mat ions.

Two in particular have been picked out and programmed into

CHAOS but neither is entirely satisfactory so an approximation based on a

combination of these two methods has also been programmed. Three other
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ideas have also been tried out but are only of limited use. In none of

these methods is it necessary to place further restrictions on the length

of segment or radius of the wire abutting the junction than those which

must be satisfied at any point of a wire, as described in appendix A.

4.1 Chao and Strait's method

The first approximation is used by both Chao and Strait [I] and

Richmond [4]. Suppose N wires meet at some junction, then Kirchoff's law

is satisfied exactly by overlapping wire i by two segments on to

wire i - 1, except that wire I is not overlapped on to wire N. This is

shown in figure 7(a) for three wires. This allows extra triangle

functions on wires 2 and 3 which straddle the junction (these are

labelled I and IT in figure 7(a)). The total current IM on a segment

adjacent to a junction is the sum of the current on that segment and the

extra overlap segment if it exists. The line density of charge is

obtained from equation (19) which is

aC ) i d (M)
dt

As the wire connection data are read in, the program records in

an array the wire numbers of all wires that enter each junction in the

order in which they are encountered in the input data. This is slightly

modified for problems with rotational symmetry (see section 7).

An aspect of this overlapping wire method that does not appeal

to a mathematician is the asymmetry and arbitrariness introduced by

having to choose one wire at each junction to have no overlap and by the

choice of which order the remaining wires overlap each other. Two

different people setting up the same problem will not necessarily number

the wires and junctions in the same way so that a different set of

overlaps will result and a different set of triangle functions will be

set up. But the sum of the appropriate two triangle functions on a

segment adjacent to a junction will still give the same total current -

at least to within the accuracy of the calculation. This objection has a

practical effect when dealing with a structure having left-right symetry

or N-fold rotational symetry which is discussed further in section 7.
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The only satisfactory way of removing this ambiguity is to do

away with overlaps completely. However, this means an extra constraint

(representing Kirchoff's law) must be introduced and this leads to an

extra row in the impedance matrix whose elements may be of very different

magnitudes since they do not represent impedances. Also for a triangle

function basis, one must introduce right-angled triangle functions at

the ends of each wire which complicates the programming. Thus, in CHAOS

we generally use overlapping triangle functions and live with the

arbitrariness. These overlaps are worked out automatically by the

geometry package in the CHAOS program and the program user need not worry

over this.

4.2 Sayre's method

The second method has been suggested by both Curtis [9] and

Sayre [10J while an improved scheme has been put forward by King [111

These methods all involve charge redistribution. One starts from

equation (19) and at a junction of N wires integrates this over a small

volume surrounding the junction. This volume is defined by the ends of

the N segments abutting the junction. Sayre makes the assumption that the

line density of charge is constant over these N segments and arrives at

the expression

N
a( .)

.... (52)

1=1

where , is the position of the other end of the segment abutting the

junction on wire W . and A . is the length of this segment. Now because of1 0Wi

the overlaps used to satisfy Kirchoff's law, there would appear to be

2N - 1 segments abutting a junction of N wires. For the purpose of

representing this average charge, the N - 1 segments due to overlaps are

ignored and no charge is spread over them. The charge is then spread

uniformly over the N segments adjacent to the junction which were on the

original wires.
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Curtis's scheme made the assumption that the surface density

of charge was constant, while King, working with a tapered wire, produces

two formulae, one for short wires the other for long ones. In the limit

of wires of equal radius King's formula reduces to Sayre's showing that

there is some justification for assuming that the line density of charge

is constant. However, King's scheme has not been programmed because it is

known that Sayre's treatment does not always give acceptable results for

junctions of wires of equal radius.

4.3 50/50 method

Since neither Chao and Strait's nor Sayre's methods always

give acceptable results, a new scheme was tried. It has been noticed that

when Chao and Strait's method disagrees with experiment, Sayre's method

usually gives acceptable results. The converse also appears to hold.

Thus, it was decided to calculate the charge by both methods and combine

them with equal weight to give the formula

T 1-
1a(R.) + 1a. (3

Thus, in calculating the charge, one is taking account of both the

individuality of the wire and of the aggregate of wires meeting at the

junction. No attempts have been made to optimize the expression (53) by

choosing different weightings (eg, 30/70, 80/20, etc).

4.4 Other methods

It has been noticed that the Chao and Strait method is

generally better for wire meshes representing solid surfaces while the

50/50 method is generally better for junctions of actual wires. For these

reasons an option is provided in CHAOS which allows certain junctions to

use Chao and Strait's methods and others to use the 50/50 method.

In another scheme the currents on all wires entering a junction

are forced to be zero. This means that the overlapping segments are not
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required. Sayre's method for charge redistribution is used.

Surprisingly, this scheme gives good results for some geometries;

however, its use is not recommended.

Finally, a more promising method without overlaps is

programmed. In this scheme, each triangle function abutting a junction

of two or more wires was replaced by a step function on the two segments

adjacent to the junction, as shown in figure 7(b), while Sayre's charge

redistribution scheme is used. The saving in matrix size gained by the

simpler junction treatment was offset by the need for more segments along

each wire. The method required 6 and preferably 8 segments between any

two junctions whereas the 50/50 method only needed 2 on the same problem.

Also Kirchoff's law is not satisfied exactly so, for these reasons, the

method has not been pursued but it has been left in the CHAOS program.

4.5 Effects on impedance matrix elements

As the Chao and Strait junction method does not involve charge

re-distribution, it does not affect the way the impedance matrix elements

are calculated, but all the other methods do. Of the three terms that the

impedance matrix elements have been split into, it is only that due to

the electric scalar potential that is affected. The factor (d/dt')T.(W')1

in equation (45) and t! in equation (48) need to be replaced. In orderin

to see the form these take let us suppose that at some junction of N

wires, triangle functions J, to JN are directed out of the junction (ie,

leave the junction), K, to KN I straddle the junction (ie, are overlaps)

and L, to L are directed into the junction Cie, enter the junction). As
N2

N wires meet at the junction, Ni + N2 = N. Now the current leaving the

volume surrounding the junction (as defined in section 4.2) is given by

N
IWIM

1=1

K L
NI N-I N2

T.( j + (T.(Z 2 j+ 2 ) T.( 2;))Ij - T j(Z2j+2)Ij"J=J. JK 2 jL 1 L

.... (54)
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From the form of equation (54) it is clear that the modification will

affect 2N - I columns of the impedance matrix since for Sayre's method

equation (45) becomes

E 1 -ikR

zE..I 1-I f dt f die - d T.(k)
ji M W wires wires

, d .(t')I. + b(t') I
x {a(t')d T i + -}, .... (55)

where I is given by equation (54). The a( L ') and b( t ') are defined by:-

i normally,
a(V') = (

( 0 if ' is on a segment adjacent to a junction,

( 0 normally,
bCL') = (

( I if V2 is on a wire segment (not an overlap segment)

adjacent to a junction.

This formula, equation (55), is not quite general since a triangle

function can leave, straddle and enter three junctions (see figure 8)

although only two junctions will contribute to the average charge since

we have decided not to spread any charge on an overlap segment (section

3.2). So a further term in the curly brackets is required similar to the

b(W') term but referring to this second junction.

The equation corresponding to equation (48) is

E 1 in
Z.I i T- ! {a t! I. + b.(n)Q}*, .... (56)

m=1n1 m 1 i 1 jm

(2. -t ) JL N
where Q = 2-+n 2i-2+n[ t I I .+ . ( , i

2N j jL 
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The terms involving the K type triangle functions (ie, those that

straddle the junction) are identically zero because the program, as it is

at present setup, makes all segments between any two junctions equal in

length. Should this be changed in future, then an extra term will need to

be added into equation (57). From figure 9 we see that:-

a.(n) = I normally,
1.

= 0 if triangle function i leaves a junction J and n = I

(cases (i) and (ii)),

= 0 if triangle function i straddles a junction K and
n = 2 or 3 (cases (iii) and (iv)),

= 0 if triangle function i enters a junction L and n = 4

(cases (v) and (vi)),

and:-

b.(n) = 0 normally,1

= 1 if triangle function i leaves a junction J and if
wire on which i is situated has no overlap at J
and if n = I (case (i)),

= 1 if triangle function i straddles a junction K
and either n = 2 if wire enters junction (case (iii))
or n = 3 if wire leaves junction (case (iv)),

= 1 if triangle function i enters a junction L and if
wire on which i is situated has no overlap at L
and if n = 4 (case (vi)).

In retrospect, the situations for which b.(n) are non-zero could be morei

logically chosen. One might argue that in case (ii) b. () = 1, while in
i

case (iv) b. (3) = 0, and similarly in case (v) bi (4) = 1, with case

(iii) b. (2) = 0. Alternatively, one might argue that in cases (ii) and

(iv) b. (1) = p and b. (3) = 1 - p respectively with a similar split for
i i

cases v) and (iii). One would perhaps like to choose this weight p as

the ratio of current magnitude due to one triangle function to the sum of

the magnitudes of the two triangle fLnctions which are based on the

segment adjacent to the junction. However, this produces a non-linear

problem and is to be avoided. For better or for worse, we have chosen

this weight p to be zero and no study has been made of other

alternatives; perhaps one day this should be done.

