AD-A0B5 665 VIRGINIA POLYTECHNIC INST AND STATE UNIV WASHINGTON ==ETC F/6 9/2
CMS SOFTWARE NOTEBOOK. FIRST EDITION. (U}

JUL 79 R J ORGASS AFOSR-"%OGZI
UNCLASSIFIED VP!/SU—TH-79-6 AFOSR=TR=80-0448

‘%‘w
END
Fiui
7-80
otic

DEPARTMENT OF COMPUTER SCIENCE P. 0. Box 17186
GRADUATE PROGRAM IN NORTHERN VIRGINIA R f - Wasbingion, D. C. 20041 1
SRR (703) 471-4600]
P .
. |
S te e

CMS SOFTWARE NOTEBOOK*t
(First Edition)
edited by
Richard J. Orgass
Technical Memorandum No. 79-6 /

July 31, 1979

ABSTRACT

A brief description of the software that
is available in the Computer Science Library
on CMS. Additional contributions are solicited
and directions for contributing software are
given.

* Work supported in part by the Air Force Office of Scientific
Research, Air Force Systems Command, under Grant No. AFOSR-
79-0021.

+ The information in this document is subject to change without
notice. The editor, the authors, Virginia Polytechnic Institute
and State University, the Commonwealth of Virginia and the
United States Government assume no responsibility for errors
that may be present in this document or in the programs des-
cribed here.

8 O 6 1 l O 2 1 approved for p\ﬁt‘;"‘;ﬁ“se‘

aistribution W

Located at Dulles International Airport—400 West Servics Road N ‘ ‘

_—

Copyright, 1979
by

Richard J. Orgass

General permission to republish, but not for profit, all or part
of this report is granted, provided that the copyright notice is
given and that reference is made to the publication (Technical
Memorandum No. 79-6, Department of Computer Science, Graduate
Program in Northern Virginia, Virginia Polytechnic Institute and
State University), to its date of issue and to the fact that re-
printing privileges were granted by the author.

AIR FOTCI OF™77™ 7 7777171777 T D0H (ARSE)
NOTICZ °7 ¢ LT

This . . . reoered 8nd 1‘
app-. . ¢ iy saa w30=l3 (TB)e
Distri . : SRR

A. Do oo . .

Teehnical luic ~iion Offiger e

g, TR

REPORT DOCUMENTATION PAGE) BEF%%AEDC%‘SEEE%E}%)N;ORM

" "4 2. GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER
R—- 80044 8] |np_s025 41 ¢

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

T s s

@‘ | CMS SOFTWARE NOTEBOOK , f+ t L. d'tioy ,) Interim

6. PERFORMING OG. REPORT NUMBER

7. AUTHOR(S) 8. CONTRACT OR GRANT NUMBER(s)
/_.7 . Ln_ichard J. / orgass (/“; B ‘
4 - 45 | VAFosr-79-0821
9. PERFORMING ORGANIZATION NAME AND ADDRESS 340 ::gi & WORK UNlT NUMOBJEECST TASK
Virginia Polytechnic Inst. & State University P
Department.of Computer Science 070 s
Washington, DC 20041 61102 ‘s 2354/&
11. CONTROLLING OFFICE NAME AND ADDRESS P REPORT DATE 7@
Air Force Office of Scientific Research/NM ! J@Eﬁg (-
Bolling AFB, Washington, DC 20332 e OF PACES

14, MONITORING AGENCY NAME & ADODRESS(if dilterent from Controlling Oltlice) 15. SECURITY CLASS. (ol this report)

(m; *’)" T >y UNCLASSIFIED

15a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for publlc release _distribution unhmlted. \' 1:’ / '

{ the abstract omoud in Block 20, it diftferent from Report)

18. SUPPLEMENTARY NOTES

i
<
b

\‘

’1
X
‘4..
| X
\’x
e
6\

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

3v‘7.STRACT (Continue on reverse aide if necessary and identify by block number)

A brief description of the software that is available in the Computer Science
Library on CMS. Additional contributions are solicited and directions for
contributing software are given.

</ L731

:2:’!,, 1473 coiTion oF 1 NOV 6818 °“°2n UNCLASSIFIED

8 0 6 1 " SECURITY CLASSIFICATION OF THIS PAGE (When Dafa Entered)
. v ~

PREFACE

This manual together with the CMS userid CSDULLES is designed
to .provide an orderly and relatively painless way of making soft-
ware dgenerated within the Department available to potential
users.

I have the feeling that many of us have programs that would be
useful to others in the Department if we only knew that they
existed. Some of us have written programs that may eventually be
included 1in the public libraries of the computing center but
which are in some state of being installed -- a long and slow
process. This Departmental library is an attempt to provide for
wider use of software while it is being installed by the comput-
ing center.

I have undertaken the job of maintaining this library at least
until someone else volunteers to take the job -~ I“11 be happy to
quit immediately. In order to make the maintenance job toler-
able, Ive written down some standards for material to be
included in the library.

This first edition of Software Notebook serves to introduce
the concept of a Departmental library. I have included documen-
tation of some of my programs that may be useful both to bring
this programs to your attention and to provide examples of
library submissions.

If there is no visible interest in the library by the end of
this calandar vyear, I will terminate the Software Notebook as
being a waste of effort.

The first two chapters of the notebook describe the library
conventions and the remaining chapters describe software in the
library. There are four more chapters for complete programs,
utility programs, procedures or classes and execs.

