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EVALUATION

This effort resulted in a successful laboratory demonstration

of a speaker identification system. The speaker identification system

performed with greater than 90% accuracy for a group of 30 male,

American talkers. These encouraging results were obtained although as

little as 10 seconds of both unknown and reference speech data were

used. The identification was performed automatically, on-line, and

in real-time, with band-limited, text-independent speech. At signal-

to-noise ratios of 15db, identification accuracies were reduced by

only about 10%.

The speaker identification system was implemented with an interactive

operator interface so that untrained personnel could use the system with

a minimum of instruction.

The results of this effort indicate that this type of speaker identi-

fication technology should be further developed so that it can be integrated

in future operational systems with other automated speech technologies,

such as keyword and language identification. These future systems will

provide an operator with a real-time automated capability for the

processing and analysis of speech signals. Accession ot
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CHAPTER 1: INIWD= ON AM SM4ARY

This is the final report for RADC's Speaker Authentication OT & E

contract conducted by ITr Defense (o~aunications Division. The long term

qoal of the proqram is to implement a realtime speaker recognition system

that can be operated by untrained personnel. The objective of the present

contract was to demonstrate the feasibility of using speaker recoqnition

techniaues to aid in the identification of unknown speakers. The contract

was conducted in two phases. The first was the algorithm selection phase,

in which various speaker recognition technicues were implemented and tested

to determine the optimal technique to satisfy the specific program

recuirements. The second phase of the program was to implement the

selected techniaue in a laboratory demonstration system, and to develop a

convenient, easy to use operator interface to the system.

This report is oraanized in four chapters. The first chapter is a

summary of the present speaker authentication effort and contains all the

major results and conclusions. The remaining three chapters discuss these

efforts in detail. Chapter 2 describes the algorithm selection phase,

Chapter 3 discusses the implementation of the realtime speaker recognition

system, and Chapter 4 contains the conclusions of this effort and

reccmmendations. The appendix contains experimental results.

1.2 PGRCPM OVERVIEW

This work in speaker recognition was conducted at the ITT Defense

Communications Division (ITMCD) facility in San Diego, California under

contract to the Air Force's Rome Air Development Center. The objective of

the contract was to demonstrate the feasibility of using speaker

recognition technimes to aid in the identification of unknown speakers.

-7-



The recuirements for any speaker recognition system developed under this

contract include the following:

1. Recognize unknown talkers from a set of up to 30 known speakers in a

text independent environment

2. Achieve 95% recognition on 90% of the speakers using 10 seconds of

training speech, and 5 to 60 seconds of unknown speech.
3. Generate and document speaker reference models.

4. Permit operation by untrained personnel with minimum instruction.

The most difficult task was to develop a text independent speaker

recognition techniaue that would achieve 95% recognition accuracy with only

10 seconds of traininq data for each talker. Orevious text independent

speaker recognition techniaues had been reported that had achieved the

required accuracies, but all had used several minutes of training data to

qenerate the speaker reference models. In addition, recognition was

accomiolished in most of these studies by using at least one minute of
unknown speech. A serious auestion that needed to be investigated was
whether or not the reciuired accuracy could be maintained when the training

data was reduced to 10 seconds, and the unknown speech was limited to less

than one minute.

The aproach was to divide the effort into two parts. The first phase

was to investigate speaker recognition techniaues to determine their

performance under the conditions of limited amounts of input speech. The

second phase of the program was to implement the best technique in a

laboratory demonstration system and investigate som of the human factors

considerations of the coerator interface.

ITIDCD has had a long term qoal in the area of speaker recognition and

verification, and therefore has developed a realtime capability for speaker

recognition using a high speed, secial purpose signal processor. During

the second phase of this contract, an operator interface was developed and

combined with the realtime speaker recognition capability. This operator

interface was designed to be easy to use by untrained personnel.

-8-



1. 3 ALGORITM SELECTION SItDY

The first ohase of the proqram was to identify a text independent,

closed set, speaker recognition algorithm that would achieve high

recognition accuracy with very limited reference data. Previous studies

had reported high recoqnition rates, but all had used several minutes of

speech for the references.

Two speaker recoqnition techniaues were implemented and tested during

the algorithm selection phase of the contract. The first technique was

oriqinally developed bv Markel [l]. ITIlXa had tested Markel's technique

under a previous government contract and achieved excellent results with

ten minutes of reference data. The second technique was originally

implemented by Pfeifer (2] under an RADC contract. This second technique

was suggested by the sponsor as a candidate for implementation.

Markel's technique, uses ten linear prediction coder (LP) reflection

coefficients as soeaker recognition features. The features are averaged

over the entire recognition period, and the average feature vector is then

compared with the stored talker models. The recognized talker is the one

whose model is most similar to the unknown speech.

Pfeifer's technique also uses reflection coefficients as speaker

recoanition features. ITe difference between the two techniques is that

Pfeifer's algorithm does not average the features before ccmparing them

with the stored models, but rather makes a decision as to the talker

identity for every speech frame. The final recognition decision is then

made by determining which model coares best with the unknown for the

majority of the frames during the recognition period.

Both speaker recognition techniques were implemented using the ITTDCD

speaker recognition test bed. The test bed contains a realtime speaker

recognition capability, but is flexible enough it permit the rapid

implemntation of new algorithms. It is implemented on two processors, the

PDP-11/60 and a high speed signal processor developed by ITMDCD (the

-9-
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Quintrell RAM). The Quintrell RAM is programed to execute the majority of

the oomputationally intensive signal processing tasks required for speaker

recognition. The PDP-11/60 portion of the test bed permits the use of

high level languages for controlling the Quintrell processor, and provides

disk storage facilities for the speaker data bases and results.

The two techniques evaluated under the contract were tested using a

portion of the ARPA speaker recognition data base. This data base consists

of 10 three minute interviews from 17 different talkers. The interviews

with each talker were conducted at one week intervals for 10 weeks. The

data used for these experiments came from the fifth and sixth interviews

for each talker.

Experiments were conducted to investigate the performance of the two

algorithm under a variety of conditions, all of which involved the use of

limited amounts of input speech both for model generation and recognition.

The majority of the testing used 10 or 20 seconds of speech for the

reference models, and recognition used one to 40 seconds of speech.

The results for both Markel's and Pfeifer's techniques when used with

10 and 20 seconds of reference data are shown in figure l.l. The results

indicate that Markel's algorithm performs better than Pfeifer's for

applications where the durations of both the reference data and the model
data are limited. 7he performance of Markel's technique was 96% when used

with 20 second models and 40 second unknowns. The performance of Markel's

algorithm was also evaluated when the signal to noise ratio of the input

speech was reduced to 15 dB. 7he speaker recognition accuracy decreased by

less than 10%.

Additional experiments were performed with the speaker recognition

test bed to investigate recognition algorithms that combined the frame

averaging of Markel's technique with the majority decision of Pfeifer's

technique. The results indicate that the more averaging that is done

before the recognition features are campared with the reference models, the

better the system performance. herefore Markel's technique was chosen as

the algorithm to be implemented in the realtime speaker recognition system.

-t0-
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COMPARISON OF MARKEL AND PFEIFER'S TECHNIQUES

10 and 20 SECOND MODELS, INDIVIDUAL COVARIANCE MATRICES
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1.4 SPEAKER RIOGNTION LAORAO DEMONSTRATION SYSTMN

Markel's algorithm was chosen for the laboratory realtime
demonstration system based on the results obtained from the algorithm
selection studies. The realtime speaker recognition capability of the test
bed was Lntegrated with an operator interface that provides a very
flexible, easy to use system. The operator is prompted by the system at
every phase of the operation with the options that are available at that
time. The operator simply selects the desired operating mode (model
generation, recognition, etc), and indicates the action to be taken via
simple commands.

The system is capable both of generating models and of recognizing up
to 30 talkers simultaneously and in realtime. The system has two display
modes, one for talker similarity, and the other for recognition confidence.

Limited testing of the realtime speaker recognition system was
conducted under the contract. A thirty talker data base was generated by
recording speakers from commercial television. Speaker models were
generated with 10 and 20 seconds of the recorded speech for each talker.
Different 10 and 20 second segments from each talker were then used as
unknowns.

The results are very encouraging. As table 1.1 indicates, the best
recognition rate was 100% correct for 10 second models and 20 second
unknowns. It is somewhat surprising that the 10 second models performed
better than the 20 second models, however, it mist be remembered that this
was an extremely small test. Only one recognition trial was run for each
speaker. Further testing is required tb adequately estimate the system
performance.

-12-



Table 1.1: REALTIME SPEAKE R2TICN RESULTS

10 second models 20 second models

10 second unknowns 93% 90%

(28 correct out of 30) (27 correct out of 30)

20 second unknons 100% 97%

(30 correct out of 30) (29 correct out of 30)

1.5 CCNCLJSIONS

All requirements for the contract have been met or exceeded. An
algorithm has been developed and tested using an ITIC speaker recognition

test bed capability. The resulting algorithm achieves recognition rates in

excess of 90% for all speakers when used with limited mounts of speech for

both the reference models and the unknowns. In addition, this algorithm
has been implemented in a realtme speaker recognition demnstration system

and achieves similar high recognition scores. The realtime demonstration
system has proven to be easy to operate with little or no instruction. An
operator can generate a model using "live" speech, document the model with
pertinent speaker data, and use the model for realtime speaker recognition,
all within less than a minute. The findings of the study are summrized in
the following paragraphs.

1. Markel's technique was shown to be wll-suited for speaker recognition

system operating with limited amounts of speech for both model
generation and reognition. n addition, the study proved that

Markel's technique performs better than the Pfeifer technique under
these conditions.

2. Facognition acouracies close to 95% were obtained with Markel's

', -13-



techniaue usinq a 17 talker data base. The models were generated with

20 secomds and 40 seconds of unknown speech.

3. Reconiticn accuracies for noisy speech ( approximately 15 Db signal

to noise ratio) were shown to decrease less than 10% when coaiared

with the oriqinal noise free results for the same input speech. These

tests also used Markel's technique with 17 talkers.

4. A realtime laboratory speaker recognition capzability was integrated

with a convenient, easy to use operator interface to produce a
realtime speaker recognition demnstration system. The realtime

trocessinq is done in an ITTDCD developed, high speed signal

arocessing unit ( the Ouintrell RAM). The operator interface is

implemented in a PDP 11/60.