As with equation (55), expression (56) is not quite general

since two of the situations listed above could occur simultaneously. This

could arise since we know from figure 8 that a triangle function can
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leave a junction J, straddle a junction K and enter a junction L. As

depicted there would be contributions to triangle functions i from both

junctions J and K but not L. The converse could also happen in which

contributions from junctions L and K occurred but not J. The third

possibility arises when a triangle function leaves a junction J, does not

straddle any junction but enters another junction L. Thus, another term

of the type bi(n)Q referring to this second junction needs to be included

in the curly brackets of equation (56).

However, the 50/50 method produces a further complication;

expressions (56) and (57) remain the same but the coefficients ai(n) and

b.(n) are modified. Where the parameter a.(n) - 0 in the Sayre1 1

formulation it is set to 0.5 in the 50/50 method. Similarly, where the

parameter b.(n) = 1 in the Sayre formulation it is set to 0.5 in the1

50/50 method.

Finally, it is clear from equation (56) that the resulting
E

matrix Z. will be unsymmetric since the original symmetric matrix hasii
been replaced by a matrix whose columns are linear combinations of the

original columns without any corresponding replacement of rows. The

Harwell matrix factorization package HA23 is used for this situation.

More recently tests have suggested that the result of averaging the off

diagonal terms to force the matrix Z.i to be symmetric is in no worse

agreement with experiment and in some ways is in rather better agreement

(in the sense that reciprocity is satisfied). Thus, the option exists to

force the matrix to be symmetric and, in view of the saving in computer

storage that follows from this, it is now the recommended option.

5. WIRE MESH MODELLING OF SOLID SURFACES

On the face of it a computer program based on the thin wire

approximation is inappropriate for calculations involving surfaces.

However, it is believed that at present no reliable general purpose

surface patch computer code has been written which can cope with finite

conductivity or which results in a symmetric impedance matrix. The reason

for this is essentially that the calculation of the elements of the
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impedance matrix would be very expensive and perhaps difficult as the

expression analogous to equation (32) involves a four-fold rather than a

two-fold integral. Intuitively, one feels that a smaller, perhaps much

smaller, matrix would result so that for problems involving many aspect

angles and polarisation combinations, a surface patch approach might be

viable.

So how does one use CHAOS to model a surface of a conductor

which is not necessarily a perfect conductor? The trick is to recall that

a wire mesh in the same shape as a solid surface will give very similar

radar cross-sections provided the mesh size is small compared with the

wavelength. Thus, one replaces the solid surface by a wire mesh whose

holes are rooghly 0.02 to 0.03 square wavelengths in area. This size has

been determined by experience. The main worry with this approach is that

one is forcing the currents to flow along the wires of the mesh rather

than as they would in real life. For this reason a triangular mesh rather

than a rectangular one is preferred. Also one would tend to use a finer

mesh on surfaces of high curvature than on flat surfaces, and at edges of

surfaces where larger currents might be expected to flow. Should any part

of the surface suggest a preferred direction for the current to flow,

then the mesh sides should be aligned in this direction.

Next, there is the question of what radius to give the wires in

the mesh. Experience has again shown that this should be chosen so that

the surface area of the wire mesh is no less than the area of the solid

surface. In this way the position of the lobes of the radar cross-

section pattern will be correctly predicted. However, only the amplitude

of the major lobes will be reliably calculated. If the radius has not

been correctly chosen, one may expect errors in amplitude of a few

decibels for lobes 10 db below the maximum while for smaller lobes, say

20 to 30 db below the maximum, errors of 5 to 10 db have been seen. In

many applications this sort of accuracy is quite acceptable. So no exact

prescription can be given for the radius of the wires in the mesh and up

to five times that suggested above may be necessary to get good agreement

with experiment on the minor lobe amplitudes. This sort of variation in

wire mesh radius has very little effect on the amplitudes of the major

lobes, perhaps of the order of a decibel.
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The wires should be given the same conductivity as the solid

surface. In the case where the surface is composed of strips of material

having different conductivities along and across the strips, then the

mesh should be rectangular in shape aligned along and across the strips,

the wires in one direction having one conductivity, the ones in the other

the other conductivity.

Finally, we have found that the Chao and Strait junction

treatment for wires in meshes representing solid surfaces tends to give

much better predictions for minor lobes than does Sayre's treatment.

6. TREATMENT OF MATERIALS WHICH ARE NOT PERFECTLY CONDUCTING

6.1 Types of current

At this point one must consider the various types of complex

current density. Inside a conductor, the current is almost entirely due

to the motion of free electrons and is called the conduction current and

is given by

J = aE, .... (58)

where a is the conductivity.

In free space we have no motion of charges at all and we have

only a "free space displacement current" given by

We.... ()

where e° is the dielectric constant of free space (= (1/361t) x 10-9

F/m).

In matter, in addition to the conduction current and the free

space displacement current, there is a current due to the motion of the

bound charges. This is called the polarisation current and is given by

iwc- c)E. .... (60)
Oh( --
0
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For completeness one should note that the current iwE is called the

displacement current.

Both the conduction and polarisation currents give rise to

scattered electric fields due to the motion of the charges. So for a non-

magnetic material we would like to calculate both these currents. Let us

write

+ iWE(1
iw( - )E, .. . .(61)

then J gives rise to the total scattered field for a non-magnetic

material.

6.2 Impedance of wire

By substituting for J from equation (58) into the third of

equations (6) and also using the first we have

V^V^E - T2E = 0, .... (62)

where T2 = -il( + iuc). Clearly, we also have

V^V^J - T2j = 0 .... (63)

and so ^^J s - T2J s = O. ....(64)

Now let us specialize to a cylindrical wire of infinite length lying

along the Z axis. Let us assume the current only flows in the Z direction

and is a function of p, the radial distance only. Let us use cylindrical

polar coordinates (p,4,Z) based on the Z axis. Then

is (O,O,J(p)) .... (65)

and equation (64) reduces to

I d 2j T .
(P dj + T 2  =  .... (66)

p dp
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This is Bessel's equation. We require that solution which is finite at

the centre and which gives the current density io, say, at the surface of

the wire. So

J (Tp)
J(p) = i .-j=:, .. (7

0

where a is the radius of the wire and J is the cylindrical Bessel

function of order zero which is regular at the origin.

The total current, I, flowing in the wire is given by

I - f, d f: pdpJ(P),

2ira J I(Ta)
- Io - * J--- -, .... (68)

T
0

where Jl is the cylindrical Bessel function of order unity which is

regular at the origin. The electric field at the wire surface is given by

i 0
- (a + _iW - =C ZWI, .... (69)

0

where the wire impedance per unit length Z is given by

T Jo(Ta)

w 2wa(o + iw(e - 0)) J1(Ta' ....(70)

It has been found that this formula is inadequate for some materials, in

particular those which are not solid but consist of strands of fibre

woven together. For these materials the amended formula

T - 0 (Ta) +
w J ( (I +wj)...(1

is used where v is the "frequency fit" parameter in cycles per second and

is chosen to give optimum agreement with experimental impedance per unit

length data.
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The use of this formula has been found to give good radar

cross-sections for "wires" ranging from copper (a w 5.8 x 107 mho/m) to

salt water (a a 20.37 mho/m, c - 50c 0) and polystyrene (E - 2.54c0, loss

tangent - 4.05 x 10-).

No computer routines have been found that will accurately

calculate the Bessel functions J and Ji for an arbitrary complex

argument, C; however the ratio J/Jo can be found satisfactorily for all

arguments from the continued fraction (12)

2q 
t

2(q+) -2

2(q+2) -2

2(q+s) -C2 .... (72)

For large ki we have

I o (C) CO Q 1) + O(Z-1),_7 = os (

i for large Im( ) > 0, .... (73)

-i for large Im(C) < 0.

For small Icj we have

1- .... (74)

Some other quantities are perhaps worth recording. The skin

depth, 6, is given by

= .... (75)

The loss tangent is the ratio of imaginary to real components

of the dielectric constant and the loss angle n is given by
Im( )

tan .... (76)
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The resistance R and inductance L per unit length are related to Z by

R+ i L - Z.... (77)

The dc resistance and inductance per unit length are given by

= 1l
- .... (78)

%C raa2

and LDC (= 50 nH/m)..... (79)

At high frequency and provided a >> we, we have approximately

R =.wL _... (80)Wra, 8a 21TV

6.3 Form of matrix of contributions due to finite conductivity

The matrix of contributions due to finite conductivity is

given by substituting equation (71) into equation (46). Because the

current basis functions are a set of overlapping triangles, this matrix

is sparse with most contributions on or immediately adjacent to the main

diagonal. In the special case of a dipole the matrix is tridiagonal, but

for problems involving three or more wires joined at a vertex this ceases

to be so and contributions outside the diagonal band occur. Since the

programming required to calculate correctly these contributions is

somewhat involved, it would have been easier to treat finite conductivity

as a series of lumped loads situated at the centres of each triangle

function which leads to a nearly diagonal matrix. Although this has been

done in other computer programs, this slightly less realistic approach

has not been adopted in CHAOS.

6.4 Lumped loads

Some problems involve the attachment of loads to the

scattering body and so an option is provided to allow these to be

included. These might take the form

ZL R + iwL - J-9 .... (81)
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where R, L and C are respectively resistance, inductance and capacitance.

