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\Eé} ABSTRACT

The system under development, VISIONS, is an investigation
into: general issues in the construction of computer vision
systems. The goal is to provide an analysis of color images of
outdoor scenes, from segmentation (or partitioning) of an image
through the final stages of symbolic interpretation of that
image. The ovtput of the system is intended to be a symbolic
representation of the three-dimensional world depicted in the
two-damensional image, including the naming of objects, their
placement in three-dimensional space, and the ability to predict
from t%his representation the rough appearance of the scene from
other points of view. Research in segmentation and
interpretation bhas been separated into the development of two
major subsystems with quite different methodologies and
considerations.

The focus of this paper is upon the interpretation system.
The primary emphasis will be on the development of strategies by
which several knowledge sources (K8s) can be integrated wusing
expected knowledge stored in structures called 3D and 2D schemas,
each of, which may be general or specific ¢to the scene under
consideration, A series of increasingly mare difficult
experiments is outlined as an experimental methodology for
developing schema~driven (e, g., top-down) contral mechanisms;
each succeeding experiment will assume a set of weaker
constraints, representing image interpretation tasks where a
decreasing amount of knowledge of the situation is available,
Experimental results show current capabilities of a number of KSs
and tha effectiveness of a specific 2D schema in the
interpretation of a scene.
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IN MEMORIUM
Cesare Parma, 1947-1979

On August 30, 1979 Cesare Parma, a groduate student in the
COINS Department, was struck and killed by lightning during a
sudden thunderstorm in Amherst, Messachusetts. Many of the
results on schemg-driven image interpretation in Section VI of
this paper were due to the havrd work and creativity of Cesar..
All the members of the VISIONS group benefited greatly from the
blend of his strong intellect and the natural warmth of his
personality. We are deeply saddened by this loss, and this paper
is dedicated to the meiiory of this fine individual.
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I. KNOWLEDQE DIRECTED PROCESSING

The system being developed is called VISIONS and is designed
to provide an analysis of color images of outdoor scenes, from
segmentation through symbolic interpretation. The VISIONS system
is decomposed into two major subsystems: a "low-level" system
which processes the large numeric arrays of sensory data, and
then feeds the “"high-level" interpretation processes, which
construct a description of the world portrayed in the scene. The
output of the system is to be a symbolic model of the
three-dimensional world depicted in the two-dimensional image,
including the names of objects, their placement in
three-dimensional space, and the ability to predict #from this
model the rough appearance of the scene from other points of
view,

The original design of the VISIONS system was heavily
influenced by a commitment to knowledge-directed interpretation,
ard this commitment has been maintained. The emphasis of this
paper is on the form of knowledge structures, called schemas, and
on the control structures necessary to coordinate a variety of
complex processes, which are referred to as knowledge sources, or
KSs [LES77). A knowledge source is a process which specializes
in the formation of an hypothesis about an interpretation of the
image, based upon a particular type of available visuval cue and
partially processed sensory data. [or example, the perspesctive

KS might infer the physical size of an object depicted by some

region in the image. and the object size K5 might order, in terms
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of a confidence measure, the plausible object identities based
upon that size. There are serious problems to be faced in the
general application of these processes in an integrated fashion.
In ovur system schemas are the means by which we deal with the
problems of control of the KSs. A schema is a knowledga
structure about a particular visuval concept: say a road scene,
with procedural components for properly invoking a subset of KSs
in a coordinated manner.

The effectiveness of many Al systems appwars to be derived
from either the constraints available via prior knowledge, or the
restrictions of a specific task domain, or a combination of both.
The natural language understanding system of Schank [SCH75] is
heavily directed in a top—~down manner by knowledae astructures
called scripts; recently, they have proven sufficient for
extracting zummary descriptions of a large number oV actual wire
sarvice news stories [SCH79]. The HARFY speech understanding
system L(LOW76], one of the most effective speech systems to date,
embeds & grammar and vocabulary in a3 network of expected
utterances. The system operates top-down by matching paths in
the network (which represent possible sentences) against the
vtterance. One can view this system in terms of a schema for
each sentence and the representation of this information in a
storage efficient form,

There are various special-purpose vision systems whose
effectiveness may be traced directly to the wutilization of

domain-oependent simplications. for example blood-cell analysis,
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assembly line parts inspection. etc. It is our belief that the
use of schemas ([LARB771 or frames [MIN75l, or scripts ([8CH771)
provides a bridge between general--purpose and special-purpose
systems L[BAL78, HAN78c. NEV78]. The development of an individual
schema and the verification <that it is applicable may be as
tractable as the development of a particular strategy in a
special-purpose sustem. Knowledge of the front view of a
particular house to some degree should be wuvsable in a manner
similar to knowledge of the structure of a complex machine part
on a conveyor belt.

It 1= generally agreed that while research in computer
vision is definitely progressing, the problems have been found vo
be extremely difficult. Our initial efforts have been directed
at the construction of a system with sufficient flexibility and
generality to explore a variety of issues without requiring
substantial systems modifications as the research evolved. As to
be expected, the price of such efforts ot generality is slower
development of the system than we desired. slower than would have
been possible with & less flexible special-purpose system.
Because of the magnitude of the problem: our resesarch methodology
has =zen to focus onh modular zomponents of the system under the
constra. te of & general system design.

We wish t. make it clesr that we do not balieve that
romputer vision ought to be primarily a top—down process. Many
inpurcant mechanisms of humay vision appear to be constructive

processes which transferm sensory data without recourse to
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semantics [BAR78, HOR77, MAF74&, MAR/U. The research effort
proposed here, however, attemp s to direct the application of
some of these processes under the guidance of knowledge—oriented
constraints. It will be interesting to see the degree to which

this approach can be made general.

I1. ADDITIONAL RELATED LITERATURE

There is & very large body of literature that is relevant to
the development of effective computer vision systems. In fact it
spans the fields of computer science, electrical engineering,

cognitive psychology, mathematics, art, etc. with topicz that

include the physics of 1light and surfaces, shadows and
highlights, image segmentation, color, texture, two- and
three—-dimensional shape, perspective, occlusion, motion,

stereopsis, representetion of knowledge, inference, and more. It
is not feasible to review this literature here, but a recent book
Compyter Vision Systems L[HAN78al, edited by the authors,
documents the state—of-the—-art in many of these areas. Here we
chovse just ¢to mention a few of the many efforts in image
understanding systems and leave reference of others for the more
detaileo sections of the paper.

There have been interesting and somewhat successful aitempts
to integrate the segmentation and interpretation processes. A
decision—theoretic approach to image interpretation by Yakimovsky

and Feldman [YAK73. FEL74] produced a region merging process tha*
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was integrated with semantic interpretation. Effective results
on chest x-rays and road scenes were achieved. Tenenbaum and
Barrow [TEN77]1 demonstrated that a constraint-satisfaction
process could be used to block erronecus region merges in their
interpretation-guided segmentation system (IGS). This system was
generalized into 3 probabilistic relaxation process for
propagating constraints under uncertain interpretation [BAR761.

There are a variety of image interpretation systems wheve
the analysis does no%t employ three-dimensional representations
and processes., In such cases, the output of the system vusvally
is the extraction and labelling of relevant entities in the
image: for example the labelling of each 2D region with an object
identity. Sakai, HKanade, and Ohta LSAK76] produced a partial
labelling of major areas in a building scene (though there wuwere
only five possible objects in the data base). Shirai [SHI78] has
developed a system which fits smooth curved 1lines to segmented
edges; this system has beer wused ¢to interpret a desk scene
containing a variety of objects. Ballard, Brown, and Feldman
[BAL78) are using a flexible kncwledge -directed system whiph has
been applied to both aerial images and chest x-rays. Levine
(LEV78] has been examining scenes of human figures, cartoons, and
landscapes; he has obtained interpretations of several cartoon
images. Bajcsy ([BAJ7&6] has vused a3 small semantic network to
extract river and bvidge regions in aerial images. Uhr {UHR781
has been developing a very general system for both segmentation

and sreny interpretation using a parallel -array processing system
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called recognition cones; preliminary vesults have been produced
on @ house scene. A group at Hughes Research Labs [DUD77] has
developed & system Ffor 2D segmentation and matching of objects
with long straight lines (such as buildings). Rubin [RUB771 has
extended the basic approach of the HARPY C[LOW76]1 speech
understanding system ¢to a scene interpretation system for
matching &an image of a city skyline with a set of such images
from different points of view. Mac kworth [MAC78]1 and Havens
{HAV78]1 have addressed issues of control, based on a cyclic
theory of perception, in the context of interpretation of a map
relation system.

Interpretation systems using three-dimensional
representations can be applied to a wider class of imagery but
are correspondingly far more complex. Consequently, much of the
work in 3D scene description (interpretation) has primarily teen
restricted to polyhedral models of objects ([(ROB6S: WAL75],
although there has been interesting work on generalized cylinders
as a representation for curved surfacrs [NEV77, AGI72, MAR77].
Another significant body of research has taken place at levels
below object recognition, in particular the extraction of surface
information based vupon a camera model, illumination model, and
surface properties [HOR75, HOR77, WOULY7, MAR78, DBAR781]. This
work promises to provide significant incight into constructive
mechanisms in visual perception.

Finally, there is related work in speech understanding that

has influenced our research, 1in particular the Hearsay system




LERM75, LESS77] whose general structure has been followed in our

own research.

111.  CONTROL STRATEGIES AND IMAGE INTERPRETATION

ITI.1. Strategies for Controlling the Interpretation Process

In the past we have raised two important issues of control
in our system: the basis upon which KSs are to be invoked and
the means by which alternative hypotheses provided by KSs are ¢to
be wused. Our system was organized to desl with the selection of
appropriate KSs and a search space of interpretations by
employing a hierarchical modular coutrol strategy [HAN78b,
WIL771. This computational mechaniem allows user—defined
strategies to be constructed hierarchically out of modular
components.

This approach required considerable machinery for dealing
with issues of search, and some of these issues drew our
attention away from the central issues of vision, The top-douwn
approach that is suggested by schemas bypasses problems of
recovering from errors and the inherent combinatorics of & search
space of alternatives, at least until we more fully understand
the reliability, robustness, and redundancy of our KSs when used
in +thkis manner. However, as we will point out, the top-down
approach does not imply a complete avoidance of bottom-up issuves.
Schema instantiation and the application of a general schema to

specific images, for example. will vequire the use uf bottom-up
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processes. In this case, however, the purposes and goals of the

bottom-~up srocesses are more specific and well-defined.

I1I.2.  Top—-Down Interpretation via Schemas

In the following sectiens we ovutline a highly structured
approach to the development of general top—-down image
interpretation. A key problem is to develop effective ways to
employ schemas after they are somehow accessed. In some of the
experimental stages that we will ovtline, the ggal js ¢to
interpret an image wusing either a specific or a genera) scene
schema from gither a known or wunknown perspective viewpoint.
Thus, the relevant scene schema is assumed to be known, but the
specificity of the information varies. lHiefore describing our
experimental methodology. let us note the difference between
specific vs. general schemas, 3D vs. 2D schemas, and known vs.

unknown perspective viewpoints.

specific schema — a schema capturing a particular instance of
a given type of scene or object, e.g., & particular house,
a familiar section of road, or a specific car such as your

aun;

general (prototypical) schema - a schems representing a
standard or prototypical model of a scene or object, such
as a house scene, road scene, or car scene, but not any

specific house, rcad, or cav sceue;
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30 schema - the 3D description of a scene or object in a local
coordinate system; this involves the representation of

surfaces and volumes, and the vrelavionships between them

2D schema ~ the 2D appearance of @ 3D schema relative to a
viewer~centered coordinate systemi this is the way a 3D

schema would appear from a particular point o0f view

unknown perspective viewpoint - in this case a known schema
(general or specific) can only be used as a 3D schema,
since the relationchin between «te local coordinate system

and the viewer’s coordinate syastem is unknown.

known perspective viewpoint ~ if the relationship between the
coordinate systems of the schema and viewer is known. then
the 3D schema can be used to generate a plan for the scene

in terms of a 2D schema.