ACCESSING THE LIBRARY

All of the files needed to use programs in the 1library are
stored on the 191 disk of userid CSDULLES. All of the directions
given in the notebook assume that this disk is a read only exten-

sion of the user”s A disk.

This state of affairs can be arranged by executing the follow-
ing commands:

cp link csdulles 191 250 read all
access 250 d/a

After these commands are executed, you can learn about the
command : '

help csdulles

and following the directions given when this command is executed.

“Acoos51on For ‘//‘;f
!

NTIJ (PR i J
bi. 1ax K

Uniowvee oo d
O -

LA o

CHAPTER I
SUBMISSION REQUIREMENTS

The intent of the submission requirements is that there should
be an easy way to access programs in the library without compli-
cated directions. 1°ve also added some items to make it easier
for me to maintain the library and the Software Notebook. These
requirements are summarized below.

Help File

Each program made available via CSDULLES must have a help
file. If the name of the program is FOO, this will be a file FOO
MEMO. (This file type makes it possible to print the help file
on line using the HELP command.)

This help file will contain directions for running the program
and a brief description of the processing performed by the pro-
gram, The help file may refer the reader to a published Techni-
cal Report or Technical Memorandum for additional information.

The help file will contain the author”’s name and address and,
hopefully, CMS userid for trouble reports, etc.

The help file serves both as directions for using the program

and as an advertisement for the program. Help files will be
included in the Software Notebook.

Executable Code

For complete programs, a module for the program will be placed
on CSDULLES. If there is some obscure reason for 1loading the
program each time it is executed, text files may be substituted
for the module. One obwvous reason is: "The program works beauti-
fully if it is loaded just before execution but a module simply
won‘t work." I have encountered such problems in the past and
appear to have gotten around old ones but I“m not at all confi-
dent that I can always do this,

For a separately compiled procedure or SIMULA class, a TEXT or
SIMCLASS file will be placed on CSDULLES.

Execs

If a program is executed via an EXEC, the necessary execs will
be placed on CSDULLES. Execs should be designed under the
assumption that the 191 disk of CSDULLES is a read only extension
of the user’s A disk. '

/
{
'

Data Files

If a program on CSDULLES requires standard data files each
time the program is executed, these data files will be placed on
CSDULLES. For example, SIMED, an indentation and reformatting
program for SIMULA source files reads a 1list of identifiers
before processing its input text. The file containing these
identifiers would also be on CSDULLES.

Source Files

Userid CSDULLES has a 192 disk which will be used to contain
source files for programs and procedures that are on the 191
disk. Each submission for the 1library will be accompained by
source file(s) in packed format.

Source files will be maintained for two reasons: This disk
area provides a convenient place to save the files while they are
not being used. Second, if source files are available, other
users are able to modify programs as needed.

The help file is to identify source files and the source lan-
guage for prospective users.

Additional Documentation

If the help file does not contain a complete description of
the program, the help file may refer the reader to other docu-
ments. However, the help file must contain directions for
obtaining a copy of this additional documentation.

Script File

The Software Notebook will contain help files for all of the
executable code placed in CSDULLES. I simply don“t have the
resources to keyboard all of this text and, therefore, request a
SCRIPT file that will generate the help file. This file should
not contain any SCRIPT commands that specify the page layout or
headings. Please use .cp brackets around text that should remain
on the same page.

IR bt £ SRS

TR

N NS

05

I don“t know how to state this last requirement in the form of
specific directions so please try to understand my request. 1°d
like to have SCRIPT in the same state before and after including
your file in the next edition of the Software Notebook. Please
don“t permanantly move margins, etc. If you use .ad +7, please
include a .ad -7 at the end of the file.

Installation

If you have a piece of software to contribute, please prepare
the files in your own userid and then send a message that
includes directions for accessing the files to userid ORGASS;
please don“t disk dump the files.

Before installing a piece of software, I will check the docu-
mentation but I will not necessarily test the software itself. I
don“t want to get into the position of testing software -- life
is too short!

Removal

If the amount of disk space used to maintain the 1library
becomes too 1large, I will conduct a survey to find out which
software is being used and delete material that is not of inter-
est.

Before deleting material, I will make a serious attempt to
contact the author so that a copy may be preserved. If CMS mail
about this is ignored for an extended period of time, I will disk
dump the files to the author.

Security

The disks of CSDULLES are read to all and contributing a pro-
gram to the library implies permission for all users of the sys-
tem to use the progranm.

The disks of CSDULLES may not be written by any user and I am
planning to keep the 1login password confidential to 1limit the
risk of deletions of files. While maintaining the library, I
will take every precaution to avoid deleting files but, obvi-
ously, I cannot offer absolute gurantees, I store my only copy
of some software on CSDULLES and am hoping that this will not be
a mistake.

CHAPTER II

DESIRED CONVENTIONS

In this chapter I describe some conventions for the behavior
of programs that I have found useful. The basic idea is that I
can find out what kind of output is written on the terminal and
what kind of input is expected. Except for the first require-
ment, the other conventions are optional.

Gaining Access

A user of this library gains access to the programs in the
library by executing the following commands. (I“m assuming that
the user will refer to the library disk as disk E; any other let-
ter will do.)

cp link csdulles 191 250 read all
access 250 e/a

The import of this access mechanism is that the library disk is a
read only extension of the A disk so auxiluary execs, etc. can be
found using the usual access rules and no special code.

