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The f-3 power law marks an important transition in the behavior of the
complex signal moments. For the £f~3 and more steeply sloped phase spectral
density functions, the large-scale structure exerts a strong influence on the
signal statistics., As a consequence, the outer scale cutoff, which is very
difficult to determine, controls the signal parameters that are used to char-
acterize the coherence time, coherence bandwidth, and so forth. This diffi-
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I INTRODUCTION

In this report the ramifications of some new theoretical results
for modeling late-time, high-altitude nuclear propagation effects are
discussed, The results are timely because it appears that there is a
systematic difference between (1) the power-law index that characterizes
the phase spectrum of radio waves that have propagated through a striated
barium environment, and (2) the corresponding power-law index for most
radio waves that have propagated through natvrally occurring striations

in both ionized and nonionized media,

It is generally assumed that the one-dimersional in-situ spectral
density function (SDF) that characterizes both natur:lly occurring and
?
2£? (ossakow, 1979). For neutral tur-

bulence in the inertial subrange, the Kolmogorov theory predicts K;5/3,

barium striations has the form w;

whereas the nonlinear steepening of Rayleigh Taylor and E x B coherent
Fourier modes predictsw;z. The number of published in-situ data sets is
sparse; however, recently analyzed STRESS data suggest K;2'3 for barium

striation,

If the local in-situ characterization of the irregularities applies
throughout the propagation region, then the corresponding one-dimensional
integrated-phase SDF has an index one larger than the one-dimensional in-
situ index. Thus, the corresponding phase SDF should have the form f'3t?'
The Wideband satellite data have consistently shown comparatively shallow
phase SDFs (f P with 2.2 < p « 2.8) at all latitudes under highly varied
propagation conditions. Similar results are now being reported for inter-

planetary scintillation and line-of-sight microwave transmissions.

If one accepts the simple mapping from in-situ to phase structure,
there is a discrepancy between the in-situ data and the scintillation
data., Indeed, the scintillation data suggest an in-situ index smaller

*
% References are listed at the end of this report.
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than the Kolmogorov value. There are good reasons why the simple mapping
from in-situ to phase structure might not be invalid, but there is no
question that it is the effective slope of the integrated phase SDF that

determines the signal structure.

The new theoretical results we have alluded to show that there is a
significant change in the signal statistics when the phase spectral slope
approaches or exceeds 3, Indeed, the propagation modeling task is
potentially much more difficult for steeply sloped spectra. In light of
these new developments, it is important that the question of the appro-
priate effective spectral index for propagation modeling be resolved.

To introduce the problem, consider the common assumption that under
conditions of sufficiently strong scatter, the complex signal v(t), is
Rayleigh distributed, This means formally that the quadrature components
of v(t) are independent, identically distributed, gaussian random processes.
Since the second-order statistics completely specify a gaussian random

process, one need determine only the mutual coherence function
R (t,t’) = (v(e)v¥(t")) ¢))

to completely characterize the temporal structure of v(t) at a single
frequency. In particular, all higher-order signal moments can be

computed in terms of Rv(t,t'). For example,

(TOIEN) - (TONIE) = IR (¢e,e)1 @)
where

1) = [vee)|? (3)

is the signal intensity.

It follows from Eq. (2) that the S, scintillation index [SE - #
((12) - (1)2)/(1)2] is unity for a Rayleigh process, Thus, if 8, is
not equal to unity, the Rayleigh limit does not apply. Insofar as systems

L R
. .‘ . ’p_
Lu-“‘l.ﬂi.ﬂlﬂﬂﬁmk'A"n At . ; " wﬁgﬂhNﬁﬁJ4¢?A£ﬂyﬁfr»'~ ;




e e ——

effects per se are concerned, departures from strict Rayleigh fading are
not too serious (Johnson and Rino, 1979). The precise value of the
spectral index, however, does impact predictions of time structure, fre-
quency coherence, and so forth. A careful assessment of the signal
structure is important, therefore, because it can verify the value that
is assigned to the spectral index.