5. The realtime capability of the speaker recognition deminstration

system was tested by generating models and performing recognition in

realtism on a thirty speaker data base. Limited testing of the system

shd recoqmition accuracies of 97% when using 20 second models and
20 secnd unknown speech samples. An accuracy of 100% was

demonstrated when using 10 second mofels and 20 second unknowns (see

Table 1.1).

-14-
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Chanter 2: AORI'HM SELO ON

2.1 NON

The first step in the development of the speaker authentication system

was to select a speaker recognition technique and to. refine the algorithm

to meet the goals of the program. Several recognition techniques have been

described in the open literature, but none of them had been tested under

the conditions of interest in this program. In particular, the contract

requirement to generate models using as little as 10 seconds of speech had

not been addressed previously. Because of the uncertainty in the
Performance of these algorithm, the program was divided into two phases,
an algorithm selection phase, and a system development phase. The
alqorithm selection study is described in this chapter.

Two speaker recognition techniques were implemented and tested during
the alorithm selection Phase of the contract. The first technique was
originally developed by Markel(l. ITMCD had tested Markel's technique
under a Previous government contract and achieved excellent results. The

second techniaue was originally implemented by Pfeifer[2] under an RADC
contract. This second technique was suggested by RADC as a candidate for
implementation.

2.2 SPEAKE RPF0ITION AWORI'MS

The class of speaker recognition techniques applicable to this problem

are referred to as text independent, closed set recognizers. These

techniques are designed to choose, from a set of known talkers, the
candidate whose speech mst closely matches the unknown speech segment.

Text indepe-ent recognition invlies there is no constraint on the content

of the unknown speech to be analyzed nor on the speech segment used for the

mdel.

-45-

-mt- / r . . .-----



A speaker recognition techniaue must operate in two modes, a model
generation mode, and a recognition mode. Before speakers can be

identified, models must be generated that characterize each talkers voice,

Recognition is then Performed by comparing these previously generated

models with an unknown utterance, and making a decision as to the identity

of the speaker.

The majority of text independent closed set speaker recognition

techniaues can be modeled as shown in figure 2.1. For a generalized
speaker recognition system such as the one shown, the following steps are

performed.

1. The input speech is digitized.

2. A parametric representation for the speech is generated. Parameters

in general use include spectral coefficients, cepstral coefficients,
and linear predictive coding (LPC) reflection coefficients. The
amount of time represented by the speech segment required to generate

one complete set of speech parameters is refered to as the frame
period, and the set of parameters generated during that time is
refered to as a frame.

3. The parameters or frames are then passed to a subopulatln filter
that retains only those frames that have the particular attributes
selected as iportant for distinguishing talkers. Subpopulations that
have been been used in previous investigations include all speech,

all voiced smeech, all rvels, all transitional speech, and all

nasals.

4. ih next step in a qeneralized recognition system is to further
urocess the frames contained in the selected subptulation to genrate
speaker recognition features. Features are generated by averaging

frames, performinq a transsm sticn of the original speech parameters
using principle ceonent analysis, cc ceubinatias of both averaging
and transfarxtion.

-16-
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5. In the model qeneration mode, the smeaker recognition features are

tcocessed to extract statistical Parameters that characterize the

talker. These statistical parameters, such as mean feature vectors

and covariance matrices for the features, are stored as talker models.

6. In the recognition moie, a distance metric is used to determine the

similaritv between the unknown feature vectors, and the stored speaker
models. Distance metrics that have been investigated previously
include the Euclidean, the weighted Euclidean, and the Mahlanobis

metr ic.

7. In the recoqnition mode, the similarity scores determined by the

distance metric are then analyzed by a sequential analysis process

that examines the time secuence of similarity measures, and makes a
determination as to the sneaker identity.

2.3 IMImcD SPEAKER RMXMTION TEST BED

Both sneaker recoqnition technioues were implemented and evaluated
using a speaker recognition test bed developed at ITMCD under IR&D

fundinq. The speaker recognition test bed incorporates a number of

mrccessina capabilities that Permit the easy imolementation of speaker

recocnition algorithm. The test bed was also developed to permit the

raoid Processing of the extremely large data bases that are required for

the evaluation of algorithm Performance.

The speaker recognition test bed is resident on two processors, the
PDP-1/60, and the Ouintrell high speed signal processor. The PDP-11/60 is

used as a controller for the Processing, and for mass storage of the data
base and the processed data. The Quintrell is used to implement the

various high speed signal processing routines required for speaker

recoanition alqorithms. Table 2.1 contains a list of the signal processing

routines available in the test bed.

-18-
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Table 2.1. SIGNAL PROCESSING FOTINES flhLEKENvD IN
THE SPEAKER R9MGNITION TEST BED

LPC-10 analysis with pitch, using live data from the A/D
LPC-10 analysis with pitch, using stored digital data
LPC-10 synthesis from stored reflection coefficients and pitch

Bandpass filter analysis
Pseudo formant analysis using stored reflection coefficients
Distance metrics:

Euclidean

Weighted &clidean

Mahlanobis
FFT's using stored digital signals

Using test bed software, the PDP-11 can send data to and receive data
from the Quintrell, and direct the Quintrell to execute any of the
functions in Table 2.1. Specific speaker recognition algorithms are

implemented by specifying a string of processing commands to the Quintrell,
and identifying the files where data is to be obtained and stored. In

addition, functions not currently available in the Quintrell can be coded

in Unix "C" and used to supplement the Quintrell's capabilities.

7he Quintrell portion of the speaker recognition test bed consists of
a control program, or executive, and a series of modular programs that
perform the signal processing functions shown in Thble 2.1. 7he Quintrell
executive cconunicat.es with the PDP-II over a DMA interface. It receives
and decodes camands from the PDP-II, loads the recessary data from the

PDP, directs the execution of the specified function, and returns any

generated data to the PDP-U.

The test bed is thus a vehicle for developing and testing speaker

recognition algorithm in a high level language. It also provides a high
speed implementation of these algorithms so that large amounts of data can
be efficiently processed in resonable periods of time.

j -'9-
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To supDlement the routines already available in the test bed,

additional Unix "C" programs were written. These included the
subooulation filters and the model generator.

2.3.1 Suhoopulation Filter

Two subopulations wpre investiqated under this contract, the voiced

sDeech subpooulation, and the vowel subpopulation. Markel originally used

the voiced speech subpopulation in his studies. However, since Pfeifer

used the vowel subpopulation in his work with good results, both
subpooulations were investigated. Two vowel subpopulation filters were

used. The first, the single vowel subpopulation filter, locates the vowel
nuclei and extracts a single vowel frame for each nucleus. This filter

produced so few frames when used with 10 and 20 second utterances, that
difficulty was encountered in generating models. Therefore, a second

filter, the multi-vowel suboopulation filter, was also implemented. The

nulti-vowel filter extracts three frames from the center of each vwel

nucleus, and therefore produces three times as many output frames as the
original filter. The basic algorithm is the same for both filters

The subpou lation filters are describe below in detail. To extract

the input frames that belonq to the various subpopulations, the speech
siqnal is first differentiated into voiced and unvoiced suboopulations. A

subset of the voiced population, vocalic nuclei, is then separated. Since
program for subopulaticn filtering are not currently part of the speaker

recognition test bed, these routines were written in Unix "C" and executed

on the PDP-II. The methods for separating the various subpopulations are

described below.

uied-S neec'it T he voice/unvoiced subpopulations are derived by the

voicing detector in the LPC analysis routines. This voicing detector uses

an energy measure with a nwmter of adaptive energy thresholds, and zero

crossing analysis to make its decisions. It also incorporates smoothing

and isolated error correction to the voicing decision. The algorithm is
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briefly outlined below.

An initial voicing decision is made based on the following energy

related parameters:

1. The low-Passed speech energy of the present frame.

2. The low-passed speech energy of the previous frame.

3. The updated background noise energy, defined as:

N = 15/16 Nt_1 + 1/16 Pt

where

Pt is the power of the low pass signal
and

Nt  is the noise power.

Also, Nt is constrained to be greater than Vt/32

where Vt is defined as

Vt  ( 63/64 Vt_1  + Pt)

and

vt  is only updated during frames judged to be
voiced during the primary stage.

Three decisions are allowed in the initial stage:

1) Definitely voiced,

2) Tentatively voiced,

3) unvoiced.

A secondary stage of the voicing algorithm is then used to refine the

initial voicing decision. This refinement is based on the following:

1) k and k2 , the first and second reflection coefficients, are used in

the secondary stage of the voicing algorithm. If the frame is marked

as voiced during the primary state and 100 (k1 + k2) < -80 then the

frame is converted to unvoiced.
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2) The number of zero crossings of the full band speech is also used in

the secondary voicing decision. If the numb. of zero crossings in

the frame of 180 samples is greated than 52, a voiced decision at the

primary stage is converted to unvoiced.

3) Finally, a three frame nonlinear smoothing function is applied to the

voicing decision.

This algorithm is the same as is currently used by the DOD LPC-10
secure voice system, and has been thoroughly tested under various signal

conditions.

Vowel Nuclei: The vowel subpopulation is obtained in two steps.

First, all non-steady state (transitionals) frames are eliminated from the

voiced population leaving only vowels and some sonorants. Then the vocalic

nuclei are separated from the remaining sonorants. The procedure is as

follows.

A voiced speech frame is determined to be transitional if the
following is true

*

Fn > Fn

where Fn is the distance between the

(n-l)th and the nth frame, defined as

10
*2

Fn - (fi,n - fi,n-1)
i-n

and r is the average distance between

frames, calculated as

-22-
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n-i
l/ (n-1) "SM (F)

i=l

where

fi,n is the i t h speech parameter at the
nth frame in time.

The definition of the voiced transitional is rather ad hoc. The

algorithm does eliminate most transitional areas without much error. The

weakness in the process is that the remaining voiced speech is rot

accurately defined as steady state speech, but is a mixture of steady state
sounds and weakly transitional speech. This was not considered to be a

serious problem since the steady state subpopulation was not used in
developing recognition features but was only used as a candidate population

for the vocalic subpopulations.

The second step in locating vocalic nuclei separates vowels from

sonorant sounds. The nth analysis frame is defined as a vocalic nucleus if

the voiced speech frame at time n is a local maxima of the signal power

function. more precisely, if

Pi is the signal power for the ith frame then

Pn-2 < Pn-l 4<
and

Pn+2 < Pn+l < Pnand

pn >

where

P - (31/32) Pn_,+ (1/31) • Pn

for n and n-I voiced frames.