In CHAOS such loads may be attached either at the beginning of a wire or

at the end of an even numbered segment. This means that the load is

attached in series between the two segments. A load attached at a free

end of a wire will have no effect since the current is assumed to be zero

at free ends.

The effect on the impedance matrix is to alter the diagonal

term corresponding to the triangle function at whose centre the load is

attached. At wire junctions where three or more wires meet, the load may
be attached at the centre of two triangle functions thus affecting two

diagonal terms and an off diagonal term. For instance, in figure 7(a), if

a load were attached at the end of wire 2 which enters the junction, then

the S and T diagonal elements of the impedance matrix will be affected as

well as the ST off diagonal element. This is because both triangle

functions IS and IT have a common centre at the end of wire 2.

Another unwelcome feature of lumped loads is that the

impedance matrix can become badly scaled as a result of adding in these

loads. Experience shows that the impedance matrix should be properly

scaled before factorization but even this may not be sufficient for

computers with a short word length (eg, 32 bits) and errors of up to 0.5

db have been seen in the peak values of some lobes. Thus, jobs involving

loaded structures should ideally be run on computers with a longer word

length (eg, 64 bits).

7. SYMMETRIES IN GEOMETRICAL STRUCTURE

In some problems the geometrical structure possesses special

symmetries which can be utilised to reduce substantially computing time

and storage. We consider first the case of a body with rotational

symmetry, eg, a cylinder; then a body with left-right symmetry, eg, an

aircraft; and finally a body with two planes of mirror symetry, eg, an

aircraft sitting on a perfectly conducting ground plane.
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7.1 Rotational symetry

Let us consider a body with n-fold rotational symetry about

some axis. In the CHAOS program this axis is required to be the Z axis but

the following analysis does not depend on this. Let us divide the

structure up into n sections, together with a section describing those

triangle functions lying wholly on the axis of rotation. Then the

impedance matrix may be written in block matrix form as:-

z T T zT
B A ZA A

Z ZI Zn
Z A  Z I I Z 12 Z n

ZA Z21 Z22 zn

.... (82)

z z z
A ni nz n

where the square matrix ZB represents the interactions between triangle

functions lying wholly along the axis of rotation, the square matrix Z..1)

represents the interactions between section i and section j of the

structure, and the rectangular matrix ZA represents interactions between

the axis and any one of the n sections. The matrix Z is assumed to be
T

symmetric so that Z.. - Z . where T denotes transpose. This means that a

junction treatment which gives rise to a symmetric impedance matrix must

be used. We could have done the analysis with an unsymmetric matrix Z but

this requires roughly twice as much storage and does not guarantee that

the principle of reciprocity is satisfied. We can immediately write down

some relations between the blocks Z.. due to the rotational symmetry of

the geometry. These are

. (z j-l for i> j,
zn -i+ .... (83)Z.. = { ~ J r >i

'J { Zj. 1  for i C

34



where Zk is the interaction between a section L and a section L + k - 1.

Due to the symmetry of the whole matrix Z we have Z.. = ZT. and so obtain
1] Ji

the further relation

Z T  z k = 1,2, .... n - 1..... (84)
n-k+j k+i

So in the case where n is even and equal to 2q, say, we have

ZT .... (85)q+1 = q+I

ie, Z is symmetric. Thus, for storage purposes, we only require spaceq+ I
for the matrices ZB, ZA, Z , Z2, .... Zr+I where r is the integer part of

n/2. Of these mat -es Z., Z, and, for nf2q, Z q+ are symmetric.

Now let us write the current and voltage vectors in a similar

block form as:-

rI V
-B -B

12 V2

S= .and V . .... (86)

I •
I n V

Also let us define the quantity

Sjk e 2wi(j-l)(k-1)/n j, k =1, 2 ..... n. ....(87)
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Then we aee that

Sj4L,-1,k "Sjic Lk'

S. j-ti~ S S* ,where *-complex conjugate,
j-t~x~k jk Lk'

Sjtn,k 5 j,kP

S I

J1jkW~ kL 1 otherwise.

We may now expand the matrix equation ZI -V to obtain

ZB1B + A (I .) - B

ZAIB+~~ -Z.IV i 1, 2,.......n.

We now mltiply the i 1 equation of this latter set by S ki and sum over i

to obtain

n n n n
Ski )zA-IB += I = I 2i 1 S ki~i k -1, 2. n

i1 j= .. (0

n
Write S .. (1

and = SjV.

where J tand W Iare discrete Fourier transforms of the currents I.i and

voltages V.. The inverse transformations give

n

and V, s~.(4
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Substituting for 1. and V. we get-J -J

n n

n6 nZ3 + S k 1, 2, .... n, ..(95)
k i A--B n2 kiQti

n
where Qi ,. =  z ij ..... (96)

.1=1

By substituting for Z.. and doing some rearrangement of the summation we

find

n
Q97 s * z .... (97)

So we want to solve the equations

n
njlAB + I Z p)k =k k = 1, 2, .... n .... (98)

T
and ZB + ZAI = B..... (99)

For k = 2, 3 .... n we solve the block diagonal system of equations

k - -k .... (100)

n
where Uk = Y SkZp,  .... (101)

while for k = I we solve the augmented equation

Iz zT nI V
n B A -B -B

n [.... (102)

ZAI Zp L w

We now wish to examine the properties of the matrices Uk and in

particular ask whether Uk is symmetric and whether any are related to
T n k T

each other. Now U Z S* Z  and after some rearrangement we obtain
k p p

T nk S pk ..... (103)Uk = SZ

p=1
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Hence, only U1 and U if m = 2q are symmetric; the rest are
q+ 1

unsymmetric. Next let us consider

T n

uT = S z ... 04
fn-r+2 p,n-r+2Z p... (104)

p=1

After some manipulation we find

uT .... (105)
n-r+2 r

So for storage purposes we only require space for the matrices (1/n) ZB,

ZA, U1 , U2 , ... U where r is the integer part of n/2. Of these matrices

(/n) ZB, U1 and, for n 
= 2q ,Uq+ i are symmetric. Thus, no more storage is

required for this set of matrices than for the original set and the two

sets can share the same storage area since the original set are never

required again once the U. are calculated.
1

All these transformed matrices are factorised either by MA29

if they are symmetric or by MA23 if they are not. A new routine, MA23T,
T

has been written to solve for the system A y where the factorization

of the unsymmetric matrix A is known, since the Harwell package does not

include this possibility.

The only other problem concerns the triangle functions which

overlap from one section to the next. Such triangle functions must exist

otherwise each section will be electrically isolated from the other. The

geometry package in the CHAOS program has been modified to provide these

overlaps automatically. To this end a convention has been adopted in

which these overlaps are attached to the left-hand side of a section.

This is illustrated in figure 10(a). A further modification to the CHAOS

geometry package is required to ensure that wires attached to the axis of

symmetry have their overlap connections arranged symmetrically. This is

done by ensuring that each such wire has an overlap on to the axis, as

il'ustrated in figure 10(b). This means that if a set of wires meet on

the axis, then there must be another wire lying along the axis on to

which the set of wires must overlap. If such an axis wire does not exist,

then due to the method of attaching overlaps (described in section 4.1),
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a symmetric system of overlaps cannot be set up. This problem could be

got round by placing the unsymmetric set of triangle functions, due to

this junction on the axis, into the matrix ZB. However, this has not been

programmed, as it would cause further problems in that the column of

matrices ZA in matrix (82) would have to be replaced by a column of

unequal matrices. This would wreck the analysis that has been described

here.

7.2 Left-right symmetry

This section is included although, at the time of writing, the

option is not part of the CHAOS program. A plane must be chosen to be the

mirror plane. As it is envisaged that aircraft will be one of the more

important bodies for which this facility is useful, it is assumed that

the mirror plane is the XZ plane. This does not affect the analysis given

here but will affect the computer programming.

The matrix takes the form

T T
ZB A  A

Z =  Z A  Z, Z2 .... (106)

ZA  Z2 ZA

where the square matrix ZB now represents the interactions between

triangle functions lying wholly in the mirror plane or which

symmetrically straddle the plane. The square matrix Z I represents the

interactions between triangle functions on one side of the mirror plane,

while the square matrix Z 2 represents the interactions between triangle

functions on one side of the plane with those on the other side. Lastly,

the rectangular matrix ZA represents the interaction between triangle

functions in the plane (or straddling the plane) and those on one side of

the plane. Once again the analysis is restricted to symmetric impedance

matrices so that storage is saved and the principle of reciprocity is

satisfied. The manner in which equation (106) is written implies that the

numbering scheme on one side of the boundary is a reflection of that on

the other. This implies too that the matrix Z2 is itself symmetric, so

that
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zT Z2 .... (107)

The corresponding current and voltage vectors are written as

1= L1 and V " [j .... (108)

2 X

We define

_-1 
= 

!1 + 121 WI VI + VA

12 = II - V12, Y1 - V2 ,

U1 = ZI + Z2, U2 =Z - Z2, .... (109)

then the equations we wish to solve, analogous to equations (100) and

(102), are

U2-J_ = 2 W_,.... (110)

"B A - -;-B

We then obtain

i = (-J + J2),

1 ....(112)
.2 -- . 1_ - J2).