Indeed, Rino (1979b) showed that in a three-dimensional medium with
an irregularity spectral density function (SDF) of the form qu-(2v+1)’
S4 converges to unity in the strong-scatter limit if and only if v < 1.5.
When v 2 1.5, S4 achieves a limiting value greater than unity, which can

be determined from the formula

52 _ QZZ\) -2 @)

4 5 <2y .

The value v = 1.5 corresponds to a k=2 one-dimensional in-situ SDF, which,
as we have noted, is believed to be associated with steepened irregularity
structures., If the v = 1.5 structure model is assumed to have global
applicability, then Eq. (4) predicts the strong-scatter limiting value

S4 = 1.4, Since this exceeds unity by 40%, it should be easily detected
in any statistically valid data set, Strong focusing, which occurs

before the limiting value is achieved, moreover, will cause even larger

S4 values.

In addition to the purely phenomenological impact of the power-law
slope, there are ramifications that should effect predictive codes,
Indeed, the simple form that is being used for the phase structure

function breaks down when v > 1.5.

What is happening can be described intuitively as follows: As the
irregularity SDF steepens (v increases), the importance of the omni-
present large-scale structures steadily increases., If v < 1.5, these
structures manifest themselves only in the first-order moments (e.g., as
trend-1like phase variations), If v 2 1.5, the second-order moments (e.g.,
the mutual coherence function) develop trend-like components, Finally,

if v 2 2.5, even the fourth-order moments develop trend-like variations.
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The Wideband satellite data clearly favor v values less than 1.5 as
evidently do interplanetary scintillation data, and data from light and

microwave propagation through turbulent atmospheres. To accommodate

varying v values, however, a change in the usual approach to propagation
modeling is required. Since the mutual coherence function plays a central

role in the current approach to predictive modeling, we have developed

the theory in detail in this report. The development shows clearly how
inhomogeneities manifest themselves and what their impact on predictive

modeling is.
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II THE MUTUAL COHERENCE FUNCTION

The differential equation that governs the development of the mutual

coherence function is

dr_(0,,0,)
vP12P2) 4 2 20 e a1 -
iz = [v] - 5] Rv(ol,pz) - 2D(pl,pz) R (Pyspy) o (5)

2 2.2
In Eq. (5), V; = 3" /3py, + az/apgi, k = 2x/7, and D(p,,p,) is the

incremental value of the phase structure function,

D(5,,6,) = ([s8(@) - 68G D . (&)

As discussed by Rino (1978), all the moment equations derived from
the parabolic wave equation by using the so-called Markov approximation
contain two sets of terms. One set of terms, which involves the Laplacian
vi, accounts for diffraction effects that act to generate small-scale
structure in v(E), particularly in its amplitude, The remaining terms
account for the interaction of the wavefield with the randomly irregular

medium,

Equation (5) is written in its isotropic form, The general form is

developed in Rino (1978), The three-dimensional structure of the wave=-

field in an anisotropic medium can be derived by straightforward mani-
pulations of the isotropic results (Rino and Fremouw, 1977; Rino, 1978,
1979a), Similarly, the temporal structure of v(a) is readily derived by
using an appropriate velocity factor to convert spatial variations to

temporal variations,

As a general rule, whenever the diffraction terms impact the solution,
the particular moment will depend on the Fresnel factor Az/4x., From
Eq. (5), however, it is readily seen that if D(BI,EZ) depends on the
difference variable 55 = 62 - 81, then RV(SI,SZ) depends only on 55, and
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the diffraction terms cancel., It follows that the behavior of RV(BI,Bz)

depends critically on the spatial homogeneity of the structure function,

In most radio-wave modeling work it is assumed without question that
any departures of D(BI,BZ) from strict homogeneity can be ignored. To
illustrate that there is good reason to question this assumption, consider

the signal mean {v(t)). The differential equation for {v(t)) is

Kyl . =2 2@y - B2 ( ONE) )