-23-
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If the condition is met, then the nth frame is said to be in the
region of a vocalic nucleus. The actual speech frame used in the single

vowel subpopulation is the frame m such that

Fm is a minimun for n-2 < m < n+2

where Fm is the rate of change defined above.

The multi-vowel subpopulation filter includes not only the mth frame, but

also the m-lth, and the m+lth frames.

2.3.2 Model Generation

The second routine written in Unix "C" to supplement the speaker

recognition test bed is the model generator. Each model is generated from

a set of speaker recognition features derived from the LPC-10 analysis of
the speech signal. The model generator routine calculates the mean vector

and covariance matrix from the desired input speaker data (the reflection
coefficients in the appropriate subpcpulation). A standard mathematics

routine is then used to 'invert the matrix. Two types of covariance

matrices were studied.

Individual Covariance: Individual covariance matrices were generated
for each speaker in the data base using only those feature vectors that

were known to originate from that speaker. models of this type incorporate
speaker dependent information into the weighting matrix of the model.

Pooled Covariance: Pooled covariance models contain the covariance

between features generated across all speakers. 7he mean vector for each
speaker model is derived using data from each individual speaker, but the
covariance matrix is generated by "pooling" the data from all speakers. A
single covariance matrix is calculated for the "pooled" data. This type of
model does not exploit any speaker dependent information that may be

contained in the individual covariance matrices. the model does have the
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advantage that a relatively few frames from each speaker when pooled

together, result in enough frames to adequately estimate the covariance

matrix.

2.3.3 Data Base

The data base used in this study is a subset of the ARPA data base.

It is made up of 17 speakers, U males and 6 females. All 17 of the
speakers were adults, ranging in age from their early 20's to late their

30's. None of the speakers had a distinguishing accent or regional

dialect. Two sessions that were recorded one week apart were used.

Originally, each recorded session was approximately 20 minutes in

length. The end result of tape editing produced three minute segments for

each of the 17 talkers. The editing removed long pauses, laughter, and
non-speech sounds whenever possible.

2.4 MAE I'S SPAE REOWITION TMWIQUE

A block diagram of Markel's speaker recognition technique is shown in

figure 2.2. Markel's technique is a subset of the generalized speaker

recognition system described in Section 2.2. The functional blocks in the

technique are as follows:

1. LFC-10 analysis is performed on the input speech. The speech

parameters used for Markel's technique are the ten LPC reflection
coefficients.

2. The next block is the subpcpulation filter. Markel's original

implemfentation used only the voiced subpcpulation. Pbr this contract,

two subpoulations were tested with Markel's technique, the vowel

subpopulation, and the voiced speech subpopulation.
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3. The models used for Markel's technique are generated by computing the

averages for each of the ten reflection coefficients, and the

associated covariance matrix.

4. Markel's technique averages the unknown frame data before calculating
a distance between the feature vector and each model in the reference

set. The model with minimum distance to the feature vector is

selected as the speaker for that recognition trial.

5. The distance metric for Markel's technique is the Mahlanobis metric.

This metric is defined as follows:

D= (r-R) [W] - (M- M) F. 2.1

where W is the average coefficient vector,

R is the mean vector from a model,

and [W] -  is the inverse covariance matrix from a model.

The metric outputs the "winner" (the model closest to the unknown
speech) for each input frame.

2.4.1 Experimental Design with Markel's Technique

The ability of Markel's technique to perform speaker recognition was

evaluated using five different experiments. 2-ey are shown in Table 2.2.
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Table 2.2: P WI'TH MA1WMJ' S 7MIMQTE

1. Voiced Speech Subpopulation with Individual Covariance Matrices

2. Voiced Speech Subpopulation with Pooled ovariance Matrices

3. Single vowels with Individual Covariance Matrices

4. Multiple vowels with Individual Covariance Matrices

5. Multiple vowels with Pooled Covariance Matrices

2.4.1.1 LPC-10 Analysis

The first step was to perform LPC-10 analysis on the digitized data

base. The digitized speech is sent to Quintrell over the EMA. interface.

The ten reflection coefficients, the frame number, the pitch, and the power

for each analysis frame are computed in the uintrell and returned to the

PDP-U for storage. An LPC data base was thus created for use in

evaluating Markel's technique.

2.4.1.2 Subpopulation Filtering

The next step in processing the data was to filter the LFC-10 frames
using the subpopulation filter routines described in the preceding section.

This resulted in three new data bases:

1 . The voiced subpopulation
2. The single vowel subpopulation

3. The multi-vowel subpopulation

Recognition experiments were then run with each of these three

subp uation data bases. The experimental procedure was virtually

identical for all five experiments. The processing of the voiced

subpolatin is described below.

2.4.1.3 Model Generation
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First, models were generated from the appropriate portion of the

voiced subpopulation data. Two recorded aessions of speech, sessions

numbered 5 and 6, recorded within one weeks time, were examined in the

experiments. The models were generated from the two sessions to determine

the effect of using aged models in the process of speaker authentication.
An aged model refers to models generated at a time other than the test

session, not the physical age of the speaker.

Another variable in generating models, is the number of feature
vectors used to create the model. The models used in testing Markel's

technique are listed in Table 2.3 below.

Table 2.3: DATA USED FOR GENERATING DIFFE T MEL TYPES

1) Model I:

Feature vectors from the first 10 seconds of the test set, session 5;
2) Model II:

Feature vectors from the first 10 seconds of session 6;

3) Model III:

Feature vectors from the first 20 seconds of the test set, session 5;

4) Model IV:

Feature vectors from the first 20 seconds of session 6;

5) Model V:
Feature vectors from all 3 minutes of the test set, session 5;

6) Model VI:

Feature vectors from all 3 minutes of session 6;

For each of the five experiments using the various subpopulations,

models were generated from the feature vectors belonging to the

subpopulations found in the first 10 seconds, 20 seconds and 3 minutes of

voiced speech. At the time of subpopulation filtering, values were saved

representing the time slice from which the features were derived to permit

the selection of the correct feature vectors for model generation. In this

manner, it was possible to compare results for different populations of

feature vectors with respect to the save time slices of the speech signal
in both the model and the test sets.
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The contract asked for models to be generated with as little as ten

seconds of data. Models I and II were generated with ten seconds of data

and used to determine recognition accuracy with this limited speech.

dels II and IV were generated using approximately 20 secods of speech,

and used to determine if more speech in the model would significantly

improve performance.

Mbdels I and III are of most interest for this contract since they are
generated using speech from the same time period as the unknowns. models
II and IV are generated with data one week older than the unknowns, and
were chosen to measure the effects of the model age on system performance.

Model V was generated using the same data as used to generate the
unknowns, and is therefore total unrealistic. Its only value is to provide
an upper bound on system performance.

Model VI was generated using 3 minutes of speech recorded one week
later than the unknowns. These models closely resemble the models
originally used by Markel, and were used to validate the performance of the
ITMCD implementation of the algorithm. Since the contract required much
shorter speech segments be used for model generation, model VI does not
apply to this contract.

2.4.1.4 Frame Averaging

The next step in the experiments was to average the data. The
averaging is done over various block sizes. The blocks were set up for

recognition trials of 40 ,20, 10, 5, 2.5, 1.25, and .05 seconds. The

blocks contained 800, 400 ,200, 100, 50, 25, and 1 voiced frames

respectively.

The blocking and averaging procedure is identical for all the

subpcpulations. In order to compare the performance of the various
supopulations, the blocking is always dane so the frames froa the same
portion of the speech always end up in the sus block. For exuiple, the 40

uewd blocks for the owels are generated using the saim irput speech as
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the 40 second blocks for the vls are generated using the same inout

speech as the 40 second blocks for the voiced speech. However, the number

of frame in each block is no longer fixed as it was with the voice frames.

Only the vowel frames that were contained in the original 800 voiced frame

block are included in the corresoondinq vowel block.

2.4.1.5 Distance Metric

The final step in the experiments to evaluate Markel's technique was

to calculate the distance metric on the average frames (one for each

recognition trial). The model with the minimum distance to the unknown

average frame is selected as the talker. The percentage of correct

recognitions over all the recognition trials is then tabulated.

2.4.2 Experimental Results of Markel's 7Lachnique

The results achieved by Markel's technique are very good. Although

the technicue was original tested by Markel using models generated from

several minutes of speech, the results obtained in this effort indicate

that acceptable performance can be obtained using models generated from

10-20 seconds of speech.

The performance of the 10 second models (model type I) for various

lengths of unknown speech is shown in figure 2.3. The recognition accuracy

for the voiced speech subpoulation (curves I and 2) is approximately 15%

better than- the multi-vowel subpoxulation (curves 3 and 4). The

performance of the single vowl subpopulatimn. (curve 5) is approximately

20% less than the multi-vowel. The boor performance of the single vowels

(curve 5) is probably due to the wtall number of frames available for'

genratinq the models.

The results for the ten sec9nd models indicate little difference

between models using the individual oviarince matrix and the pooled

covariance mtrix (curves 1 vs 2 and 3 vs "4). !he perfor ance of the
system continues to increase as the length of the nknown speech segments

increases. fr a 40 second unnown, the best recognition rate is
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FIVE IMPLEMENTATIONS OF MARKEL'S TECHNIQUE

200 FRAME (10 SECONDS) MODELS
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(1) Voiced subpopulation, models with individual covartance matrices.
(2) Voiced subpopulation, models with pooled covariance matrix.

10 (3) Multi-vowel subpopulation, models with individual covariance matrices.
(4) Multi-vowel subpopulation, models with pooled covartance matrix.
(5) Single vowel subpopulation, models with Individual covariance matrices.
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anoroximately 86%.

Fiqure 2.4 shown the results for Markel's technicrue using 20 seconds

of speech to generate the models (type III models). The performance

imnroves by approximately 10% over that of the 10 second models. The

recocmition accuracy with 40 second unknowns is approximately 95%.

Ttere is a significant difference in the performance of the pooled

covar iance versus the individual covar iance models for the vowel

suboulations. This is probably due to the fact that when 20 seconds of

speech are pooled to qenerate the model's covariance matrix, enough frames

are available to obtain a resonable estimate of the covariance. From the

10 second models, and the individual covariance models at 20 seconds, the

number of frames available is still not adequate to estimate the

covar lances.

