
I L AD-A085 649 MARYLAND UNIV COLLEGE PARK DEPT OF AEROSPACE ENGINEERING F/G 20/3
AN EXTENDED METHOD SOLUTION FOR A PULSE LOADED THIN PLATE.(U)
APR S0 B K DONALDSON. N B STARKEY N00014-76-C-0872

UNCLASSIFIED AE-80-1L

END



~Office of Naval Research

Contract NO0014-76-C-0872 :

Report No. 80-1

an 'rhi d e

So1 018
* AN

~An Extended Field Method Solution For A

~Pulse Loaded Thin Plate

by

Bruce K. Donaldson

and I kbimdc~tbm1

.== 80 6 1001 8i



SECURITY CLASSIFICATION OF THIS PAGE (119im Do&f Seered) _________________

go GOVt ACCESION No. 31. RECIPIENT'S CATALOG %UNDER

64 An Extended Field Method Solution for a Pulse\
Loaded Thin Plate *.,womiosg mvumR

BCONTRAC Of GRANT NUMIECR(S)

Lil K./Donal dson ---
N. B./ Starkey 1052

3 PRFOMIN ORANIATIN NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

University of Maryland
College Park, MD 20742

11. CONTROLLING OFFICE NAME AND ADDRESS

Office of Naval Research
Structural Mechanics Program
Arlinqton. VA 22217

14. MONITORING AGENCY NAME & AODRESS(it diferent how Controlling Office) IS. SECURITY CLASS. (of A IPeOt)

Unclassified312T h IS&. DEC ASSIPICATIONIOOWNGRAOING

16. DISTRIBUTION STATEMENT (of this Reortf) SNUDL

Approved for public release, distribution unlimited

97. DISTRIBUTION STATEMENT (of Aco abstract miewed In Stock 20, It diffet hown Reo")

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on fewer** @fd If nocemn and IdmtiIV weelok rnbm)

extended field method
pulse loading
plate
series solution

3 TRACT (Coninue an... rover" sieitcessory 8inti&eeI by Weeck wlumber)

This paper deals with a new extension of a weighted residual method of
analysis called the extended field method. The extended field method is ap-
plied for the first time to the problem of the transient vibration of a

uniformly thin elastic plate. Numerical results have been obtained which
validate the analysis procedure and show better solution convergence that I
is obtainable by standard methods of analysis for the same number of degreeso
freedom. Further studies are necessary to obtain still better convergence._

DO I OA" 1473 EDIIO OFIOOSI 8 OLETE S~W~iCT1OTIPi~1bPi

Un/OJS'(oC)



ABSTRACT

U(

This paper deals with a new extension of a weighted residual method

of analysis called the extended field method. The extended field method

is applied for the first time to the problem of the transient vibration

of a uniformly thin elastic plate. Numerical results have been obtained

which validate the analysis procedure and show better solution convergence

than is obtainable by standard methods of analysis for the same number of

degrees of freedom. Further studies are necessary to obtain still better

convergence.

NOMENCLATURE

a extended plate length in x-coordinate direction
b extended plate length in y-coordinate direction
c,c extended plate offsets in x-coordinate direc-

tion
d plate thickness
e,e extended plate offsets in y-coordinate direc-

tion
h Jn~k  n,kth Fourier series coefficient of the extended

plate side j arbitrary lateral displacements,
where j - 1,2,3,4

k. J~n~k  n,kth Fourier series coefficient of the extended

plate side j aribtrary normal slope where
J - 1,2,3,4

k,m,n,p,q summation indices
p(x,y;t) pressure loading over the plate area

double Fourier series coefficient of the pressure
m, n loading
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PO spatially uniform pressure amplitude

t time
to time duration of pressure pulse loading

w(x,y;t) plate lateral deflection function
w5(x,y;t) particular solution component of w(x,y;t)

x,y plate Cartesian coordinates

D plate stiffness factor, Ed3/(12(1-u
2))

E Young's modulus
K,M,N,N maximum values for the indices

1 if i is odd; 0 otherwise

Q.jQl constants of integration for complementaryia'Ql1 ij'Q 2 , 'R1 3  solution to the nonhomogeneous equation (10)