Under this categorization, a general 3D schema is a
structure describing default features of objects and general
relationships between sets of objects which are expacted to hold
across & schema class [MIN75]. A specific 3D schema is a general
schema in which features and relationships have been acsigned
(more) precise values and in which features and relationships
unique to the particular environment have been added. In fact
top—down interpretation of, let us say, a road scene using a
general 3D schema would then involve the construction of a

specific 3D schema of that road scene.
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A specific 2D schema is a transformation of the
corresponding specific 3D schema, given an assumed view angle.
The transformation accovrding te view angle is necessary in order
to match the specific 3D schema to the image. Similarly, a
Jeneral 20 :chema represents a transformation of the general 3D
scherma given a view angle; in this case, the general 3D features
and relationships are mapped into general 20 Ffeatures and

relationships.

IT1.3. An Experimental Methodology

In a system as complex as VISIONS, there exists & wide range
of plausible strategies for guiding the interpretation process.
We propose to explore these strategies by means of a set of
carefully defined experiments of increasing difficulty and
generality. By contrelling the amount snd type of information
provided, different portions of the system can be exercised and
different strategies to use the information can be daveloped.

We separate the schema-driven opervation of our system into

distinct tasks:

a) Igp-Down Jnterpretation of Images Via Schemas - this
involves the wutilization of o relevant schema as a
top-down plan for interpretation; it requires coordinated
application of the KSs, guided by the schema, %o various

portions of the image.




11

and b) Bottom~Up JInstantiation of Schemas - this is the process
of selecting a schema that is relevant to the
interpretation of the image; in effect, it is the prodlem
of finding cues and paths of inference through 1long term
mamory which imply a prototypical context which ought to

be used.

These ¢asks overlap a third task which ic one of the most general

goals of (computer) vision research:

c) Bottom—Up Interpretation of Jmages - the construction of a

surface/volume description of the physical world in the
image without the use of prior high—level knowledge; it
is expected that insights into the mechanisms by which
this task might be accomplished will be gained by succes:
in achieving the goals set forth in (2) and (b) above,
particularly the wuse of general schemas in interpreting

scenes.

Our research effort is currently Ffocussing on tasks (a) and
(h): above. Primary emphasis has been placed on
schema-controlled strategies for employing the KSs, but there is
continuing effort on the instantiation of the relevant schema.
The remainder of this section of the paper will cutline
experimental stages of system development, and later sections

will provide experimental results for the First of these stages.
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111.4, Experimental Stages in Schema-Dviven Interpretation

Stage 1: The specific scene scheme is known;

the viewpoint is known,

In Stage 1 experiments, the system is, in effect, told what
it will see. It must merely match its highly constrained
expectations to what appears in the particuvlar scene. In these
experiments, a specific 2D schema is directly available. The
research focus is on the structure of the schema, the control
structure for driving ¢the KSs directly from the schema, and on
mechanisms for consistently integrating the hypotheses returned
by the K8s into the schema. This experiment is an exercise of
all the components of the system and its success is fairly well
ensured. Since the specific 3D schems is available and the point
of view is known, a 2D schema can be generated which <closely
matches the appearance of the 2D image. The 2D schema provides a
powerful plan for directing various KSs in processing the image
and interpreting the scene. Some of the results cited later in
this paper are a partial exercise of this capability. Those
results, we emphasize, should be viewed as exercises in

demonstrating the integration of the system.

Stage 2: The general scene schema is knowns;
the viewpoint is known.
Stage 2 tests the system’s ability to interpret a scene
using a prototypical schema instead of the specific schema.

Thus: the general knowledge of road scenes would be wused to
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interpret an image of some particular road scene. The spatial
constraints are more general and any given obgject in ¢the schema
may or may not appear. Since the viewpoint of the general schema
is known (e.g., looking down the road), the general 3D schema can
be used to generate a general 2D schema which then provides a
list of key region, line, and vertex featuves, as well as rough
spatial locations and spatial relationships between features that
might appear. Strategies are needed ¢thot have flexibility in
locking onto any relevant characteristics which are extracted
from the 2D image. The processed sensory data must be used by
the schema in constructing the description of the particular road
scene. While certain relationships are expected, for example
converging lines of the sides of the road, their existence and

location in the image can only be determined by application of

som2 of the KSs.

Stage 3: The specific scene schema is known:

the viewpoint is unknoun.

Stage 3 exercises a different processing capability of the
system: the ability to manipulate U representations in the
selection of the probable view angle. It must rotate and
translate a 3D description of a parvticular scene in ovrder to
generate a 2D view which matches the scene. The problem is
simplified ¢from the general case becauvse the specific 3D schema
is made available. Thevefore, jf the pruper viewpoint can be
determined, a very good match is ensured (c. . results of Stage

1 in Section VI.). Here, important information about the
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viewpoint may be provided by the orientatiorn of line segments,
the 2D shape of regions, and spatial relationships between
regions in the image. In addition we can attach information

about standard viewpoints to the 3D schema,

Stage 4: The general scene schema is known;

the viewpoint is unknow,.

Stage 4 is an integration of the techniques developed in the
first three. The +rocus here is on the use of bottom—up
information to constrain the general relationghips found in the
general schema and to obtain the most likely view angle. It is a
non-trivial extension of Stages 2 and 3 berrause even the proper
viewpoint still leaves a potentially lavge degree of variability
in the matching and interpretation process, SBuccess here will be
dependent upon the quality of the KS’s developed during the first
three stages and the effectiveness of the control strategies

developed in the last two stages.

I111.5. Bottam-Up Instantiation of Schemas

Gtagqe §: The general scene schema is unknown and

must be hypothesized and vevified.

Even if experiments in Stage 4 are successful and a general
3D schema from an unknown viewpoint can be used for interpreting
an imsge, there is stil)l the serious problem of determining the
relevant schema to employ. In a general system +for scene

analysis, the knowledge base would be expected to contain many
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schemas. Given the high cost of computation expected to be
associated with schema-controlled KS invocation, all possible
schemas cannot be applied to see which best fits the sitvation.
Many researchers have worried about problems of seavrch and ervor
recovery in an enormous search space of possibilities. We have
decomposed the problem of applying the correct achema £rom the
problem of schema instantiation so ¢that the different issues
involved do not get confused.

The accuracy of schema instantiation is dependent upon the
degree to which features can be extracted from the sensory data.
As bottom-up mechanisms begin to construct a model of the imaga,
features of this model <can be matched against the available
schemas in long-term memory in order to select a schema that is
relevant to the image. The problems heve are related to bLoth 2D
and 3D schemas. Since the viewpoint is unknouwn, features of 2D
shape which are extracted from the image cannot be matched
directly against the schema. Rather, knowledge of possible
perspective transformations of the shape features must be used
during the matching. This is facilitated by storing with the
schema prominent 2D features from important or common points of
view; this can be accomplished by means of "standard-view"
orientation vectors attached to the schema or to parts of the
schema. However, these vectors do not obviate the need for
additional mechanisms which can suggest plausible orientations if

the given scene does not conform to the standard views.
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Inference networks [DUD761 may prove to be effective in
integrating the implications of & numher of uncertain hypotheses
at various lower levels of representation. They allow the effect
of multiple hypotheses (in the form of probability updates on
nodes) to be simultaneously propagated in the network. After
propagating thess inferences up to the schema level, schemas with
high posterior probabilities can be selected. There are a
variety of problems which have not yet been solved, such as the
problem of loops (closed paths) in inference pathe, the
difficulty of estimating joint probability distributions of n
nodes, and ervors due to inconsistency of binary (or m-ary, m
less than n) approximations of the Joint probability
distributions.

Stage 5 is the lcast constrained of the expeviments thus
far, and depends primarily on the ability of the bottom—up
constructive mechanisms to transform the scene data in such a way
that the appropriate higher 1level KS’s can be applied and a
schema instantiated. The development of these constructive
mechanisms foreshadows Stage 6, oune oFf the most general and

difficult problems in vision.

IT1I. 6. Bottom-Up interpretation of Images

Btage & The goal is to consvruct a (partial) 3D
surface/volume description without

access to schemas.
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It can be argued that research on vision ought to begin with
the bottom~up constr _vive mechanisms and the development of a
general theory of vision. Often humans can recognize surface and
volume properties and develop a sense of 3D space even when there
are virtually no object semantice in the image. There is much to
be learned from more constrained approaches which do not involve
higher level knowledge [HOR75, HOR77, RBAR78, MAR781). However,
they cannot be expected to solve the general vision problem.
Given the complexity of our images, we do not expect that the
current KS8s will be sufficiently reliable, or generally relevant,
to be effective over mest of the imsge without guidance by
schemas.

Nevertheless, the insights and mechanisms developed in the
previous stages should significantly overlag those needed in
Stage 6. We expect some of the K8s (e.g., occlusion, 2D shape,
spactral attribute matcher) to provide useful information in the
general interpretation construction process. Gtage 4 experiments
require the system to lock onto visual attributes in the image
which are consistent with schema expertations. The location,
size, and number of objects in a schema «e¢.g., shrubs in front of
a heouse, the number of windows on a wnll of a house, etc.) will
vary. Therefore, mechanisms which use the visual characteristics
in a manner consistent with bottom—up analysis are required in

order to use the general 3D schema.
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IV. THE SEGMENTATION ALGORITHMS QF Tl LUW-LEVEL SYSTEM

The VISIONS research group has maintained a long-svanding
research effort in low-level image analysis. Our goal has been
to produce a system which can initially provide a segmentation to
drive the image interpretation process, and which later can
receive semantic feedback to direct low-level processinyg in  the
refinement of that segmentation We cannot discuss the full
range of our segmentation efforts; they are documented in a
series of reports and papers [NAG79, KMI7?, HAN78b, PRA79, PRABO,
OVE79, HAN8Oa). Here:. we 1limit our discussion to a brief
description of two algorithms, an edge relaxation algorithm and a
histogram—-guided region relaxation algorithm. Both the edge
relaxation process and the region Fformation process are
vadergoing continuous development.

All algorithms are implemented in a simulation of a parallel
hierarchical machine architecture, <called @ "processing cone",
for processing images C[HAN74, HANBObl. 'the cone is related to
similar structures proposed by [UHR74, TAN78, TANBO, RO&B7%a,b].

The segmentation processes hacsically invoive two
complementary relaxation labdelling pvicesses E[ROS76, 2UC77,
DAV76]1 for partitioning images into 1regions and boundaries.
either of which can be preceded by a sophisticated smoothing
algorithm [OVE79] in a preprocessing pass on the image. Yhe
boundary formation process responds to local chawges i. the data.
while the region formation process is sensitive to global

similarities in the data. An  earlier version of the region
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algorithm has provided the data wupon which the interpretation

process2s in this paper are applied.

Iv.1. Edge Reiaxation and Boundary Continuity

The edge/boundary analysis wutilizes a representation of
local discontinuities in some visual Peature (e.g.. intensity or
color) as a collection of horizontal and vertical edges located
between individual pixels. The iterative edge relaxation
processes then allow contextual interactions to organize
collections of edges into boundary segments [PRA79, HAN7BL].

Figure 1 provides sample results of this process.

IV.2. Histogram—-Quided Region Relaxation

Region analysis is based on cluster detection in the
histvogram of some visual feature LIAN78b, NAG79). Prominent
peaks in the probability density function of a feature or in the
Joint density function of a pair of features indicate the most
frequently occurring (or co-occurring) values in the feature
space. The region formation procesc therefore utilizes global
histogram cluster labels, defined by the peaks, with pixels.
These peaks also allow likelihnods of cluster labels (computed as
a function of the spatial location of the peaks relative to the
spatial location of each individual pixel in feature space! to be
3ssociated with each pixel. Interactions between the label gets

of pixels in iocal neighborhoods avre thon used to organize
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Figure 1. Beundary segmentation
via edge relaxation. (&) Intengity
image of a 128x128 portion o: a
suburban house scene. (b) Closeup
of a portion of roof trim and a
sequence showing the effect of
iterative updating of edge likeli-
hoods via constraints of boundary
contipuity. (c) I[nitial edge
probabilities., (d) E«ge probabil-
ities after 2 iteraticns. (e) Edge
probabilities after 20 iterations.
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connected sets of pixels into regions (i.e., connected sets of
pixels all with high probability of the same label constitute a
Tegion). Figure 2 outlines resvltls of applying the
histogram—guided region relaxation algorithm.

