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20. Abstract (Continued)

the structural response to high intensity noise. Using the Kanman-Herrmann larg
deflection equations for rectangular plates, a single mode Galerkin approxima-
tion, the nonlinear differential equations of motion were obtained. The method
of equivalent linearization was used to solve the nonlinear equations for mean-
square displacement, mean square stresses and nonlinear frequencies at various
acoustic loadings for rectangular panels. Comparisons with experimental results
are presented. The results obtained agreed with the experimental results; how-
ever, additional test data are needed for an adequate quantitative comparison.
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FOREWORD

This report contains the research results on large amplitude res-

ponse of aircraft structural panels subjected to high intensity broadband

random acoustic excitation. The work was performed at the Department of

Engineering Mechanics, University of Missouri-Rolla during the period 18

June 1979 to 20 August 1979. The research was sponsored by the Air Force

Office of Scientific Research (AFSC), United States Air Force, under con-

tract F49620-79-C-0169. The work was monitored under the supervision of

Lt. Colonel Joseph D. Morgan III, Office of Aerospace Sciences, and

Howard F. Wolfe, Structural Integrity Branch, Structures and Dynamics

Division, Flight Dynamics Laboratory, Air Force Wright Aeronautical

Laboratories, Wright-Patterson Air Force Base, Ohio 45433. The work was

performed under work unit number 24010146, "Sonic Fatigue Test of Ad-

vanced Materials and Structural Configurations."
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NOMENCLATURE

a, b Panel length and width

A, B Panel dimension parameters, 2ii/a and 2'n/b

Ci, C2  Constants

D Bending regidity

err Error of linearization

E Young's modulus

f Equivalent linear frequency in Hz

F Stress function

h Panel thickness

H(w) Frequency response function

L Spectrum level

m Mass coefficient

N Membrane stress resultant

N Constant

p Pressure loading

q Generalized or nodal displacement

r Aspect ratio, a/b

S(W) Spectral density function of excitation pressure p(t)

t Time

u, v Displacement of midplane

w Transverse deflection

x, y, z Coordinates

Nonlinearity coefficient

Nondimensional nonlinearity coefficient

Strain

Damping ratio, c/cc

x

I.



Nondimensional frequency parameter

v Poisson's ratio

p Panel mass density

a, - Normal and shear stresses

w Radian frequency

0Equivalent linear or nonlinear radian frequency

b Bending

c Complementary solution or critical

m Membrane

max Maximum

o Linear

p Particular solution
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SECTION I

INTRODUCTION

Vibrations caused by acoustic pressure can frequently disturb the operat-

ing conditions of various instruments and systems, and sonic fatigue failures

which occurred in aircraft structural components cause large maintenance and

inspection burdens for the Air Force. The development of sonic fatigue data

and design techniques were initiated to prevent sonic fatigue failures.

Design methods and design criteria for many types of aircraft structures have

been developed under Air Force sponsorship and by the industry in the pastJ

twenty years. Reference 1 has a complete list of the reports describing

these efforts. This research led to sonic fatigue design criteria and design

charts which are widely used during the design of an aircraft. Although cur-

rent analytical sonic fatigue design methods are essentially based on small

deflection or linear structural theory (Reference 1, page 209), many docu-

mented tests on various aircraft panels have indicated that high noise levels

produce nonlinear behavior with large amplitudes in such structural panels.

For example, Fitch et al, (Reference 2), van der Heyde and Smith (Reference 3),

Jacobs and Lagerquist (Reference 4), and Jacobson (References 5 and 6) have

repeatedly reported that a poor comparison exists between the measured and

computed root mean square (RMS) displacements and/or RMS stresses. They all

observed that the test panels responded with large deflections at high sound

pressure levels, whereas the analytical responses were based on linear small

deflection theory. The neglect of such large deflection geometrical non-

linearity in analysis and design formulations has been identified as one of

the major causes for disagreement between experimental data and analytical

results. The evidence of those researchers was summarized in Reference 7,



where a comprehensive review of existing analytical methods on random exci-

tations of nonlinear systems was also given.

Because there are no reliable analysis methods available for predict-

ing the nonlinear stress-sound pressure relation, costly and time-consuming

full-scale fatigue tests of aircraft structures and components are frequently

conducted. The objectives of the present work are: 1) to gain a better

understanding of the random response of nonlinear panels, 2) to incorporate

large deflection geometrical nonlinearity into analysis methods for determin-

ing structural response to high intensity noise, and 3) to provide analytical

background material for formulation of improved sonic fatigue design proce-

dures that would result in better and less costly designs without sacrificing

safety.

The Karman-Herrmann large deflection equations for rectangular plates

(Reference 8) are employed in this development. Using a single-mode Galerkin's

approximation, the dynamic equations reduce to a nonlinear differential equa-

tion with time as the independent variable. The method of equivalent lineari-

zation is then applied to reduce the nonlinear equation to an equivalent

linear one (References 12-14). Mean-square displacements, mean-square stresses,

and nonlinear frequencies at various acoustic loadings are obtained for rec-

tangular panels of different aspect ratios and damping factors. Both simply

supported and clamped boundary conditions with immovable and movable inplane

edges are considered. The results are presented in graphical form. Compari-

sons with experimental results are also presented.