Terminal Prompts

I find it very helpful to have different terminal prompts for
different kinds of input. The convention that I use is taken
from TOPS-10 and I‘ve become accustomed to it over the years and
find it very helpful.

CMS at monitor level prompts with the character period (.).
The effect of this is that I know CMS is expecting input when a
period appears. This means that a program has successfully com-
pleted execution.

A running program prompts for primary input with the character
asterisk (*). When this prompt appears, I know that the program
is expecting input that is required to continue processing.

TWTIERNERT e S 7=

(A 3

-

A running program prompts for secondary input with the charac-
ter sharp (#). For example, one of my file managing procedures
will permit a user to enter the CMS subset to look for a missing
file when it is not possible to open the specified file. When in
this subset, the program prompts with the character # to indicate
that input is not directed to the main processing.

Execution Messages

I prefer to have each program begin execution with a greeting
line that 1identifies the program and the version number. The
date of the version is sometimes helpful too.

When a program has encountered a fatal error in the input
data, the error message written to the terminal begins with the
character question mark (?). This kind of message is issued when
processing is abandoned.

When a program encounters an error in the input data that pre-
cludes a correct answer or when it is necessary to warn the user
of some condition, this message is preceded by the character per-
cent (%). The presence of this character at the beginning of a
message means that something has gone wrong but processing con-
tinues. The output may not be correct.

Advisory messages are written inside square brackets. It’s
often a good idea to provide messages about the progress of a
computation. Such messages are enclosed in square brackets. For
example, LPTSPL spools a group of files for off-line printing.
When each input file has been spooled, a message indicating that
the file has been processed is written to the terminal. At the
end of orderly execution, I always have programs print a message
to this effect. Messages of this type are enclosed in square
brackets.

When many pieces of software are used together, it is often
difficult to identify the source of a message. I find that it is
a good idea to precede the message text with the name of the pro-
gram or procedure that wrote the message. This convention is
used by MULTICS system software.

It isn“t very difficult to change the terminal prompt while a
program is in execution. For example, in Fortran or RATFOR, the
statement

call syscal(“CP TERM PROMPT *“,16,iret)
will change the terminal prompt to asterisk (*). [The last par-

ameter contains the return code when CP or CMS commands are exe-
cuted.] In SIMULA, this is accomplished as follows:

EXTERNAL ASSEMBLY PROCEDURE cpcommand;

command :- Copy("TERM PROMPT *");
cpcommand {(command)

Input and Qutput Files

If a program requires a single file as input, this file should
have a default file type, <ft>. The input file name, <£n>,
should be the only parameter to the exec that runs the program.
Output files should have <fn> as their file name and different
file types. For example, the default file type for the RATFOR
processor is RATFOR. The processor output files are <fn> FORTRAN
(optionally) and <fn> TEXT. 1In addition, if there are error mes-
sages from RATFOR, these messages are written to the terminal and
to file <fn> ERROR.

CRT terminals have a very small screen and it”s often useful
to be able to refer to error messages after they have fallen off
the screen. An ERROR file that also contains these messages is
very helpful when correcting programs.

Some programs are able to process more than one file at a
time. = In this case, the list of file names should be read from
the terminal as a list (hopefully separated by commas). If there
are a number of different options for the processing to be per-
formed by the program, the user should be prompted with ques-
tions. A good example of this kind of dialog is the preliminary
dialog when SIMED begins execution.

A long sequence of questions 1is often a trial when using a
program. It°s a good idea to provide a way of escaping from a
long list of questions by selecting default answers. A good way
to do this is to terminate an answer with the character <escape>.
If the 1last character of a response is <escape>, then default
answers to all remaining questions are selected without Ffurther
interaction at the terminal.

An EXEC with a long 1list of parameters guicky discourages
prospective users -- it°s too hard to remember the order of the
arguments. Can you reliably describe all of the options for the
command CP TAG?

CHAPTER III

COMPLETE PROCESSORS

This chapter contains brief descriptions of complete programs
that perform specific tasks.

The two programs in the current edition are the RATFOR proces-
sor and a gradebook workspace for VSAPL. In later editions, I
plan to add an SLR(l) parser generator and an incremental program
verifier. These programs are not yet completly operational on
CMs.

The current contents of Chapter III are:

RATFOR Fortran Preprocessor
GRADE Gr adebook Workspace

i AR (o e g

~—— b

RATFOR

A Rational Alternative to Fortran

RATFOR is a fairly popular preprocessor for Fortran. It pro~
vides modern control structures as well as a pleasant syntax for
Fortran programs. Many of the truly irritating syntactical con-
ventions of Fortran are avoided in RATFOR and the resulting For-
tran code is of good quality. Note that RATFOR will not write
any non-standard Fortran unless you write it into the program
directly.

Any of the published documentation on RATFOR combined with the
material in this file is adequate to use the preprocessor. CMS
RATFOR differs from other versions in that lower case letters are
mapped into upper case letters except in quoted strings and Hol-
lerith constants. Both single and double quotes may open a
quoted string; the next occurrence of the same quote ends the
string. Detailed documentaton for this CMS implementation may be
obtained by contacting:

Richard J. Orgass

Department of Computer Science
VPI&SU

P. O. Box 17186

Washington, D.C. 20041

CMS userid: ORGASS
Please specify if you want the user®s manual or the systems
manual. The latter is designed for readers who wish to modify

the preprocessor and does not contain information that is needed
by general users.