If (ANe(S)) is strictly independent of B, then <V(B)> is constant. 1In

fact, one can easily obtain the solution to Eq. (7)--namely,

(@) = exp |-Hoa™) (8)

where
(66%y = ea% ar iy ap . )

In Eq. (9) G is a purely geometrical factor and {4 is the first moment of

the phase spectral density function.,

Whether or not there is a spatial regime where (ANe(B)) can be
considered to be constant can only be determined by careful data analysis,
Detrending data establishes an arbitrary partitioning between large- and

small-scale structures such that the detrended component exhibits all the

properties of a homogeneous process. The absolute values of (5¢2) and
(v(5)>, however, are determined by the detrend cutoff, In fact, analysis
of the Wideband satellite data has shown that even with detrended data,

f (v(a)) is not well behaved. The estimates show a higher degree of dis-

persion than the corresponding S4 estimates, This suggests that the
diffraction term in Eq. (7) cannot be ignored.

Going back to the mutual coherence function, if D(El,gz) depends
only on AS, then one can also easily obtain the solution to Eq. (5)--

namely,

l P PR L N ) ) ‘
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D(A) dyg

We note that the initial condition Rv =1 at z = 0 is implied by Eq. (10).

i This effectively normalizes the average signal intensity to unity.

From our experience with the first-order moments (5¢2) and (v), we
take it as a guiding principle that whenever a computed signal moment of
any order depends strongly on 9, estimators of that quantity will be
dependent on how they are measured, The effects are not simply due to
uncertainties in the actual value of 9,5 but rather to diffraction effects
and/or inhomogeneities that can cause significant departures from the

mathematical limiting form of the particular moment,

To pursue this further, in Section III we discuss the mathematical

model that is being used for the phase structure function,
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III THE PHASE STRUCTURE FUNCTION

To simplify the analysis without loss of generality, let us assume
that D(Sl,az) does not vary with z. For a path of leungth zp, Eq. (11)

then becomes
D\ Bp8p) = TA’L (LaN,By) - AN B0 (12)
s P1°P2 e” “p e'P1 e'P2 *

The integral can always be reintroduced to accommodate slow variations
along the propagation path, The structure function atuomatically enters
the theory as discussed in Section II. It has been recognized for some
time, however, that the structure function intrinsically suppresss the

low-frequency content of the field it is performed on.

To illustrate this directly, consider the one~dimensional form of

Eq. (12). 1t is readily shown that

{([A(x) - A(x + L\x)]z) =J'[1 - cos (wx)] éA(w) g—‘:t’ (13)

where éA(w) is the power spectrum of A(x). Since the cosine term in <

Eq. (13) varies as w2 for small w, §A(w) « w P

converges independent
of any explicit outer-scale cutoff as long as p < 3, This is exactly {

the behavior of the one-dimensional phase structure functions for which

p = 2v (Rino, 1979b). It might also be noted that Eq. (13) is identical
in form to an MII (Moving Target Identification) filter that is used L

for radar clutter suppression,

A convenient SDF model that is both mathematically tractable and L |

accommodates inner~-scale and outer-scale cutoffs is

2 -
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where ¢ = qO/qi << 1 is the ratio of the inner- to outer-scale cutoffs.

By using the small-argument approximation,

K320 ~ 3 Ty + 3D 1"+ #L (15)

it is readily shown that for q << 9y and ¢ << 1,

C
s

¢ANe(q) ='[—2-—V+; . (16)

2 v
q, + 9]

The phase autocorrelation function corresponding to Eq. (14) is

R(Y) = AT F @y e F k(3T F @y 7D ) an
where
N = 2e\"é Kv_é(Ze)
‘ (18)
~ r(\’ - é) .