Results of an earlier version of the region relaxation
algorithm appear in Figure 3. These results form the basis of
experiments in the remainder of the paper. Because of previous
limited computational resources on our old computer facilities
(PDP-15 with 96K bytes core), the segmentation was obtained from
an image with a rvesolution of 128xJ28 pixels. This image was
derived from a 256x296 quarter of a 512x5%12 array, which was then
further reduced by averaging to 128x128. The current processing
is on a VAX 11/780 with 1 megabyte core, and processing of images

with higher spatial resolution is now typical.

V. SUMMARY DESCRIPTION OF THE KNOWLEDGE SOURCES AND INITIAL
EXPERIMENTS

This section provides a general overview of the knowledge
sources in the VISIONS interpretation system. Knowledge sources
are the means by which hypotheses are generated and verified. In
some cases, the KSa have been developed only to the point where
the results are reasonable. The advantage of this approach is
that it allows a minimally complete system to b» configured and
run.  The input/output and functionaliiy of each H8 is clearly

specified and can be improved as time and resources permit.




(b)

Figure 2. Region segmentation via relaxation histogram cluster labels,
(a) Initial intensity image of a 128x128 portion of a house scene
derived by averaging from an image of higher resolution (previous
limitations on computational resources dictated this limitation).
(b) Resultant segmentation superimposed on intensity image. Note
that there is a difference in aspect ratio in this image due to
differences in the displays used to generate the picture,
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Figure 3. Segmentation date used in experiments. These results of
region format ion via relaxation on cluster labels were produced
by an earlier version of the algorithm which produced the results
in Figure 2. The region segmentation has been c(onverted to a region
boundary representation and region labels are shown. They form
the basils of the experiments described in later sections.* Note
that only large regions or regions mentioned in paper are numbered,
but all regions have a unique label.

#The integration of the edge and region segmentations 1s the focus
ot the current Ph.D. research ot Ralf hohler.
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A set of eleven modular KSs and several representations will
be briefly reviewed. While we cannot discuss each of these in
detail in the limited space of this paper, a short discussion of
each KS and, wherever possible, a simple example of local results
is provided. However, these local results must be viewed in the
context of the evolving design of the whole system [HAN78bL, c1.

A base~level sustem has been implemented and is operational
to the point where interesting experiments, such as the ones
described in the following sections, are being performed. In
building this base-level system an attempt was made to provide
sufficient generality of processes and representation —- function
and structure -~ to allow us to wourk on different types of
scenes, to easily add knowledge in both dactive and passive form,
and ¢to define and execute different types of interpretation
strategies.

The reader should note that the results cited in this
section wer2 obtained from a version of the system running on the
University Computing Center’‘s CYBER-74 time-sharing system. The
system 1is implemented in GRASPER {1 0UW/81, a high level graph
processing language built in ALISF [KON/L). The system has been
transferred to the COINS Department VAX 11/780 and integration
with the VISIONS low-level system is in progress

Table 1 provides an overview of the scet of HKSs currently
available and briefly discusses the representations employed in
various parts of the system. Cross references to more detailed

discussions and/or results are included.
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TABLE L: SUMMARY OF KNOWLEDGE SOURCLS AND REPRESENTATIONS
T T - -1
Name Brief Statement ot Function or Purpose Cross References
Low-Level The goal of the low-level system is the segmentation |[IV
Segmentation of an image into visual primitives (regions, boundary [Flgures 1, 2, 3
System® segments, and vertices), and the extraction of a
range of features to be used by the various knowledge
sources (KSs) of tne interpretation system.
R8V Structure | RSV is a symbolic layered graph structure of regions, Fioure 8
line segments, and vertices containing the segmenta- &
; tion results and feature descriptors. This data
structure is stored in short-term memory (STM; see
below) and represents the processed visual data upon
. ____lwhich the interpretation is based.
LTM LTM is a hierarchical representation of general (i.e. V.2
(Long-Term non-image specific) world knowledge organized into Figures 8, 9
Memory) natural levels of abstraction: schemas (stereotypical
scenarios), objects, volumes, surfaces, regions, line
segments, and vertices.
STM STM is a hierarchical structure of the same form as |[V.2
(Short-Term LTM and used for constructing an interpretation by Figure 8
Memory) means of the knowledge sources. An interpretation is
then the collection of instantiated nodes in STM.
The RSV structure is the bottcm three levels ~- all
other levels are initially empty.
_— e s e —— S S
Inference lt is a network of a priori probabilities of nodes ITI.5
Net KS§ and conditional probabilities between nodes; it is V.6
defined on the arc¢s and nodes in LTM, and are the Vi.8
means by which implications of local hypotheses may  Tables TIT, V
be propagated upward and downward through the layered
structure. Any hypothesis generated by a knowledge
| source can then be used to generate further
| | hypotheses.
T B
| 2D Curve i This KS is designed to produce smooth fits to V.l ;
i Fitting KS boundary seguments in a segment.ation. [t utilizes VI 3 |
! generalized cubic splines, automatic resegmentation Figures 4-7, 21
‘ i of boundaries at points of high curvatnre, and curve
! ! fitting techniques.
| —— e e e g
l 2D Shape KS This KS allows symbolic classification of the shape V.3
) o regions., The confidence that a given image region has{VI.4
' ! aparticular primitive 2D shape will be returned. Thae Figures 10, 22—245
| | results ollow patis tor surface & volume hypotueses via LidjTable 1T i
o= - - - - - - ooy T I
lueclusion KS This KS uses the results produced by 21 shape to analyze [V.4 :
' Pojuanction (verte ) types o produce hypotheses about : ’
“ “ rebative depth relaton s haps betwean cegrons. bol e | !
‘ ' Pits to toundirv seomen s produce suweotnly vary ing ; i
: | ¢uve. at junctiors, warch may be auaiverd tor f
: Tovciustion cues., '
) - .. . e
: “‘Ful‘ltliud-'x-)y the Wilaice o0 Ao Resr oo b ccer vontr o0 S e =t B
\
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Cross References

Name
Spectral It hypothesizes object identities of a region on the (V.5
Attribute basls of a comparison between region attributes VI.2
Matcher ¥S (color and texture) and statistics of these features |Figuresll, 19, 20
attached to the object nodes in LIM. 1t 1s designed
primarily for objects for which these attributes are
reasonably invariant across images (currently sky,
bush, grass, tree, road).
3D Shape KS It uses a represencation for 3D shape with curved V.7
surfaces, their organization into objects and object [IV.8.3
parts, and mechanisms [or manipulating the represen- [Figure 12
tation. It is called a quilted solid and is defined
by collections of Coons' surface patches bounded by
cubic splines, in an object centered coordinate
system. Quilted solids are jolned together by spline
blending functions.
Perspective KS| The goal is the hypothesis of surface orientation, V.9
size, and/or distance in order to produce a partial V.10
volume/surface plan of the scene. The currenc VI.6

version focusses on relationships between elevation,
height, range, and width of surfaces given a camera
model and a set of assumptions regarding surface
orientation.

Horizon KS

It uses the horizon schema (the most general outdoor
schema which relates sky, ground, and horizon) and
the camera model to fix the location of the borizon.
It is used to filter other hypotheses on the basis of
their relationship to the horizoa.

Figures 14, 15, 27
Table IV

e e e e c——

V.11
Figures 11, 16

Object Size KS

i

e e e e e v .

3D Schema

2D Schema

!

This module is designed to generate object hypotheses
on the basis of the image size of a region. It
compares the computed physical (i.c¢., real world)
size of a surface, determined by the perspective
module, to the physical size of objents in LTM.

The 3D schema captures stereotypical visual events
by organizing subsets of information in LTM into
higher order cowplexes of expected scenarios (e.g.,
a road scene schema)., 1t may be either specific

(a particular known scene) or general. The repre-
sentation is stored in a local coordinate system and
contains control information for top-down interpreta-
tion. A projection of a 3D schema produces a 290
schema,

A 2D schema 1s o projection of a3 schema From
grven point ot view. The projection carries along
control strategy information and features of Lhe
projection (e.y., surface orientation, relative to
viewpoint, et..),

V.12
VI.7
Figures 17, 28

111.2
T11.4

V.8
Figure 13

111.2
IT1.4
VI.1-V]1.5

- It is used to direct top-down |
interpretation oi the image. j

Figures 18-28
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V.1. 2D Curve Eitting
The output of the segmentation processes is represented in
terms of horizontal and vertical edges for a variety of reasons,
They involve concerns about connectedness of edges and the
ambiguity that occurs when edges of varying orientation are
associated with pixels C[RIS77, HAN7GbLI. It is necessary to
transform this rectilinear edge date into a vontinuous
representation. By fitting smooth lines to the data, they more
accurately reflect the original visual information. However,
various problems occur when the best straight lines are fit to
the segments that form the low-level output. The first problem
is that the endpoints of a segment do not define the ‘“natural"
portion of a boundary over which lines should be fit (refer to
Figure 4b). This problem can be avoided by wusing piecewise
linear fits to line segments by decomposing line segments on the
basis of points of high curvature, but there are still
difficulties. The enlargement of a Junction is shown in Figure
4(c) and one can see problems with best -Fit straight lines nat
meeting at & point (Figure 4d), or movement of the location of
junctions if pseudo—junctions are formed (l-igure 4e). Finally.,
any type of piecewise straight-line fits cause a discontinuity at
the junction in the slope of line seqments which are actually
portions of a smoothly curving region boundary. This is
important in the extraction of surface occlusion cues (Section

VvV 4) These problems are discussed in move detail in [YORBOI.
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Figure 4. (a) Segmentation of house scene with a typical junction of
line segments marked. Line segments are delimited by a line
termination or a junction of two or more 7' .cs. (b) The segments
bounding a region must be restructured by choosing points of high

curvature as new iunctions in order
(c) Enlargment of junction shown in
line fit to segments emanating from
lines not meeting at the junction.

are used, actual junction loca! ions
of the segments at the junction are

to obtain
(&) . (d)

correct line fits.
The best straight

a junction can result in the
(e) When pseudo junctions

are moved
lost.

and the characteristics
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In order to avoid some of these problems, piecewise
polynomial functions called splines [AHL &7, GOR741 are £fit to the
set of line segments bounding each region. Splines of degree I,
2, and 3 are employed: piecewise linear, piecewise quadratic,
and piecewise cubic splines [YOR79]. Cubic splines in particular

have several nice properties (refer to l-igiire 5):

a) they are smooth curves —— the Function as well as its

first two derivatives are continuous in the interval;

5) they are guaranteed to pass through a specified set of

points called knotsi

¢) placement of multiple knots at a csingle point allows

discontinuities to remain:;

d) given a set of knots, computation of the spline
coefficients is efficiently accomplished via standard

algorithms.

The strategy currently in effect is to select points of high
curvature as possible knot locatiuns and then wuse a knot
collection procedure to pull nearby knots together. Then splines
or ail three degrees are fit to the segments. I# the piecewise
linear straight line has a low RMS evror, then the segment

between two knots is labelled ‘"straight"” and an (R, theta)




Yt

iy
sas it

it e e
semtadaaiiiaalaad

PR

-
<
(2%

SR g

SpShimatae
:‘<

AT e

™

S

Figure 5. Cubic splines are polynomial functions y = f(x) of degree 3.
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parametric representation is used to rvepresent the slope and
location (up to co-linearity of the segments). If the straight
line fit is not .cod, then the second degree fit is teosted, and
1f necessary the cubic spline fit ic adopted. These points of
high curvature are computed on the basis of a modified
k-curvature [DAV76]1, which is the angle that is formed at a given
point by straigh% lines from the given point to the points which
are k away in each direction.

The result of knot selection, knot collection, and first and
third degree splines for one region is shown in Figure & The
spline approach has the potential to produce smooth
approximations to digital curves and allow a more accurate
analysis for junction classification [YORUO]1, 2D shape conalysis,
occlusion cues, and surface hypothecses. Although the fits of
cubic spline curves shown in Figure 7 ore reasonable, there is
definitely need for further improvement. The knot selection and
collection process was based only upon a local view of curvature;
a more global view of curvature masy produce more appealing

boundary fits.

