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SECTION I

INTRODUCTION

The flow field produced in the neighborhood of two intersecting

surfaces in supersonic flow has been a subject of interest to design

engineers for many years. These corner flows appear repeatedly in

supersonic inlet systems, at wing-fuselage intersections and in con-

junction with control surface deflections. The flow field near an

axial corner is a strong interference flow which significantly influ-

ences the expected values of heat transfer and skin friction. For

this reason, substantial effort has been expended in exploring the

details of these axial corner tlows.

The flow structure in a typical axial corner formed by supersonic

flow over two intersecting compression surfaces is shown in Figure 1.

The shock structure includes the shock waves produced by the intersect-

ing wedges, the corner shock and the compression shock system which

occurs when moving along the wedge surfaces into the corner. The

triple points (where the corner shock, the wedge shocks and the embedded

shock waves intersect) are joined to the corner by a viscous shear layer.

The embedded shocks may produce separation in a plane normal to the

direction of flow. The structure of corner flow was first detailed in

the laminar case through the experiments of Charwat and Redekopp

(Ref. 1) and by West and Korkegi (Ref. 2) for turbulent flow.

Numerous studies of the flow in an axial corner have been conducted

using computational methods. Kutler (Ref. 3) and Shanker et al. (Ref. 4)

have solved for the inviscid flow in an axial corner using the assumption
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of conical symmetry. WhIile these investigators usud shock c'a,:t1 oiri 1.

Marconi (Ref. 5) recently presented an inviscid solution to tue or'ivr

flow problem using shock fitting. Results of these investilations

showed accurate resolution of the shock wave and shear laver locat ion.

(for high Revnolds number experiments) although the peak pressurt,

levels are sometimes underpredicted because viscous interaction ,ct

are not included. An obvious disadvantage of these inviscid ana1vos

is that they cannot predict heat transfer or skin friction. cresi

et al. (Ref. 6) and Rubin and Lin (Ref. 7) have studied the viscous

flow in an axial corner near the leading edge. Their results are tor

a merged layer problem and are not valid at large distances from th,

leading edge. Faced with the limitations inherent in the merged .1 ,i.

and inviscid solutions, finite-difference methods were used to 51 )Ivk,

the full Navier-Stokes equations for supersonic flow in an axial

corner. Shang and Hankey (Ref. 8) and Hung and MacCormack (Ref. 9)

have obtained solutions for the laminar flow case while solutions

for turbulent flow have been computed by Hung and MacCormack (Re[. 10)

and Shang et al. (Ref. 11). While the results from the solutions of

the Navier-Stokes equations agree well with experimental data, the

usefulness of this approach is severely restricted by the large com-

puter times required. Consequently, alternative methods of obtaining

solutions for axial corner flows need to be developed.

The fully three-dimensional flow in the axial corner suggests

that simplifying assumptions be made in order to reduce the required

computational times to reasonable levels. In inviscid flows the conical

flow assumption reduces a class of three-dimensional problems to an

• ii3



essentially two-dimensional set. The conical flow assumption for

inviscid flows makes use of the fact that a significant length scale

is missing in the conical direction and the domain of interest is

bounded by conical boundaries. This leads to the requirement that

no variations in the radial direction can occur. This is a self-

similar solution which is the same for all constant radius planes but

scales linearly with the radius. The concept of conical flow is

strictly valid only for inviscid flows. However, the viscous portions

of the same flow fields, as observed in experiments, appear to be

strongly dominated by the inviscid flow.

Anderson (Ref. 12) suggested that in those flows strongly

dominated by the inviscid flow, a quick way of computing a solution

(which would include an estimate of heat transfer and skin friction)

would be to solve the Navier-Stokes equations in time on the unit

sphere with all derivatives in the radial direction set equal to

zero. This technique provides the proper shock structure but is

not a viscous conical flow. The local Reynolds number is determined

by the radial position where the solution is computed. Consequently,

the solution is not self-similar in the sense of inviscid conical

flow. The solution is scaled through the local Reynolds number

which remains in the resulting set of equations.

This simplifying assumption has been used by McRae (Ref. 13)

to compute the laminar flow over cones while Vigneron et al. (Ref. 14)

and Bluford (Ref. 15) used the same approach to determine the laminar

flow over a delta wing. McRae and Hussaini (Ref. 16) have solved

4



for the turbulent flow over a cone at angle of attack. In all cases

the inviscid and viscous structure of the flow agrees quite well with

available experimental data which indicates that the original expec-

tations of this computational approach have been more than realized.