The approximation in Eq. (18) is good to within a few percent for v <« 0.5
and ¢ < 0,01, In the small ¢ approximation,

2 _ 2.2 I‘gv-éE -2v+1
Ty = rek zpcs BT ) 9, . 19

&

It is notationally convenient to let
2,2
Cp =r\ zpcs (20)

- (2v+1)

so that the phase SDF has the form ¢5¢(q).~ Cpq As noted in

Section II, the fact that depends critically on q, is indicative of

o,
]
its nonstationary behavior,
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The form of the structure function that corresponds to Eq. (17) is

L2 _ r'(v £
£, = 20w =€, ﬁ(ﬂqz _1) 21)
(]

where

Ly) =1 - 2]35 + (qoy/2)a -4 K.\)_%(ZJe= + (qoy/2)=)/N . 22)

In Figure 1, £(y) 1s plotted versus 9.y for v = 1.2 and the ¢ values
0.01, 0.001, and 0,0001. TIt is readily seen that the impact of ¢ is
negligible even for comparatively shallow SDFs where its effect is most
pronounced, For v = 1.5, the corresponding curves, which are shown in

Figure 2, cannot be distinguished,

Figure 3 shows the effect of varying v, At first glance the
variations are not dramatic. It must be kept in mind, however, that

the significant portion of the curve lies to the left of ya, = (2:1:).1 =

0.159, since this corresponds to y s Eo Zﬂ/qo. As v increases, the

curves are displaced to the right of y

go, indicating that structure

is being determined more by q, and less by the power-law slope,

If one accepts the mathematical form of Eq. (22) as being rigorously
applicable, the £(y) curves admit a simple interpretation. Indeed, from

Eq. (10), Rv(zd) = e-1 when cis(zd) =1, It follows that plots of £(y)
2

¢
Since s(zd) saturates at unity, it is obvious that no meaningful definition

versus yq _ are also plots of 1l/0% versus quo’ provided that c¢ > 1.

of zd can be obtained for small LA values., The fact that the definition

of zd depends on 9, however, creates problems of its own.

As long as v < 1,5, there is a simple and effective way to deal with
the latter situation that has been used in turbulence studies for over
30 years, It is shown in Appendix B that for sufficiently small 9,

|2v-1

2
46 ~ Csa'y (23)

12
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where

C
C:¢ . 2(1.5 - vgv_l 24)
r(v+0.5)(2v-1)

is the phase structure constant. To demonstrate the validity of this
asymptotic approximation, the approximate form given by Eq. (23) is
superimposed on the exact calculation of £(y) in Figure 4,

The plot is presented on an expanded scale to emphasize the range of
y values that contribute to the power-law continuum--viz, y < ¢ [yq° <
0.159]. For v £ 1,2, the small q, approximation works essentially over
the entire y £, range. As the spectrum steepens (1.5 » v 2 1.4), the
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FIGURE 4 PLOT OF SMALL q, APPROXIMATION TO PHASE STRUCTION FUNCTION
{valid for » < 1.5) SUPERIMPOSED ON EXACT CURVES

Yy << Eo condition becomes more stringent. Thus, as long as v < 1.4, the
structure-constant approach is a viable one for the entire range of scale

sizes that encompass the power-law continuum,

The ultimate test of any model, however, is how well it reproduces
data., The Wideband satellite data have consistently shown p values less
than 3. The range of v for Wideband is 1.2 € v € 1.3, The Kolmogorov
value is v = 4/3 = 1,333, Excellent results have been obtained in
relating the intensity coherence time under strong-scatter conditions

to estimates of C2 from the phase data (Rino and Owen, 1979), 1In the

&
analysis, Eq, (2) was effectively used to relate the intensity structure

to C Equation (2) was, however, derived by calculating the strong-

80°

scatter limiting form of the fourth-order signal moment.




Attempts to measure the mutual coherence function directly have
shown that Eq. (10) is strictly valid for a limited range of y values.
For example, contrary to the predictions of Eq. (10), measured values of
{(v(t)v*(t’)) invariably go negative. At the present time, attempts are
being made to average several estimates together, but it appears that
the departures from the idealized model are not simple random fluctu-

ations that ultimately average out to the "correct" value.