V.2, Long-Term Memory (LTM) and Short -levm Memory (STM)

General knowledge about the physical world <(or the task
domain of interest) is stored in “"loung -term memery" (LTM). An
1mage will be "understood" in terms of the concepts and relations

found in LTM. This knowledge 1s hieravchically organized into
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Figure 6. Using splines for 2D curve fitting of a vegiun. {a) Origigal

646 points along the boundary of region 14. (h) For zach point in
(a), 3-curvature was computed and all points with absviut. value of
J-curvature greater than 0 were retained for the knot collection
process. Uf the 646 original points, 467 are left. (¢} Frru the
467 points, the knot collection procedure leaves 343: 148 ar.
multiplicity-3 knots and 195 are multiplicity-1 knots. \d) Plece~
wise linear interpolation of the 3-curvature, O-thresholded, knot
collected boundary of region 14. (e-g) Same as (d), but thresholded
at t, 2, and 3, respectively. (h) Piecewise cubic interpolatiou

to 3-curvature, 2-thresholded, knot collected boundary of region 14,
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levels which represent a natural abstraction of world knowledge
(Figure 8).

Nodes in LTM represent visval primitives with which the
system can construct an interpretation, while the arcs represent
relations (primarily AND/OR rvelations) which exist between the
primitives. Inter-level arcs represent the paths by which
primitives at one level may be related to primitives at levels
above and below. These arcs rvepresent paths for hypothesis
formation (possible inferences) within 1M they are wused in
various ways by other knowledge sources during the interpretation
process. Section V. &6 discusses how the inference net KS overlays
LTM. Figure 9 depicts a representative fragment of the netuwork
and describes the size of the network in terms of the number of
nodes and arcs.

The interpretation of an image i+ viewed as a set of
instantiations of the nodes in | 1M. These instantiations

constitute short—term memory (STM) and arc shown aoan the left side

of Figure 8. This representation of knvwledge, as well as its
relationship to the inference net, is the subjyect of ongoing
research by J. Lowrance, a graduate student in our research

group. Both STM and LTM are implementied 3c a layered graph 1in
GRASPER [LOW?81, a graph processing language extension to LISP

which follows the general approach of L[IFK1A9, PRA711.
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Figure 8. Hierarchical decomposition of long-term memory (LTM) and

its relatlonship tu short-term memcry {STM). LTM contains the
stored knowledpe to which the system has access. An interpretation
of an image is viewed as a set of instantiations in $¢M of nodes

in LTM.
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V.3. 2D Bhape

The 2D shape of a region may be &an important cue to the
identity of an object. or to attribules of a visible surface
(such as the 3D orientation of the surface), Many simple
relationships between the physical world and its 2D image
projection are captured in LTM. For example, the 3D shape of
simple volumes (e.g. cylinders and vectangular solids), as well
as the 2D shapes of 3D surfaces (e.g., lhe rectangular surface of
a window), are related to standard 2 shapes (e.g. rectangles,
trapezoids, circles and ellipses). Therefore, in order to gain
access to paths by which 3D hypotheses may be formed. symbolic
attributes of shape, where they are relevant, must be associated
with regions.

First, we ovutline the strategy for labelling geometric
shapes formed by straight lines. Figure 10 is a portion of LTM
which captures an informal definition of several shapes in terms
of the straight line segments lorming them. The shape
classification is hierarchicel; that i« quadrilaterals arve a

superclass of both trapezoids and pavallelograms, the latter

being a superclass of rectangles and rhombi, etc. The
definitions of shapes involve intreasingly restrictive
constraints as the hierarchy is descended Therefore, if the Fit

for a quadrilateral is not very good, al) svhape types which are a
subclass of quadrilateral need not be exomined. In this way a

large amount of computation 15 avoided
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Figure 10. Hierarchical definition of a portion of the shape types

currently in LTM. c¢(X) represents the heuristic con{idence measure
of shape type x. The c¢lassification of shapes loosely follows
the classificat ion based on affine symmetry [NEW6S 1.




40

A quadrilateral requires four sivaight lines and the
confidence that a region satisfies this condition can be
heuristically specified as the minimum confidence that each of
four segments is a straight line. ‘lhe confidence of a straight
line is the RMB error of the best fit to the actual data. Figure
10 outlines the manner in which the computation proceeds and
hopefully is self-explanatory. It should be noted that the
composition of confidences involves o product of confidences in
an attempt to implement a worst-case analysis. One should note,
finally, that heuristic +functions are needed to specify the
confidence of primitive attributes or relationships such as
straight line, parallel line, right angle, or equal length; it
is expected that any reasonable function will suffice. The
result of fitting geometric shapes to segmented regions is shown
in Table II.

In addition to primitive shapes ftormed by straight lines,
quadratics are used to detect good fits of ellipses and circles
to the regions [AGI72, SHI78]. Original)y all types of conics
(i.e., the type of curves produced by cutting a vright circular
cone with a plsne, including ellipse , hyperbola ., parabola .,
etc. ) were fit, but this has been replated by spline fits.

Most regions in our outdoor scenes arc not classified as any
of the simple shapes mentioned and ave Jabelled symbolically as
‘blob ‘. Nonetheless, important information such as the
parametric fit of the 2D spline analysic is carried forward for

later 3D processing.
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Region Shape Probability Aspect Ratio

Rectangle .937 6.33
RC--0047

Trapezoid .96 ———
KG~-0050 Rectangle .99 6.33
RC-0051 Rectangle .99 6.33
RG-0054 Rectangle .99 6.00

Rectangle .80 7.5
RG-0060

Trapezoid .85 —

Rectangle .80 6.25
RG-0045

Trapezoid .85 —_—

Rectangle .85 10.33
RG~0049

Trapezoid .90 —
RG-0086 Rectangle .99 3.00

Table II.

Summary of 2D shape fits to selected regions of Figure 3.
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V.4, QOgglusion

Researchers in image processing have 1long recognized the
importance of picture junctions as loci of surface information.
When objects in scenes are limited to planar surfaces forming
trihedral vertices: the analysis of picture junctions can be
efficiently 2xploited. The constraint of surface planarity
ensures that only straight lines will appear in the image and the
trihedraliéunstraint guarantees that there will be a small number
of fairly well-understood vertex types LHUF71,
CLO71, WAL73, TUR74]. When scenes contain complex curved objects,
the problem becomes more difficult.

The cubic spline fits to the image provide useful occlusion
information at picture junctions. {’lacement of knot(s) at the
Junction ensures that two line segments, meeting at & junction,
which are part of a continuous line, wil) be smoothly it by the
splines. This is a generalization of the "tee" Junction in the
polyhedral domain, but does not require assumptions about
straight lines. A simple strategy for determining the degree of
discontinuity (e.g., relative angle) between pairs of line
segments approaching the junction yields occlusion hypotheses at
the Junctions. York (YORBO] is currently examining the
improvements obtained by a spline approach vs. piecewise linear
fitting on Turner’s classification of the 2D junctions formed by

the meeting of 3D curved surfaces [TUKR741.
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V.5 gbiect Huypothesis via Spectral Attributes

For a restricted <lass of objeits occurring in outdoor
scenes, attributes cf color and texture can be expected to remain
relatively invariant across a wide rauge of scenes. The spectral
attribute K8 matches rtegion attributes to stored attributes of
several objects (sky, tree, bush, grass, aud road) and returns a
measure of the degree of match, rangiug Ffrom —100 (no match) to
+100 (excellent match). The stored attributes were obtained by
measuring &0 ¢features across samples of each object extracted
from a data base of 25 images. A pieccwise linear decision
function which reflects the expected variability of each feature
of an object is then formed. 7The matching process extracts an
identical set of fzatures from the region (or union of regions)
to be identified, and uses the decision function to generate a
degree of match for each object. his research is part of the
Ph.D dissertation of T. Williams: more detail appears in
CHAN78b, WIL8O01.

The attribute matcher can only to used to hypothesize the
presence of certain "target" objerts based upon the expected
invariance of their color and texture zitvibutes. There are manuy
abjects such as cars, shirts, and wost other man~made objects
which vary in their spectral charactervistics. This K&  however,
will return a confidence value for any region, regardless of
whether the region represents a target ohject or not. Therefore,

we require mechanisms for filtering these hypotheses.
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Figure 11 illustrates the resultec obtained by applying the
spectral attribute matcher KS to the 21 largest regions of our
example. OUf the 21 regions, 14 were target regions (3, 8 10,
30, 20, 79, 15 37, 82, %6, 90, 83, 110, and ?3) and 7 were
non—-target regions (14, 958, 41, 56, 3L, 70, end 21). OFf the 14

targets, 8 were correctly identified on the basis of a maximum

confidence decision. If bush and tvee are collapsed into a

single object (which is not unreasonable given the similarity of
spectral attributes), then 11 of the 14 arc correctly identified.

Of the remaining three target errors, the correct hypotheses had

the second highest confidence in two cases (regions 13 and 96);

region 8 represents a mixture of sky and small tree limbs and the

correct hypaothesis is debatable.

Of the 7 non—-target regions, 9 of the regions (58, 41, 56,

3% and 70) represent portions of the white house wall and all

were hypothesized as sky. In the absence of any additional

information, such hypotheses are reasonable and cannot be

eliminated. The remaining two regions arc both roof (regions 14
and 21) and both were hypothesized ac grass, srobably due to
similarity of values for several crude texture measures. Both of

these hypotheses, and three of the previous five, can be filtered

if the location of the horizon is known and the ground is assumed

to be flat. Regions 14 and 21 cannot be grass and be located

above the horizon, while regions 958, %46, aud 70 are either below

or straddle the horizon and hence cannot be sky. This will be

discussed again in the "horizon" K& (Scction V. 9),
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Confidence Measure Corract
| (maximum confidences . Correct
:! Area cdrel 1) Hypothesized Actual Correct Hypothesis? Hypotheses
% Regton © Identiry Identity Comments Filtered
& @ @ Hypothesis? | (Bush/Tree
p pixelsl % of S 8 v, 9 l(max. conf.)| (visual) one cbject) by Horizon
lpicture 285 8 & & KS
i ]
L. 14 3101 I 18.9 -10] 32 {-55{-17|~16 Grass House Roof No No above assumed horizon no hyp.
} :
, 3 1939 | 11.8 |-62]-48] 41| 74 |-84 Sky sky Yes Yes Yes
i )
LU ! mixture: tree without
8 971 E 5.9 ]-20]~ 6] 31| 47 |-46 sky Tree ? ? leaves and sky ?
L
10 793 | 5.9 |-23]-40{-88[-53] 46| Tree Tree Yes Yes Yas
L
! white house wall #n sun~
58 606 | 3.7 -52[~41{-49) 20 |~21 Sky House Wall No No 1ight; region straddles no hyp.
, assumed hortzon
‘ V white house wall eaves, &
: 41 s60 | 3.4 - 8{-23[-70|-38] 76 Tree House Wall No No gutter in shadow matches No
) tree onbrightness, texture,
L
30 s18 | 3.2 |-S4|-41[-53]-41] 14| Tree Tree Yes Yes Yes
% ™ ~
el ~ white house wall; region hyp.
56 486 f 3.0 |-60|-51{-62} 23 |-23 Sky House Wall No No Neriddles somumed hebiaen | mo hyp
i
20 627 | 2.6 ]10]37{-88{-50] 54 Tree Tree Yes Yes Yes
! L
3 T
white housa wall with
35 s10 | 2.5 |-2{13]-61{32(-16{  Sky House Wall No Yo [shadow of tree No
i —
contidence for bush 4u
79 373 ll 2.3 45| 0 1-92]-71) 46 Tree Bush Ny Yes almost as largs as tree Yoo
1
. white housewall; part of
70 56 | 2.2 2! 7 [~61( 29 [-25 Sky House Wall No No region sbove horizon ?
L
]
TR region above horizon;
15 330 ! 2.2 |-27} 20{-56{-32] 2 Grass Tree No No e next most Yes
' region above horizon;
; 21 0 | 1.9 |- 34031 [-35]-16] Grass Roof No No 11kely knocks out road no hyp.
§ N also
}
b 37 308 | 1.9 [-33]-30|-92/-53{44| Tree Tree Yes Yes Yes
X
4 ! 82 228 | 1.5 |21 0/]-171-53{- 2! Bush Bush Yes Yes Yes
5 '
- 96 27 | 1.3 4 | 6 |-53]-53j-10 Grass Bush No No bush next most 1ikely No
b
5 ; t
= ; 90 200 | 1.2 |29 9 [-85{-11| 0| Bush Bush Yes Yea Yaa
X3 .
t
83 198 | 1.2 39 ) 0 [~94([-71] 44 Tree Bush No Yes bush n1ext wost likely Yes
54 ! i
! '
% 110 156 | 1.2 |-48]32]25|-35[-46] Grass Grass Yes Yes Yes
& "
> T
2 N { 93 196 | 3.2 | 29(-20{-89|-74] 35| Tree Bush No Yes bush next most 1ikely Yes
b L
] . .
! Figure 11. Results obtained by applying the spectral attribute matcher KS
< ‘ to the 21 largest regions (ordered by decreasing size) of Figure 3.
e The results obtained by filtering the hypotheses by the horizon K.
. , (see Section V.11) are also shown; if there are no positive
& confidences after filtering, no hypothesis is generated.
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The statistics on the remaining 93 regions are approximately
the same, although if the size of the region falls below a
minimum size, reliable texture measures cannot be extracted and
performance falls of#f. A number of the regions have negative
confidence values for all target objects and no hypotheses are

generated for these regions.