Now since ZI and Z2 are symmetric, U1 and U2 are symmetric and advantage

should be taken of this to save storage. As the matrix in equation (111)

is symmetric, the Harwell routine MA29 may be used for all the factori-

zations.
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7.3 Two planes of mirror symmetry

Once again this section is provided although the programming

has not yet been done. It is included because, for an aircraft sitting on

a perfectly conducting ground plane, we have both the left-right symmetry

of the aircraft and its reflection in the ground plane. This method would

be invalid for a ground plane of finite conductivity. Following section

7.2, the left-right plane may be thought of as the XZ plane and the ground

plane as the XY plane, but this does not affect the analysis given below.

The matrix takes the form

T T T T
ZB  zA  ZA  ZA  A

Z= ZA Z2  Z, Z4 Z3  .... 113)

T
z Z3  Z4  Z1  Z2A

Z Z2  Z3  Z2  Z1A

It may be understood by reference to figure 11. Yet again the

square matrix ZB represents the interactions between triangle functions

lying wholly in one or other mirror plane or which symmetrically straddle

one or other plane. The square matrix Z, represents the interaction

between triangle functions lying exclusively in one of the four

sections. The square matrices Z 2, Z 3 and Z4 represent the interaction

between triangle functions lying wholly in section I with those lying

wholly in sections 2, 3 and 4 respectively. They also represent

permutations of the above, eg, Z2 also represents the interaction between

sections 3 and 4, Z 3 between 2 and 4, and Z4 between 2 and 3. Once again

the numbering within each section must follow the numbering in the first

section. In this way the four matrices Z 1, Z2, Z3 and Z4 are all

themselves symmetric provided that the original matrix Z is symmetric.

Lastly, the rectangular matrix ZA represents the interactions between

triangle functions in the mirror planes (or straddling it) and one of the

four sections.
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In view of the above we have

ZT Z.,p i - 1, 2, 3, 4. .. (114)

The corresponding current and voltage vectors are vritten as

I v-B m-B

V1

1 12 and V - V2 .(....1(15)

In order to solve for the currents we define

J1 Il + .2 + 3I + 1 I
2= Ii - I + I, - -.14

I .... (116)
J3 = 1 l +_L2-_L3 - 14 )
J4 = I -12- I +I, 

and W = V + + _V3V V
I

W2 VI - V2  + V3  - V41 } .... (117)

W3 = -V 1 + V2 - V3 - V4
I

=M - V1 - V2 - V3 + #

and also U1 = Z + Z2 + Z3 + Z4 }
I

U2 = ZI - Z 2 + Z3 - Z4 }
} . . ..(118)

U3 = ZI + Z2 - Z3 - Z4 }

U4 = ZI - Z2 - Z3 + Z4.}

We now solve the equivalent equations

UiJi = W., i - 2, 3, 4 .... (119)
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and Z ZT .41B

Z A UI I W. . (

Lastly, we obtain the currents from the transformations

41(1 + J2 + 3+ 4

+J- 3 -,) }
= 01 + J2 - 3 .... (121)

1 -J 1

Once again we note that U1 , U2 , U3 and U4 are all symmetric as is the

matrix in equation (120). This can be taken advantage of to reduce

storage requirements and allows the Harwell routine MA29 to be used for

all the factorizations.

The major programming difficulty in both sections 7.2 and 7.3

will come in the geometry package, in setting up the correct overlaps for

wires crossing symmetry planes and in adding in the correct contributions

to finite conductivity - this latter is probably the most difficult but

it is anticipated that much of the programming provided for the

rotational symmetry option in section 7.1 will carry over in a

straightforward manner. If two wires meet at the symmetry plane, then the

overlap will need to be put in the matrix ZA, unless there are three

segments under the triangle function on one side of the symmetry plane

and one segment on the other. When more than two wires meet, then to

obtain a symmetric set of overlaps, it will be necessary for one of these

wires to lie in the symmetry plane.

8. SPARSE MATRIX APPROXIMATION

Inevitably there are problems which require matrices too large

to fit into the computer. One scheme for reducing the storage needed for

bodies a few wavelengths long is to approximate the full matrix by a

sparse matrix by neglecting interactions between parts of the body which

are more than a certain distance apart.
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A special sparse matrix version of CHAOS has been written

incorporating this idea. It uses the Harwell routine MA28 (13], modified

for complex arithmetic, to factorize the impedance matrix, Z, into the

sparse factors which are upper, U, and lower, L, triangular. Thus, we

have

Z - L.U. .... (122)

Unfortunately, there is no reliable routine available to produce a

symmetric factorization of Z although Harwell are expecting to produce

one in due course (it is provisionally named MA27). This has the

consequence that more storage is used than is necessary. Also it has been

noticed that in the L and U factors, there are many small elements which

can be neglected without significantly affecting the radar cross-

sections. Now, because the factorization is unsynmetric, the dropping of

these small elements breaks the symmetry and so the principle of

reciprocity is not exactly satisfied. So there are at least two

compelling reasons for changing to a symmetric factorization routine as

soon as possible.

9. COMPLEX FREQUENCY VERSION OF CHAOS

Let us consider the equation (29) which may be written

symbolically as

ZI = V, .... (123)

where Z is the known impedance matrix, V is the known voltage vector and

I is the unknown current vector. Now the complex frequencies, S., at

which the determinant of Z is zero are given by

det Z(S.) - 0. .... (124)1

The current, for some complex frequency S, may be expanded as

((S) 1 R.) . ....(125)-- i=1 I
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In the time domain, we have the Fourier transform

S.t
T(t) =  e I R, ..... (126)

So the Si establish the resonance frequencies and the decay times of the

structure and depend on the structure only. They are independent of

polarisation and orientation of the structure. However, the amplitudes

R. are dependent on polarisation, orientation and structure, but not on-1

frequency. This scheme is known as the singularity expansion method [14]

and is abbreviated to SEM in the literature.

Each structure is thought to have a unique set of S. but it
1

requires a considerable amount of computing time to calculate each S.

The R. may be calculated rather more easily once the S. are known. In-1 1

certain circumstances, the Si can be extracted from experimental

measurements of the time dependent response of a structure to a Gaussian

or wide band pulse.

The CHAOS program has been modified to calculate the complex

resonant frequencies S.. It uses a search procedure in the complex1

frequency plane due to Muller [15]. This method essentially takes three

guesses to a zero and fits a parabola through the values of the

determinant of the corresponding impedance matrices. The next approxi-

mation to the zero is found as a zero of this parabola. The first guess is

then discarded and the approximation just found is substituted. The

process is then repeated until convergence. However, this scheme is not a

very efficient one as it can fail to find some zeroes and has

difficulties with double zeroes. Its main advantage is that it does not

require the derivative of the impedance matrix to be calculated.

How the initial three starting values are chosen needs some

explanation. We need to study equations (125) and (126) and remember

that we are interested in real solutions to real problems. This implies

that the S. occur in complex conjugate pairs and must lie in the left-

hand half of the complex frequency plane in order to produce

exponentially decaying currents. For convenience, we choose to work with

normalised frequencies and define
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I=SL
---, .... (127)

where c is the velocity of light and L is the maximum linear dimension of

the scattering object. With these units our starting guesses for a zero

are: -

T(1) - - 0.1 + iO.5 + t,

g(2) = _ 0.15 + t, .... (128)

-(3) - - 0.1 + t,

S

where t may be supplied as data to the program if there is any good reason

for knowing what the zero is. If it is not supplied as data, it is taken

to be zero. In the case of a dipole one might take t to be iO.5, il.0,

il.5, etc, corresponding to the known resonances of the dipole. These

values have been found by trial and error to be sensible. There is one

final problem that needs mentioning; the impedance matrix Z(S) is

singular when the frequency is zero. Thus, in the computer program, one

works with the combination SZ(S) which is finite at the origin.

A better scheme based on contour integration has been devised

by Baum et al. (161 . The idea is to divide the complex frequency plane up

into boxes and to evaluate a certain integral around the edge of this

box. A set of equations is obtained, one for each integral, which define

how many zeroes lie inside the box and provide a set of simultaneous non-

linear equations to solve for the required complex frequencies. If there

are too many zeroes in the box, it is a trivial task to further subdivide

it. The equations that are being used are

,:. sk d log Z(S)dS - S., k - 0, 1 ... M, .... (129)

where H is the number of zeroes inside the contour C. This scheme has not

been programmed into CHAOS but should these zeroes be required in future,

it would be sensible to change over to Baum's method. It is unlikely to

reduce the computing time very much.
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APPENDIX A

ACCURACY

Al. EVALUATION OF *F FUNCTION

Let us write the 'F function of equation (49) as

1 j.A/2 e -ikR d' .. (l
= 4n1 A/2 R d' . CI

where we have chosen a local cylindrical coordinate system based on the

source segment as Z axis. The segment length is taken as A~ and the origin

of coordinates is at the centre of the segment. Here R is given by

R = Xp 2 + QZ - Z')2, .. .. (A2)

where p and Z are the cylindrical coordinates of the field point in this

system. The geometry is illustrated in figure Al. Since we have

stipulated that the field point lies on the wire surface, while the line

source lies on the wire axis, the integrand can never become singular.