The problem of limited data for generating the model is responsible

for a chanqe in the imlementation of Markel's algorithm. As shown in

ficgure 2.2, the models are generated from the individual frames in the

suboopulation. In Markel's original study, the models were generated from
speech that was averaqed in to the same block lengths as the unknown speech

used in the recoqnition trials. The use of averaged data blocks to

Qenerate the models does not affect the mean vector in the model, but does

affect the covariance matrix. Also, number of frames required to generate

a model increases significantly when averaged frames are used

As part of this contract, an experiment was run to determine how the

performance of the recognition system is effected by the averaging of the

data before model generation. Figure 2.5 is a block diagram showing where

the averaging is done in the model generation process. Five different

models were produced using three minutes of speech recorded one week after

the unknowns. Markel's technique was run using the voiced subpopulation

and these five model types. The results of the test are shown in figure

2.6. The curves indicate that the less averaging that is done before

generating the models, the better the 'erformance. 2his is probably due to

the large number of frames required to adecmately estimate the covariance
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FIVE IMPLEMENTATIONS OF MARKEL'S TECHNIQUE

400 FRAME (20 SECONDS) MODELS
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20 (1) Voiced subpopulation, models with Individual covariance matrices.

(2) Voiced subpopulation, models with pooled covariance matrix.
(3) Multi-vowel subpopulation, models with individual covariance matrices.
(4) Multi-vowel subpopulation, models with pooled covariance matrix.

10 "(5) Single vowel subpopulation, models with individual covariance matrices.
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EFFECTS OF FRAME AVERAGING BEFORE MODEL GENERATION
Markel's Technique: 3 minute models

100 (1) Zero frames averaged before model generation.
(2) Twenty-five frames averaged before model generation.
(3) Fifty frames averaged before model generation.
(4) One-hundred frames averaged before model generation.

90 (5) Two-hundred frames averaged before model generation.
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matrix. Wen the frames are averaqed before the model is generated, there

are not enough averaged frames to accurately estimate the covariances.

Even though the covariances that are estimated in the no-averaging case are

not the covariances of the data used in the distance metric (the unknown

data in the distance metric is averaged data), this matrix still performs

better in the model than the correct, but inaccurately estimated oovariance

matrix (determined from averaged data). This is very fortuitous since the

contract requires ten second models (-200 frames), and if averaging were
recruired, the number of averaged frames would not be enough to estimate the

covariance matrix at all.

One additional experiment was conducted with Markel's technique to
,ietermine the effect of a moderate amount of noise on the recognition

terformance. The best subpopulation (voiced speech) from the above

exoeriments was used. The data base was contaminated by adding white

noise. The sianal to noise ratio was reduced to approximately 15 dB as

follows.

1. The MIS power of the original data base was measured. Since the
original data was relatively noise free, this R1S measurement was

assumed to be the signal ower.

2. A white noise data base was generated, and the noise power scaled to

be 15 dB less than the signal power (as measured above).

3. The scaled noise was then added to the original signal.

The results for Markel's technique with the noisy data are shown in
figures 2.7 and 2.8, for the 10 and 20 second models respectively. The

system nerformance is degraded by less than 10% in all cases by the noise.
Fbr the 10 second models, the performance was actually better in some case

with the noisy data. This may be due to the fact that low level voiced

frames, classified as voiced in the noise free data, are classified as

non-voiced in the noisy data. These low level frames may not- be

characteristic of the speaker, and therefore performance imxoves slightly

when they are eliminated. Secondly, the number of recognition trials
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PERFORMANCE OF MARKEL'S TECHNIQUE WITH NOISY SPEECH
10 Second Models with Individual Covariance Matrices

(15 Db Signal to Noise Ratio)
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PERFORMANCE OF MARKEL'S TECHNIQUE WITH NOISY SPEECH
20 Second Models with Individual Covariance Matrices

(15Db Signal to Noise Ratio)
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conducted for the 40 second unknowns is only four or five per talker, and

therefore there can be significant variance in the measured performance.

The performance of all the models in table 2.3 is shown in figure 2.9.

for the voiced speech subpopulation and session five used as the unknown.

The comvlete results for all of the experiments with Markel's technique are

in the apendices. As expected, model V (model generated from the unknown

speech) performed best, and demonstrates that if extremely good models are

available, 100% recognition can be obtain for certain talker sets. Model
III (20 seconds from the same session as the unknown) has the second best

performance. Model III is superior to model VI (3 minute models made from
data recorded one week after the unknown), indicating that changes in

talker characteristics take place over periods as short as one week. The

performance of models II and IV (10 and 20 seconds taken one week apart
from the unknown) perform much worse than the corresponding models

generated at the same time ae the unknowns. This is also indicative of

changes in the speaker's characteristics over time.

2.5 PFEIFER' S SPEAKER RBO=TION TEMNIQUE

A block diagram of Pfeifer's speaker recognition technique is shown in

figure 2.10. Pfeifer's technique is very similar to Markel's speaker

recognition technique described above. 7he main difference between the two
is that Pfeifer does not average the frames passed by the subpopulation

filter before calculating the distance metric. Instead, the distance
metric is calculated on each individual frame in the subpopulation. The

actual speaker decision in Pfeifer's technique is made with a majority vote
over the sequence of winners produced by the distance metric.
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COMPARISON OF 6 MODEL TYPES: MARKEL'S TECHNIQUE - VOICED SPEECH
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I. Feature vectors from the first 10 seconds of the test set, session 5.H1. Feature vectors from the first 10 seconds of session 6.
10 - i- . Feature vectors from the first 20 seconds of the test set, session 5.

IV. -Feature vectors from the first 20 seconds of session 6.
V. Feature vectors from the first 3 minutes of the test set, session 5.
VI. Feature Vectors from the first 3 minutes of session 6.I I I I I I
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In Pfeifer's original implementation, an acceptance, and rejection

threshold are set and models with fewer wins than the rejection level are
removed from contention. Wen the accumulated wins for a model exceeds the
acceptance threshold, the corresponding speaker is selected as the unknown
talker. his sequential analysis technique therefore allows the

recognition to be completed in a variable amount of time that depends on
how well the unknown speech matches one of the models. For the algorithm

implementation in this study, a fixed amount of "time for recoqnition" was

used for each recognition trial, and therefore the acceptance and rejection

threshold were not used. Since the recognition had to be completed in a
fixed time, there was an upper limit on the amount of speech that could be
=rocessed. Speaker decisions had to be made at the end of the period even
if the acceptance threshold had not been reached. On the other hand, if
the acceptance threshold was reached prior to the end of the recognition
period, the inclusion of the remainder of the unknown data (out to the end
of the recoanition period) should only improve the results. Therefore, it
was concluded that using fixed lengths for the recognition trials would

produce an accurate estimate of the- technique's performance under the
conditions of interest.

A ccmvarison of the implementations of Markel's and Pfeifer 's

techniques is presented below:

1. The first two functional blocks are identical for Pfeifer's and
Markel's technigue. LPC-1O analysis is performed on the input speech.

The speech parameters used are the ten IP reflection coefficients.

2. The next block is the subpopulaticn filter. Pfeifer's original

implementation used the voiced speech subavulation. In this

implementation, the same two subpopulations used with Markel's

technique were tested with Pfeifer's technique; the vowel

subcopulatin, and the voiced speech subpopulation.

3. The models used for both Markel's and Pfeifer's technique are
qenerated by computinq the averages for each of the ten reflection

coefficients, and the associated covariance matrix.
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4. A major difference between Pfeifer's and Markel's technique is in the
recognition feature extraction. Markel's technique averages the
unknown frame data before calculating a distance between the feature
vector and each model in the reference set. Pfeifer's technique
calculates the distance metric on each individual frame in the
sub pculation with no averaging.

5. The distance metric for both Pfeifer's and Markel's technique is the

Mahlanobis metric, as defined in equation 2.1. 7he metric outputs the

"winner" (the model closest to the unknown speech) for each input

frame.

6. The next functional block in Pfeifer's technique is the sequential
analysis routine. This routine examines the sequence of winners
produced by the distance metric, and identifies the unknown talker as
the model with the majority of the winners over the unknown utterance.
This is different than Markel's technique in that Markel only looks at
one distance metric calculated for the averaged frame for the unknown

utterance.

2.5.1 Implementation of Pfeifer's Recognition Tchnique

Pfeifer's speaker recognition technique was implemented as a subset of
Markel's technique using the speaker recognition test bed. Only one new
routine was written to implement Pfeifer's technique. The implementation
of Markel's technique described in section 2.3.1 was run using one frame
averaging before the distance metric. This corresponds exactly to
Pfeifer's technique, and the output of Markels implementation with the one
frame averages is the sequence of winners that the sequential analysis
routine in Pfeifer's technique requires. This list of winners was stored

on disk, and a unix "C" program was written to implement the sequential
analysis and to tabulate the correct recognitions.

2.5.2 Experimental Design with Pfeifer's Technique
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The experiments with Pfeifer's technique were carefully designed so

they could be coipared directly with those from Markel's technique. The

experiments, shown in table 2.5 are identical to those done with Markel's
technique (table 2.2), with the exception that the experiment with the

voiced subpopulation and the pooled covariance models was not run with

Pfeifer's technique.

Table 2.5: EXPERIMRM WITH PFEIFER'S TECHNIQUE

1. Voiced Speech Subpopulation with Individual Covariance Matrices
2. Single vowels with Individual Covariance Matrices

3. Multiple vowels with Individual Covariance Matrices
4. Multiple vowels with Pooled Covariance Matrices

The experiments with Pfeifer's technique were actually run at the same

time as Markel's technique, on the same data base. This was done by
running Markel's technique with 1, 25, 50, 100, 200, 400, and 800 frame

averaging. Then, the list of winners for the one frame averaging
experiments was stored on disk. Next, the winners files were processed by

the sequential analysis routine to identify the winning speaker for each
recognition trial. The sequential analysis routine finds the model with

the most winners over a particular block of data (one block corresponds to

one recognition trial). This process is referred to as majority voting.