What remains is to consider the situation for v 2 1.5. As noted in

Section I, the radio-wave propagation community has accepted the v = 1,5
value as a norm, whereas the Wideband satellite data have consistently
shown smaller values, The only carefully analyzed data that have
indicated steeply sloped SDFs have come from in-situ equatorial rocket
probes and in-situ as well as propagation data from the STRESS barium
exercises, The early equatorial rocket probes can be dismissed since
they only penetrated bottomside spread F. The preliminary results from
the recent successful Kwajalein rocket campaign show that bottomside
spread-F is a mere ripple when compared with well developed topside

structures,

A barium cloud is a highly localized structure whose evolution
can be optically tracked. A detailed analysis of the STRESS barium
cloud ESTER by MRC has shown, firstly, that structures larger than 1 km
cannot be reliably included in the power-law continuum, and secondly,

that the smaller-scale structures fall off more steeply than K-z.

The only radio propagation data were obtained from UHF transmissions
that were highly disturbed, ESL has used a 'back propagation" technique
to reconstruct the integrated phase SDF, and the preliminary results
seem to be in agreement with the in-situ data in that the phase SDF falls
off more steeply than f-3. Under such conditions, however, one should
expect significant departures from Rayleigh statistics. The small size
of the largest structure may make tests of the statistics difficult, A
straightforward test of the back-propagation procedure, however, is to
measure the mutual coherence function directly and see how it conforms

to model calculations based on §(y) for v = 1.5,
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One would like to believe that the barium data accurately reproduce
what it happening locally. Over much larger regions, however, the
integration over many structured subregions may well act to produce a
shallower integrated phase spectral slope. In that case, the effective
v index for calculating propagation effects is less than 1.5 and the
diffraction theory is greatly simplified.

Recent analysis of 30-GHz scintillation data over long atmospheric
paths has shown phase spectral slopes significantly lower than the
expected 8/3 value based on the Kolmogorov theory. A random patch model
has been invoked to reconcile the discrepancy. The model is supported
by high-resolution radar data showing that clear-air turbulence develops

in distinct narrow regions.

However the issue is resolved, there is a significant discrepancy
between structure models inferred from the Wideband satellite data and
the structure models that are being extracted from the STRESS barium
data, The recent Kwajalein rocket data will undoubtedly shed some light
on the issue, but it must be resolved if a viable predictive propagation

code is to be developed.
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IV THE TAYLOR SERIES APPROXIMATION

Several authors have applied a Taylor series approximation to £(y)
to simplify analyses involving integral expressions containing various
combinations of structure functions (e.g., Taylor and Infosino, 1976;
Buckley, 1971). As discussed by Rino (1979b), however, these series
converge very slowly, particularly in the small 9, limit. In a recent
analysis of sound propagation in sea water, Dashen (1977) concluded that

the Taylor series approximation cannot be used in power-law medium,

Dashen, however, was concerned with SDF corresponding to v < 1.5,
and the Taylor series approximation improves as v increases. Indeed,
this is expected because the derivatives involved are equivalent to
moments in the spectral domain, The moments are increasingly large
unless the SDF falls off very rapidly. An inner-scale cutoff keeps the
derivatives finite, but the convergence of the series is still very slow

if, indeed, proper convergence even occurs,

In any case, the formal Taylor series expansion of £(y) is easily

derived, If we use the notation

Rvdé(z) = 2z"‘§1<v_é(2z)/N (25)
and
£(y) =& + (y<1°/2)§ (26)

it is shown in Appendix A that

AL _ 2
AW - p o, 5 <2 @7

From Eq. (27) all higher-order derivatives can be generated, For example,
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28 (y)

ay2

In the y =

The formal Taylor series can be written as

where

The coefficients are derived in Appendix A, For our purposes we need

consider only the first coefficient,

From Eq. (32) we see that for v < 1.5, D1 is very sensitive to e.
In fact, the higher-order derivatives are even more sensitive to ¢ and i
the Taylor series approach is useless, as noted by Dashen (1977). It
appears that the series is divergent except for very small y values,
The dependence on ¢ decreases as v increases, If v > 1,5, D, does not

depend on ¢, but higher derivatives do, and convergence problems persist.