Using RATFOR

The RATFOR preprocessor accepts input files with fixed length
records and 80 column record length. Tabs are equivalent to
blanks so that tabs can be used to provide indented program text
that visually extends beyond column 80.

Input files to RATFOR must be of file type RATFOR and located
on the user”s A disk or a read only extension of this disk. 1f
you have created a file <fn> RATFOR, this file can be converted
into a text file for execution by executing the command:

ratfor <fn>
This will invoke the RATFOR processor and then the Fortran G com-

piler. If there are no errors, only a file <fn> TEXT will be
produced.

e — .. C— —_

If there are RATFOR errors, error messages will be printed on
the terminal and written to file <fn> ERROR. The Fortran compi-
ler will not be invoked. '

If there are no RATFOR errors but there are Fortran errors, at
least two additional files will be produced: <fn> FORTRAN and
<fn> LISTING. ([There may also be a file <fn> TEXT if one is pro-
duced by Fortran.] The listing file will only contain error mes-
sages and not the complete text of the program.

Note that the Fortran files produced by RATFOR are very diffi-
cult to read; there are no comments and no redundant spaces.
These files are only intended for compilation and not for human
consumption.

Entering the command:

ratfor ?

will print this text on your terminal.

Additional Options

Executing the command:
ratforh <fn>

will invoke the Fortran H compiler instead of the Fortran G com-
piler to translate the RATFOR program into executable code.

Executing the command:
ratno <fn>

will invoke the RATFOR preprocessor and will not subsequently
invoke any Fortran compiler. If there are no RATFOR detected
errors, a single file, <fn> FORTRAN will be created; it contains
the Fortran that corresponds to the input RATFOR. If RATFOR
detects errors, error messages will be written on the terminal
and into file <fn> ERROR.

Both of these commands accept ? as an argument to print this
text.

Availability

All of the files needed to use RATFOR are part of the public
library of the Computer Science Graduate Program in Northern Vir-
gina. This library is the A disk of userid CSDULLES. To use
RATFOR, execute the following commands:

cp link csdulles 1%1 330 read all
access 330 d/a

The RATFOR processor assumes that this disk is a read only exten-

sion of your A disk; it will not function correctly if this is
not the casel

Relevant Files

The following files, 1located on the 191 disk of CSDULLES are
part of the RATFOR processor:

RAT MODULE
RATFOR EXEC
RATFORH EXEC
RATNO EXEC
QUERYFIL EXEC
RATFOR MEMO

The RATFOR source for the preprocessor is available to indivi-
duals who might wish to modify the program for their own use.
Please contact userid ORGASS if you wish to secure a copy of the
source code.

Sl e

GRADE

An APL Gradebook Workspace

This VSAPL workspace provides a set of functions for maintain-
ing the data that is usually recorded in an instructor”’s grade
book as well as functions for computing grades and printing
reports. It is not necessary to be familiar with APL to use the
workspace but an experienced APL programmer can easily extend the
workspace to meet individual needs.

Documentation

This workspace has a variety of capabilities that are des-
cribed in detail with the help of examples in:

R. J. Orgass and M. D. Parker. "A Gradebook Workspace", Techni-
cal Memorandum No. APLAD9%9a, Department of Computer Science,
University of Arizona, September 1, 1977.

Copies may be obtained from the author at the address below.

Author

Richard J. Orgass

Department of Computer Science
VPI & SU

P. O. Box 17186

Washington, D.C. 20041

CMS userid ORGASS

Relevant Files

The VSAPL workspace and the help file are stored on the 191
disk of userid CSDULLES (read password ALL). The files are:

GRADE VSAPLWS
GRADE MEMO

The source text is included in the VSAPL workspace.

CHAPTER 1V

UTILITY PROGRAMS

The intended contents of this chapter is brief descriptions of
utility programs that perform some useful task.

In this edition, Chapter IV contains brief descriptions of the
following programs:

SIMED SIMULA indentation and reformatting program

SPOOL Print files on hardcopy terminals

LPTSPL Print files on lineprinter _

TPRINT Simulate line printer on hard copy terminal

TRANS Repair ASCII to EBCDIC translation performed by
IBEDIT when reading ASCII tapes

T

PRSI —

SIMED -- IBM Version 1.0

e e e

SIMULA EDITOR AND INDENTATION PROGRAM

The SIMED program converts SIMULA source program files to
change the appearance and representation of the program. The
program is able to indent the program (to improve readability)
and convert reserved words and standard and user identifiers to:

(1) UPPER CASE
(2) lower case
(3) Edit Case (First character upper case, remainder lower.)

Lines which become too long at indentation are cut at an

appropriate position. In the case where no proper cut can be
done (long text constants, for example), a warning message is
issued.

B

The program is executed by entering the CMS command:
simed

Inputs describing the processing to be performed are requested by
terminal prompts at run time. If there is a default answer to a
question, this response can be selected by simply entering car-
riage return. Default answers are printed as part of the ques-
tion enclosed in slashes (/).

For a further explanation of the gquestion, respond with the
character question mark (?). After the explanation is printed,
you will be asked the question again.

The following information is requested from the user:

(1) The file name for the source program file. The file type
must be SIMULA. If the f.'.e name is followed by the charac-
ter <escape>, ASCII 27, the default answers to questions (2)
to (ll) are selected without further questions.