The majority voting was done over various block sizes. The blocks were set

up the same as in Markel's experiments for recognition trials of 40 ,20,

10, 5, 2.5, 1.25, and .05 seconds. The blocks contained 800, 400 ,200,

100, 50, 25, and 1 voiced frames respectively. The actual speech used in

each block was chosen to be identical to the speech used in the

corresponding recognition trial with Markel's technique to permit easy

ocqtarison of the techniques.
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The vrocedure was reoeated for each of the experiments in table 2.5.

The experimental results for Pfeifer's technique are presented in the next

section.

2.6 EXPERIMMI? RESULTS OF PFFIFFR'S TMHNIQUE

The four experiments listed in table 2.4 were conducted using

Pfeifer's technique. The same six models used for Markel's technique

(table 2.3) were used in these experiments. As before, the models from
session five are of most interest in this program since models will be

generated from soeech recorded on the same day as the unknowns.

The oriqinal testing of this technique by Pfeifer was done using

several minutes of speech for both the models and the unknowns. The

results obtained indicate that the technicue does not perform as well when

only 10-20 seconds are used for the models and the unknowns.

Fiqure 2.11 depicts the performance of four implementations of

Pfeifer's technique using 10 second models. the relative performance of

the subovoulations is the same as for Markel's technique(figure 2.3). The

voiced subpoculation performs approximately 15% better than the multi-vwel

subpopulation, which is in turn approximately 20-30% better than the single

vowels. As with Markel's results, the recognition rate for the single

vwel suboopulation is severely hurt by the small'number of frames in the

mxels.

Fiqure 2.12 shows the results for the experiments with Pfeifer's

technique with the 20 second models. The relative performance of the

various subpopulations is again very similar to that of Markel's. The
voiced suh=Uaticn and the multi-vowel subpopulaticn exhibit

approximatelv the same performance for 10, 20 and 40 second unknowns.
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FOUR IMPLEMENTATIONS OF PFEIFER'S TECIINIQUE

10 SECOND MODELS

100- (1) Voiced subpopulation, models with individual covariance matrices.

(2) Multi-vowel subpopulatlon, models with individual covariance matrices.
(3) Multi-vowel subpopulatlon, models with pooled covartance matrix.

90. (4) Single vowel subpopulation, models with individual covariance matrices.
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FIGURE 2. 11
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FOUR IMPLEMENTATIONS OF PFEIFER'S TECHNIQUE

100- 20 SECOND MODELS

(1) Voiced subpopulation, models with individual covariance matrices.

90 (2) Multi-vowel subpopulation, models with individual covariance matrices.
(3) Multi-vowel subpopulation, models with pooled covariance matrix.
(4) Single vowel subpopulation, models with Individual covariance matrices.
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2.7 CCMPARISON of MAKEL'S and PFEIFER'S T~HHICUE

Mhen short speech segments are used for the models and the unknowns,

the overall performance of Pfeifer's technique is not as good as that of

Markel's. Figure 2.13 is a ccmparison of the two techniques for the voiced

subpopulation. Curves 1 and 3 are for the 10 second models with Markel's

and Pfeifers techniques respectively. Curves 2 and 4 are with the 20
second models. For both model lengths, Markel's technique is approximately

20% better than Pfeifer's.

2.8 COMBINATIONS OF MARKEL IS and PFEIFER' S TECHNIQUE

As discussed earlier, Markel's technique uses averaged frames as

recognition parameters, and does not use sequential analysis. Pfeifer's

technique, on the other hand does not average frames, and uses sequential
analysis. The results of the experiments in sections 2.3.3 and 2.4.3
indicate that Markel's technique (averaging frames) is superior to
Pfeifer's technique (no averaging) under the test conditions. However,

there is no reason why the two techniques cannot be ocirbined. Therefore
the performance of a combination of the two technique was tested as part of

this contract.

Figure 2.14 shows a combination of Markel's and Pfeifer's techniques.
The om'bined system was implemented by averaging blocks of frames to form

recognition features, and then performing sequential analysis on the
sequence of winners produce by the distance metric.

Two experiments were done with the oatbination system; one using 10

second unknowns and the other using 20 second unknowns. The voiced speech
subpopulation and the individual covariance nmdels were used for both

experiments.

-49-

Jr



COMPARISON OF MARKEL'S AND PFEIFER'S TECHNIQUES

10 and 20 SECOND MODELS, INDIVIDUAL COVARIANCE MATRICES

100

9o

80

70

(D 60

50

-4

40 -

03o

20

10 (1) MARKEL'S TECHNIQUE, 20 Second Models.
(2) MARKEL'S TECHNIQUE, 10 Second Models.
(3) PFEIFER'S TECHNIQUE, 20 Second Models.
(4) PFEIFER'S TECHNIQUE, 10 Second Models.
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The first experiment was conducted with 10 second unknowns, and

involved processing the data in the following five ways.

1. Blocks of one frame were averaged before the distance metric, and

sequential analysis was done on 200 blocks. This is Pfeifer's

1lchnique.

2. Blocks of 25 frames were averaged before the distance metric, and

sequential analysis was done on eight blocks.

3. Blocks of 50 frames were averaged before the distance metric, and

sequential analysis was done on four blocks.

4. Blocks of 100 frames were averaged before the distance metric, and

sequential analysis was done on two blocks.

5. Blocks of 200 frames were averaged before the distance metric, and

sequential analsis was done on one block. This is Markel's technique.

The results of the experiment for 10 second unknowns are shown in
figure 2.15. The results generally indicate that the more averaging that

is done prior to the distance metric, the better the system performs. The

best performance was obtained for 200 frame averages, and majority voting

on one block (Markel's technique).

The second experiment used 20 second unknowns. For this experiment,
the data was processed six ways, but always with 20 seconds of speech per

recognition trial:

1. Blocks of one frame were averaged before the distance metric, and

sequential analsis was done on 400 blocks. This is Pfeifer's

technique

2. Blocks of 25 frames were averaged before the distance metric, and

sequential analsis was done on 16 blocks.
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COMBINATIONS OF MARKEL'S AND PFEIFER'S TECHNIQUES

100 200 FRAME (10 SECONDS) RECOGNITION TRIALS
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3. Blocks of 50 frames were averaged before the distance metric, and

sequential analsis was done on eight blocks.

4. Blocks of 100 frames were averaged before the distance metric, and

sequential analsis was done on four blocks.

5. Blocks of 200 frames were averaged before the distance metric, and

sequential analsis was done on two blocks.

6. Blocks of 400 frames were averaged before the distance metric, and

sequential analsis was done on one block. This is Markel's technique.

The results of the experiment with 20 second unknowns are shown in

figure 2.16. The same general pattern exists for the 20 second experiment

as for the 10 second experiment. Again, the best performance is obtained

for Markel's technique without sequential analysis.

2.9 SLE4ARY OF 7E ALGORITM S ON STUDY

The major result of the algorithm selection study is that Markel's

technique has been shown to perform with accuracies in excess of 95% for 17

talkers when used with the voiced speech subpopulation, and models

generated from 20 seconds of speech. The accuracy is above 85% when 10

second models are used. The accuracy of Pfeifer's technique is

onsistently 10% to 15% less than that of Markel's technique when 10 and 20

second models are used. In addition, Markel's technique was shown to

perform better than hybrid systems that combine the frame averaging of

Markel' technique with the majority voting of Pfeifer's technique.
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COMBINATIONS OF MARKEL'S AND PFEIFER'S TECHNIQUES

200 FRAME (20 SECONDS) RECOGNITION TRIALS
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(1) Models with 400 frames and individual covariance matrices.
(2) Models with 200 frames and individual covariance matrices.
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Other findings of the study are list below:

1. The voiced speech subpopulation yielded consistently better results
than either the single vowel or multi-val subpopulation. This

result is most likely due to the limited number of frames available

for model generation when the vowel subpopulations are used. If more

speech were available for generating models, the vowel subpopulation
becomes more attractive. However, for this contract, the amount of

speech for model generation is extremely limited, and therefore the
voiced subpopulation was chosen for implementation in the

demonstration system. There is also considerable computational

savings in using the voiced subpcpulation rather than the vowel

subpopulation.

2. The choice of a pooled covariance matrix or the individual covariance

matrices does not have a significant impact on the recognition

performance when the models are generated from 10-20 seconds of
speech, and the unknowns contain up to 40 seconds of speech. The
value of pooled covariances lies in the limited amount of space that
is required for storage. A mean vector must be stored for each model,

but only one covariance matrix is stored. In a dedicated system where
memory may be limited, this saved space may be significant.

3. The use of individual frames as input to the the model generator was

shown to produce better recognition results than the use of averaged
frames in the model generation. This is most likely due to the

improved estimate of the oovariance that is obtained when a larger

number of input frames are available.

Based on the results of the algorithm selection study, it was
determined that a demonstration system sould be implemented using Markel's

technique that could obtain high recognition accuracies when used with

short speech segments for both the models and the unknowns. The

implementation and testing of this speaker authentication demonstration

system is discussed in chapter 3.
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CHAPTER 3: LABORATORY M4ONSTRATION SYSTEM

3.1 INTRODCTION

A primary qoal of this study was to develop a speaker recognition

demonstration system. The realtime capability of the ITT speaker

recognition test bed provided the foundation for the required demonstration

system, and therefore ITr was able to develop a realtime laboratory

demonstation system. Under this contract an improved operator interface

was added to the existing realtime recognition system. This interface is

engineered so that an untrained operator can generate and document new

models and perform recognition in realtime with minimal instruction. In

addition, other added features provided the operator with the capability to
generate graphic hard copy for each recognition trial, archive and retrieve

models, and display pertinent information on each model in the system.

The realtime demonstration system was implemented with the hardware

shown in figure 3.1. The system uses a PDP-11/60 for the operator

interface, control, and display formating. An ITT developed high speed

signal processor, the Quintrell RAM, is used for the coxmutationaly

intensive calculations required for realtime recognition. The remainder of
this chapter discusses the details of the realtime demnstration system

implementation, and the system performance.

3.2 SPEAKE REOGITION ALGORITHM

The algorithm selected for implementation in the demonstration system

is an extension of the technique reported by Markel (section 2.4). As

discussed in section 2.6, this algorithm performed better in all tests than

the technique reported by Pfeifer. A diagram detailing the functional

blocks of the algorithm is shown in figure 3.2. This section discusses the

function of each block.
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After the analog signal is digitized using a 12 bit A to D converter,

an LPC-10 analysis is performed. The LPC-10 reflection coefficients were

chosen as the speech analysis parameters for this system because of

previous work at IT=LCD. An earlier study indicated that reflection

coefficients performed superior to other LPC derived parameters, and were

also superior to spectral and cepstral parameters.