W.i (xy) plate lateral deflection amplitude; the sub-script j refers to a specific set of boundary

conditions, and the subscript i ranges to N

am,n (D/pd) [(mw/a)2 + (nn/b)
2)

Bmn (l 6Poo"''n )/( 2mnpd)

Poisson's ratio
p mass density

kn/T, where k = 1,2,...,N

INTRODUCTION

The purpose of this paper is to present an extension of an approxi-
mate method of analysis called the extended field method (XFM). In
brief, the XFM employs finite series which are term-by-term solutions to
the governing differential equation(s). Then the device of an offset
auxillary boundary, which is the boundary of the "extended field", is
coupled with the Galerkin error minimization technique in order to ap-
proximate the given boundary conditions [1]. The necessity for
term-by-term series solutions to the governing differential equation
limits the XFM to simple geometries. Despite this lack of versatility,
the XFM is noteworthy because of its demonstrated superior solution
convergence.

In its previous development the XFM has been applied to the problem
of uniformly thin, elastic, polygonal plates undergoing forced harmonic
vibration, and small combinations of plates and open section beams un-
dergoing forced harmonic vibration. For the purposes of discussing the
previous displacement amplitude numerical results, single plate analyses
are divided into two groups. The first group consists of those analyses
where the polygonal plates possess one or more free edges. This is a
difficult group for the XFM because the free edge boundary conditions
require three differentiations of the XFM finite series solutions, and
there is a consequent lessening of the convergence rate. For this group
of plates, as many as 150 degrees of freedom may be necessary to achieve
a completely convincing four significant digits of convergence. Even
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so, this is more in the way of solution convergence than can be obtained
with many more degrees of freedom using the more popular methods of
analysis such as the finite element, finite difference, and Rayleigh-
Ritz methods [2].

The second group of analyses concerns polygonal plates without free
edge boundary conditions. For this group of analyses, the XFM generally
attains at least six significant figures of convergence with as little
as one hundred degrees of freedom. In particularly favorable analyses,
seven significant figures of convergence can be attained with that num-
ber of degrees of freedom. Thus for the problem of linear, forced har-
monically vibrating plates, the XFM can provide benchmark solutions.
However, forced vibration problems are a relatively simple set of pro-
bl ems.

This paper presents XFM numerical results for a somewhat more com-
plicated problem, that of the linear response of a uniformly thin plate
subjected to an arbitrary lateral pressure pulse. In this problem the
time variable, t, cannot be deleted from the analysis, and initial con-
ditions as well as boundary conditions must be approximated. Neverthe-
less, just as there is no need for any sort of geometric grid in order
to describe spatial variations, the XFM does not use any sort of
step-by-step integration process to evaluate the time varying response.
Furthermore, there is no difference in style between this XFM analysis
and the simpler forced harmonic analysis which forms a portion of the
present analysis. The succeeding sections will present the analysis
procedure, the numerical results, and the conclusions that may be drawn.

THE ANALYSIS PROCEDURE IN BRIEF

In Cartesian coordinates the governing differential equation for a
thin, uniform, isotropic, homogeneous, linearly elastic plate subjected
to an arbitrary time varying pressure loading is

D w(x,y;t)+(pd)w,tt(x.y;t ) = p(x,y;t) (1)

where a comma indicates partial differentiation. The solution to this
equation is obtained in several parts without regard to the shape of the
actual plate boundary or the nature of the actual boundary supports.
First consider the homogeneous form of Eq. (1). The homogeneous form
can be solved by first separating the spatial and temporal variables so
that

w(xy;t) = W(xy)sinwt (2)

Then the homogeneous equation becomes

VW(xy) - (0w2 d/D)W(xy) - 0 (3)

This homogeneous equation is the same as the homogeneous equation asso-
ciated with forced harmonic vibration. Thus the same four Levy series
solutions used in the harmonic case [1] may also be used here. However
there is the difference that in this nonharmonic case, the frequency of
forced vibration. w, has no meaning. In order to determine appropriate
values for ., define a time period of interest (0,T) over which the
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solution will be sought. In engineering terms, this time period is sim-
ply defined. It would usually be a multiple of the plate's first na-
tural period or a multiple of some characteristic time interval associa-
ted with the applied loading. Therefore, with the pulse beginning at
t= 0, write kit