(2) The file specification for the output file. The default
answer is <fn> SIMED. If the last character of this res-
ponse is <escape>, then the default answer to questions (3)
to (1l1) is selected without further questions.

(3) The maximum record length at output. The default response
is 72. This provides for 80 column records with columns 73
to 80 blank and is compatible with proposed extensions of
the IBM SIMULA compiler.

~15-

(4) The number of positions of indentation to be provided for
each block or compound statement encountered in the program.
If the response is 0, no indentation is performed. If the
response is a negative number, the absolute value of the
number is used for indentation and leading blanks and tabs
are retained in the output file. The default answer is 0.

(5) The rightmost position on a line where indented text may
begin. If an indented line would begin beyond this posi-
tion, the starting position of the line will be taken modulo
the entered value. The default response is 52.

(6) The next query asks if tabs may be used in the indentation.
If the answer is yes, strings of blanks at the beginning of
lines are replaced by the appropriate number of tabs and
spaces. It is assumed that tabs occur every eight spaces in
accord with the ANSI and 1SO standard. Since the SIMULA
compiler and most CMS software does not support tabs, the
default answer is no.

At this point the program will print a list of the conversion
modes on the terminal together with a mode number. These mode
numbers are to be used to answer questions (7) to (ll).

(7) Enter the conversion mode for reserved words. All of the
reserved words in the program text (e.g., BEGIN, IF, WHILE,
++e) Wwill be printed in this mode. The default mode is 1
(upper case).

(8) Enter the conversion mode for standard identfiers. All of
the SIMULA standard identifiers in the program text (e.g.,
Infile, Detach, Outfile, will be printed in this mode. The
default mode is 3 (edit case).

(9) Enter the conversion mode for user identifiers. All of the
user declared identifiers in the program (as well as undec-
lared identifiers) will be printed in this mode. The
default mode is 2 (lower case).

(10) Enter the conversion mode for comments and option state- v
ments. The text of all comments (but not the keyword COM- 4
MENT) will be printed just as they appear in the input file. '

(11) Enter the conversion mode for text constants. All text con-
stants in the program will be written in this mode. The
default answer is mode 0 (no change). Other modes are use-
ful primarily when converting SIMULA programs for execution
with UNIVAC and CDC SIMULA.

-16-

Warning

Cut lines will not be indented properly if they contain BEGIN
or END. In addition, cut text constants will not be properly
indented.

SIMED treats the national letters of the ISO standard as let-
ters. This means that the characters @, $, ~, %, (, 1, { and}
are letters.

Authors

SIMED was written for DEC-10 SIMULA by Mats Ohlin of the Swed-
ish Research Institute of National Defence. It was adopted for
use with IBM SIMULA by:

Richard J. Orgass

Department of Computer Science
VPI & SU

P. O. Box 17186

Washington, D.C. 20041

CMS userid ORGASS

Relevant Files

The source, help and data files for this program are stored on
the 191 disk of userid CSDULLES (read password ALL). The files
are:

SIMED MODULE
SIMED DATA
SIMED HELP

The program is executed directly without an EXEC.
The source and documentation files for this program are stored

on the 192 disk of userid CSDULLES (read password ALL). The
files are:

SIMED SIMULA
SIMED SIMED
SIMED SCRIPT

Other Applications

SIMED reads a 1list of keywords and standard identifiers from
file SIMED DATA. SIMED can be modified to perform the same func-
tion for programs written in other block structured languages by
simply changing the list of identifiers to reflect the syntax of
other languages, Easy changes are for PASCAL and SAIL. PL/I can
probably be indented using the program but I don“t know if this
has been tried.

SPOOL -- Version 1.1

(Program to Spool Source Files to Hardcopy Terminals

This program prints CMS files with record lengths less than or
equal to 122 characters on ASCII hard copy terminals., The pro-
gram was designed as a substitute for a line printer with upper
and lower case letters. A companion program, LPTSPL will produce
the listings with the same format and pagination using a line
printer.

The output of SPOOL is a multi-page listing with a title line
at the top of each page that includes the file name and a page
number. In addition, by means of control lines, it is possible
to control the pagination of listings and to insert titles into
the heading lines.

Two listing control commands are recognized by SPOOL: When a
line that begins with %PAGE or %page is read, this line is omit-
ted from the 1listing and the next input line is printed as the
first line of the next page of output. When a line that begins
with RTITLE or %title 1is read, the text in columns 10 to 70 of
this line are inserted into the heading and a new page of output
is started. The %title line is not printed in the output list-
ing.

When it is possible to select a default answer to a question
asked by SPOOL, this default answer 1is printed as part of the
question; the default answer is surrounded by slashes (/). To
select this answer, simply enter a carriage return.

Execution of SPOOL is begun by entering the CMS command
spool

Once SPOOL is in execution, it is possible to print an arbitrary
number of files on the terminal. File specifications are entered
in response to terminal questions, see below.

The first question asked by SPOOL is the depth of the forms in
the terminal. The response should be the number of lines that
can be printed on a single page of paper. This includes every
line of the page! For forms that are 8.5 inches deep installed
in a terminal that prints six lines per inch, the appropriate
response is 51 lines (the default answer). For forms that are 11
inches deep, the appropriate response is 66 lines for a terminal
that prints six lines per inch.