In Figure 5 the quadratic approximation is shown for v = 1.2, 1,5,
and 2,0, The approximation is acceptable for v = 1.5, provided that
y < £, 1t improved as v exceeds 1.5, but the series approximation
cannot be used, as we noted previously., We emphasize that neither the

asymptotic nor the quadratic approximation admits y values larger than

2, = 2n/qo.

= Rys 1 (ED) €Y 14+ R,y EDY) aii2 (28)

0 limit, £(y) = ¢, and only the even derivatives survive.

£ =Y o ™" 29)
n=1
aZn
Dn = ——&)—zn . (30)
Cn)ldy |ly=0

v=3/2

D, = 5”2 K,y Qe)/N @31) 1
Loz 3 v < 3/2
4rovE) © ﬂ
S (32)

log(2e =
5?%535% v=3/2 .
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V SUMMARY AND DISCUSSION

In this report we have summarized some new results in propagation
theory (Rino, 1979a,b,c; Rino and Owen, 1979), and have discussed their
ramifications for predictive modeling. The theory was motivated by the
Wideband satellite data which clearly showed the inhomogeneous structure
of the integrated electron density., One observes slow trend-like vari-
ations in phase because of the dominance of large-scale structures in a

power~law environment,

The large-scale structures potentially impact all signal moments,
The impact can be nil or totally dominating, depending on the oxrder of
the moment and the power-law index, The first-order moment of the
complex signal is exponentially dependent on the integrated phase; thus,

it exhibits the same nonstationary behavior as the integrated phase.

The second-order complex signal moment (the mutual coherence
function), which is used directly or indirectly for predicting essentially
all strong~scatter propagation effects, is not sensitive to the large-scale
structures if the effective spectral index v is less than 1.5, which is
evidently the case for all naturally occurring irregularities, If
v =2 1,5 as the STRESS data seem to indicate, the large-scale structures

dominate the second-order moments, Predictive modeling then depends

critically on the outer~scale parameter,

The Rayleigh hypothesis breaks down when v = 1.5, Insofar as
system effects per se are concerned, departures from the gaussian model
that is invariably used for analyzing or simulating disturbances are not
too important. For predictive modeling of these parameters that charac-

terize the signal structure, however, there is a significant impact.

Because of this fact we have suggested some independent checks of the
back~propagation analysis of the STRESS scintillation data. Specifically,

the departures from strict Rayleigh statistics, in particular SA > 1,

22



that must accompany steeply sloped SDFs should be verified, if possible.

The mutual coherence function itself should be carefully measured to

verify that it conforms to model predictioms,
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Appendix A

THE TAYLOR SERIES APPROXIMATION
TO THE PHASE STRUCTURE FUNCTION

The normalized phase structure function can be written as

SO =1-R, 4 (£() (A-1)
where ‘
R, (® = 2.0 K,.3 (22)/N (A-2)
N = 2eV% K,.3(2¢) (A-3)
£(y) =4/ + (qy/2)® . (A-4) :

It is clear from Eq. (A-4) that q, is simply a scale factor. We shall
derive a formal Taylor series representation for Eq. (A-1) with the aim
of obtaining a simple approximation to £(y) that is valid for ¢ << 1, and
as large a yq, range as possible. !

To start with, consider the first derivative,

3R, _1 (E(y))

The derivatives of products such as z\"i Kv_é(Zz) are known, and it is

easily shown that

LW - e | (ENy2 . (A-6)




Using Eq. (A-6) we have

W) - p (€@ aly/2

dy

2

() 4.2 2

ayz == \)-5/2(f(y)) .y /4 + P\)_3/2 (£(y)) qo/2 (A-8)

and

3
7E(Y) _ 63,0 _ 4 }
I Rya772 EGN agy™/8 = 2R 5/ (£Cy)) q 3y/4 (a-9)

The nth derivative of £(y) has No = (n-1)/2+1 terms if n is odd, and

N, = n/2+1 terms if n is even, The first term always has the form

2n n_n
/P\)_l/z_n (f(}’)) qO y Cl.. (A-lo)
where
n _ n-1
Ci == 1/2 Ci R (A-11)

h

We let Cz denote the coefficient of the it term in the nth derivative.