For r < 5A, Harrington recommends the expansion
e-ikr ri-W2-rd-L 1 r2+rj k3 (43l rl2r1

e - A/21 + /I 2J ( - A/ -2

z + /2+'/
4AL'/ 2 ' 2 ) + 2 

Z) /+ A/2). r1 + 11,1
13 22 2 ... (A6)

I A 2 -3A/12 + AZ 2. ... W

4
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While for r r 5tA, he recommends

e-ikr kAj2 U1

+ A + i)A 2 + i(')'A )^, ....(A)
4Tr L 0 2 22

where

=1+ .(L2[! 1 + 3(.K)2] + (L)4e[3 - 30 (.)2 + 3(K4W

A= I + ( ) 33 - 30(.K)2 + 35()4 .... (A10)

1(Z)2 (A )2 1 (2 .)2 5 .)4 AlA2 =- Tr 40 ) - ) + 5 ' ....IArr

A3 L (L)[3(T.)2 - 5() A60 2r r, .... (A12)

120 = r .... (A13)

A2. MAXIMUM SEGMENT LENGTH

We next need to know how accurate these formulae are. Both

equations (A3) and (A8) are the result of integrating power series

expansions term by term and truncating after the fourth and fifth terms

respectively. The ratio of the fourth term to the leading term in

equation (A3) is (i/N)3 and the ratio of the fifth term to the leading

term in equation (A8) is (it/N) b where

N= .= 2 r .... (A14)

ie, N is the ratio of wavelength to segment length. The use of higher

order terms in these expansions has been investigated and, although the

accuracy of the impedance matrix elements is improved, the accuracy of

the radar cross-sections is less affected for a given value of N. The

accuracy of the matrix elements for various values of N is indicated in

table Al.
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TABLE Al

Percentage Accuracy of Matrix Elements

Formula for J Function
N

(A3) A8)

10 3 1

7 9 4

6 14 8

5 25 16

4 48 38

In CHAOS, the ratio N is printed out for each wire with a

warning if it is less than 10. If it is less than 6 for any wire, the job

is rejected. Just because the matrix elements are accurate, it does not

mean that the current distributions and radar cross-sections are

accurate. For simple geometries, like a dipole, one may need as many as

50 segments per wavelength especially if one is near a resonance and

wishes to get cross-sections accurate to a few per cent. This is because

the frequency at which a dipole resonates, and the cross-section at this

frequency, change by about 10% as the number of segments is increased

from, say, 10 segments per wavelength to 50. Increasing this figure

further leads to only small changes of the order of 1%. However, because

the resonance is so narrow, if one is interested in a spot frequency

close to the resonance, the cross-section may be wrong by 100% if one

uses 10 segments per wavelength. For wires made of material of low

conductivity (say, of the order of 104 mho/m), for which the resonance

effect is not very pronounced, fewer segments are necessary.

For complicated geometries, it appears that one can get away

with 14 segments per wire for good conductors and 10 segments per wire

for other materials. This should give the positions of lobes in the radar

cross-section pattern correct to about ± 50 and the amplitudes of the

largest lobes correct to about ± 2 db. It is not possible to be more

precise because of the impossibility of using shorter segments due to
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computer storage limitations and because more accurate experimental data

on complicated geometries does not appear to be available.

It is up to the user to satisfy himself that his calculations

are properly converged by staging calculations with more segments where

possible, checking against whatever experimental data he may have and

using his common sense.

A3. SMALL SEGMENT LENGTHS

Intuitively, one would expect to get a better and better answer

to a calculation as the segment length is reduced. This is not found to

be the case and needs explanation. Let us consider a straight dipole of

length L and evaluate the matrix elements given by equation (32) in the

limit as A the segment length tends to zero keeping the wavelength and

radius fixed. We find after some manipulation that

!L e -ikr (3+3k k2r)

Z • 7t r __ _ _ 1iWP _ P 2 .... (A 15)
ii 8 o yrp iwerp

where ( 10 if j = i,

3 if j = i ± 1,

C 0 otherwise,

p = 2(j -

r p= Vra2 + p 2 A 2 •
p

The matrix order for such a problem is (L/2 A) - 1. The structure of this

impedance matrix is curious. The main diagonals and the diagonals on

either side of it are or the order of A for very small segment lengths

while all other terms are of the order of A2 . In any one row of this

matrix there are roughly L/2A elements of the order of A2, so that these

could add up to give a term of the order of A which would then be

comparable to the diagonal term. It has been found that when a 32 bit

computer word length is used problems start to arise if there are 1000 or

more segments on a wire. Thus, the CHAOS program will reject all problems

which contain any wire divided into more than 500 segments.
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Let us now recall what is happening physically to our segment

as this limit is approached. It starts out being in the form of a long

thin cylinder and changes through a short fat cylinder to eventually

become a wafer thin disc. The formulae used in CHAOS are based on the

assumption of a long thin cylinder and we need to know how short the

cylinder can become before this assumption is violated. Let us define the

aspect ratio R to be the ratio of segment length to radius. From

numerical experiments with CHAOS using a dipole, we find that when R is

as small as 0.1, the current distributions become highly oscillatory with

spatial period 2A. These current distributions appear to be all right for R

equal to 0.5. Thus, we have decided to reject all jobs for which R is less

than 0.5 but warning messages are printed out if R is less than 5.

A4. ANOTHER LIMITING CASE

Another limiting case which is of interest is that which occurs

when the segment length A tends to zero in such a way that the ratio of

segment length to radius, R, remains constant at the same large value.

After some further manipulation we find the impedance matrix elements to

be:-

-1 11
Z. 12 log - + + OkA), .... (A16)
~jJ 4TrWA aZA

Z. .log..A + 1Z7)A+O(k&)'
J,j±1 41--"A a 1 8 W

iqe - i q A_
.j,i 4 7TweA Lq2 2(q2 -) q2 - 4 2(q2 - 9)

+ ikA{ - 1 + + 9 } + 0(kA), ..(AI8)
2(q2 - 1) q2 _ 4 2(q 2 - 9)

where i P j, j ± I and q = 2J - ii.

Suppose now we restrict our dipole to have four segments and to

be a perfect conductor, then the radar cross-section will be

Sr(0) Wk4LL sin" 1 ... . A19)

256(log a- -)2
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oa (0) = 0, € 0(0) = 0

where L = 4A and 0 is the angle between the direction of the

transmitter/receiver and the axis of the dipole. 4 is the azimuthal angle

about this axis. The notation aY. means the radar cross-section for the

transmitter polarised in the direction of increasing 0 , while the

receiver is polarised in the direction of increasing 4.

From the book by Ruck [17], the radar cross-section for a

perfectly conducting short thin cylinder of length L and radius a is

G ) ikL (A20)
144 (log LL 1)2'

a

(0) = 0, 0 0(0) = O.

rheS, LWO sets of formulae are not quite the same and reflect the fact

that in CHAOS the current distribution is forced to be triangular in

shape while the formulae given by Ruck are obtained by treating the

dipole as the limiting case of a prolate spheroid. These are only equal

when L/a is about 157 and for larger values of L/a the CHAOS prediction

will be smaller than those of Ruck.

AS. PROBLEMS AT VERY LOW FREQUENCIES

The behaviour of the impedance matrix as the frequency tends to

zero is yet another interesting limit. In this case we can expand e- ikR

in equation (45) as

e-ikR 1- ikR+ 2 ), .... (A21)

since kR is small compared to I when the frequency is so low that the

largest dimension of the scattering body is much smaller than the

wavelength. Thus,

E = f d2f dt'R dt dz 4I d T - (9) -a T (L') + 0(k),
wires wires .... (A22)

where the term of order unity integrates to zero.
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From equation (44) we also have

z . = O(k), .... (A23)ii

while from equation (47) using equations (78) and (79) we have

Z . = 0(1). .... (A24)

Thus, the imaginary part of the impedance matrix Z.. is 0(1/k) while theii
real part is 0(1) for non-perfect conductors and 0(k) for perfect

conductors. So we can split the matrix into three parts as

Zji = Rji + iLji + Tii, .... (A25)

where R.. = 0(k),

L.. =()

T.. =0(l).
]i

We wish to solve

(R + iL + M) =V .... (A26)

where V. = 0(0) as k + 0, for the currents I.. In general this should
I I*

present no problems and at low frequency is equivalent to solving

iLl = V .... (A27)

to give currents of 0(k) which is intuitively sensible since at low

frequency, the whole structure is at the same potential and no currents

will flow. The trouble comes for those structures for which the

determinant of L is singular, as in the case of a planar loop of wire. For

this case equation (A27) has many solutions and for a given finite

computer word length there is a frequency below which the problem cannot

be solved.
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Thus, a test has been programmed into CHAOS to detect the

situation where the matrix Z is nearly singular. This is done by

examining the factorized form of Z, be it LDL T (for symmetric matrices)

or LU (for unsymmetric cases). The maximum and minimum elements of the

diagonals of either D or U are found and the ratio is taken. From tests on

a dipole, it has been found that when this ratio is greater than 25000

for a computer word length of 32 bits, the results will be spurious. In

CHAOS, if the ratio exceeds 20000 the calculation is terminated and no

results can be obtained. In cases where this ratio is only just less than

20000 (the maximum and minimum are printed out by the program), results

should be checked to see that they are intuitively sensible. For

computers which use a 64 bit word length, the results appear to be

sensible for values of this ratio up to 100000; beyond this value they

progressively deteriorate.