V.6. The Inference Net in Long Tarm Memoervy

The representation of declarative information is a layered,
hierarchical graph structure in which nodes represent visual
antities and arcs represent the relationships between these
entities. By associating probabilities with nodes and
conditional probabilities with arce, an "inference network"”
LDUD76, WKON78) is defined. The avces and probabilities define
weighted paths by which implications of local hypotheses may be
propagated upward and downward through the layered network. Any
hypothesis genevated by any knowledge wource which results in a
change in the a-priori probability o a node can then be used to
generate changes in likelihoods at other nodes via these paths.
Moreover. entire partial interpretations may be used to generate
hypotheses about likely identities of unexplained portions of the
image. The presence of a window &#nd voof, for example, wovuld
strongly imwly the presence of a house and consequently the house
scene schema.

The inference net of the Prospector system ([DUD78), as

originally formulated, is designed to propagate information in
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one direction only, from low-level "evidence" nodes towards high
level "goal” nodes, The method by which information is
propagated is developed from a Bayesian probability formulation
of the joint occurrence of the visuval entities in the long term
memory netwovrk. Prospector only employs conditional probability
distributions betweeﬁ pairs of nodes (i.e., governed by joint
probability distributions of two nodes at a time). In some
situations, however, it is desirable (or necessary) to define
Joint and conditional distributions across n nodes in order to
capture higher level dependencies. In sny case there are serious
theorectical issues inherent in the use of inference nets:, such as
consigstency or loops of inferences which relates to convergence
problems in relaxation labelling. These will net be discussed
here, but related issues are discussed in LHANS8Oa, LOWBO1.

Table III is a summary of the way apriori probabilities of
nodes higher in the network change as a result of updating the

likelihoods of lower nodes as shown and then propagating vpward.

V.7. 3D Shape Representatjon

There are several important issues involved in the
specification of the 3D shape of an object. The more important
of these include the choice and representation of the shape
primitives, the choice of & coordinate system within which the
relationships between primitives can be described, and the ease
with which features useful for recognition and/or matching can be

extracted [MAR77, AGI72, AGI7&4&, NeV/&, NEV77.  BAD791]. These
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+O08 ORU-RUILDING-FL 00K

(e 40000L~" h)

(+646089E0 A R)
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(,74512E0 1)
(,73249E0 T)
(., 47243E0 )
W3¢ GCC-RESIDENCE
(.H08S8E0 2 G 1)
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(,A0743L0 & )
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Table III.

Sample vresults from the inference net KS.

The results shown

are inferences upward from one level to the next, assuming the

instantiations and associated probabilities as shown.

The instantia-

tion(s) represent evidence via some KS for updating the probability
The prior and posterior probabilities of nodes

of some node(s).
higher in the nectwork are shown.

The effect of propagating

different pieces of evidence from below are labelled with letters

after the probability.

Actual instantiation of hypotheses on

the image of Figure 3 are given in Section VI.S.
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issues are being investigated by York in his Ph.D. thesis L[YOR80]
by applying and further developing techniques from the
computer—aided design community [CO067, CUUL74, GOR741.

The most popular 3D shape representation -~ generalized
cylinders [NEV771 —— involves formation of a 3D volume developed
by swre.ing & given planar cross section down an axis (Figure
12a). Thus, an object centered coordinate system is employed and
an assembly of subparts is described by relating the 1local axes
to each other [MAR771.

Our efforts are directed at making the relationships between
subparts accessible, the relationship of surfaces to volumes more
explicit, and the development of a representation for arbitrary
curvature of surfaces. The representation (Figure 12b) employs
Coons surface patches, whose four sides are delimited by cubic
splines ([C0O0741. The surface patch (Figure 12c) is formed by
using an interpolation, or “blending" function, from the pair of
opposite sides of the surface patlch. The blending function
itself is also a cubic spline; it allows a smooth transition
between adjacent patches, both those defining a single volume, as
well as adjacent volumes, as ir a car fender and car body. A
"quilted solid" 1is defined by six surface patches related to a
volume-centered coordinate system (Figure 12d). Figure 12(e)=-(g)
depict surface patches from several different points of view
Many kinds of information canr be stored with or derived from a

quilted solid (Figure 12h).

-
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(a) (b)
k
(c) (d)
Figure 12. The three-dimensional representation of shape. Much of

the representation is based upon cubic splines, Section V.1.
(a) The generalized cylinder representation. (b) A Coon's surface
patch P(u.w), where u and w are parameterized on the interval

[0,1], em loys four B-splines P(D,w), P(1,w), P7u,0), Plu,l)

to delimit the surface patch boundary; blending functions which
are also B-splines interpolate between opposite sides of the

surface patch., (c¢) Two adjacent surface patches A and B can be

smoothly joined at a common boundary if the blending functions
are constrained properly. (d) Six surface patches can define
the shape of a volume around an axis which is used to relate the
spatial orientations of such volumes.
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Figure LZ2. (e) A single surface paich can alsu be used Lo
upon itself to produce a volume. In this figure, one boundary
reduces to a point. (f) Telephone handle using one surface
patch. (g) Telephone handle using three surface patches showing
swooth join between patches. (h) Screwdriver formed from two

vatches,
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A system for separately defining ar‘itrarq surface patches,
combining patches into volumes, combining volumes into objects,
building specific 3D schemas, and rotating schemas subject to the
asgsumption of a given point of view is partially developed.
However., these components have not yet been integrated into our

system.

V.8 3D Schemas

There is a great deal of expected structure in our visuval
environment and it seems evident that such expectations are
important in processing visval information. One of the functions
of the 3D schema is the organization of subsets of information in
LTM into higher order complexes of stereotypical situations in
such & way that the spatial relationships between objects.
volumes, and surfaces which might occupy or define that space are
made explicit, The 3D schema would allow rotation and
translation of the prototypical scene so that its appearance from
any point of view can be generated. ‘Thus, the processing of a 3D
schema allows the generation of potentially relevant 2D schemas.

The results given in Section V! demonstrate top-down
interpretation of an image. In order to do this it was assumed
that a specific 3D schema was available, that it could be rotated
given an assumed point of view, projected onto a 2D image plane.
and then hidden lines removed. While those 3D facilities were

not

4]

vailable ¢then, and 2D schema information was supplied

directly, they are now available
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Our current version éf specific 3D and 2D schema have for

each schema region a centroid of the expected central location
and a radius representing the decreasing 1likelihood ¢that the
schema region appears at that location. ‘Thus, one can think of a
spherical or circular probability cloud denoting expected spatial
position. This crude representation of location allows selection
of regions in the image for matching against schema objects;
furthermore, alternative region selections can be ordered by
degree of location match. Figure 13 depicts wire #rame and
surface representations of a model of the house image. The 3D
schema we have described attempts to capture approximate relative
spatial information of the entities appearing in Figure 13,
There are still interesting problens remaining that are
associated with the generation of 2D schema from 3D schema. For
example, the likelihcod that a 2D schema region is visible will
be related to the likelihood that another schema region will
occlude it. Many issues related to the generation of specific 2D

schema from specific 3D schema are under examination.

V. 9. spective

The perspective knowledge source concentrates on the ways in
which the general relationships foverning perspective
transformations can be used to extract oy explain information
concerning surface orientation, distawce, and size [DUD73,
HAR78]. A region {(or the union of a group of regions) represents

the projection of a 3D surface onto the 2D viewing plane The
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Figure 13. Wire frame and surface representations of a model of the
house image seen from two points of view. The current 3D house
scene schema is actually an abstract representation of the approximate
relative spatial locations of the entities in these images. The
components (volumes, surfaces, straight line segments) are actually
represented by a position in space and a vadius associated with a
decreasing likelihood of the component appearing at that location.
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problem then is to recover some of the UD attributes of that
surface from the segmented image. Figure 14 is a simple sketch
depicting the relationship of the distance and height in the
physical world and their associated parameters in the image.

The current version of the perspective KS focusses on the

relationship between the following variables:

a) elevation - vertical distance above the ground plane,

b) height — vertical distance from visible bottom edge to

visible top edge of surface,

) range — horizontal distance PFruom viewing location to a

distinguished point on the surface,

and d) width — horizontal distance from the visible left edge

to the visible right edge of the surface.

The interrelationship of these variables depends on the
orientation of the surface in three-space. For simplicity, we
assume the orisntation is either verticral (i.e., perpendicular to
the ground plane, such as a tree) or horizontal (i.e., in the
ground plane, such as a road). While these assumptions may appear

to be wunnecessarily restrictive, they are sufficient to cover

many surfaces of interest.
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Figure 14. Perspective - ground plane, vanishing points, projective
geometrry.
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The four variables described above are interrelated. Given
the assumption of ground planarity and a camera model (angle of
inclination to ground plane, focal 1length, and height above
ground plane), knowledge of any onc implies knowledge of the
remaining three, although the form of the relationship depends on
whether the orientation of the surface is assumed vertical or
horizontal. We are continuing to explore ways to use perspective
under weaker assumptions in our current revearch.

In general, there are usvally several unknown quantities to
be determined and depending on the assumptions made one car solve
for different variables. Applying the percspective K8 to selected
regions of Figure 3, it is easily determined that the range of
region 79, for example, is about 37 metevrs and its neight is 1. 641
meters; this required assumptions of ground planarity, and that
the surface projected as region 79 is pevpendicular and attached
(i.e., zero elevation) to ¢the ground plane, More extensive
results from the perspective KS, and the use of these results for

the development of a 3D spatial plan are presented in Section VI.

V.10. Futher Development of the Perspective KS

In Figure 15 there are several sources of information in the
images that relate to the 2D projection of 3D volumes and
surfaces. Figure 15(a) shows a serics of identical objects
diminishing in size. I¢ it is posesible to generate the
hypothesis that the objects are of identical size and orientation

~- a situation that is not uncommon in various geometrically
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regular aspects of our man-made world -- then the tops and
bottoms of <the telephone poles provide lines of convergence to
vanishing points on the horizon line. The diminishing size of
the telephone poles is a particular example of a feature
gradient, known to be important in the perception of space
LGIBS01.

The use of the perspective equations for size and distance
demands knowledge of the tilt angle of the camera relative to the
general plane. This information is provided by the position o¢
the horizon in the image when the ground is planar. Figure 15¢(b)
depicts an example where the horizon line can be inferred when in
fact it is not visible in the image nor are there convergent
lines which could be reliably used. In the physical environment
corresponding to Figure 15(b), the plaza provides a flat surface
which is defined in the image by the hottom of the feet of the
figures. The horizon line lies in this plane. If the relative
angle of the camera to an infinitely planar ground surface is O,
then the horizon is in the center of the i&age. and in general
tilt is divectly computed from the distance of the horizon to the
center of the image. The height and distance of the various
figures may be determined directly from the distance of their
feet from the bottom of the 2D image. VYet a third plane is
roughly described by a least rms errvor Pit of the points
corresponding to the eyes of the figures; if the camera is at a
similar height to the eyes (not an unreasonable assumption), then

this plane is constrained to go through the horizon as well.
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This implies that the eyes of the figures, or more rvoughly the

tops of their heads, must lie at approximately the same height in
the image, as is evident in Figure 15bh,

There are many other interesting situvations which deserve

investigation, such as:

a) deriving the orientation for planar surfaces that are at
some general orientation, not horizontal or perpendicular

to the ground plane;

b) assumptions concerning lines which are near parallel or
perpendicular and their implications about the physical

worldi

c) deriving distance to objects and camera tilt angle from
assumed or known physical sizes of the objects

corresponding to regions in the image.