1f n is odd, the terms i =2, 3, ..., N, have the form

2(n=i+1)_(n=2(i-1)} n
R(v=1/2)-n+(i-1) Yo y c; (A-12)
where
ch - [(n+3-2i) Sty +%|c’i"1|] D™, (a-13)

The same formula, Eq. (A-12), applies to the even derivatives, with the

exception that the last coefficient, C:/2+1, is equal to the previously
computed last odd coefficient--1i,e.,
A-2




n _ n=1
Cn/2+1 = Cn/2 (n even) . (A-14)

The formal Taylor series can be written as

2n
HOED PENR (a-15)
n=1
where
2n
D_ = .EL-4£SX%E . (A-16)
(2n)! 3y  |y=0

Only the Neth even term gives a finite contribution. Hence, from Eq.
(A-12)

1 2n
Dy = @I Rv-1/2)-n £ lyao St
) (Zi)! S Kyo1/2-0@O/N Cpy (a-17)

Note that as long as v=-1/2-n > 0, D, is nearly independent of ¢ for

small e, For large n values, D, « eZv-l—Zn

s which becomes arbitrarily
large with increasing n., It follows that the range of applicability of
the Taylor series approximation is very restrictive, Recent analysis by

Dashen (1977) suggests that it can only be used for propagation environ=

ments with a sharp cutoff,
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Appendix B

THE SMALL qo APPROXIMATION
Since c¢ e q;2v+1, it follows that c;(l - S(Y))converges to the
indeterminate form % when ¥q, << 1 and q, is small, If v < 1,5, however,
L'Hopital's rule can be applied to compute the limiting form of
p(y) = c: (1 - £(y)). We first let ¢ = 0 to simplify £(y) to

£ ~ 1= 2|q 2|V (e y)Tv-1/2) (8-1)

-1/

which is the form used in Rino (1979b). The quantity of interest is

lim £(y) . (B~2)
q -0 2v-1
o q
(<]
Using the results of Appendix A to calculate the derivative of £(y),

from L'Hopital's rule we have

v=3/2 2
lim £¢y) _ lim qo(qoylz) K’\)-3/2(qoy)y (B-3)
q~0 2v-1 ~ q =0 2v-1 )
o q ) T(v-l/Z)(zv-l)qo

As long as v < 1.5, the small-argument approximation of Kv_3/2(q°y) shows

that the q, terms cancel and we have

C
lim 2 p__ 2(1.5- 2v-1
i a0 %P =7 atvd o I (B-4)

o r(v+0.5)(2v=1)2

This result has been used in studies of neutral turbulence for decades.

The coefficient that multiplies |y|2v'1 is the phase structure constant.

In studies involving radio-wave interactions with turbulent neutral
atmospheres, only the structure function enters the problem. Indeed, the

structure constant is typically modeled directly. Only recently has

B-1
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serious consideration been given to propagation effects in environments

characterized by steeply sloped power-law SDFs.
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SRI International
ATTN: R. Livingston

ATIN: G. Smith
ATTN: G. Price
ATTN: R. Leadabrand
ATTN: W. Jaye
ATTN: W. Chesnut
ATTN: M. Baron
ATTN: A. Burns
ATTN: D. Neilson

10 cy ATTN: C. Rino

Teledyne Brown Engineering
ATTN: R. Deliberis

Tri-Com, Inc.
ATTN: D. Murray

TRW Defense & Space Sys. Group
ATTN: S. Altschuler
ATTN: R. Plebuch
ATTN: D. Dee

Utah State University
ATTN: L. Jensen
ATTN: K. Baker

Visidyne, Inc.
ATTN: J. Carpenter