A6. COMPUTER WORD LENGTH PROBLEMS

The CHAOS program has been made to work on both an IBM computer

using 32 bit word length and a CRAY computer using 64 bit word length.

Tests have been carried out on both machines using a matrix of order 650.

In general, no sigificant change in results has been noticed. In

particular, at and near the peaks of a radar lobar diagram, there is

usually no change to four significant figures although occasionally a

change of one unit in the fourth figure does occur. In the troughs

between the lobes, the changes can be, and are, much bigger and radar

cross-sections which are six orders of magnitude smaller than the maximum

using 32 bit word length can become fourteen orders of magnitude smaller

using a 64 bit word length. However, these are large changes in small and

insignificant numbers and so are of no consequence.

The only other change is that, as already mentioned at the end

of the previous section, the use of a longer word length allows

calculations to be done at slightly lower frequencies than can be done

with a 32 bit word length.
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APPENDIX B

CONVENTIONS USED IN CHAOS

Bi. INTRODUCTION

This appendix details the time and phase conventions, together

with the coordinate systems that may be used to describe the effect of an

electromagnetic wave being scattered by a body. The system as described

here is used in the CHAOS computer program.

B2. WHY USE A COMPLEX REPRESENTATION FOR A REAL EFFECT?

The first point to explain is why, when we are dealing with

real electric fields and real currents in a real world, we should

represent these by complex quantities. The short answer is that this is

mathematically convenient as may be seen by studying the structure of

Maxwell's equations for the electromagnetic fields.

From equations (1), (3) and (58), it may be seen that

VV-IF+ wa L + _E = o, .... (Bl)
at at

where c, p, and a are assumed to be constant and 9 is the real electric

field. Equation (BI) can be further simplified by assuming a

cosinusoidal time variation at a constant frequency w. We could write all

quantities in the form

(rt) = A.(r) cos (wt + 4.) for j = x,y,z, .... (B2)

but substitution into equation (Bi) then gives an inelegant and rather

cumbersome equation to solve. It is much more convenient mathematically

to write

E(r,t) = E(r)e ,
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where E.(r) =A.(r)e j for j = x,y,z, .... (B4)

and then to solve V^V^E(r) - T2 E(r) = 0, .... (5)

where T2 
= - iWto(o + iW). .... (B6)

Once we have the solution to the complex equation B5) it is a

trivial job to obtain the solution (B2) to the real problem.

B3. TIME CONVENTION AND COORDINATE SYSTEM

Following the discussion of section B2 the time variation will
iWt

be described by e , where w is the frequency in radians/second. The

complex time dependent electric field is defined as

E(r,t) = E(r)et..... 7)

The real time dependent electric field is given by

S(r,t) = ReE(r,t). ....(B8)

When a radar looks at an object, there are in general two

coordinate systems which are of interest. The first is a system fixed

with respect to the object as used in the computer program CHAOS. In this

system the Z axis, of a right-handed cartesian system OXYZ, might for

instance be chosen to be the axis about which the body has some natural

symmetry. In this system the radar beam would be incident from a

direction defined by (O, ), the usual spherical coordinates (see

figure Bl(a)). Thus, the incident electric field transverse to the

direction of propagation would have components in the e and t

directions.

The second system of coordinates is fixed with respect to the radar

and is again a right-handed cartesian coordinate system Oxyz in which the radar

wave propagates along the z axis from large positive z towards z = 0. It is

convenient to take the x axis in the direction of increasing0, and y in the
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direction of increasing , where these directions are as defined in the

first system. In figure B1, these axes are offset along the radar line of

sight for clarity. In the program CHAOS, it is assumed that the object

axis (OZ) is vertical so that the y axis is necessarily horizontal. The x

axis then forms the third member of an orthogonal triad. Conventionally

(as in the nomenclature "VV polarisation") the x axis is referred to as
"vertical" though this is a misnomer unless the radar line of sight lies

in the horizontal plane. For this special case (figure B1(b)) Ox is truly

vertical, actually vertically downwards. It would be more sensible if

CHAOS print outs used the phrase e and 4 polarisation in place of

vertical and horizontal polarisation.

In the radar coordinate system, a typical complex electric

wave, travelling inwards from large z towards z = 0 along the z axis,

would be represented by

i(kz+,x) i(kz+,y)

E(r) = (A e , A e , 0), .... (B9)-- x y

where k = 2n'X is the wave number, X = 27ch is the wavelength and c is

the velocity of light. The sign of z is changed for a wave travelling

outwards from z =0 to large positive z. The phases 4x and 4y are related

to the time origin and only the phase difference is of any physical

significance. The two amplitudes A and A could be replaced by an
2 y

amplitude / + A2 times the appropriate cosine or sine of some angle;
X y

however, it is simpler to treat them in this way.

B4. POLARISATION CONVENTIONS

The real time dependent electric field is

i(wt+kz+4,) i(wt+kz+, )

&(r,t) = Re(A e , A e Y , 0). ....(BIO)- x y

This vector lies in the xy plane and is in general rotating about the z

axis. The angle that 6 makes with the x axis is T where

A cos (wt + kz + 4y )
tan 'Y A cos (Wt + kz + x("

X x
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The magnitude of 6 is

= V cos2 (wt I kz + 4x) + A2 COS 2 (wt + kz + 4)). .... (B12)xx y

For linear polarisation T is, by definition, constant. Since

d - AA sin(4  - ) .... (B13)
dwt

in general this implies 4x - 4y = n r, where n is any integer. The electric

vector therefore makes a constant angle ± tan- ' (A /A ) with the x axis.~y x
The other two possible solutions to equation (B13) are A = 0 (vertical! y
polarisation) and A = 0 (horizontal polarisation) and these are also

just special cases of the general solution.

If x < 4y and A and A have the same sign, then T decreasesxC y

as time increases and elliptic polarisation in a clockwise (right-hand)

direction about the direction of propagation and looking along the

direction of propagation is obtained* (see figure B2). The polarisation

is elliptic because the magnitude of the electric field given by equation

(B12) traces out an ellipse in the xy plane.

In order to obtain circular polarisation the magnitude of

must be independent of time. For this to occur, A must equal A and Y

t + (2n ± ) r/2 where n is any integer.

It is also instructive to ask what shape the beam has at some

fixed instant of time.

di A sin(, -4,)
For t constant, d Akz y x y .... (B14)

A cos' (wt +I kz +4)
X

If x < 4y and Ax and Ay have same sign, then T decreases as one moves

along the wave (from large z to small z) in the direction of propagation,

so that a left-hand "corkscrew" is obtained. Thus, this left-handed

(anti-clockwise) "corkscrew" in space moves forward and rotates in a

right-handed (clockwise) direction as time increases when looking in the

direction of propagation.

*This is the right-hand thread rule referred to the direction of

propagation which agrees with the definitions of the IRE 1942 standards [18].
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B5. INCIDENT AND SCATTERED FIELDS

The incident field will be assumed to be a plane wave of the

type given by equation (B8). This will be correct provided the

transmitter is sufficiently far from the scattering obstacle.

Using the asymptotic form for the scattered field, it can be

shown that the field transverse to the direction of propagation is O(/r)

where r is the distance of the field point from the scatterer while the

field in the direction of propagation is O(1/r 2 ). So at large distances

from the scatterer the field becomes essentially transverse to its

direction of propagation. The behaviour of the components of the field

determine the polarisation of the scattered wave. The polarisation of the

receiver will determine which of these components, if any, is measured.

B6. SCATTERING MATRIX

An incident elliptically polarised field E (r) can be

expressed in terms of cartesian coordinates (as shown in section B3) and

so may be related to cartesian coordinates of the backscattered field

ES(r) by a scattering matrix 119), S, where

mi

ES(r) = SE (r). .... (B15)

Having found the scattering matrix, S, for a given pair of

orthogonally polarised fields, it is convenient to be able to transform

this matrix to S', where S 1 refers to a different pair of orthogonally

polarised fields (eg, S might refer to linearly polarised fields in

the 0 and 4 directions and S1 to circularly polarised fields with left-

and right-handed rotations about the direction of propagation). This may

be done by means of a change of polarisation basis and the fields may be

expressed in terms of an elliptic basis instead of a linear one by a

coordinate transformation U.

Now equation (B9) may be re-written as

E(r) = x + E y .... (B16)
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where u and u are unit vectors in the x (or 8) and y (or $) directions.
-x -y

Suppose u and un are an arbitrary pair of orthogonal vectors coplanar

with u and u , then they must be obtained from them by a unitary-x -
transformation. In this case the matrix U has the property that

u*Tu = I, .... (B17)

where T denotes transpose and * denotes complex conjugate.

So the incident electric field in the elliptic basis, i, is

given by

i UE (r). .... (B18)

Then ES(r) = SU-'UE (r) = SU- '. .... (B19)

The scattered field is transformed by the same transformation

so that

= UE (r) = USU- i, .... (020)

where s is the scattered vector in the elliptic basis. This gives the

scattering matrix S' = USU -' referred to an elliptic basis.