The next function in the algorithm is the subpopulation filter. The

subpopulation chosen for the demonstration system is that of all voiced
speech. The other subpopulation that was considered is the vowel

subpopulation. During the algorithm selection phase of the contract, these
two subpopulations were evaluated, and the performance of the all voiced

speech subDopulation was superior to the vowel subpcpulation in all tests.

As indicated in figure 3.2 the remainder of the algorithm is split

into two modes, one for recognition, and one for model generation. Since

reference models are required before performing recognition, the model
generation mode is discussed first.

The reference models used in the demonstration system consist of the

mean vector and the individual covariance matrix for the reflection
coefficients. The actual amount of speech used for the generation of the

reference models is determined by the operator. However, the amount of

speech must be large enough so that the resulting covariance matrix can be

inverted. For a 10 X 10 matrix, 100 voiced input frames (approximately 3-5

seconds) are adequate to insure invertability. After the reference models

are generated they are stored for comparison with the unknown speech during
the distance calculation of the recognition mode.

In the recognition mode the output of the subpopulation filter is
subjected to a continuous or running average calculation. The running
averaging technique was chosen to incorporate the advantages of the

sequential analysis decision process used in Pfeifer's original technique.

Because of the interactive nature of the system, it is advantageous to

present the operator with partial results as the recognition proceeds. By

use of the running average (calculating the average at each point in time
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as opposed to averaging over a fixed block length), the recognition time is

not limited to a fixed interval. Instead, the recognition process can

continue until all the input speech has been processed, or until the
operator determines that no further data is required to identify the

speaker.

The next functional block in figure 3.2 is the distance metric. The
"distance" between the average of the voiced reflection coefficients and

the set of stored reference models is ccaputed and used to derive a

similarity score between the unknown talker and each reference speaker in

the system. The distance metric used in the demonstration system is the

Mahlanebis metric (Eq 2.1) which is a Euclidean metric weighted by the

inverse covariance matrix of the reflection coefficients.

The distances calculated by the distance metric are further processed
by the display formating function. Two display modes are available. The

first displays a similarity score between the unknown talker and the models

based on the inverse distance. The similarity score is defined in equation

3.1 below.

Similarity Score = Const / Distance Eq. 3.1
for Distance > Const/100,

and

Similarity Score = 100

for Distance < Const/100

where Const is a scale factor determined experimentally.

This function produces high similarity scores for reference models with a

small distance to the unknown, *and small scores for these with large

distances. The similarity score is always less than or equal to 100.

The similarity score can be plotted for the operator on the graphics
display as shown in figure 3.3. The similarity score for each model is

displayed as a bar above the corresponding model name. In addition, the

confidence score (defined below) for the top three models is displayed
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above the corresponding bars. The similarity score and the confidence

score are continuously computed and used to update the display whenever new

input speech is available. The number of frames used in the current

recognition trial is continuously updated and displayed on the operator

console.

The second display mode is a confidence measure display. This is a

attempt to display for each reference model a value between 0 and 100 that

represents the confidence that the unknown talker corresponds to that

reference model. The confidence measure for the ith talker is defined in

equation 3.2 below.

Eq. 3.2F "S.
Ci = Si N

1 N 1

{ SU4 sj 2  }1/2

m=l

where

F = Frame Count/500 for Frame Count < 500,

F = 1 otherwise,

Si = Similarity Score for the ith talker,

and

N = the number of models.

The confidence measure uses the product of three parameters to estimate the

confidence: the similarity score, the number of frames processed at the

current time (Frame Count), and the ratio of the model's score to the total

RS score for all models. The similarity score is a measure of the

goodness of the match between the current averaged reflection coefficients

and the model. The "numiber of frames" parameter is scaled so that it

increases linearly from zero to one as the number of frames used for the

recognition increases from zero to five-hundred( approximately 20 seconds

of speech). This parameter is used to indicate that the confidence in a

recognition increases with longer unknown speech samples. The final

parameter, model score over total RMS score for all models, weights the
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confidence by the a factor that indicates how large the model's score is

compared to the scores for all the other models. The RmS measure of total

score is used to weiqht the model scores closest to the maximum model score

more heavily than the scores of the non-contendinq models. Figure 3.4

oresents the confidence display for the same data shown in figure 3.3. The

confidence factor for each model is displayed as a bar above the

corresponding model name. As with the similarity score plot, the

confidence scores are continuously updated and disolayed.

3.3 DI'ONSTRATION SYSTM.Y IMPLRFTATION

The speaker recognition laboratory demonstration system is imlemented

using a PDP-11/60 as the system controller and an ITr developed, high speed
siqnal processor, the Ouintrell RAM, for the catvutationaly intensive
realtime processinq. A block diagram of the system is shown in figure 3.5.

All operator interaction with the system is done through the PDP-lI. The

ccntrol proaram in the IDP then directs the Quintrell to perform the

appropriate tasks. In addition, the PDP-11 is used for such functions as
display formatinq, plotting and hard copy. The Quintrell is used for the

orocessinq that rust be done in realtime, such as the LPC-10 analysis and
the continuous averaqing. A brief description of the Quintrell RAM is
qiven in table 3.1 below.
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Table 3.1 QUINTRELL PROCESSOR RAM MODEL SPECIFICATIONS

Data Memory (16 bit words) 12K
Program Memory ( 16 bit words) 12K
Microprogram Memory (52 bit words) 1K
Micro Cycle (nanoseconds) 225
Data Memory Access Cycle (nanoseconds) 450
Multiply & Accumulate 32 bit product (nanoseconds) 900
Data Processor AMD 2901
Address Processor AMD 2901

3.3.1 Operator Inter face / PDP-11 Software

The operator interface was designed to be extremely easy to use so

that an untrained operator could use the system with little or no

instruction. The system can be operated in any of four modes; the command

mode, the recognition mode, the model generation mode, and the archive

mode. The operator is prompted by the system in each mode with all th6

valid options available in the current mode. A list of the commands
available to the operator for control of the laboratory demonstration
system is shown in table 3.2. The four modes and the associated cawands

are discussed in the following paragraphs.

CCMMAND MODE: When the demonstration system is started, the system is

initially in the command mode. The user is prompted with the menu of

available operations shown. When the operator enters the letter
corresponding to a ccmmand, followed by a carriage return, the PDP-11 will

execute the corresponding routine. If an invalid command is entered, the
ccufaand mode menu will be redisplayed. If a command to change modes
(#at,'g, or 'r') is entered, the menu of available operations for the new

mode will be displayed. The following paragraphs describe the functions in

the cumand mode.

List Current Models: To list the current models ( the models available

for recognition ) the operator enters an "l". The names of all the

current models are then displayed on the operator console.

Display Speaker Data: In the command mode, the system will respond to
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A. OMMAND MMDE INSTR=NS

a - Enter archive mode
g - Enter model generation node
h - Plot hardcopy of the current display
1 - List current models
1. - List speaker data for current models
L - Load models into RAM
m - Retrieve models from RAM (diagnostic tool only)
p - Print speaker data for current models
r - Enter recognition mode

B. ARHIVE MODE INSTRUCTIONS

g - Get an archived model an add it to the current model list
h - Make hard copy of the speaker data for the archived models
1 - List the archived models
1. - Display the speaker data for the archived models
p - Put a current model into the archive model list"cr" - Feturn to the command mode

C. RFCO ITION MODE INSTRULTIONS

c - Display confidence score plot
d - Display similarity score plot
h - Make hard copy of current display
s - Stop recognition (return to command mode)
"cr" - Clear recognition buffers

D. MODEL GEATION MODE INSThRONS

"cr" - Stop model generation (enter speaker data)

Table 3.2: OPERAM2RnTrFA COMM4AND STR E
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a "I." by displaying all information contained in the model files

about each speaker. This information is originally entered by the

operator at the time the model is generated ' see "MODEL GENERATION

MODE" below).

Print Speaker Data: The same information that is displayed on the

operator console for the DISPLAY SPEAKER DATA command described above,

is printed on the line printer in response to a "p" in the command

mode. A typical output is shown in figure 3.6.

Make Hard Copy: The operator can make a hard copy of the current

graphics display by entering an "h". This can also be done while in

the archive or recognition mode.

Loading Models: models are loaded into the Quintrell from the PDP-11

in response to an "L" in the command mode. All the models in the

current model list are transfered to the Quintrell. The name of each

model is displayed on the operator console, along with the number of

models loaded. If the number of models in the current model list

exceeds 30, only the first 30 are loaded.

Enter Archive Mode: The letter "a" is typed in the command mode to

enter the archive mode. The archive mode is described below.

Enter Recognition Mode: The letter "r" is typed in the command mode to

enter the recognition mode. The recognition mode is described below.

Enter Model Generation Mode: The letter "g" is typed in the coumand

mode to enter the model generation mode. The model generation mode is

described below.

ARCHIVE MODE: The system as currently implemented divides the models

into two lists, the current model list, and the archived model list. The

current model list contains all the models that can be used for recognition

at a given time. The archived model list provides storage for any models
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that are not required for the current recognition task. Models may be

moved from one list to the other by entering the archive mode. To enter

the archive mode, the operator types an "a" in the carmard mode, and the

system responds by displaying the commands available. These ccmmands are

listed in table 3.2B.

List Archived Models: In the archive mode, the operator may obtain a

listing of the archived models currently in the system by entering a
"i n.

Display Speaker Data: In the archive mode, the system responds to an

"l." by displaying the speaker data that was entered when the model

was generated (see model generation mode below).

Print Speaker Data: The same speaker data that is displayed by the

"l." comnand can be obtained in hard copy by entering an "h" in the

archive mode.

Get Archived Model: To retrieve an archived model and place it in the

current model list, the operator enters a "g". The system then asks

for the model name to be entered on the operator console. If the name

is correctly entered, the model will be moved to the current model

list. If not, the system will respond with "can not move file ......

and prompt the operator to enter the caaid again.

Archive Model: To put model in the current model list into the archive

list, the operator enters a 'p". The system then asks for the model

name, and proceeds as in the "g" camnand outlined above.