As a consequence, an estimate of both the inviscid and viscous structure

of the flows can be made without the long computer run times associated

with the full Navier-Stokes equations.

In the present study, the axial corner flow problem is solved

for the first time using the unsteady, Navier-Stokes equations subject

to the local conical assumption. These equations are solved using an

explicit time dependent approach. Both shock fitting and shock captur-

ing techniques are used. The shock fitting technique is well suited

for computing a compression corner flowfield (see Figure 1) since the

wedge and corner shocks form one boundary of the computational region.

This shock boundary is treated as a moving discontinuity across which

the Rankine-Hugoniot equations are applied. All other internal shocks

are automatically "captured" in the finite-difference solution. For

cases where both surfaces of the corner are not compression surfaces,

the shock fitting technique is not applicable and the shock capturing

approach is used throughout the flowfield. The present method is used

to compute two different supersonic internal corner flows and the

results are compared with experiment.
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SECTION II

GOVERNING EQUATIONS

The Navier-Stokes equations for an unsteady three-dimensional

flow without body forces or external heat addition can be written

in non-dimensional, conservation-law form for a Cartesian coordinate

system as:

oU + (E 1)F +

at Tx Ty 5z

where

u 2 2 2

U= Pv e =e+ 2 +t 2

pw

Pu

p + u 2

E = Ouv- Txy

Puw - TXz

(pet + p)u - Uxx - VTxy - WTxz -qx

PV

Puv- Txy

F p + Pv 2 -C

Pvw- Ty z

(Pet + p)v - UTxy - VOyy - - y
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(C vx<\' - \',

S+ w- - zz

(Get + p)w - uT V-
xz vz zz

and

2 WJ ( du v _ w)
xx 3Re x v Y z

4= 2__(2 v u 'd W

Oyy 3Re L ( y TV x I

5 - (2 3

zz 3Re L Tz x

T = (u +v)
xy ReL  3V x

xz Re L -z + x

T 1i_ ( v + 3)
lyz Re L  z 3v

zT

(y- I)MM 2ReLPr

qy = 11 3T

(y - l)MD 2Re LPr

(Y - l)M O2ReLPr az

The coefficient of thermal conductivity has been removed in the preceding

equations by assuming a constant Prandtl number. In this study, the

coefficient of viscosity p is given by Sutherland's equation and the

following perfect gas equations of state are used:
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p = (y- l)Oe

and (2)

T = yMO2 p/

The equations have been nondimensionalized as follows (dimensional

quantities are denoted by a wavy bar or a subscript c)

x y z t- t
L L L L/V

U
= - V= .W --

V V V

(3)
P p T= e

2 T 2P. ~V0

I).E

where L is the dimensional length defined by the Reynolds number

PCVCL
Re L = (4)

The following conical transformation is introduced

ct = x

6 = y/x (5)

Y = z/x

and Eq. (1) becomes

78
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3 2 3 E((k U) + 0a -) + (tF t:) - t,

The assumption of local conical self-similaritv requiros',

3E
-- = 0

and Eq. (6) reduces to

-- +t (-E + F) + (-yE + G) + 2E 0

on the surface ,= 1. The following generalized traios t

then applied

ri = rn();, r, t)

11 (F G, y)

and the final forms of the governing e.iations become

3U + F +3C -=0

at 3r an+

where

U = u/i

F = -(B + y )E/J + / + F G/J

G = TtU (an a + Yn Y)E/J + nrB F/,J + ri G /J

H = 2E/J

and J is the Jacobian of the transformation:

9



- (n, j) 1/d(B, Y) (12)a=a(B, y) =  ~ n )

The partial derivatives which appear in the viscous terms of E, F and

G are transformed with the aid of the expressions

T = ( ++ Yy) -

a+ (13)

a a a
T- y T +¢ya-

The governing equations are a mixed set of hyperbolic-parabolic equations

which can be solved using a time-dependent technique.

10
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SECTION III

NUIERICAL SOLUTION OF EQUATIONS

I. GRID GENERATION

The domain of computation on the surface cx = 1 is limited by

the body and the outer shock for a shock-fitting calculation and is

limited by the body and an outer boundary for the case of a shock-

capturing calculation. These two types of computational domains

are illustrated in Figure 2 for an axial corner formed by two inter-

secting wedges.

The computational grid is formed (Ref. 14) in a similar manner

for both types of calculations. The C = constant lines are generated

in the physical plane using straight rays which make an angle & with

the y axis and which emanate from the NJ grid points situated along

the body surface. Along each ray (which has a length 6) NK grid

points are positioned. The location of the grid points is arbitrary

as long as they are regularly distributed. Normally they are clustered

near the wall in order to properly resolve the boundary layer. For

shock-fitting calculations, 6 represents the shock standoff distance

and is determined at each time step from the shock boundary condition.