Suppose the transformation, U, in equation (B18) gives a

right-hand elliptically polarised incident electric field, then the

transformation given by equation (B20) produces a left-hand elliptically

*d polarised scattered field since the direction of propagation is

reversed. This is because when we talk of left- or right-handedness a

direction is associated with it and when we speak in this way we are

effectively using a different cartesian system for the two directions of

propagation - one being right-handed for the incident wave, the other

left-handed for the scattered wave as viewed by an observer at large

distance (eg, at the radar).

It is convenient to use a different transformation on the

scattered field so that in the example above a right-handed elliptically

polarised scattered field is produced. We can do this by using
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U, , .... (B21)

so that the scattering matrix

S, = U*SU-1 .... (B22)

gives right-hand transmit, right-hand receive and left-hand transmit,

left-hand receive on the main diagonals of S. By taking the complex

conjugate of U, we have effectively changed the signs of x and 4y in

equation (B11), thus changing the sense of the polarisation.

B7. FORM OF TRANSFORMATION MATRIX

The unitary condition (B17) has been imposed on U to preserve

magnitudes of vectors, so only four of the eight quantities (the four

complex u..) in the transformation are independent. The most general suchI]

matrix may be written

cose ,- sin 1fe

U- cse si...i. (B23)
= I +t)~22_1t2) iq2 2

sin Ce , cos Ce

The determinant of U- 1 is ei(fll2 . Thus, the determinant of

S is not preserved under the transformation (B22) but has its phase

altered. We follow other authors [20-22.] in imposing the condition that

the determinant of the transformation, U, is unity. The most general such

matrix is now

cos Ce , -sin Ce

U -Ii* .... (B24)

sin ee , cos ie

This contains three unknowns which may be related to the phase,

ellipticity and the orientation of the elliptical vector formed by the

transformation (21]. This may be brought out by making the following

substitutions:-
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tan T= - tan 4 tan t,

tan n1 2 - - cot ' tan t,

tan g tan 2  1 + tan 2 ' tan 2 a

tan2 ' + tan 2

The transformation matrix [22] now becomes

Q = U- ' = R(4)H(a), .... (B26)

[cos ', - sin'1
where R(') = .... (B27)

[sin 4), Cos 4)

[COS L, i sin al
and H(a) = s .... (B28)

Li sin a, Cos a

We shall go on to show that R(J) is a rotation matrix that determines the

orientation of the major axis of the ellipse and that H(a ) is an

ellipticity matrix which determines the ratio of major to minor axes. We

nave reduced the 3 unknowns in equation (B24) to 2 in equation (B26)

effectively by choosing an arbitrary phase factor but this does not

matter since phase can only be determined to within an arbitrary additive

constant. The extra condition we have imposed can be written as

tan cos w12 /tan Tl1 cot T112 , .... (B29)ta1 cos fl11

but this appears to have no physical significance.

It is worth noting that the matrices R and H do not commute,

ie, RH # HR. With the transformation matrix given by equation (B26) we

see that the determinant of S is preserved under the transformation [221

since Q Q = I and det Q = l so that

det S' = det (QTsQ) = det QT det S det Q = det S .... (B30)

Also preserved is the trace of the power scattering matrix [2]. This

matrix is defined as

P= S*T . .... (B31)
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Now p1 = ss

= (Q *TS *TQ )(QT SQ),
*T *T.... (B32)= *Ts*TsQ

= Q S SQ,

= Q *TPQ.

The trace (ie, the sum of the diagonal elements) represents the

total power that would be returned to a pair of orthogonally polarised

antennae and is given by

Tr(P) = IS111' + Is221' + IS12V + Is2112. ....(B33)

Now Tr(P) = P (Q* Q + Q*Q ) + P  (Q* Q* + Q* )
11 11 11 12 12 12 11 21 12 22

+ p (Q* Q + Q*Q ) + P (Q*Q + Q*Q ),
21 21 11 22 12 22 21 21 22 22

=P +p
11 22

= Tr(P),

where the Pij and Qij are the elements of P and Q respectively.

B8. ROTATION MATRIX

For positive 4 the matrix R(4') operating on the vector V will

rotate V in the xy plane by an amount ,' in a counter clockwise (left-

hand) direction looking along the direction of propagation (see figure

B3). Following a rotation the elements of the scattering matrix become:-

S = S11 cos 2 4' + (S12 + S21) cos 4 sin 4' + S2 2 sin 2 4,

S12 = (S2 2 - Sii) cos * sin 4 + S12 cos2  - 521 sin 2 ',

S = (S22 - S11) cos 4 sin * + S2 1 cos2 4 - S1 2 sin2 4, .... (B37)

22 = S11 sin
2 4 - (S12 + S21) cOS 4 sin 4 + S22 cos2 4.

Note that these do not agree with reference [221 in which a sign has been

changed between their equation (12) and their equation (18).
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We see that

s11 + S22 = S11 + S22,

and I Iand S2 - S2 I = S1 2 - S2 I.

B9. ELLIPTICITY MATRIX

The matrix H( a ) operating on the vector ( ) produces the

vector (.cos ). Using equation B9) this may be interpreted as an
i sin a

electric field for which Ax = cos a, Ay = sin a and x = O, y = 7/2. The

magnitude of the field is (from equation (B12))

161 40132~ a Cos (Wt + kz) + sin 2 a sin 2 (wt + kz),

so that E traces out an ellipse with ratio of minor to major axes given by

tan a. Provided a is positive, then the circulation, looking in the

direction of propagation, is clockwise (or right-handed) as shown in

figure B4(a)*. When a = ± w/4, we get circular polarisation.

When H(a) operates on ( 1 ) an elliptically polarised field is

again produced, the major axis now being at right-angles to that obtained

from H(a)(' ) and the circulation direction being of opposite sense, as

shown in figure B4(b). Thus, the phase zero of H(a)( ) leads that of

H() ) by 900.

Y
Suppose H(t) operates on then the vector field obtained

is V2 so tht = Lhs ____

is asi o that A = Ay = 2 x y Th is is a linearly polarised

field (figure B4(c)). This should not be surprising since we have noticed

that the rotation and ellipticity matrices do not commute and to obtain

/2[. from N ) requires a rotation of 450. Thus, we shall only get the

2/2
elliptic polarisation we are expecting if we operate with H(a ) on either

(') or ( ), ie, before operating with the rotation matrix.

*Note that this does not agree with reference [22] unless their conventions

on circulation direction are opposite to ours.
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Following a change of ellipticity the scattering matrix

elements become:-

1= SIL cos2 a + i(S1 2 + S21) sin a cos a - S2 2 sin2 a,

S12 = i(S 1 1 + S22) sin a Cos ot + S12 cos ( - S21 sin 2 a ,
.... (B36)

S12 2
21 = i(S1 1 + S22) sin at cos a - S12 sin a + $21 cos a,

S1 2 2
S22 = S1I sin a + i(S 1 2 + S21) cos a sin at + S2 2 coS a.

Note that Si + S22 = (S11 + 522) cos 2a + i(S 1 2 + S2 1 ) sin 2a,

1- S 2 = S11 - S22,

S1 2 - S21 = S12 - S21,

and that the phase zero of S 1, 2S1 leads S11 by 900 while that of S2

leads Sh by 1800.

For circular polarisation a = +Ir/4 for right-hand and a = -7t/4

for left-hand rotation. This gives (for at = +7r/4):-

s1(i/4) =-I (S1 1 - S22 + i(S1 2 +
1.

S12(0T/4) = 1 (1(S11 + s2 2 ) + S1 2 - S2 1),2 .... (B37)
I

2S (I/4) = (i(Sil + S2 2) - S12 + S209
1

S2 2 (TT/4) = (- Si + S22 + i(S 1 2 + $21)).

We may change the notation slightly to make this more

meaningful. By remembering our conventions, we have for right-hand

transmit and right-hand receive S1 (ir/4) which we re-write as CRR where

the first suffix refers to the receiver and the second suffix to the

transmitter. Similarly for transmit in the direction of increasing 0 and

receive in the direction of increasing 0 we have S1i which we re-write as

S 6. In this way equation (B37) may be re-written as:-
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C = S s + S + i(S + S ))CRR 2 -M SO S4

CR = 1 (i(S, + -S

.... (B38)

CL 2 (i(S + S S+) -CLR 2 00 0, S 6 ee,

C 1 (+ S + i(S + ))
2LL 2 00 S S+ $e

where again the first suffix refers to the receiver and the second to the

00

transmitter. The paezrofRLand LRleads that of CRR by 90° while

that of CLL leads that of CRR by 1800.

BIO. COMBINED EFFECT OF ROTATION AND ELLIPTICITY CHANGE

Since the rotation matrix and the ellipticity matrix do not

commute, the transformation (B35) must be performed first followed by

equation (B36). The expressions for the elements of the new scattering

matrix in terms of the original are not particularly informative and so

are not given explicitly. However, for the special case of circular

polarisation we have:-

CI =C e-2iP
RR RR

LL C
.... (B39)

C CLR LR'

IRL CRL"

Despite the differences noted earlier, ref.rence [22] agrees with these

formulae.