Return to Ccmand Mode: To return to the ccmmand node from the archive

mode, the operator enters a carriage return.
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R-ECOWITION MCDE The recognition mode is entered when the operator

types an "r" in the comnand mode. If no models have been loaded into the

Quintrell in the current recognition session, the system responds with "Nb
Models Loaded" and returns to the command mode. If the models have been
loaded, the system enters the recognition mode and displays the available
commands. These commands are listed in table 3.2.C and are discussed

below.

Clear Recognition Buffers: A carriage return ("cr") in the recognition

mode causes the system to clear the Quintrell buffers that store
statistics for the current unknown speech. These buffers should be

cleared by the operator any tine a new recognition trial is begun or

when a change in talker is suspected. The number of frames used in

each recognition trial is continuously updated on the operator
console, and this frame count is set to zero whenever the recognition

buffers are cleared.

Display Similarity Score Plot: As described above, the system

calculates two scores, the Similarity Score, and the Confidence Score.
The graphics display default condition is the Similarity Score plot as

shown in figure 3.3. The similarity score plot can also be selected

by typing a "d" in the recognition mode.

Display Confidence Plot: The second display available in the

recognition mode is the Confidence Plot as shown in figure 3.4. The
Confidence Plot is selected by typing "c" in the recognition mode.

Make Hard Copy: A hard copy of the current display (either similarity

or confidence plot) can be obtained b5y entering an "h" while operating

in the recognition mode.

Stop Recognition: 7b exit from the recognition node and return to the

command mode, the operator enters an "s".
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MODEL GENERATION MODE: The model generation mode is entered in

response to the 'g (generate model) command in the "command mode". The

operator console will display:
Model being generated, hit 'cr' to stop >

FRAME COUNT

The PDP-1 then sends a command to the Quintrell to start model generation.

The PDP-U continually reads the number of voice frames used in the model

and displays it as the frame count on the operator console. The Quintrell

continues to update the model statistics and return the current voiced

frame count until the operator enters a carriage return. The system then
prompts the operator to supply the necessary information to document the
model. his includes the speaker name, the date of the recording, and any

comments the operator has about the speaker or the model. The system

produces a model name for each model that is generated. The model name is

the speaker name followed by a ".a" or ".b" etc up to ".z". The system
will check to see how many models exist for the speaker, and append the

next available letter to form the model name. With this naming convention,

every speaker can have up to 26 models in the system. The capability to

have more than one model for a given speaker allows the operator to

generate models under various noise and channel conditions to improve

recognition performance. As soon as the model data has been entered, the
system returns to the comnand mode.

3.3.2 Quintrell RAM Software

A stated earlier, the PDP-U is used only for operator interface

functions and display formating. All of the required signal processing for

the speaker recognition system is performed in the Quintrell RXM. The
Quintrell can be programed at both the micro-instruction level, and at a

macro level. For the speaker recognition system, the machine is programmed
entirely at the macro level, using a standard assembly language instruction

set.
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The Quintrell portion of the speaker recognition system can operate in
two modes as directed by the PDP-II. The first is the "recognition mode"

where the input speech is processed, compared to the models stored in the

Quintrell, and the distances returned to the PDP-11. The second mode is

the "model generation mode" where the input speech is analyzed, and the
parameters required to generate a model (the means and the covariance

matrix for the reflection coefficients) are accumulated. This model
generation data can then be transmitted to the PDP-11 on carand.

All of the processes in the Quintrell are controlled by a program

refered to as the RAM process scheduler. The scheduler receives commands
from the PDP-11 to execute various processes. The scheduler can be

directed by the PDP-11 to:

load models from the PDP-II,

enter/exit recognition mode,

reset recognition mode ( clear accumulated statistics ),
enter/exit model generation mode,

transmit the accumulated model statistics to the PDP-11,

return models to the PDP-11 (diagnostic use only).

The Quintrell programs for the demonstration system operate on two

levels. The time critical portions of the code that must be executed every

analysis frame, such as the LPC analysis and continuous averaging, run as
foreground processes. The remainder of the programs, including the RAM

process scheduler, are run as background processes whenever the foreground
process is idle. The next two sections discuss in detail the program for

the recognition mode and the model generation mode in the Quintrell.

3.3.2.1 Recognition Mode Processing in the Quintrell

The flow diagram for the Quintrell recognition mode processing is
shown in figure 3.7. Then the Quintrell process scheduler receives the

couumnd to enter the recognition mode, two actions are initiated. First,
the interrupts are enabled to allow the LPC-10 analysis to be executed as a
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foreground process. Second, the frame monitoring program is begun as a
background process. The operation of the various programs during

recognition is described in the following paragraphs.

LPC-10 ANALYSIS: The LPC-10 analysis is performed using a modified
Atal algorithm developed under a previous contract. The analysis period is

22.5 ms. The algorithm is pitch synchronous in that the analysis windows

for sequential frames are separated by a integral multiple of the pitch

period during voiced segments. The program runs as a foreground process,
and is initiated by an interrupt that is generated by the Quintrell every

frame. Ten LPC reflection coefficients, pitch, and power are calculated
using the current digitized speech from the Quintrell's A/D converter. The
input speech is bandlimited from 300 to 3600 Hz. The reflection
coefficients are saved in the Quintrell's memory for further processing.

SUBPOPULATION FTERING: The second foreground process to run each

analysis frame is the subpopulation filter. As discussed in section 3.2,
the all voiced speech subpopulation is used in the demonstration system.

The voicing decision is made as part of the pitch tracking algorithm in the
LPC-10 analysis routines. All unvoiced frames are marked by setting the

pitch parameter equal to zero.

Originally, the subpopulation filter for voiced speech simply retained
those frames with non-zero pitch. However, when the system was tested
using the same input speech over and over, the results of the recognition

process showed considerable variation. In particular, the number of frames

identified as voiced frames varied by as much as 20%. This problem was

investigated by computing histogram of pitch and power for each frame

passed by the subpcpulation filter. By looking at the distributions of the
pitch for several recognition trials with the same input speech, it was

determined that large numbers of very low power frames were sometimes
labeled as voiced, and sometimes as unvoiced. The problem was corrected by
using a power threshold in the subpopulation filter, so that low power
frames are discarded independent of whether they are voiced or unvoiced.
The performance of the recognition system was improved with the addition of
this threshold, and the results were much more consistent from one trial to

-76-



the next.

COEFICIENT ACqULATION: 'Ihe next foreground process to be executed

is the coefficient accumulation routine. This program is used to store all

the information required to calculate the mean reflection coefficient

vector for the unknown talker at the present point in tine. The

accumulation program is called every analysis period when a voiced frame is

detected. Each input vector is added, coefficient by coefficient, to a

vector accumulator, and the frame count is incremented by one. The input

reflection coefficients and the frame count register are 16 bit signed

integers, and the accumulated sums are stored as 32 bit double precision

integers. As a result, the continuous averaging can accumulate 16,383

voiced frames, which corresponds to approximately 12 minutes of speech.

Since recognition can be accomplished in approximately 10 to 20 seconds, 12

minutes was considered more than adequate for all applications envisioned.

The results in the vector accumulator are available for use by the

coefficient averaging program operating in the background.

COMAND CHECKING: After the completion of the coefficient accumulation

routine, a prograr is executed to test the PDP-11 interface for new

commands. The comman's that are allowed at this point are "clear" or "stop

recognition". If a clear command is received, the frame count is reset to

zero, and the coefficient accumulator is cleared. The stop recognition

cmmaind turns off the foreground process by disabling the interrupts, and
returns control to the RAM process scheduler.

LPC-10 SYNTHESIS: If a stop recognition ccomand is not received, the

recognition mode processing continues. The next foreground program to be

run is the LPC-10 synthesis. This program is not necessary for the

operation of the speaker recognition system, but it is useful to be able to

hear the synthesized speech to verify the correct operation of the analysis
orogram, and to adjust the analog input level to the A/D converter.
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The synthesis program is the last foreground routine run during each

analysis frame. After the synthesis routine has ccmnpleted, the background

level programs resume execution until an interrupt signals the beginning of

the next analysis frame period, and control is returned to the foreground

routines. The backciround processes are discussed in the following

paragraphs in the order they are executed.

FRAME MONITORING: The first background process is the frame monitoring

routine. It determines whether more than 64 frames have been accumulated,

and whether new frames have been accunmlated since the last time the

coefficient averaging program was executed. If both these conditions are

satisfied, the programs are executed to calculate the coefficient averages

and the distance metric, and the distances are then transmitted to the
PDP-ll. While these routines may require more than one frame time to

ccvmlete execution if the number of models in the system is large, no

timing problem occurs since the foreground processes will continue to

.update the coefficient accumulator. The only effect is that the display

will not be updated on every frame. This is not a limitation, however,

since the operator can not react to information that is presented faster

than about once a second.

COEFFICINT AVERAGING: The coefficient averaging program is executed

whenever the conditions required by the frame monitor routines are

satisfied. The function of this program is to calculate the average
reflection coefficient vector at the current point in time. The first step
is to make a copy of the current accumulator buffer and frame count. This

step is taken to prevent the values from being changed by the foreground

processes during the remainder of the background calculations. The

coefficient averages are then calculated by dividing the accumulated
coefficients sums by the frame count. The resulting average coefficient

vector is then passed to the distance routine.

DISTANCE MTRIC CALCULATION: The distance routing is next called to
evaluate the Mahlanobis distance metric for each model in the system. The
Mahlanobis distance metric is defined as:
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D = (F" 72 (W]-  E - q. 3. 3

where 7' is the average coefficient vector,

M! is the mean vector from a model,
-1

and [WI is the inverse covariance matrix from a model.

The matrix multiplies required to ccrpute the metric are performed as a

series of dot products. The dot product is a standard macro instruction in

the uintrel!, and oroduces a 32 bit result. The scaling for the distance

metric is important to avoid loss of precision in the results. The scaling

used in the Quintrell implementation of the metric calculation is as

follows:

1. The model mean vector, 9T, and the input feature vector, F are scaled

so a reflection coefficient of one is represented as 214_ 1.

2. The model inverse covariance matrix is scaled so the maximum element

is equal to 215 _1.

3. The difference vector, ( - ), is then sca' N'd to 212_ 1.

4. The elements resultin from the first matrix multiply are divided by

216, and therefore are less than 10 * 215 * 2 12 , 2-16 < 215. Thus

no overflow is possible.

5. The result of the final matrix multiply is limited to 215 * 212 * I0 <

231. This result is converted to a normalized floating point number

with a 16 bit mantissa and 16 bit exponent.