=k T k = 1,2,...,K (4)

and there will be four Livy series solutions for each value of k. Ig-
noring the special case where the boundary conditions involve adjacent
free edges, which is dealt with in Ref. 2, the solution to Eq. (3) is

4 K
w(x,y,t) = E W. (x,y)sinkt (5)

j=l k=l j,kx n

where N

W'k (X'Y) =n=rI nk hl ,n ,k[sn ,k cos(h)sn,ka sinh rn,k(a-x)

-rnk cosh rn,ka sin(h)sn,k(a-x)]

+ kl,n,k[sin(h) Sn,k a sinh rn,k(a-x)

- sinh rnka sin(h)sn k(a-x)]}sin iY

Jn,k [sn,k sinh rnka cos(h)sn,ka-rn,k cosh rn,ka sin(h)sn,ka]
1

rn,k = [(nw/b2 ) + wk(pd/D)]

Sn,k = [(nIr/b 2) - wk(Pd/D)] for n > nk

(pd/D)' - (ni/b) ) for n < nk

nk = (b/w)(Pwkd/D)

sin(h)sn,kx = sin sn,kx if n < nk
sinhs n,kx  if n nk

cos(h)Sn,kX = Cos Sn,k x  if n <nk
cosh sn,kX if n > nk (6)

As a brief explanation, for example, the Levy series Wl,k can be thought

of as representing the solution for a rectangular plate of dimensions a
by b with simple supports at sides y-O,b and x= a, but arbitrary la-
teral displacements and normal slopes at side one (xzO) that are de-
scribed by the respective equations

N K
W(O,y) I E h sin ny

nI k=l l,n,k b

4
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N KW x(O,y) I Z kI  sin n-X  (7)
n-l k=l In,k sn

This rectangular plate is called the extended plate. Later in the anal-
ysis, the rectangular extendedplate boundaries will enclose the actual
plate boundaries. The third Levy series, W3,n, k , which corresponds to
arbitrary boundary conditions on the extended plate edge x= a, is like
the first series, but with x replacing a-x and -k3,nk replacing

+kl,n,k. The second series, corresponding to arbitrary conditions at

y- 0 can be obtained from the first by interchanging a,x and b,y. The
fourth solution can be obtained from the second as the third is obtained
from the first.

To obtain the particular solution for the non-homogeneous equation
(1) write the forcing pressure in double Fourier series form as

M M
p(x,y;t) = l nzl Pmn(t)sin(mrx/a)sln(nwy/b) (8)

where the index M is large enough to ensure satisfactory convergence.
Then the particular solution may be written in Navier series form as

M M
w 5(x.y~t) = r r Zm,n(t)sin(mrx/a)sin(nnry/b) (9)

m=l n=l

Substitution of Eq. (9) into Eq. (1), and noting the linear independence
of the sine functions, leads to

S (t)a+ 2  Z (t) =p (t)/pd (10)
mn m,n m,n m,n

where 222
w 2 = (D/pd))(m/a) + (nr/b) I).
in,n

The solution of these M2 elementary ordinary differential equations com-
pletes the solution for w5(x,y,t), and hence for w(x,y,t) which, again,

is the right hand side of Eq. (5) plus w5 (xy;t).

In order to illustrate the above, consider a fully clamped rectan-

gular plate of dimensions a-c-c by b-e-i where c,e,c,e are the offsets
between the actual plate rectangular boundary and the extended rectan-
gular plate boundary. Let the applied loading, which is extended to the
boundaries of the extended plate as well, be

P(XY t Po si n(7rt/to) 0 < t < to0
p(x,y,t) fJ - to (11)

0 otherwise

This choice of plate and loading for an example problem is neither fa-
vorable or unfavorable for the analysis procedure. The four clamped
edges require a larger number of degrees of freedom than is necessary
in many cases, and the double Fourier series representation of p(x,y;t)
Is slow to converge. On the other hand, the absence of one or more
free edges improves the convergence rate [2]. Substitution of Eq. (11)
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into Eq. (8) yields

1) (t) = (16potfmCn/w2mn)sin(-nt/to) (12)

where 1m is plus one if m is an odd integer, and zero if even. Then the

solution to Eq. (10) is easily found to be such that, for 0 < t < to

M M
w5 (x,y,t) = {Q,nsinamnt + RmnCOScmt

m=l n=l n n nc m,n

am,n
+ 2 2 sin(Wt/t )}sin(mwx/a)sin(nny/b) (13)am,n-.(IT/to0) I

where am,n = 16p 'T /7 2 mnpd and Qm'n and Rm, n are constants of integra-imtenmra-tion. The time period after t= t0 can be dealt with by standard super-

position procedure involving two continuous sinusoidal loadings with a
half period phase shift.