We now define four radar cross-sect'-ns invariant under

rotations and these are:-
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I = 4yr 2 {iCRRJ 2 + ICLLI2 + ICRL1 2 + ICLRI12,

J = 4vr 2 ICLRI 2 ,

.... (B40)

K = 4nr 2 IC RR12 ,

L = 41Tr 2 ICLL1
2 ,

assuming the incident plane wave has unit modulus. Here r is, as before,

rhe distance from the scatterer to the receiver. Note that

I = 4Tr 2 {ISe 2 + Iss + ISS,, .... (B41)

also, and that for a monostatic radar (ie, one for which the transmitter

and the receiver are in the same place)

I = 2J + K + L. .... (B42)

For a body of revolution, with the coordinate axis along the body axis,

we have in the monostatic case (23]

Set = Ou Ste = 0 .... %/M3)

and for arbitrary rotation 4 of the polarisation axes:-

C1 1 (S - S )e -Y
RR 0 0

C = (S - _ )e 2 i .... (44)
LL 2 60 S,4

C I I i(S + ),
LR RL 7 00 S1

and SI 0= cos 2  + sin 2  ,

SI = SO = (S - S ) cos ' sin , .... (B45)

= sin 2  4- S cos 2  .
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BIt. DEPOLARISATION

Bickel [221 defines a quantity Dn, which he calls the

depolarisation, as

D = I - Is,>3 1 s 2
n 2Tr(P)

7 Isoo - S I' + Ise6} + Is 0l

Is I2 + JS 12 + I + IS( 2 ' .... (B46)

ICLLI
2 + ICRR 2

IC LL2 + cLRI 2 + + ICRRI 2

A sphere, for which CLL and CRR are zero, has Dn = 0 while a

dipole, for which S., = So = S" = 0, say, has D = Bickel then goes

on to show that larger values of Dn characterize bodies with multiple

scattering centres. D is invariant to rotations but not to ellipticityn

changes. D is calculated by CHAOS automatically but its usefulness hasn

not yet been assessed.

80



BODY AXISRAR

( INCREASING *

( INCREASING e

eY

OBjECT 0 -

BI (all Generall CaCSe

BODY A)(15 Z

Y

y (HORIzoNTALI

z90 RADAR

OBJECT 0

81b) Selc Case

FIGURE 81 co-ordinate Systems



INCRESINGCLOCKWISE

(RIGHT HAND)

ROTATION

y

ROPAGATION

wt

ANTI CLOCKWISE

(LEFT HAND)

I ROTATION

PRO.-4PAGATION

FIGURE B2 Elliptic Polarisation



R (4) V ANTI CLOCKWI SE

(LEFT HAND)

ROTATION FOR

POSITIVE ~

zPROPAGATION

* G~B3 E"t( oi r,'ciUQ )l



I CLOCKWISE
I (RIGHT HANDED)

I ELLIPTIC

/ POLARISATION

z PROPAGATION

ANTIC LOCK WISE

- - -(LEFT HAND)

ELLIPTIC
y b POLARISATION

0.

z P- ROPAGATION

B 4(b) H (0)(10)

LINEAR

Y POLARISATION

z .-'"PROF\\AGATION\

FIGURE 84 Effect of Ellipticity Motrix

84



APPENDIX C

LIST OF SYMBOLS

Many of these symbols, when used in the text, have suffices or

superfices associated with them. Not all of these are separately defined

here. This list is not complete but covers the most frequently used

symbols.

Cl. COORDINATE SYSTEMS AND GEOMETRY

OXYZ object coordinate system

Oxyz radar coordinate system

r = (x,y,z) general coordinate vector

t time

a wire radius

k length along wire

6,0 spherical polar coordinates in OXYZ system

ix u y unit vectors in Ox and Oy directions

R = Ir-r'I = distance between observation point, r, and some source

point, r'

ds = element of surface area

n = unit normal to surface

dR = element of wire length

T(9) = triangle function

U = unit vector

in
D. = scalar product between vectors in directions

r.m~ -- r. and ri~ --r" where- r. is the vector from

the origin to the start of segment m under triangle

.function T.

segment length
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C2. ELECTRIC FIELDS

i (r,t) = real electric field

E(r,t) = complex electric field
iwt

E(r) = complex electric field assuming e time variation

D = complex electric flux

H = complex magnetic field

B = complex magnetic flux

J = complex conduction current

I(M) = complex line density of current

P = complex electric charge

GM) = complex line density of charge

6= dielectric constant

1 = magnetic permeability

a = conductivity

1
c = = velocity of light in medium

V = frequency in cycles/sec

= 2irv = frequency in radians/sec

n = cli ... impedance of medium

2T c c
.. . = wavelength

k = 21T/X = -- = wave number
c

T = /-iwlj(a+iwe) = complex wave number

A = magnetic vector potential

= electric scalar potential

A. = magnitude of , j =xyz

= phase of j j xyz

T = angle between (x,t) and the x axis

= complex electric field intensity referred to an elliptic

polarisation basis

V = voltage vector

z = impedance of wire
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Z = impedance matrix

g(eM) - radar cross-section in direction (e,O)

P = power

= integral defined by equation (49) or (Al)

= skin depth

1- loss angle

R,L,C a resistance, inductance and capacitance

C3. SCATTERING MATRICES

S scattering matrix, elements S..ii

P = S *TS power scattering matrix, elements P..ii

U unitary transformation matrix

,nll~n12,n)22 the four independent quantities in the unitary matrix U

cellipticity angle (arctan of ratio of minor to major

axes of ellipse)

rotation angle (of body about radar line of sight)

R(ip) rotation matrix

R(c) ellipticity matrix

I= U1  R(*)H(a), elements Qij

ssee's0,1sOI~S are the elements of the scattering matrix S referred to

linearly polarised fields in the directions of increasing

6 or 0. The first suffix referring to the receiver, the

second to the transmitter

RR ,  L , C LR' CLL are the elements of the scattering matrix S referred to

circularly polarised fields with right, R, or left, L,

hand circulation
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11 47r 2 {ICRRI 2 + IC I2 + ICLRJ2 + ICLL1
2

J = 4Tr2 ICLR 12 the sphere accept radar cross-section

K = 41Tr 2 ICRRi 2  a sphere reject radar cross-section

L = 4Or 2 ICLLI 2  another sphere reject radar cross-section

D depolarise ion.
n

I'i
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Some Metric and SI Unit Conversion Factors

(Based on DEF STAN 00-11/2 'Metric Units for Use by the Ministrv of Defence",

DS Met 5501 "AWRE Metric Guide" and other British Standards)

Ouantity Unit Symbol Conversion

Basic Units

Length metre a 1 m - 3.2808 ft
1 ft - 0.3048 m

Mass kilogram kg 1 kg - 2.2046 lb
1 lb - 0.45359237 kg

1 ton - 1016.05 kg

Derived Units

Force newton N - kg m/s2 1 W - 0.2248 lbf

1 lbf - 4.44822 N
Work. Energy, Quantity of Heat joule J - N m I J = 0.737562 ft lbf

I J - 9.47817 - 10
-
4 Btu

I J " 2.38846 - 10
-
4 kcal

1 ft lbf - 1.35582 J
1 Btu - 1055.06 J
1 kcal - 4186.8 J

Power watt W - J/s 1 W - 0.238846 cal/s
1 cal/s - 4.1868 W

Electric Charge coulomb C - A a -
Electric Potential volt V - W/A - J/C -
Electrical Capacitance farad F - A s/V - C/V -
Electric Resistance ohm 0 - V/A -
Conductance siemen S = 1 Q- -
Magnetic Flux weber Wb * V s -
Magnetic Flux Density teals T - Wb/m

2  
-

Inductance henry H - V s/A - Wb/A -

Complex Derived Units

Angular Velocity radian per second rad/s 1 rad/s - 0.159155 rev/s
1 rev/s - 6.28319 rad/s

Acceleration metre per square second */s2 1 m/s
2 

- 3.28084 ft/s
2

1 ft/s
2 

- 0.3048 /s
2

Angular Acceleration radian per square second rad/a
2  -

Pressure newton per square metre N/M
2 = Pa 1 N/M

2 
- 145.038 x 10-6 lbf/in'

1 lbf/in3 - 6.89476 - iO3 N/.2

bar bar - 105 N/m
2  -

1 in. Hg - )386.39 N/m
2

Torque newton metre N m I N m - 0.737562 lbf ft
1 lbf ft - 1.35582 N m

Surface Tension newton per metre N/m I N/m - 0.0685 lbf/ft

1 lbf/ft - 14.5939 N/m
Dynamic Viscosity newton second per square metre N s/m

2  
1 N s/m

2 
- 0.0208854 bf sfft.

1 lbf s/ft
2 

- 47.8803 N s/Wn
Kinematic Viscosity square metre per second m

2
/s 1 M

2
/s 10.763Q ft

2
/s

1 ft
2 /s n 0.0929 m

2
/s

Thermal Conductivity watt per metre kelvin W/m K

Odd Units*

Radioactivity hecquerel Bq 1 Bq - 2.7027 - 10 - 11 Ci
1 CI - 3.700 - 1010 Bo

Absorbed Dose gray Gy 1 Cy - 100 rad
1 red - A.01 Cy

Dose Equivalent sievert Sv 1 Sv - 100 rem
1 rem - 0.01 Sv

Exposure coulomb per kilogram C/kg 1 C/kg - 3876 R
I R -2.58 - 1n

-
4 C/kR

Rate of Leak (Vacuum Systems) millibar litre per second mb I/s I mb - 0.750062 torr

I tort - 1.33322 mb

*These terms are recognised terms within the metric svstem.
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