The next prompt asks for the starting page number. When the
listing of the first file in the list of file names is printed,

L TRT TR T

.t

pages before this page number are not printed. Pages beginning
with the given page number are printed in the same way that the
would appear if the whole file were printed. This capability is
provided to make it possible to continue printing a listing after
an unexpected disconnection on the telephone line.

The third prompt asks for a list of file names. The response
should be one or more file names separated by commas. All of the
files whose names appear in this list must be of the same file
type and there must not be any spaces in the list of names. The
default answer to this question is QUIT and selecting this answer
terminates execution of SPOOL.

The fourth prompt asks for the file type of the files whose
names were given in response to the second question. The default
answer is file type SIMED (because the program was originally
written to spool these files).

After these questions, the program asks the user to align the
paper in the terminal and then enter return. At this point, the
paper should be positioned so that typing will begin on the very
first line of the page after a carriage return is entered. After
the paper is aligned, enter return and the files will be printed.

After the files you specified in response to the third and
fourth prompts have been printed, the third prompt is repeated
and you may specify another list of file names. Selecting the
default answer to this prompt by entering carriage return will
terminate execution. If another list of file names is entered,
the fourth prompt (requesting the file type) will be repeated.

After an appropriate response, the program will again ask you to
align the paper and enter return.

Appropriate precautions are taken to insure that dialog with
the program does not appear on the same page with listings.

Restrictions

The current version ~of this program will not correctly pagi-
nate files that contain the character line feed (ASCII 10, EBCDIC
37).

If SPOOL is wused with a terminal that does not have hardware
tabs, files containing tabs (ASCII 9, EBCDIC 5) will not be
printed correctly by the current version of SPOOL. Tabs are not
expanded to the appropriate number of spaces.

—

. guiniiin i oA

Warning

It takes a very long time to print files on a 300 baud termi-
nal. If you are printing a large volume of output, it is prefer-
able to use a high speed printer. The program LPTSPL will pro-
vide similar printed output using the TN train on a Computing
Center printer.

Author
Richard J. Orgass
Department of Computer Science
VPI & SU
P. O. Box 17186
Washington, D.C. 20041

CMS userid ORGASS

Relevant Files

The module and help file for SPOOL are located on the 191 disk
of userid CSDULLES (read password ALL). These files are:

SPOOL MODULE
SPOOL MEMO

The program is executed without an EXEC.

The source and documentation files for SPOOL are located on
the 192 disk of userid CSDULLES (read password ALL). These files
are:

SPOOL SIMULA
SPOOL SIMED
SPOOL SCRIPT

-21-

AT SR

T3NS O WD AP R L -

7 g

-

—prn

LPTSPL -- Version 1.0

Program to Spool Files to Lineprinter

This program prints CMS files using a high speed line printer.
The printer may be a Computing Center printer with the TN print
train (upper and lower case, almost ASCII character set) or any
remote station. If files containing upper and lower case letters
as well as many of the graphics are printed at a remote station
they may look quite peculiar because the remote station will per-
form some rather strange character translations. The format and
pagination of listings produced by LPTSPL are the same as list-
ings produced by SPOOL.

The output of LPTSPL is a multi-page listing with a title line
at the top of the page that includes the file name and a page
number. In addition, by means of control lines, it is possible
to paginate an input file and insert titles into heading lines.

Two listing control lines are recognized by LPTSPL: wWhen a
line that begins %PAGE or %page 1is read, this line is deleted
from the listing and the next input 1line is printed as the first
line of the next output page. When a 1line that begins with
STITLE or %title is read, the text in columns 10 to 70 of this
line are inserted into the heading and a new page of output is
started. The text will appear in the heading of all subsequent
pages., The %title line is not printed in the output listing.

When it is possible to select a default answer to a gquestion
asked by LPTSPL, the default answer is printed as part of the
question and enclosed in slashes (/). Default answers are
selected by simply replying with a carriage return.

Execution of this program is begun by entering the CMS command
1ptspl

Wwhen the program begins execution, the user will be asked a
sequence of questions concerning the listing to be printed.

The first question asks for the page depth of the output list-
ing in 1lines. For 8.5 inch deep computer forms printing six
lines per inch the appropriate answer 1is 51; for the same forms
at eight lines per inch, the appropriate response is 68. If the
desired output is to be paginated in the same way that SPOOL out-
put is paginated, the response to this question should be the
game for both programs.

=

“AE o | “ e I‘

The second prompt asks if the 1listing is to be printed with
the TN train at the Computing Center. If the answer is y or yes,
this is the printer that will be used. If the answer is n or no,
the user will be asked to provide a remote station number; the
output will be printed at this remote station.

The third prompt asks for the number of copies of the listing
that are to be printed; the default answer is one copy.

The fourth prompt asks for a list of input file names. The
response should be a list of file names separated by commas with
no imbedded spaces in the input string. All of the files that
appear in this list must be of the same file type. It is possi-
ble to print files of different file types in one execution of
the program (see below).

The fifth prompt asks for the file type of the files whose
names were entered in response to the fourth prompt.

After these 1inputs, the files specified are spooled to the
printer. At the end of each file, an advisory message is printed
on the terminal so that there will be an immediately available
record of files printed.

Once the specified files have been spooled to the printer, the
fourth prompt is repeated. Responding to this prompt with a car-
riage return will terminate spooling. Otherwise, additional file
names may be specified. Following the specification of addi-
tional file names, the file type is again requested.