Now it is necessary to satisfy the initial conditions and the ac-
tual plate boundary conditions. The initial conditions will be satis-
fied first. Let these conditions be those of zero initial displacement
and zero initial velocity. Zero initial displacement quickly leads to
Rm,n = 0. To satisfy zero initial velocity, K is set equal to N, and

Qm,n is split into two parts. Ql,m,n is used to cancel the w5 portion

of the initial velocity equation, and Q2,m,n cancels the W1 through W4

portion. In other words, due to the linear independence of the sine
functions

- mn m,n o
lmm,n =2 ) 2 m,n = 1,2,... ,M (14)

Q n ,n (7Ito)/ "'"

and Q2,m,n satisfies the equation

N N
ZE Q2 mm amn sin(mrx/a)sin(nvy/b) (15)

m=1 n=l

+N k [W1  + + W = 0 (16)

k = 1 " ' "

where Q2,m,n is zero for m,n greater than N. (Note M>> N.) Eq. (15) is

written as an equality, but it is actually only an approximation. The
error of this approximation may be minimized by use of the Galerkin
technique with weighting functions sin(pnx/a) and sin(qwy/b) on the in-
tervals (Ma) and (O,b). For the sake of brevity, the algebraic solu-
tion for Q2,m,n will be omitted here.

The satisfaction of the eight boundary conditions is even more
straight forward. For example, the boundary condition w(c,y;t)= 0 is
approximated by substitution of the expression obtained above for
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w(x,y;t). Then the error of that approximation to the boundary condi-
tion w(c,y,t)= 0 is minimized by the Galerkin technique along the length
of the actual edge x= c by use of the weighting function sin(pry/b) on
the interval (O,b) and minimized again over the time interval (0,T) with
the weighting function sin(qwt/T), where p,q = 1,2,...,N. The result is

N2 linear, non-homogeneous algebraic equations in the 8N2 unknown ex-
tended plate edge coefficients hi,1 ,1 through k4,N, N. The other seven

boundary condition equations supply the remaining 7N2 equations. Ref. 3
details the above derivation and lists all necessary results, specifi-
cally, the unabridged forms for the eight boundary condition equations
whose solution explicitly defines w(x,y;t).

NUMERICAL RESULTS

The fully clamped rectangular plate subjected to the half-period
sine pulse discussed above was programmed for the UNIVAC 1140 digital
computer. The selected input for the plate geometry and material pro-

perties was a=20 inches, b=16 inches, d=l inch, c=e=c =e= 0.0,
2 4E=10,500,000 psi, 11=0.30, and p=O0 .000254 lb-sec /in . The selected

parameters for the pressure loading were a uniform spatial amplitude of
Po = psi, and a half sine pulse duration of to = 0.010873 sec. The

latter number, besides having too many digits for an essentially arbi-
trary choice, was based on an originally mistaken estimate of the
plate's first natural period. A correct estimate is 0.00087 secs. [4].
Thus the selected pulse duration turned out to be approximately twelve
and one-half times the plate's first natural period. Thus it was rea-
sonable to set the time period of interest, T= to. In order to well de-

fine the response in the interval (O,T), it was decided to calculate the
displacement response at 101 equally spaced points, including the end
points.

The primary purpose for gathering the numerical results presented
here was to investigate the degree of solution convergence obtainable by
the XFM analysis, and thus learn if the same high degree of convergence
that characterized forced harmonic vibration XFM solutions could also
be obtained for pulse loadings. In order to study the XFM solution
convergence, three indices were varied. The first of these was N, the
maximum number of terms in each solution series. The importance of N
is that the number of degrees of freedom that describe the plate dis-

placements is 8N2 . This index, as expected, was the critical index.