Continuing research on the perspective K8 will focus on the
information required for the construction of a spatial plan of
the 3D scene, the development of a collection of mini~-strategies
for wusing this information, the determination of the conditions
under which these strategies may be activated, and on methods for

extracting this information from the imoge data.

V.11, Horjzon Schema and Horizop Fjiltey KOG
It should be clear that the effects of perspective and

distance on the projection of surfaces in the image are

L AT
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determined by the observers position,. the camera model (of
height, pan, tilt. and focal length), aud the orientation of the
ground plane. These factors also determine the position of the
horizon in ¢the image, if it is visible. The horizon schema is
perhaps the simplest and most general of the schemas present in
the system. The function of the horiyon schema is to define the
relationship between sky, ground. and hovizon . and to provide
the global coordinate system for placing objects and schemas in
space (Figure 16).

The horizon schema also provides the basis for o filtering
KS applied to the hypotheses genevated by other knowledge
sources. Since the spectral attribute KS, for example, has no
notion of the spatial location of its tavget objects, some of its
hypotheses may be inconsistent with the location of the horizon
in the image. By collapsing the more obvious spatial constraints
into a knowledge source associzted with the horizon schema, many
erToneous hypotheses can oe eliminated. !-or example, in Section
V.5, Figure 11, region 58 was hypethesized to be sky. while,this
is a redsonable hypothesis dased solerly on spectral attributes
(white walls tend to “inherit" the color characteristics of the
ambient illumination or reflected illuminant characteristics ¢rom
nearby obgjects), “sky" regions cannot exict below the horizon and
the sky hypothesis can be eliminated. Since no other reasonable
hypothesis exists, no hypothesis for this region can be generated
by the spectral attribute matcher. For reaion 15 the hypothesis

“grass" is eliminated since the region is above the horizon; the
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Figure 16. TIllustrative diagram of the Horizon KS and its use as
a hypothesis filter. Hypotheses which violate the spatial constraints
imposed by the horizon can be eliminated. Regions which extend
below the hotizon cannot be labelled sky, while regions which extend
above the horizen canneot be in the ground plane (e.g,, road, grass).
Therefore the cross-hatched region cannot be labelled sky, grass,
or road.
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next most likely hypothesis (tree) ‘cannot be eliminated and
becomes the final hypothesis.

The results from the horizon filter KS applied to the output
of the speciral attribute matcher K& are shown in Figure 11.
Note that the assumption of ground planarvity is built into the
current version of the horizon schema, and that the real world in

many instances presents us with more complex situations.

V.12, Qbyect Size 4S

The object size K8 1is responsible for generating object
hypotheses based on the size of a region (or collection af
regions) and the results of the perspective KS. For example,
once a vregion is known (or assumed) to represent the projection
of a vertical surface: the perspective RSB can compute the
distance to the surface in the physical world and its physical
height and width. The size KS uses this data to return a list of
object hypotheses ordered by the confidence that the physical
object could be the given size.

The size K8 makes use of expected sizes of objects that are
stored in LTM. Both major and minor axes and their expected
orientation are used where possible. ligure 17(a) shows examples
of the ranges of sizes for selected object classes in LTM. A
piecewise linear approximation to the <cize probability density
function is formed from these ranges as shown in Figure 17(b)
Computation using only the vertical axis (For clarity) of seversl

objects is shown in Figure 17(c); in this figure, the size




R T e A

PSR RS

02

Horizontal Axis Vertical Axis
Object
Smallest { Smallest | Largest | Largest | Smallest | Smallest | Largest | Largest
Possible | Probable | Probable | Possible | Possible | Probable | Probable | Possible

Bullding-} ¢ .84 1.20 1.40 1.40 2.0 2,40 3.40

Door
Building- .30 .60 1.0 .5 n 2.0 2.80

shutter| °2° 3 )
B“;ig:"g‘ 3.40 4.80 11.30 32.0 1.70 2.40 16.0 27.0
Building-i 54 .60 1.20 2.40 .25 .35 2.40 3.40

Window
Bush .60 .84 1.70 4.80 .60 1.0 2,0 2.80
Car 2.0 3.40 4,80 6.70 .60 1.0 1.40 2.0
House 5.70 9.50 16.0 27.0 3.40 4,80 9.50 13.50
Human .30 42 .60 .84 1.0 1.40 2.0 2,40
Roof 2.0 4.80 16.0 27.0 2.0 2,40 4.80 6.70
Tree 1,70 3.40 6.70 13.50 . 2.0 3.40 13,50 32,0
Tree 1,70 3.40 6.70 13.50 1 1.0 9.50 19.0

Crown
Tree .25 .25 .60 1.70 1 1.0 5.70 23,0

Trunk
Utility .25 .30 42 .60 2.40 3.40 9.50 13,50

Pole

(a)
f(x)

1 ]

i 1

| Area = 1 !

! \

| \

L 1 . horizontal or
smallest smallest largest largest vertical size
possible probable probable possible

(b)
Figure 17. Object Size KS. (a) Typical size ranges for horizontal and

vertical axes of some objects in LTM; all sizes are given in meters,
(b) Approximation to a probability density function formed from the
values in LTM,
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coordinate axis is shown in both meters and the logarithm of
meters,

The perspective KS returns a computed size and the range of
the size; the default rar;e is +5Z Based on this window of
size values, & confidence value is computed for each objyect in
LTM  from the ensemble of piecewite oapproximations. If this
window falls outside the size range Ffor the object, the
confidence value is defined to be -J00. Objects for which the
window overlaps the expected range produce positive confidence
values. This value is determined for each object by integrating
the area under the curve (for that object) within the error
window, and then normalizing by the largest value produced for
any obgyect (times 100 so that the largest will have a confidence
value of 100).

Applying the size KS to RG-50 (a window shutter) of Figure 3
results in the hypotheses: tree trumk with confidence 100,
shutter with confidence 35, and all othevrs are negative. More

extensive results are provided in Sectiun VI. B8,

VI. RESULTS OF INTERPRETATION WITH A SPMGIFIC 2D SCHEMA

VI. 1. Introduyction

One of the purposes of 3D schemss is to0o generate the
appearance of prototype scenes from ony point of view. For
example the 3D schema of a road stene can be rotated and

projected to produce the 1image of & yoad scene as it would be
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expected to appear to an observer looéing down the road. A
particular projection of a 3D schema is referred to as a 2D
schema and will be very useful in directing top-down analysis of
the image. It is best thought of &r a plan (a set of
constraints) for interpretation of the image.

A 2D schema of a specific house ecoene viewed €from a  front
diagonal perspective is implied by the illuctration in Figure 18.
This 2D schema is not a projection of & qeneral house scene, but
rather of a particular house scene. ‘The general house schema
would need to specify the expected variability of ¢the general
house scene.

The current representation of the &) schema involves a set
of information for each region including location of centroid,
area, 2D symbolic shape with an aspect ratio of major to ainor
axis) color and texture features, Jocation and properties of
boundaries, obgject identity, 3D surface oaorientation and 3D size.
To perform these experiments the ¢D schema was generated
manvally, and current work will make it possible tn drive a 3D
schema rvepresentation and auvtomatically form the projection,
estimate likelihood of occluding schema surfaces, and fill ouvt
the required attributes from the LTM knowledge base

It should be clearly understood by now that the current
spatial representation of a 2D schema is not a direct copy of the
model drawn in Figure 18(b,c), but iustead approximates the

location of this information.




T

g3k

a7 e

ey

o e

B ke L A

JOURPIPY

| S {,,.....:

—

i

oy o T T

o =]

i

Figure 18, 2D gchema for a specific house sqex’m’gzw (a) ﬁﬂfarchiea

. . 1600 HOUSE S 5LENE 3
Lo . N ! 69 ”{A
OBL-TREES @) - , 5
/ ) OBC-GARAGE
A bacppists/ oA '
} ) (Q8oby /. S e O : .
abpTaets1d  com e QoY et GadRcEs '
S T Yawss . O A . IR ACE ;f1‘ .
W TREEE <D (OUP~RUSHIS-] . ) . 1. '
OBP-TRERS-2. N QO SuP-BUSHLS 3 30-CACAST BeTY :
:oev-eusuffy'?}‘ o og,g' THRACHSL-SOW ‘
H kN C
Y% oAiT-HoULG~ 510U -2 -
L OBP-Woveg- ’ B
O/ N\ Woki-d,
OLP=diuTiEt-1 C/ ‘D ‘
) { OOPSHUITER S, 0B0-WNDIW- (5} 0Bp-HousE- oBPs
o8v-Gunsssl ~L WALL =2 NI |
OBP~SHVTTER-3 A
. [ obp-SHvTRZ-4 ! 08P
| _ oUP~GLASS 2, OW-GNUTIIR"S N ogp BNITICR-b  SHUTTERY GG
anii . . OBP~ GRS R
O8C: dbject Clasy [in LTM) . * Qgp.cg_,-\\,5..!f
oop: Ofet Part (Sihema specific) ’
() , .
- n - ‘('
ORL-SKy e ¢ :
AL LDAVIAL AW VAU AAAA AL CROV; -t OBE = SKY- A VAVAAAS VWA S v
AN?.N : " VWA YV ' aup: TREES v
e DUC-TOREES ORP-TAGE. § e, W AAATY VAR YA AN AT
- CROWN-2 — S ot
T OBR=TRERS <2
\W‘M‘M‘§ A YA AL VA Y, A Y ALY ¢
OUL=THCE- Cilotvl §  OQC-HooR T ORPHTREE~CRUWN-T § JORC~ Regp 10UP- (RIS~ D
gV A . LW"‘WW"‘N\AM A
{M‘ \ ‘ onP-tKee~
.j [ —————— \ . CRow - 4 T S T
mevwm«.. - YAV v Oy "'“OU'JG‘W'\U.»
08p-~OLAes-| -kl o1
OBPs HovtE bt - . L 1 BHEN
Hovsg -t -4 OBP- HOVSE = <1DE~2 S % e b
[3] 4
‘*\\_\_\“\ \\"'\. % ":é ?g ""\'\\,‘“ !
: . N ’
\\\‘.\4\'\ i o0 “BUSHES "y, \\"’\:‘:}N ,\;'0%\‘--‘505\'\\35 _‘\2:‘\\\ N (LR 'b(\,)v;‘.hw
* “‘\4\ - ww\v\\"‘:.\u-v - OGP‘E‘!J‘“‘%"' l“"\ 1 vw"\w\-v\w“mwy',
P \~\-\..-\Aav\w\'"v""“' A ArS »\.\/\WWWW"WW‘NW'\'WV L o‘m- G"Q:‘\‘:,(:,
B OIP-SHUTTER OuP: OBTELT PART
1: der-tuass, oft: OBYELT CLASH
(b) ey

v e . ———h AR

: 1 structure:

of schema componentg. (b) The~§chema regions represented by the dirk nodes

dn the hierarchy. (c) Schema regions associated with tip nodes in ithe

hierarchy; this is the schéma used in all; the experigents of Section VI. B
The squiggly boundaries in the schema are for aesthetic purposes. Currently &
the position .of schema regions is defined by parameters of centroid and .drea.
Schema regioné algo may have additional parameters of .color and .symbolic

shape, and any subset of these four parameters may bé used by a matéhing

function applied to image regions. Straight lines (without squiggles)

represent boundaries whose shape and rough position is known, dnd can

also be used to direct matches to nearby straight line segments in the

image.
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The position of & 2D schema region is defined by twe
parameters, the position of its centroid and its area. The
squiggly boundaries in the 2D schema o¢f tigure 18 are for display
purposes. Actually, the positions of the schema regions are not
known except to the degree that constraints are implied when
there is & distinctive shape, such as rectangle with a particular
aspect ratio. On the other hand, theve are sometimes boundaries
with known characteristics (e. g. 1long and straight) appearing in
expected positions such as those boundinag the roof in our house
scene schems. Lines whose shape ore known are drawn without
vquiggles where they are roughly expected to appear in the image.

Top~down control of the KSs in the interpretation of an
image is relevant in the case where expectations about a given
scene are available. The experiments in this section are
intended to depict the case where the system is attempting to
interpret a known scene via a specific ¢ schema, i.e., from a
known point of view (Stage I from Section 111.4). We also assume
that the camera model (focal length o«f lens, tilt angle, pan
angle, and height above ground) is kunown. Results will be
presented of the control by 2D schemats of the 2D shape €KS,
spectral attribute KS:, fits of straight line segments., the
perspective K8, and the size KS.