Spooling will continue as described above until the response
to the prompt "Input File Name(s):" is carriage return. After
this response, the program will ask if the files are to be
released for printing. If the answer to this question 1is y or
yes, the files will be printed. If the answer is n or no, the
virtual printer is purged so that no files are printed or remain
in the virtual printer.

-23-

. .

Warnings

If you decide to abort printing of a listing by answering no
to the question "Release files for printing", your virtual prin-
ter will be purged of all files.

Files containing the character line feed (ASCII 10, EBCDIC 37)
will not be printed correctly.

Files containing tab characters (ASCII 9, EBCDIC 5) will not
be printed correctly by the cmrrent version of LPTSPL.

Author

Richard J. Orgass

Department of Computer Science
VPI & SU

P. O. Box 17186

Washington, D.C. 20041

CMS userid ORGASS

Relevant Files

The execution module and help file are on the 191 disk of
userid CSDULLES. The files are:

LPTSPL MODULE
LPTSPL MEMO

The source and documentation files are on the 192 disk of
userid CSDULLES. The files are:

LPTSPL SIMULA
LPTSPL SIMED
LPTSIL SCRIPT

The program is executed directly without an EXEC.

TPRINT -- Version 1.0

Simulate a Line Printer on an ASCII Terminal

This program simulates a line printer on ASCII hard copy ter-
minals with a 1line length of 132 or greater. Carriage control
characters 1 (eject page) and 0 (skip a line) are recognized and
processed correctly. Carriage control character + (overprint) is
not supported.

The program prompts for inputs and provides a default value
enclosed in slashes(/). To select the default input, simply
answer with a carriage return.

This program is executed by entering the CMS command
tprint

The first input is the physical depth of the paper mounted in
the terminal in lines. For forms that are 8.5 inches deep in a
terminal that prints six lines per inch, this response 1is 51.
For forms that are 1l inches deep in a terminal that prints six
lines per inch, this response is 66.

The second query asks for the names of the files to be spooled
to the terminal. A list of file names, separated by commas, is
the appropriate response. This response may not contain imbedded
blanks. Answering with a carriage return terminates execution.

All of the files whose names were entered in response to the
second prompt must have the same file type. The third question
asks the file type of the files. The default response is LIST-
ING.

The program assumes that files of type LISTING have LRECL =
133. If the file type that you entered is not LISTING, the pro-
gram will prompt for a record length.

After this sequence of questions is answered, the program will
print a message asking you to align the paper and then enter car-
riage return. Position the paper at the top of a new page and
then respond with carriage return. This will start spooling.

i o AN ol

After the first group of files have been printed, the program
: will again ask for input file names. Respond with a carriage
' return if you are finished. Otherwise, respond with another list
of file names as described above.

[Warnings

It takes a very long time to print large files on 300 baud
terminals. If at all possible, use a line printer.

Files containg tabs and line feeds will not print correctly.

Author

Richard J. Orgass

Department of Computer Science
VPI & SU

P. O. Box 17186

Washington, D.C. 20041

CMS userid ORGASS

Relevant Files

The execution module and help file are stored on the 191 disk
of userid CSDULLES (read password ALL). The files are:

TPRINT MODULE
TPRINT MEMO

The source and documentation files are stored on the 192 disk
of userid CSDULLES (read password ALL). The files are:

TPRINT SIMULA
TPRINT SIMED
TPRINT SCRIPT

The module is executed directly without an EXEC.

TRANS -- Version 1.0

Program to Complete ASCII Tape to EBCDIC Translation

When IBEDIT is used to read ASCII tape files, the translation
from ASCII to EBCDIC 1is not completly correct. This program
reads CMS files that were read from ASCII tapes and corrects the
translation errors.

The translation errors that are dealt with are as follows:

(1) There are two EBCDIC codes for left curly bracket ({) and
two EBCDIC codes for right curly bracket (}). The two are
indistinguishable on an ASCII terminal but only one of them
is printed by the TN train. The translation in IBEDIT
selects the non-printable version. This program converts
the non-printable version into the printable version.

(2) There are three EBCDIC codes for not (7). The three are
indistinguishable on an ASCII terminal but only one of them
is printed by the TN train. The translation in IBEDIT

selects one of the non-printable versions. This program
converts the not-printable versions into the printable ver-
sion.

(3) There are three EBCDIC codes for vertical line (|). The
three are indistinguishable on an ASCII terminal but only
one of them is printed by the TN train. The translation in
IBEDIT selects one of the non-printable versions. This pro-
gram converts the non-printable versions into the printable
version.

The translation performed by this program is needed for all
files containing the above characters if they are to be correctly
printed with the TN train. The translation is not necessary if
the file is only to be compiled using SIMULA, RATFOR or Fortran
and possibly other processors. However, without translation of
text and character constants, printed output will be incorrect.

-27-

oyl

This program is a self contained module and is executed by
typing the command:

trans

The program will prompt for an input file name and input file

type. These two items specify the file that is to be translated.

The output translated file will have the same file name but the .
file type is secured from an additional terminal prompt.

Author

Richard J. Orgass

Department of Computer Science
VPI & SU

P. O. Box 17186

Washington, D.C. 20041

CMS userid ORGASS

Relevant Files

The module and help files are stored on the 191 disk of userid
CSDULLES. The files are:

TRANS MODULE
TRANS MEMO

The module is self contained and is executed without an EXEC.