The second index was NI, another maximum summation index originally equal
to N, but by rearranging certain orders of summation, could be freed
from being tied to the small value that N must normally be. The results

in Table 1 show that a value of f= 25 is quite sufficient. The third
index that was varied is M, which determines the number of series terms
used to describe the input pressure. As Table 1 suggests, M, which is
an odd number because even indexed input terms are zero, is less

7
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influential than N. In the two instances checked, only the sixth sig-
nificant digit was affected when H was increased from 49 to 99, and in
the one instance checked, only the seventh significant digit was affec-
ted when M was increased from 99 to 149. Thus only N needs further con-
sideration when discussing convergence at this time.

Before studying the effect of N on convergence it is worth noting
that the digital computer program that supplied the results presented
in Table 1 was verified by comparison to a finite element, direct step-
wise integration solution. Specifically, an XFM solution at N=8,

N= 49, M= 99 for the same plate, but for a change in thickness to 0.1
inch, was within one half percent of the corresponding NASTRAN solution
using eighty QUAD2 elements and 364 degrees of freedom over one quarter
of the doubly symmetric, actual plate. This is a good place to
mention that although the XFM solution could also have been greatly sim-
plified by use of the double symmetry of the plate geometry and loading,
no such simplification was made in order to present results that equally
well characterize a loading with any spatial distribution.

The digital listing of the time response curve for a particular
geometric point on the plate represents a lot of different numbers. Re-
sponse curves for different maximum indices could have been compared on
the basis, for example, of an averaged sum of the absolute values of the
displacement differences, or some similar scheme that compares the en-
tire curves on a weighted or unweighted basis. However, from an engi-
neering point of view, the maximum displacement is usually the most in-
teresting displacement measurement. Of course, the trt,- maximum lies
between data points. Table 1 presents the values at that data point
(time instant) closest to where the true maximum occurs. In all cases
studied it was the same time instant, number 56, which is equivalent to
an elapsed time of 0.00598015 sec. Returning now to the convergence
pattern dependent upon N. It suffices to look at the data for which

M= 99 and N= 49. The plate center displacements for N= 3,4, and 5 have
only converged to the third significant digit. This degree of conver-
gence is typical of the convergence at other time points, with very
little deviation in the convergence rate from one time point to another.
This situation is to be expected since the solution error is essentially
the same at all instants of time. That is, the error does not increase
with time as it does with a step-by-step integration scheme. The same
background comments apply for the values of N equal to six and seven.
Here it is almost possible to claim a fourth digit of convergence be-
cause the Cauchy differences are dc-reasing rapidly. Specifically, the

Cauchy differences multiplied by 109 for the pairs of values of N equal
to (5,4), (6,5), and (7,6) are 67, 50, and 5 respectively. However, it
is not possible to guarantee that the above trend will continue. There-
fore only convergence to a third digit will be claimed, or in other
terms, the maximum center displacement appears to be 0.1304 ± .0004 x

10-3 inches.

8



DISPLACEMENTS (INCHES X 1,000)

Degrees of
N Freedom N M= 49 M= 99 M = 149

3 72 25 .1303 7242 .1303 7124

49 .1303 7124

4 128 25 .1302 9999 .1302 9881 .1302 9869

49 .1302 9881

75 .1302 9881

5 200 25 .1303 6552

49 .1303 6552

6 288 49 .1304 1552

7 392 49 j .1304 2131

TABLE 1

Plate Center Displacement for Various Maximum Index Values at Time

Equal to 0.00598015 sec Which Corresponds to 0.55 of the

Pulse Duration, the Time Point Closest to the

Time of Maximum Displacement
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CONCLUSIONS AND FUTURE WORK

From the comparison to the NASTRAN result it is clear that the XFM
does provide correct solutions for the pulse loaded thin plate problem.
The three significant digit convergence at two hundred degrees of free-
dom is not spectacular, but it is still distinctly better than can be
obtained from a standard finite element, finite difference, or Rayleigh-
Ritz analysis. It is also clear that solutions for increased values of
N are required to more fully explore the XFM convergence rate. Other
parametric studies are also needed. Variations on the relations between
the pulse duration, the first natural period, and the period of interest
need investigation. Reasonable variations on the offset distances and
pulse shape are not expected to have any effect on solution convergence
but this also should be verified.
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