The distance metric routine returns the distance from the unknown
feature vector to tuach model in the system. The resulting distances are
then transmitted to the PDP-1l.

DIST NCE TRANMISSION: The last background routine is the data

transmission program. This routine sends the distance for each model to

the PDP-11 for display. The data is transmitted in 64 character bursts and

then the process waits for an acknowledge from the PDP. rten the
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acknowledge is received, the next 64 characters are sent, and process is

reoeated until all the data is transmitted. After the data has been sent

to the PDP-ll, the frame monitoring routine is called, and all the

background routines are executed again. This sequence continues until a
stoo recognition comiand is received, and control is returned to the RAM
process scheduler.

3.3.2.2 Model Generation Mode Processing in the Quintrell RAM

When the Quintrell process scheduler receives the command to enter the

model generation mode, two actions similar to the recognition mode are

initiated. First, the interrupts are enabled to allow the LPC-10 analysis

to be executed as a foreground process. Second, the frame count transmit

program is begun as a background process. Figure 3.8 shows the flow
diagram for model generation. The operation of the various program during
the model generation mode are described in the following paragraphs.

LPC-10 ANALYSIS: The LPC-10 analysis program is executed as the first
foreground process in response to the frame interrupt. This is the same

routine that is called in the recognition mode.

SUBPOPULATION FILTERING: The subpopulation filter is executed next

exactly the same as in the recognition mode.

CCEFFICIENT AOCUKULATION: As in the recognition mode, the next
foreground process is the coefficient accumulation routine, which

calculates the running sum of the reflection coefficients.

CROSS PRODUCT tMUIATION: The only difference in the foreground

processing between the recognition mode and the model generation mode is

the execution of one additional routine in the modeling node. The cross

product accumulation routine calculates the running sum of the cross
products of the reflection coefficients. The double precision cross

products are accumulated in a triple precision accumulator for the duration

of the model generation. The cross product accumulator can accumulate 16
thousand voiced frames, so that models can be generated from up to
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approximately 12 minutes of speech. The majority of the models of interest

in this study are limited to approximately 20 seconds.

CMAND CHECKING: As in the recognition mode, the PDP-11 interface is
checked for new commands. If a "stop model generation" command is
received, the interrupts are disabled, and control returns to the RAM

process scheduler.

LPC-10 SYN7HESIS: If a stop command is not received, the LPC-10

synthesis routine in called. As in the recognition mode, this program is
not required, but is useful to verify proper operation of the analysis

routines.

FRAME TRANSITIING: The only background process that is run during the

model generation is the frame transmitting program. This routine simply
transmits the frame count to the PDP-i1 so that the number of frames in the
model can be displayed to the operator. The frame count is only
transmitted in multiples of 64 so that the amount of data sent to the PDP

can be kept to a minimum.

3.3.2.3 Other Quintrell RAM Programs.

In addition to recognition and model generation, there are several
other program that can be executed under the control of the RAM process
scheduler. These programs are discussed briefly in the following

paragraphs.

IWAD MODELS: The Quintrell can load reference models (mean vectors and
covariance matrices for each speaker) from the PDP-I. The mean vectors
are scaled so the magnitude of the largest mean for each speaker is between
8192 and 16383. This assumes that when the mean is subtracted from a
similarly scaled reflection coefficient in the distance metric, the result
will not overflow 16 bits. The inverse covariance matrices are scaled so
the largest element in each matrix is exactly 215-1.
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TRANSMIT AICLULATED MCODEL STATISTICS: After the model generation mode

has been run, the QuintreU can be directed to send the accumulated model

statistics to the PDP. The statistics transmitted are the accumulated sum

for each of the ten reflection coefficients(ten double precision

integers) , the accumulated sum for each of the 55 unique reflection

coefficient cross product terms (55 triple precision integers), and the

number of frames accumulated in generating the model (one single precision

integer).

PETUR NMELS TO PP: The Quintrell may also be directed to return the

models stored in the Quintrell to the PDP. This is a diagnostic tool used

to verify the proper operation of the Quintrell/PDP interface. The program

was retained in the final version as an aid in trouble shooting.

3.4 PERFO4ANE OF THE DEMONSTRATION SYSTEM

Limited testing of the speaker recognition system was performed under

the contract. The testing included the use of ten and twenty seconds of

speech for model generation, and ten and twenty seconds of speech for

unknowns.

3.4.1 TV DATk BASE

An analog data base was generated by recording speakers from broadcast

television programs such as news reports, interviews, and talk shows.

Approcimately one minute of speech was obtaired from 30 different male
speakers. The first 20 seconds of speech from each talker was used a the

reference set to generate models, and the second 20 seconds was used as the

unknown. The differences in the channel characteristics for the various

speakers should not be a problem since the audio bandwidth of the

television broadcasts is large compiared to the 300- 3600 Hz analysis

bandwidth used by the demonstration system.
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3.4.3 RBCOITION RESULTS USIN THE DENSRATION SYSTEM

The demonstration system was tested using two sets of speaker models.

The first model set was generated using 20 seconds of speech from each of

the 30 talkers, and the second using 10 seconds of speech. Two recognition

trials were run for each model set. The first trial used 10 seconds of

speech for each unknown, and the second used 20 seconds of speech. The
results of the four tests are shown in table 3.3 below.

Table 3.3 Demonstration System Recognition Results

10 second models 20 second models

10 second unknowns 93% 90%

(28 correct out of 30) (27 correct out of 30)

20 second unknowns 100% 97%

(30 correct out of 30) (29 correct out of 30)

The results are very encouraging since the requirement of 95%

recognition on 90% of the talkers was met for all four conditions. This
requirement means that for 27 talkers (90% of 30), the recognition rate

must exceed 95%. It is somewhat surprising that the 10 second models
performed better than the 20 second models, however, it must be remembered

that this was an extremely small test. only one recognition trial was run

for each speaker. Further testing is required to adequately estimate the
system per formance.

b indicate the types of results that are obtained when running the
speaker recognition system on a 30 talker data base, the individual

results for the system test using 10 second models and 20 second unknowns

are given in the Appendix. The Appendix contains both the similarity score

plot and the confidence measure plot for each of the thirty recognition

trials. Figure 3.9 shows a typical recognition trial where speaker 4 was
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correctly identified. Figure 3.10 is the similarity score plot for 10
seconds of speech for speaker 1, one of three speakers improperly

identified during the ten second tests. It is important to note that even

though the correct talker was not identified, no one speaker is clearly

better than another, and speaker 1 is one of the top three contenders.

Another interesting result is that during all of the tests, most of

the recognition errors that did occur, were made on speakers whose
recording levels where much lower than the other speakers. It is expected

that the addition of some type of automatic gain control at the input to
the Quintrell's analog to digital converter could improve the system
performance on these talkers.

-86-

t t. - "



00

F 14-

LZI-C
L .4-*.q

LI. 
4

E-III - L

Lii1ic
WIZ'

W-E-IL-4EI Wzz1

-87-



CHAPTER 4. RECOMMENDATIONS

The results of this first attempt at demonstrating a realtime speaker recog-

nition capability are extremely promising. The algorithms and the technology

necessary to implement a highly accurate realtime speaker recognition system

are available. There are, however, several areas where further study would

be beneficial. In addition, the demonstration system needs further, expanded

testing. Additional study is recommended as follows:

1. Communication channel effects such as distortion and noise should be in-

vestigated. The limited testing so far used only white noise, and did not

address problems such as channel distortion and colored noise.

2. As part of the noise investigation, ways to improve robustness of LPC ana-

lysis under the expected noisy conditions should be determined. Several

techniques such as spectral subtraction and Wiener filtering currently exist

which can significantly improve the quality of LPC analysis of noisy speech.

The area to be investigated would be the effect of these techniques on speaker

recognition performance.

3. Improvements to the subpopulation decision should be tested. As part of

this contract, the recognition accuracies were improved by including not

only a voicing decision, but a power threshold as well. The inclusion of

an absolute power threshold has made the system sensitive to the Input

speech power level. This power threshold should be refined to make it

proportional to the input power. In addition, an automatic gain control

should be tested at the front end of the system to further reduce the ef-

fects of power level throughout the system.
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4. Effects of model aging and techniques for optimal model generation should

be studied further. For the realtime demonstration, models were gener-

ated using speech from the same time period as the unknowns. During the

algorithm study phase of the contract, it was shown that models generated

with data separated in time from the unknown speech by one week performed

significantly poorer (10-15%) than the models generated with speech from the

same time period as the unknown. Previous work at ITTDCD has demon-

strated that if current data is not available for model generation, the best

performance is obtained by using speech segments recorded over a long

period of time rather than a single speech segment recorded all at once.

Further study should be conducted to determine how older speech samples

should be incorporated into the models to improve performance.

5. Human factors improvements should be investigated. The system must be

demonstrated to potential users to obtain their inputs as to how an operator

can best interact with the speaker recognition system. The current oper-

ator interface is a first attempt at producing a useful interface, and changes

may be required before the interface becomes optimum.

6. Tests should be made to determine the effects of increasing and decreasing

the number of current speaker models that are compared with the unknown,

on system recognition accuracy. It would also be desirable to investigate

the performance of the system on unknown speech data of less than 10 se-

conds.

7. New methods for computing and displaying the confidence and similarity

scores should be investigated. These methods should focus on providing

a meaningful and clear display of these scores. The confidence score in

particular should probably include a factor which reflects the amount of

speech data used in model generation.
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8. In tests where the unknown speakcer is incorrectly identified, it would be

desirable to know whether the correct speaker's model was among the top

two or three choices. This would be a further indication of the robustness

of the algorithm. An effective automatic change-in-speaker detector should

be developed.

9. Tests should be performed to determine the effectiveness of the speaker

authentication system on languages other than American-English.

10. Algorithms should be developed which can incorporate information such as

signal strength and- directivity to aid in making the speaker authentication

decision.

ITTDCD studies separate from this contract indicate that a practical realtime

speaker recognition system can be built using off the shelf microprocessors augmented

with a fast multiplier in an architecture optimized to the speaker recognition problem.

This development can be done after completion of the study tasks outlined above, or in

parallel with them.
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APPEN'DIX

REALTIME RECOGNITION EXPERIMENTS

Realtime Recognition Experiments using

10 second models and 20 second unknowns
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