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DETERMINATION OF ASPIRATED AEROSOL SAMPLER EFFICIENCIES
USING LASER REFERENCE TECHNIQUES

L INTRODUCTION.

Acrosol sampling is usually considered to be a very complicated problem! in aerosol

physics. Often it is desired to determine the efficiency, as a function of particle diameter D“
[micrometers (um)], with which aerosol particles of various kinds are drawn into an aspirated
sampling tube or head or into the human respiratory system. The principal experimental dif-
ficulty is one of establishing and maintaining a test aerosol of known characteristics including
composition, mass or number concentration, and particle-size distribution. The aerosol sampler
is placed in the test aerosol and is operated at a known flow rate for a known period of time
after which a determination is made, usually by weighing a filter paper in the sampler, of the
mass of collected aerosol. This is ratioed to the particle mass contained in the sampled volume
of the test aerosol to determine the sampler efficiency.

The problem of maintaining the test aerosol is not a trivial one. It must be sampled
periodically to determine if (and how) it is changing with time as, for example, particles settle
or agglomerate. This sampling disturbs and draws material from the test aerosol, and the subse-
quent analyses usually require at least several minutes to complete, during which the character-
istics of the test aerosol may continue to change.

This paper describes a technique by which the test aerosol mass concentration is
continuously sampled by a laser beam. This requires that the optical constants, particle-size
distribution, and other properties of the aerosol particles be known. The test aerosol materiais
discussed in this paper are liquids which are generated as spherical droplets, for which accurate
(£10%) optical calculations can be made using the Mie theory.2 For approximation purposes in
optical calculations, it is often useful to treat an aerosol as if it consisted entirely of monodisperse
particles of some equivalent diameter.3 But a better approach is to generate monodisperse drop-
let aerosols directly, as was done in the work reported here.

1. THEORY.

In the geometric optical scattering regime, particle diameters are much larger than the
wavelength, A (um), of observation: that is, D" >> \. Under these conditions, it is straightfor-

ward to show? that:
a = 390, ()
AT 2 D“-p

where a (m2/gm) is the mass extinction coefficient of the spherical particles, p (gm/cm3) is the
particle density, and (Q)), is the cross-section efficiency factor which is very nearly constant and
equal to 2.0 for the liquid aerosol droplets discussed in this paper,3 so that:

3
—_— ()
a) ~ D".p

The mass extinction coefficient is used in the Beer-Lambert law:

Qn(l/T)‘)=a>‘CL, 3)
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where T, is the optical transmittance at the laser wavelength, A\;C (gm/m3) is the aerosol mass con-
centration; and L is the optical pathlength (in meters) which is uniformly filled by the aerosol.
C, the quantity sought for a test aerosol, is then:

] . Dyp
C=——fn(1 =£-on (1 @)
‘ ey (TN~ 580 (1/Ty)

Several liquids, used to generate test acrosols in work described in this paper, are shown
in table 1. Mie calculations were performed for the He:Ne laser (A = 0.63 um) (figure 1),and. it was
confirmed that the approximation of equation 2 is quite precise; i.e., that the functional dependence
of ag ¢ 3+ the extinction coefficient, upon D“ is very similar for all aerosol materials considered,
with only liquid densities, p, having a predictable effect. The laser wavelength (0.63 um) lies very
close to the sodium “D” line (0.589 um), and the materials listed in table 1 are transparent and
colorless in the visible wavelengths (i.e., they have a real refractive index, n, but a negligible absorp-
tion coefficient or}imaginary index, k). Thus, it was very convenient to obtain the real indices of
these materials using a standard laboratory refractometer at the sodium D line and to use them in

Mie calculations for the 0.63-um wavelength. The error introduced by doing this is very small, as
indicated by figure 2 which comparés the a) versus D functions for dimethyl phthalate (DMP) .

calculated at A = 0.589 um and 7\ 0 63 um.

Tablel.v Refractive Indices of Liquid Simulants

Symbol Substance \ Density, Temperature Real index,’
p np
gm/cm3’ °c
DMP o-Dimethyl phthalate 1.192 20.8 1.5155
DEP o-Diethyl phthalate 12 17.7 1.5029
DBP n-Dibutyl phthalate! 1.045 25.0 1.4925
DOP Dioctyl phthalate 0.98 20.0 1.4550

* The sodium “D” line is at the 0.589.um wavelength, and the real index at the He:Ne laser wavelength‘&
0.63 um is nearly identical to this value for transparent, colorless liquids.

After preliminary testing, it was found convenient to use the simulant DOP (figure 3)
in most subsequent work. Since p = 0.98 gm/cm3 for DOP, the approximation equations 2 and 4
can be still further simplified:

(DOP) Cn ;-):-!n (1/To.63) 6)
8
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It can be seen from figure 3 that the approximation of equation 5 is quite precise in
the geometric regime (Dp >> )

DOP A = 0.63um

10 =
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Figure 3. Values of ag g3 versus D, Calculated from the Mie Theory
for Diocty! Phthalate (DOP)