The 2D schema KS directs matching of schema regions to image
regions and some schema line segments to image line segments.
The matching process employs a weighted evaluvation function on

features of symbolic 2D shape, size, coldov, and position between
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regions in the image and in the schema. We will not go over the
details of the heuristic match function hera, although we note
that any non-empty subset of the features can be wused for
matching. Note that it is necessavy, in general, to expand or
contract the schema in order to correlate schema size with image
size. This is & function of distance and camera parameters and
would have to be part of schema processing if it is to be robust
in its application.

Matches can also be defined to operate between a schema
region and groupings of several image regions, or a schema line
segment to a group of image line segmentis, but then a search is
necessary to discover the best groupings. The search for good
matches can be directed by a variety of strategies. We will

present simple results of a few.

VI.2. Semanticplly Divected Meroing via ¥D Schema

The first experiment will demonstrate the matching color and
texture attributes in order to improve a fragmented segmentation.
It involves the interaction of the speciral attribute KS and the
2D schema in an attempt to merge many adjacent regions whose
object identities are the same. The strategy attached to the
specific 2D schema for applying KSs tc perform semantic merging
is outlined in Figure 19 It fir«et iuvolves calles to the
spectral attribute matcher to get a lict of object types which it
can match. The 2D schema contains information on the areas of

the 1mage in which these objects (tree, bush, sky, and grass) are




IR

72

2D Schema ‘

select schema regions

/

select consistent
hypotheses and
merge regions
/

Which schema-~

objects does filter
SA matcher gselect / candidate get impossible
have image reglons hypotheses hypotheses
statistics
about
SA RSV SA HORIZON
TREE
2D Schema Image

Figure 19. Semantic merging strategy. The 2D schema determines from
the spectral attribute matcher which schema objects it can classify,
then selects schema regions which are the expected locations of
those objects, then determines all image regions in those vicinities,
checks which objects are implied by those attributes, filters
object categories which are inconsistent with the horizon model,
and then merges regions with identical labels that are consistent
with the schema.
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expected to appear. Thus, it distinguishes the areas expected to
be target obgects from the areas of non -target objects. The 2D
schema then accesses the region segmentation to select candidate
image regions for matching. Each schema region which is expected
to contain one of the four types of objects above will be vsed to
direct semantic merging via the attrvibute match KS. In these
areas ad jacent regions will be merged if their identities are
verified by the attribute KS to be consistent with the schems,
Thus, the attribute KS can be viewed as verifying the 2D schema
plan.

Figure 20 shows that semantic merging allows most of the
fragmentation in the tree to be mevped, and separate grass and
bush regions to be linked as well. The image is greatly cleaned
up and more rvepresentative of the semantics of the scene. The
resul ts might be further improved by applying the horizon K8 ¢to
filter the object hypotheses that ave inconsistent with the
approximate location of the horizon (which has been established

via a camera model to be below the center of the image).

VI.3. Sivaight Line Segment Analysis vis £D Schema

L et us use the long straight 1lines in our 2D schema to
search the image for good candidate matches (refer to Figure 21).
The search is constrained by placing @ rectangular matk around
the selected schema edge (Figure 21b). All lines whose midpoint
is inside the mask, and whose slope i+ within a specified

tolerance of the slope of the schema line are selected as
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possible matches. The next step is to merge all co-linear
segments within the mask into new seaments. and then match all
the recsulting line segments to the schema line. The match is
based vpon attributes of slope, length, distance between centers.
and RMS error, with a best (merged) match for each schema
straight line segment. Results for two schema edges ——- the right
side and lower side of the roof —— arec shown in Figure 21(c).
The merging of image line segments 34 and 94 clearly produces the
best £fit to the schema straight line on the right side of the
roof and this 1line segment is completed in Figure 21(d). The
lower boundary of the roof also produter a clear match.

I# the results of the line segment construction are fed back
to the shape XS, region 14 is now identified as @ parallelogranm
with 6%% confidence. Note that we expect ¢this to improve
further, when the lower straight line of the roof is extended to
meet the other straight lines and cut off the region leaks on
both sides of the roof. Figure 21(e) shows straight line fits
with minimum RM8 error. It is estimated that the confidence can

be increased to over 90%.

V1.4, Sumbolic Region Shape Matches via 20 Schemas

Certain regions in the schema and the image have symbolic
attributes of simple geometric types such as rectangle,
trapesoid, ellipse, etc. The shape attvibutes of schema regions,

where they are relevant, are pre-dafined (or else will be
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Figure 21, Results from schema-directed straight line segment analysis.

(a) High-level schema used to direct merging of segments. (b) Original
segmentation showing mask used to locate candidate line segments.

(c) The candidates for matching against schema segments SL-3, SL-4,
SL-5 are $G-34, $6-94, 5G-134, 8G-224, as found in the masked area

of (¢). The results of matching combinations of these segments

are shown in the left-most column. Clearly, segments $G6-34 and

$G-94 form the closest match. (d) Insertion of roof boundary

segment as a result of schema match of SL-3, 4 and 5 to segments

§G-34 and 94. (e) 1f straight line fits are used to improve the roof
boundary, the confidence of a paral’.elogram can be increased sharply.
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generated during 3D schema progection). The snape attrihutes of
image regions can be determined by the 2D shape KS.

Let us examine the strategies depicted in Figure 22 for 2D
shape matching. The schema requires access to the vresults of the
2D shape KS and the list of schema regions with distinctive
geometrical shape. The shape matching function then can use
shape and position to determine a degrec of fit. There are three
types of matching capabilities of schema snd image regions using
any subset cf the four features:

a) location of centroid,

b) symbolic shape.

¢) intensity/zolovr, and

d) area.

The matching function can be applied:

a) directly between a schema region and an image region,

b) between a schema region ara a gruup of adjacent image

regions, and

¢) between a template (possibly derived from a previous

match of image regions) and groups of image regions.
Let us now examine the results summarired in Figure 23.

First, consider an attempted match -~ without the use of
postion information -— of all schema reqions and image regions
which have distinctive geometric shapes. This will show that the
2D schema can be rabust without an exact spatial plan for the 2D
image. The 2D shape HKS was run on al) regions within the

expected house area, and those image regions which have a high

P S
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Figure 22. 2D shape matching. The 2D schema calls the 2D shape KS to
extract reglons with primitive geometrical shapes and then matches

} them with schema regions by symbolic s:.ape label and position.

, The match can be applied to individual or groups of image reglons.

f Additionally, features of color and expected area can be used.

Image regions which are matched cin be used as & template to be

moved over the image.
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Figure 23. Shape matching via 2D schenma,
Results of matching house shutters based upon shape matches and
2D shape KS. (a) Portion of the original segmentation. (b) Portion of
the 2D schema. (c) Of the 5 image regions with high confidence of
rectangle or trapezoid, two regions, 45 and 50, are matched against
schema regions with roughly similar shapes. The match is based upon
size, shape, and color and the best five matches are showm. Note that
low evaluation is best. The overall match is shown on the left while
‘he match factors of the features in the order given above are shown
to the right. (d) The image regions found to match with shutters in
the schema. Note that the feature of position (neither schema nor
region) was not employed.
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confidence of a primitive shape type can be further procesced.
Each of these regions is used to match against schema regions
with similar shape based on attribulec of size, shape’aspect
ratio, and color. The result of ﬁatching regions 43 and 50 with
the best five schema regions is tabulated in Figure 23(c). They
are found to match reasonably well with the various shutter
regions in the schema and poorly with other schema regions, The
left shutter has fragmented in the original segmentation and
vegion 43 is closer to & trapexoid than a rectangle.
Consequently, i1t has & poorer match with rectangular shutters
than region 80. It should be noted that the evaluation function
is scaled into O (perfect matches) to 1000 (no match): this
evaluation function has not yet been made consistent with the
form of other K8 outputs.

The second step shows the impvovements obtained by the
atldition of positional information to hetter form correspondences
between schema shutter regions and image regions. There 1is a
good match for five of the six shuttevs in the front and one ot
the two on the left (Figure 23c.d). Note that the left-most
shutter has nmnot been found and only a part of the next one has
besen found because of region fragmentation.

Figure 24 demonstrates the grouping capabilities of the 2D
schema by focussing on the left two lavge shutters in the image.
The centroid of the schema region is utcd to wselect candidate
regions for grouping and the match Ffuuction (based upon all the

foatures) is used to select the subset which matches bost. The
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(ne tohsronrs left ~shutter ‘(sindle obr-shutter-2))

WU (KG=00/2 RG-0044 RG-00L9 RG-00L2 RG~0044) 18 32)
(3% (RG-0072 RG-0064) 35 42)

(60 (R6G-0064 RG-0059? RG-0052 RG-0044) 35 85)

(60 (RG-006% RG-0064 RG-0059 RG-0052 RG~0044) 35 85
(65 (RG-0049 RG-0040 RG-0044 RG-0045) 18 113)

8 (RG-0050) 52 103)

W23 (RG-0078 KG-0071 RG-0047) 18 167)

(26 (RG~007% RG-0047) 3% 187)

L3t (RG-0073 RG-0069 KRG~005%) 18 243)

CL36 (RG=-0049 RG-0044) 52 220)

138 (RG-0053) 35 240)

(142 (RG-0048) 81 203)

LS50 (RG-0074 RG-006%) H2 247)

(L6 (RG-0075 RG-0071) &8 243)

CLOEO (RG-0063) 18 302)

(1/2 (RG-00/0 RG-00464 RBG-0045) 104 240)

B0 (RG-009% RG-0086 RG-0070 RO-006Y RG-0045) 120 240)
g/ (RG-QULH KOG 003%) /70 303)

(1?24 (RG- 074 RG-QO70 RG-006%5) 07 300)

(L9 (RG-0062) 92 305)

(c)

Figure 24. Schema-dire. ted grouping of image regions with simple and

distinct geometric shape. (a) Portion of original segmentation
excracted from Figure 3 showing the fragmentation of the left

two shutters. (b) fGrouped regions found by 2 schema. The right-
most shutter of the lei't pair was found using the centroid of the
schema region to select candinate regions for grouping. (c) Results
from match function when a musk formed from the right shutter of

the pair is moved to the l:ft and matched against groupings of
candidate regions on the basis of color and size., Reglons 72, 64,
59, 52, and 44 match best. The merged collection is shown in (b).
The confidence that the second region from the left is a rectangle

81
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right shutter of the pair is extracted by this technique, but due
to the severe fragmentation of the leftt shuttér this technique
was not employed. The shutter on the far lett was #dund by
moving a template, of the size of the right shutter, towards the
left and grouping regions on color and size. The best match is
then selected. The 2D shape K8 is then applied to determine the
rectangular fit on the left two shutters, producing confidences
of 24% and 94%, respectively. It is difficult to interpret the
244 value at this point since there has not yet been any tuning
of the performance curves ov the shape confidence measure; we do
not know, as yet, how fast the match values decrmase relative to

a ‘good’ match.

VI.5. Combingkion of 4G Results
The result of integrating the hypotheses of ¢the attribute

KS, 1line segment matches, and the 2D shipe KS yields the results
in Figure 25. Note that many of the vegions in the image are
labelled with the proper object identity., Figure 25(c,d) was
procduced by a clean-up process of merging unlabelled adjacent
regions within the house schema +vegion and the remaining

background area.

VI.6. FEormation of a Spatial Plan Using Perspective Information
The proper use of the perspective KS requires that a set of

assumptions be generated regarding the orientation of surfaces.
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Figure 25. Combination of schema-directed KS results. (a) Original
segmentation. (b) Combined results of 2D schema with attribute XS,
line segment matching, and region shape KS. (c¢) All regions without
semantic labels are merged u—~1er guidance of 2D schema (i.e.,
unlabelled house regions are kept separate from unlabelled background
regions. (d) Same as c, but labels are provided on diagram:

@ tree @ roof

@ sky @ shutter

(© bush (© unlabelled house

@ grass @ unlabelled background
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In practice they would be determined via the specific 3D schema
and othor information from long-term memory, but in this case the
set of assumptions necessary to drive the perspective KS are
obtained directly from the 2D schema. Thus, knowledge that a
particular vregion is bush, and that bushes are usuvally
perpendicular and attached to the ground plane, is available to
the 2D schema if it has been generated fvom a 3D schema. These
critical assumptions allow the percpective K8 to place that
region (bush) in the 3D world madel.