For shock-capturing calculations, 6 remains fixed and is equal to

Zmax - zb for the case illustrated in Figure 2(b). The choice of the

angle e for each ray depends on the problem to be solved. For the

shock-fitting configuration shown in Figure 2(a), 8 varies between

900 and 00, and for the shock-capturing configuration shown in Figure

2(b), 0 equals 900 for all rays.



y) 0

yb, Zb)WALL

a) shock fitting

IL -TER BOUNDARY

(Ybvz) Tj= 0 z zmax

b) shock capturing

Figure 2. Computational Domains in Physical Plane
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The computational planes (corresponding to the physical planes

of Figure 2) are shown in Figure 3. The grid in the computational

plane has the shape of a unit square with uniform spacing in each

direction given by

1 1
NK - 1 NJ - 1 (14)

so that n = (k - 1)An and = (j - I)A .

For the calculations in this study, the physical and computational

planes are related by the relations

y(j, k) = Yb ( j ) + s(j, k) cos [e(j)]
(15)

z(j, k) = zb(j) + s(j, k) sin [O(j)]

where s(j, k) is the stretching function

SOj, k) + { (16)

which clusters more grid points near the wall (ni = 1) as the stretching

parameter approaches one. The body grid points (yb' zb) can be

clustered using the same type of stretching function. For example,

in the shock-capturing configuration of Figure 2(b) the C = constant

grid lines must be clustered near the = 1 wall in order to properly

resolve the boundary layer.

The metrics nio, ny, C and y which appear in Eqs. (11) and (13)

are evaluated using the relations

13i-__
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Figure 3. Computational Planes
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-= - r7 1 (17)

3 = l/(f~np - 2;,' )

where the derivatives F , ,Y and y. are computed numerically with

central differences in the regularly spaced computational plane (Ref. 14).

The metric coefficient n is obtained from the differentiation of the
t

stretching function and is given by

t  2s t/V2 - (0 - s )2] In (-(-I)

where is the shock velocity described later.
t

2. FINITE DIFFERENCE SCHEME

The standard, unsplit, MacCormack finite-difference scheme (Ref. 17)

is used to solve the governing equations at each interior grid point.

This explicit scheme has second-order accuracy in both space and time.

When this algorithm is applied to Eq. (10), the following predictor-

corrector equations result:

n+l n At (n - ) An n
U =U - G -A--C -CH-AtH.
j,k Uj k A\j+l,k j'k/ An j,k+l j,k/j~

j~k K~ ~k 7-k

0 J,k = 1/2 j k + j , k - A j,k - j-lk - jk- j,k-1

_n+1]
- At Hj (19)
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Using this finite-difference scheme, the computation is advanced in

time from the initial conditions until the staady-state solution is

reached. The allowable time step is computed using the empirical

formula of Ref. 18 which modifies the inviscid CFL condition to approx-

imately account for viscous effects. The fourth-order damping scheme

introduced by MacCormack and Baldwin (Ref. 17) is used to suppress

nonlinear instabilities.

3. BOUNDARY CONDITIONS

The flow conditions behind the shock boundary (for a shock-

fitting calculation) are determined using a procedure similar to the

one described in Ref. 18. At the beginning of the predictor step,

the shock standoff distances are computed using

6n+l = n + Lt n (20)
t

where the shock velocity 6 is given byt

6t= VIF ay Y )2 + 2 + y-2] 1in u (3y, - y C )

+ v yc -w j/(¥ cos 0 - , sin 0) (21)

and V1 is the component of the fluid velocity normal to and measured

with respect to the moving shock. The flow variables behind the shock,

as well as V1, can be readily determined using Rankine-Hugoniot rela-

tions (Ref. 19) once the pressures behind the shock are known. These

pressures are calculated using the standard MacCormack predictor equa-

tion at each grid point behind the shock. The corrector step is

16
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similar to the predictor step except that the shock standoff distances

are evaluated using the modified Euler corrector

6n+l = n + At (6 + 6n+)/2 (22)

and the pressures behind the shock are computed using a modified

MacCormack corrector scheme in which the usual backward difference

for G/ rn is replaced by a forward difference. The flow variables

along the outer boundaries, = 0 and = 1 in Figure 2(a) and

= 0 and ' = 0 in Figure 2(b), are determined by assuming flow

gradients parallel to the wall surfaces are zero. An exception to

this occurs along the outer boundaries in the vicinity of the corner

(, = 0, n = 0) in Figure 2(b) where freestream conditions can be

maintained. Along the wall boundaries, the velocities are set equal

to zero and the temperature is specified for an isothermal wall. The

pressure is determined by assuming the normal pressure gradient to

be zero and the density is then calculated using the equation of

state.