The source and documentation files are stored on the 192 disk
of userid CSDULLES. The files are:

TRANS SIMULA
TRANS SIMED
TRANS SCRIPT i

CHAPTER V

PROCEDURES AND CLASSES

This chapter is to contain descriptions of separately compiled
procedures and classes that can be used in other programs.

In later editions, I hope to add file management procedures
for RATFOR and procedures for performing translations from EBCDIC
to ASCII and conversely.

Contributions are solicited!

In this edition, the chapter contains:

DIALOG SIMULA class for writing interactive programs
and managing files at run time.

TN iy

DIALOG -- Version 1.0

A SIMULA Class for Writing Interactive Programs

DIALOG is a separately compiled SIMULA class that was designed
to serve as a prefix for the main block of SIMULA programs. The
class contains procedures for writing programs that interact with
users at terminals and for accessing files during program execu-
tion. In addition, a number of utility procedures that are part
of the DEC~-10 SIMULA library are included in the class.

ST T TR T

Using the procedure get_infile in class DIALOG it is possible
to read any CMS file without knowing any of the properties of the
file!

Some of the code in DIALOG depends on the EBCDIC character set
as well as details of CMS and CMS SIMULA. It 1is intended as a
machine dependant front end for SIMULA programs. If all refer-
ences to the environment are made through DIALOG, only DIALOG
must be changed when programs are moved to another implementa-
tion. '

A detailed set of specifications for the procdures in DIALOG
is given in:
R. J. Orgass. DIALOG: A SIMULA Class for Writing Interactive
Programs. Technical Memorandum No. 79-3, Graduate Program in
Northern Virginia, Department of Computer Science, Virginia Poly-
technic Institute and State University, May 4, 1979.

Copies may be obtained from the author (see below).

Directions

To use the procedures in DIALOG in a program, the program
structure should be as follows:

BEGIN
EXTERNAL CLASS dialog:

dialog BEGIN

< text of program using DIALOG >

END of dialog block;
END of program.

If this program is contained in a file TEST SIMULA, the program
is compiled with the CMS command:

simula test (class dialog <other options>
These directions assume that the 191 disk of userid CSDULLES

is a read only extension of the user”s A disk. These directions
replace the directions given in ™ 79-3,
Author

Richard J. Orgass

Department of Computer Science

VPI & SU

P. O. Box 17186

Washington, D.C. 20041

CMS userid ORGASS

Relevant Files

The simclass and help files for DIALOG are stored on the 191
disk of userid CSDULLES (read password ALL). These files are:

DIALOG SIMCLASS
DIALOG MEMO

The source and documentation files for DIALOG are stored on
the 192 disk of userid CSDULLES (read password ALL). These files
are:

DIALOG SIMULA
DIALOG SIMID
DIALOG SCRIPT

-31-

S S S S et

CHAPTER VI
USEFUL EXEC FILES

This chapter contains brief descriptions of EXECs that are
generally useful. It is not intended for EXECs that are used to
run programs in the library; EXECs of this type should be des-
cribed in the documentation of the program.

The current edition contains descriptions of the following

EXECs:

, DPRINT Print files with TN print train at Computing Center
' EDM Enter CMS editor in a useful way
% GO Execute SIMULA programs from TEXT files

HLP Extend CMS MEMO to user created help files

KJOB Delete map files, log hold

QF Determine LRECL and RECFM of files

QUERYFIL Place LRECL and RECFM of files in console stack

SIM Compile SIMULA programs with class dialog and

then execute the program

WY

dprint <fn> <ft> [<fm>]

Print the file whose specfication is the parameter of the exec
on a printer at the Computing Center using the TN print train.
After queuing the file for printing, restore the destination for
printed output to remote station 18.

edm <fn> <ft> [<fm>]

Enter the CMS editor with a number of useful options enabled:
Tabs are set every eight spaces so that hardware tabs can be used
for indentation with the tabs mapped into the appropriate number
of blanks. This makes it possible to have files correctly pro-
cessed by system compilers. Text that is entered into the file
is in upper and lower case. It is assumed that the delete char-
acter is <backspace> so backspaces are not processed.

To prevent the loss of work when telephone lines disconnect,
autosave is set to 10.

The terminal prompt character is set to asterisk (*) at entry
and back to period (.) at exit.
go <fn>
If there is a file <fn> TEXT on the A disk, this file is
loaded with SIMRTS. The EXEC is designed to execute SIMULA pro-
grams. Any additional parameters are run time parameters for
SIMRTS.

If there is no file <fn> TEXT the results are unpredictable.

kjob

Delete load map files and execute 1log hold to continue termi-
nal session.

qf <fn> [<ft> [<fm>]]

Print the file name, file type, file mode, RECFM and LRECL of
the file on the terminal. If <ft> is omitted, the first file
with <fn> on the search list is used.

queryfil <fn> [<ft> [<fm>]]

Place RECFM and LRECL of the file at the top of the console
stack. If <ft> 1is omitted, the first file in the search list
with <fn> is used.

This EXEC is used by RATFOR and DIALOG.

sim <fn>

Invokes the SIMULA compiler for file <fn> SIMULA with compiler
options that include simclass dialog. Additional parameters are
parameters to the SIMULA compiler.

If the compiler completes with return code 0, the program is
loaded as with GO and executed. This is a restricted version of
EX in TOPS-10.