Let us consider the strategy for the computation of the
distance and size of an unoccluded obyect which is perpendicular
to and touches the ground plane; this strategy will be applied
to computing the range and height of the bushes. The strategy by
which the 2D schema conirols the application of processes is
autlined in Figure 26. The spectral attribute matcher KS can be
used to validate the regions presumed to be bush and grass.
Their common boundary implies that it ic unlikely that the bottom
of the bush is occluded. Next the pevspective KS is called to
determine the distance and size of the bush. In this examole the
range of the bushes is based upon tuo assumptions: vertical
orientation and the elevation of the bottom of the bushes is O.
Then, the identity of regions 102, 110, {l¥, and 113 as grass
implies that there is no occlusion of these bush regions. Hence,
the image coordinates of the region can be translated into a
ranje in the physical world. Once the vange is computed, then

the image size —— region height and width - aliows the physical
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(..., schema location, ...)
BUSH / ’ ’
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N

/ Common Distance Verify within
Bush? Grass? Boundary & correct range
: ? Size for bush
OBJECT
¥ SA SA RSV PERSP. SIZE

SA: Spectral
Attribute
Matcher

(L to ground plane)

.

Grass

J Figure 26. Strategy for computing size and distance of unoccluded object

which touches ground. The SA KS is used to verify that the regilons

expected to be bush and grass. The fact that they have a common

| boundary implies that the bottom of the bush is not occluded

' (assuming the ground plane is planar). The perspective KS is used
to compute the distance and size, while the object size KS verifies

\ that the computed size is in the expected range of bush sizes.
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size to be computed. Note that in order to carry out this
analysis, the system employed the #D  schema, the spectral
attribute K8, and the perspective KG. The inference drauwn from
this chain of hypotheses, namely that the region represents a
bush, can be partially validated by noting that the computed size
falls within the allowed range for bushes stored in long—term
memory (see VI.7).

Figure 27(a) describes the camera geometry from a bird’s eye
view with the image Plane shown in front of the focal point for
convenience. The Tange, offset, and elevation of a
surface/object in the physical world must be computed in terms of
the viewer-centered coordinate system involving the line of sight
of the camera. Figure 27(b) 1lists vesults of applying the
perspective K8, under control of the #D schema, to selected
regions of our test image. All the regions considered (bushes,
shutters, house wall) lie roughly (pavticularily the bushes) in a
pair of planes which are vertical to the ground plane and
oriented at a diagonal to the right, away From the viewer. The
location of objects are graphically portrayed in the bird’s eye
view of Figure 27(c).

In order to use the results in an effective manner, an error
analysis should he taken into consideration. With an assumption
of ground planarity and a camera model (focal length = S50 mm,
elevation about 2 meters, because the person was standing on
higher ground, tilt = 2 degrees uvpward), then the range of a

Physical point in the ground plane can be derived directly from
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the image coordinates of the point (in pixels). However, the
computation is not a linear function of this image distance. and
both the physical range and its associated error increase
exponentially, Table IV lists the absolute and relative ervor of
a one—half pixel error for each row of pixels starting +from the
top of the image (i.e., row 1 in our 128x128 pixel image). The
error in the range is shown superimpored on the location of
objects in Figure 27(c). A one-half pixel errvor in width will
produce an ervor in physical width which is relatively constant
over the image unless the camera has & wide—angle lens (e.g., a
fish-eye lens). Note that error in range will propagate directly
into an error in physical height and width and this must be taken
into consideration by the object size K.

Even such simple perspective results as shown provide the
beginnings of a 3D spatial layout. ‘The ranges of the row of
bushes in ¢ront of the house provide a range of possible
orientations for region 56 (the house wall). This partial plan,
shown =3 & bird’s eye view, is illustrated in Figure 27(c). The
angle 2f the shutters has been computed to be 24 degrees from the
line of sight. The house in Figure 3(a) does not seem to be
oriented at such a steep angle, but there is significant
foreshortening. This orientation has been determined to be

accurate via external physical examination of the environment.
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d Figure 27. Results of forming a spatial pian using the Perspective KS.
(a) Imaging geometry and description of terms used in presenting
the perspective results. The Z axis represents the gravitational
vertical; for the example image, the line of sight is inclined 2°
from the X,Y plane. (b) Computation of physical location and size
i 40 hased upon assumptions shown in the right-hand column. (c¢) Ground
‘ plan of house determined by the perspective KS. The results of (b)
in terms of range and offset fix the locations of objects in the X,Y
plane. Roth range and offset are expressed in meters. The two
vert leal scales show the correlation between range and rows of
pixels in the image. If a pixel in a row is assumed to have
, elevation 0, then the physical range is obtained by reading the
} range scale. The error range of Table IV is superimposed as a
vertical line through the location of the bushes; the angle of
the bushes is computed to be 24° from the line of sight.




5 Computed Range :| Absolute Error | Reiative Error
Pixel dn- Roy of pixel |  (metersy | (D) . .
| bottom " ‘ o
% of —> 128 27.1 416 1.5
§ image 127 28.0 ‘ 442 i.6
| 126 28.9 472 1.6
i 125 29.9 .504 1.7
| 124 30.9 .540 1.7
S 123 32,0 .580 i.8
122 33.2 .624 1.9
121 34.5 ‘ .674 1.9
120 35.9 .730 2.0
119 37.5 794 2.1
118 3%.1 .865 2.2
117 40.9 . 945 2.3
116 42,9 1.042 2.4
115 45.1 1.15 2.5
114 47.5 1.28 2.7
113 50,2 1.43 2.8
112 53.3 1.61 3.0
111 56.7 1.82 3.2
110 60.6 2.01 3.4
109 65.0 2.39 3.7
108 70.2 2,79 4.0
107 76.2 3.30 4,3
106 83.4 3.95 4.7
105 92.2 4.82 5,2
104 102.9 6.01 5.8
103 116. 7.71 6.6
102 134. 10.25 7.6
101 158. 14.3 9.0
100 193. 21.3 11.0
99 247. 35.1 14.2
98 342, 69.0 20.1
. 97 559, 197.1 35.2
torizon g4 1529. 5294, 346.
—> 95 -6180, 296.

Table IV. Error analysis for perspective KS. It is assumed that a pixel
represents a physical point in the ground plane (i.e., at elevation
0). The range of the physical point and its associated error, under
an assumption of one-half pixel error in the image, are computed as
a function of the row of pixels in which it appears in the image.
This table was derived via the camera model for the specific image
under consideration: £ = 50 mm, tilt = 2°, elevation = 2 m (becauce
the picture was taken from a slight rise in the terrain).
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VI.7. Qbject Hupotheses Based on Size
Once the perspective KS has provided hypotheses about ranges
of surfaces and the physical sizes of their projections, the size
KS can be used to generate object hypothoses on the basis of the
computed sizes. Figure 28 shows the hypotheses and ¢taeir
associated confidences formed by applying the size KS to selected
regions from Figure 3. In each case, the default range on size
(computed size +34) was used, although these values can be set by
the result of the perspective KS and the location of the region
in the imuge. Also note that these results could be filtered by
spotial location, much as the hypotheses Formed from the spectral
attribute matcher were. This results in a partial check on the
assumpt!ons wused by the perspective K5 during the computation of

the asize.

V1.8. Bottom—Up Schema Instantiation

The regults discussed in the previous sections (VI. 1 ¢to
VI.7) were obtained primarily on the basis of top—dewn guidance
from the correct 2D schema. This section describes a simple
experiment to instantiate a schema on the basis of bottom—up
data.

Ir. this experinent, the inference net was used to propagate
data wupwards from the object level to the schema lovel, assuming
that bush. tree, four shutters, and gress were instantiated at
the object level. From the results cited earlier, it is

reasonable to expect that these objects could be obtained from
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Figure 23, Summary of results of object size KS for selected regions of
Figure 3. The sizes shown were computed by the perspective KS using
the default + 57 error range (see Figure 17), The actual range can
be set by the perspective KS on the basis of the error analysisg,
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bottom-up analysis of the imgggf bush, tree, and grass from the
spectral attribute matcher, and shutter -and roof from the
combined horizon Fi!tir, 2D shape matcher, perspective, and size.

The results of this experiment are shown in Table WV, they
overlap somewhat those shown in Table J11. The strategy used to
obtain the results was very crude. They are based solely on the
propagation of the set of object identities to the schema level
via the inference net. No attempt was made to validate the
results via top-down matches, such as spatial location, or any
other information in the schema. Note that instantiating one or
two shutters increases the confidence of the house scene schema
as expected: additional instantiations will net significantly
increase this confidence. Information about the expected number
of shutters on a house {(ar for a more exact example, the number
of tires on a car) is stored in avce in LTM and is thus taken

into account by the inference net KS.

VIT. COMCLUSIONS

The results cited in this paper represent the current state
of devélopment of the VISIONS system. A top-down interpretation
of a scane has been successfully performed, although the
conditions wunder which this interpretation was obtained were
highly congtrained. It demonstrates some degree of integration

of the system, from automatic segmentation of the digitized input
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results are based on the object identities shown, and are expected

to be derived predominantly from bottom-up processing.

are preliminary.

The results
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through symbolic output of obyect identities and generation of .3
- rough plan of the thvese-dimensional space in the scene.
s The primary emphasis of our current efforts is on  the

develcpment of strategies by wﬁgch the many knowledgeksourtgs~¢an

i ; be integrated in order to intzrpret 2D color images, Houwever,
: the ability to obtain the correct interpretation is inherently
3 {J linked to the quality of informsation provided by these processes:
| ; without plausible hypotheses abou~ the image, there isn‘t any
{ control strategy worthy of investigation! Nevertheless, it is
i E not feasible for us to attempt to perteorm extensive research in
! all the areas vepresented by the KSs. ‘Thus, we muet balance our
f §‘ efforts in the development of more complete knowledge sources
( against the development of interpretation strategins, Curnrently,
we have implemented at least a simple version {snd somuiimes a

complex version) of several KSs.

———

; Each of the KSs developed can be used in difforent yays to
produce several different kinds of hupothcces., The expariments
already performed seem to indicate that thera may. bs  many

mini-strategies for using the KSs in particular ways across the

range of images. For axample, the perspectivae KS can determine
! physical dimensions of surfaces, while the object size KS uses
F é j these rasults to produce a confidence measure for ob ject
- hypotheses; or the horizon KS can be used to fiiter implaugible
object identities from the output of the spectral attribute

matcher KS. Interesting strategies can be modelled in terms of

the overlap of information rtelated to perspective, occlusion,

I s —y
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size, shape, junction analysis, ‘etc. With proper design the set
of local processes may be built tée answer the questions ‘that are
of importance to each other, and this network of processes can be
flexibly and .incrementally constructed. As the strategies are
understood, they can be incrementally embedded in the schemas.

The results presented 16 this paper were ‘géhera%ed via
top-down control of the KS# wusing a specific 2D schema -- in
effect a plan -—— for a specific house scene. The analysis was
highly biased towards success because the schemz 1s tuned to the
particular sitvation: the case of looking at & familiar scene
from a familiar point of view. It does, however, show some of
the ways that the KSs are able to interact, and can also be
viewed as an experiment in verifying that some stored schema is
applicable to a given image. The last experiment demonstrates
bottom-up interaction of the KSs in an atiempt to instantiate the
proper schema from a set of schemas.

The facilities now exist for actually developing to a much
deeper level some of the ideas we have ounly heen able to suggest
as promising. The benefits of some of the interesting
developments of our colleagues in the research community over the
last few years has led to a deeper appreciation of the problems
yet remaining. This is reflected somewhat in a shift of research
emphasis, as we propose a highly structured research paradigm for
exploring the isswves we set forth. A series of increasingly more
difficult axperiments will provide an experimental methodology

for developing schema-driven (e.g., top-down) contrnl mechanisms;
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each succeeding experiment will assume a .set of wéhue; ‘
constraints, representing image interpretation ‘tasks whefeuaﬁ
decreasing amount of knouledge of the situation is available. 1t
is worth noting, however, that the basic apprdach is not
substantially different from the initial top-down approach that

started the VISIONS gprogect ([HAN74, RIS741; although it is

considevably richer in detail.
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