4. INITIAL CONDITIONS

The initial conditions for a shock fitting calculation are

obtained by patching together inviscid wedge flow solutions. The

initial conditions for a shock-capturing calculation are obtained by

specifying freestream flow conditions at each grid point.

17



SECTION IV

RESULTS

1. %LSl A:"[, KoRKE(;1 CASE

The . -cscnt method has been used to compute a supersonic internal

corner flowfield corresponding to a laminar experiment of West and

Korkegi (Ref. 2). The corner is formed by the intersection of two

wedges with identical wedge angles of 9.480. The flow conditions are

M = 3.0 T = 105 OK

Re L = 0.39 x 10K6 T = 294 OK

Pr = 0.72 y = 1.4

The flowfield was computed using both the shock fitting and shock

capturing approaches. In the shock filting calculation, a mesh

consisting of 31 grid points in the n diiection ani 50 grid point-

in the i direction was used and is shown in Figure 4 for the con-

verged solution. Since the present corner configuration is symmetric

the mesh could have been reduced to 31 x 25, however, the entire

corner region was computed here in order to serve as a check for

future nonsymmetrical calculations. The mesh was refined near the

walls using a stretching parameter S equal to 1.04. The body grid

points were clustered near the axis of symmetry ( = 1/2) using a

similar type of stretching function with a stretching parameter

equal to 1.12. The e angles required for the t = constant grid lines

were obtained by letting these straight rays be the radii of a circle.

18
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Figure 4. Computational Mesh (shock fitting)
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The shock fitting calculation required about 5000 steps to

converge. It was necessary to reverse the finite differencing in

the t direction in the region 0 < C < 1/2 in order to eliminate

a long period instability which appeared in the calculation. This

instability is believed to be due to the stagnation point located

at C = 1/2. Previous investigators (Refs. 17 and 18) encountered

a similar instability in the vicinity of an interior stagnation

point. This instability is caused by the inability of the finite-

difference scheme to readily distinguish a change in velocity direc-

tion when conservative variables are employed. The shock capturing

calculation does not encounter this instability because the stagna-

tion point is located at a corner of the computational domain.

The results of the shock fitting calculation are shown in Figures

5, 6, and 11. The flow structure in terms of density contours is

shown in Figure 5. The embedded shocks and boundary layers are

clearly visible in this contour plot. The locations of the shock

waves and slip surfaces are in excellent agreement with the experiment.

The thickening of the boundary layer outward from the embedded shock

is due to flow separation. This separated flow region is less exten-

sive than the region computed by Shang et al. (Ref. 11) using the

complete Navier-Stokes equations. The Mach number contours are shown

in Figure 6. These contours were drawn in increments (AM) of 0.1

starting at M = 0.

The shock capturing calculation utilized a fixed mesh consisting

of 31 x 31 grid points and is shown in Figure 7. The mesh was refined

equally near both walls using a stretching parameter equal to 1.01.

20
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Figure 5. Density Contours (shock fitting)
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Figure 6. Mach Number Contours (shock fitting)
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Figure 7. Computational Mesh (shock capturing)
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This calculation also required about 5000 steps to converge to a steady

state. The density and Mach number contour plots for this calculation

are shown in Figures 8 and 9, respectively. These contour plots were

drawn with the same increments in density and Mach number as the pre-

vious contour plots, Figures 5 and 6. The advantage of using the shock

fitting procedure (whenever possible) is dramatically illustrated by

comparing the contour plots for each type of calculation. The shock

fitting solution exhibits a much "sharper" resolution of the flowfield

details. The impact pressures (normalized by the stagnation pressure)

are shown at various heights above one wedge surface in Figure 10. The

rise in the impact pressure (except for y/x = 0.581) on the right-hand

side of the distribution is due to the imbedded shock wave. The impact

pressure rise in the y/x = 0.581 distribution is the result of the shock

wave from the other wedge surface. The depressions in the impact pressure

distributions are due to the slip surfaces which merge together near

y/x = 0.08.

The computed wall pressures for both the shock fitting and shock

capturing calculations are compared in Figure 11 with the experimental

data (Ref. 2) and the complete Navier-Stokes calculation of Shang et al.