III.  EXPERIMENTAL PROCEDURE.

A 1-m3 test chamber was constructed and used as shown schematically in figure 4.
The He:Ne laser was optically aligned through pinholes in opposite chamber walls. The pinholes
were utilized to prevent window effects. A pressure-equalization scheme between the chamber
interior and room air prevented aerosol particles from flowing in either direction through the pin-
holes during testing. Although figure 4 shows an aerosol cloud coming from the generator, the
chamber was stirred during testing to insure uniform mixing. This was important because the laser
pathlength, L, of the laser beam in the test chamber (which was about 1 m long) must be uniformly
filled with the test aerosol during measurements.
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The aerosol generator, shown in figure S in a side compartment of the test chamber,
was of the “‘spinning disc” design5 to produce essentially monodisperse liquid droplets of the test
aerosol. The droplet size, D“, disseminated by the spinning disc generator is determined by the
diameter and angular velocity of the disc, by the liquid flow rate, and to a lesser extent by other
parameters including temperature. Aerosol droplet size was checked by microscopic examination
of samples deposited on glass slides. The generator shown in figure 5§ was easily capable of dis-
seminating concentrations of test aerosols in the range C = 0.1 to 1.0 gm/m3 for these tests.
Other monodisperse aerosol generators are available commercially, although some® do not have
the aerosol output capability of the unit used in these tests. Plastic microspheres" also were
used in some trials, for which the ag g3 versus Dy function was not much different from those
in figure 1.

Each aspirated sampler consisted of a filter holder, connected to a vacuum line, and
the inlet tube to be tested mounted in the face of the filter holder. Samplers were aspirated at
flow rates of 1 liter/min or more. Results using similar samplers to monitor mass concentrations
of smoke aerosols have been reported previously.6 Figure 6 shows the chamber in operation. The
He:Ne laser beam can be seen passing through the test aerosol (32-um DOP droplets). An aspi-
ra: :d sampler is mounted in a circular port in the forward wall of the chamber. The inlet tube
being tested (cylinder) can be seen projecting from the filter holder toward the center of the cham-
ber. In later tests, however, the filter holders were mounted completely inside the chamber, with
the openings of the inlet tubes positioned pefpendicular to and directly adjacent to the laser beam.
This insured that the laser beam and the inlet tubes intercepted identical samples. A refinement
to this procedure involves using a second\laser beam perpendicular to the first and nearly intersect-
ing it, e.g., from the top to the bottom of the chamber in figure 6, thus providing laser *“‘cross
hairs” which can be positioned directly in front of a sampler inlet tube under test.

IV.  RESULTS AND DISCUSSION.

The purpose of this paper is to describe a technique by which the mass concentration
of a sized test aerosol can be continuously sampled by a laser beam to improve experimental pro-
cedures. Only a brief discussion of typical test data on aspirated sampler effciencies will be given
here. Figure 7 presents some data for DOP droplets and illustrates the methodology discussed in
this paper.

In figure 7, the solid and dashed curves labeled *‘aspirated sampler” are typical of the
efficiencies measured for filter holders without inlet tubes and for holders with inlet tubes (as in L B
figure 6), respectively. For these aspirated samplers, the sampling efficiency drops to less than 10% '
in the DOP droplet size range\30 < Dy <40 pm. The He:Ne laser can be considered 100% effi-
cient in sampling the test aerosol, since laser attenuation depends entirely upon extinction by the
aerosol droplets (e, = 100%). Multiple scattering of the laser beam is not a problem, since the
test aerosol concentration is always chosen to give high transmittances (0.7 to 1.0), thus conserv-
ing the aerosol material. The assumption that the actual mass concentration of the test aerosol,

Cactual, is equal to that determined from the laser using equation 6, Claser is valid to within

* The Berglund-Liv monodisperse aerosol generator is marketed by Thermo-Systems, Inc. (TSI), P.O. Box 3394,
St. Paul, Minnesota 55165.
** Microspheres of glass, polystyrene, and other materials are available from Duke Scientific Corporation, 445
Sherman Avenue, Palo Alto, California 94306.
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DIRECT DETERMINATION OF ASPIRATED SAMPLER
EFFICIENCY USING LASER REFERENCE BEAM

. He:Ne LASER (A = 0.63um)
100 |

90 —

80 —

70 —

csam od
cactual *)

% EFFICIENCY = 100 x .
&
1

30 —
]
? 20 -
10
0 | . L - 1 1
0 10 20 30 40

D, = PARTICLE DIAMETER, um

(*) where Cycqy ) is taken (£10%) as

Claser =IIVTy l/ayL = in(l/T\) 1D, /3L

Figure 7. Typical Sampling Efficiencies for DOP Test Aerosols. The solid curve labeled
“Aspirated Sampler No. 1” represents filter holders without inlet tubes, and the
dashed curve labeled *“Aspirated Sampler No. 2” represents filter holders with
inlet tubes. The figure also illustrates the methodology of the measurements, as
described in the text.
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the crror of the Mie calculations which was found to be as good as £10% in this application. The
equivalent mass concentration collected by the aspirated sampler, Csampled' is determined by
weighing the filter paper in a filter holder before and after an aerosol trial and is reproducible to
within about £10%. The percent efficiency of the sampler, e, is then 100 X (Cgymojeq /C gctual )-
When the test aerosol particle diameter is only a few micrometers or less, the aspirated sampler
efficiency approaches 100% and these samplers can be used directly to confirm laser measurements
of acrosol mass concentration as was reported previously for smoke aerosols.8

V.  CONCLUSIONS.

The discussion in this paper has been limited to the determination of aspirated
aerosol sampling efficiencies using laser reference techniques. These techniques, of course, are
not limited to sampler efficiency measurements but can be used wherever it is desirable to con-
tinuously monitor the mass concentration of a test aerosol of spherical droplets; e.g., in studies ot
the human respiratory system. By using a He:Ne laser in the visible wavelengths (A = 0.63 um),
aerosol measurements are made in the geometric scattering regime (Dy, >> XA) using materials for
which many simplifications and precise approximations are possible from the Mie theory. The
method is fast and accurate, and it eliminates the need for precalibration of “‘standard™ samplers
against which candidate samplers must be compared.
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