(Ref. 11). As would be expected, the present wall pressure results do

not compare as well with the experiment as do the results from the com-

plete Navier-Stokes calculation. The computed pressure rise in the

separated flow region is less than that observed in the experiment.

However, the present method does give a good engineering approximation

to the wall pressure distribution at a fraction of the cost of a complete

Navier-Stokes calculation. The present shock capturing calculation
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required about 23 minutes of computer time on a CDC 7600 computer

while the shock fitting calculation required about 43 minutes. The

latter time could have been cut in half if the 31 x 25 mesh had been

used instead of the 31 x 50 mesh. The shock fitting technique requires

16% more computer time (per grid point per time step) than does the

shock capturing approach.

2. COOPER AND HANKEY CASE

The present method has been used to compute an unsymmetrical

internal corner flowfield corresponding to a laminar experiment of

Cooper and Hankey (Ref. 20). The inviscid details of this corner

configuration are shown in Figure 12. This particular configuration

offers a severe test for the present method since the flowfield is

not conical. The actual flowfield depends crucially on the proper

interaction of the flat plate boundary layer (and its induced shock)

with the wedge shock. The flow conditions of this test case are

M = 12.5 T = 367 OK

ReL = 1.21 x 106  T = 31 OKw

Pr = 0.72 y = 1.4

with a wedge angle of 150. The flowfield was computed using the shock

capturing approach since the shock fitting approach is not applicable.

A mesh consisting of 31 x 31 grid points was used and is shown in

Figure 13. The mesh was refined near both walls using a stretching

parameter ; equal to 1.01.
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The calculation required about 4000 steps to converge to a st.adv

state. The results of this calculation are shown in Figures 14-20.

In Figure 14, a contour plot of the computed impact pressures is com-

pared with the corresponding contour plot (same ..p ) from tht N.vi. r-

Stokes calculations of Shang and Hankev (Ref. 8). T1he kontUr ,:

of impact pressures from the present calculation compares cc I,

with the contour plot from the Navier-Stokes calculation. H

is obvious that the present analysis does not properly •

boundary laye-r thickness on the flat plate and consequentlv, t .

induced shock is not correctly located. In fact, the compuLtLe!

ary layer thickness and the shock standoff distance arc ahrt

the values obtained in the Navier-Stokes calculation. As a ics.t,

the details of the computed interaction flowfield are compr,.s-sd do',iw-

ward as seen in Figures 15 and 16. These figures compare the im:'lct

pressure distributions at various heights above the flat plate. ior

a given height, the present distribution compares reasonably well with

the Navier-Stokes distributi n at twice that height. This suggests

that the present method could be used to obtain reasonable results

for the given problem if an appropriate Reynolds number were chosen

that gave the correct boundary layer thickness.

Contour plots for the computed densities, Mach numbers, and total

temperatures are shown in Figures 17, 18 and 19. The increments used

for these contour plots are Ap = 0.25, AM = 0.1, and AT = 100 °K.t

A comparison of the wall pressures is shown in Figure 20. Once again,

the present method gives a good engineering approximation to the wall

pressure distribution. As expected, the heat transfer results are
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not in good agreement with the Navier-Stokes results. The computed

peak heat transfer rate is only 24% of the peak heat transfer rate

computed in Ref. 8. The present calculation required about 18

minutes of computer time on a CDC 7600 computer.
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SECTION V

CONCLUSIONS

In this study, numerical solutions have been obtained for the

three-dimensional, supersonic viscous flow in an internal corner.

These solutions were computed by solving the unsteady Navier-Stokes

equations subject to a local conical assumption. This assumption

permits a solution to be obtained at a fraction of the cost required

for a complete Navier-Stokes calculation because a given problem

is reduced from four dimensions (3 space, 1 time) to three dimensions

(2 space, 1 time).

The present method was used to compute a compression corner

flowfield corresponding to the laminar experiment of West and Korkegi.

Both a shock fitting and a shock capturing solution were obtained. The

computed locations of the shock waves and slip surfaces were in excellent

agreement with the experiment. As expected, the shock fitting approach

gave a much "sharper" resolution of the flowfield. The two computed

wall pressure distributions agreed reasonably well with each other and

with the experimental distribution. The present results were in much

better agreement with the full Navier-Stokes solution than previous

results computed using the assumption of inviscid conical flow.

The present method was also used to compute an unsymmetrical corner

flowfield corresponding to the laminar experiment of Cooper and Hankev.

This particular corner configuration is not truly conical and for this

reason, the present results agreed only qualitatively with the experi-

mental results. However, it would appear that if an appropriate
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