2



SECTION I1

FORMULATION AND SOLUTION PROCEDURE

1. Governing Equations

Assuming that the effect of both the in plane and rotatory inertia forces

can be neglected, the dynamic equations of a rectangular isotropic plate

undergoing moderately large deflections are (References 8 and 9):

L(w,F) = DV4w + phw,tt - h (F,yy W,xx +

-2F,xy xy - p(t) : 0 (1)

V4F = E (W2 ,xy - w xx W ) (2)

whcre wa is the transverse deflection of the plate, h is the panel thickness,

p is the mass density of the panel material, 1 = Eh3/12(TI 2) is the flexural

rigidity, E is Young's modulus, ) is Poisson's ratio, p(t) is the exciting

pressure, and a comma preceding a subscript(s) indicates partial differentiation (s).

The stress function F is defined by

yx = F,yy

y= F,xx, (3)

T xy = -F,xy

where ax , cy,and Txy are membrane stresses.

a. Simply Supported Panels

For a rectangular plate simply supported along all four edges as shown in

Figure 1, Chu and Herrmann ('efcrence 8), a Lin (Pefercnce In) avc consi-

dered that, if thc f'irF ntrl e'r ic predorlinant, 'hc notion of the panel can

3



be represented adequately as

w = q(t) h cos (w x/a) cos (w y/b) (4)

where q(t) is a function of time only. The maximun value of q(t) coincides

with the maximum deflection wmax divided by panel thickness h. The expression

w satisfies the boundary conditions for simple supports.

y~fx

b

Figure 1.

Geometry and Coordinates

w = W, + v W,yy = 0, on x = ± a/2
(5)

w =Wy +V Wx =O, on y = ± b/2Wyy Wxx

Substituting the expression for w in Eq. (2) and solving for a

particular solution Fp yields

Fp= q22 Er2 (cos 2 x + 1 Cos Ly) (6)

where r = a/b. The complementary solution to Eq. (2) is taken in the form
2 2

Fc = x +Wy Nxy xy (7)

where the constants Nx' N- and N contribute to the membrane stressesx x



ox , a y and Txy and are to be determined from the inplane boundary, immovable

or movable, conditions.

For the immovable edges case, the conditions of zero inplane normal

displacement at all four edges are satisfied in an averaged manner as

F, xy = XfY ,on x = +_a/2

b/2 f a/2  au dx dy [ (F - vF, x) - W2, x dxdyx
b/2 _a/2 x ,fi E yy x

F, (8)
F y b0 2 on y =+b/2

b/2 v dydx vF W2y] dydx

Ja/2 J-b/2 x F 'xx - -

where u and v are inplane displacements.

For the movable edges case, the edges are free to move as a rigid

body with the average inplane stress equal to zero. The inplane boundary

conditions are

F, =0

N hJb/2 F, yydy = 0 on x = ±a/2

u = constant (9)

F, 
F=N y = 2 F, dx = 0 on y = ±b/2

a/2 'y y

v = constant

where Nx and Ny are membrane stress resultants per unit length in plate.

By making use of these inplane edge boundary conditions, Eqs. (8) and

(9), it easily can be shown that for the immovable edges



q2 2f (1 + yr 2
X= 8a2 (- )

q (r2 + v) (10)

8a (1-, v

Nxy = 0

and for the movable edges

NX 0
NY =~ N 0 (1

the complete stress function is then given by F = Fp + Fc.

With the assumed w given by Eq. (4) and stress function given by

Eqs. (6) and (7), Eq. (1) is satisfied by applying Galerkin's method

a/2 12
L (w,F) w dxdy = 0 (12)

Ja/2 -b/2

from which yields the modal equation of the form

+ q + q3 (13)
0 m

and

2 2 D 2 4 (1 2
0 0 Ph =4  r

M = i22/16 (14)

B Bp+ Bc



with D 4 4 6;= 2
S • Ophb4P 4

D 3w (1 2 22

B4r-- (I + r ) (1-v )

M D * 3-4 [1 + yr + r (r + v)]

BJ " ph- b 2r

where i is linear radian frequency, mismass coefficient, and 0 is non-0

linearity coefficient. The linear frequency A0, nonlinearity coeffi-

cients a* and 2,* and aspect ratio r are all nondimensional parameters.

b. Clamped Panels

Yamaki (Reference 11) considered the predominant mode

S(1+Cos -) (1 + cos %X) (15)

which satisfies the clamped support conditions

w = w'x = 0 , on x = ± a/2 (16)

w = W ,y = O, on y = ± b/2

By introducing Eq. (15) in Eq. (2) and solving it, the particular

stress function is
Fp q2h2cEr2 Cos 2 1x + Cos -

p a r4 b 16 a

+ 2  Cos - cos b + cos
(1+ r )a16r 4

+ 1

Co 1L Co __l + 1 o 2iRx cos-~](7
(4+r )2  a b (+4r ) (17)

7



The complementary stress function is assumed as the form appearing

in Eq. (7). Upon enforcing the inplane edge conditions, Eqs. (8) and

(9), it can be shown that for the immovable edges

wx 3q 2 h 2 E2 (1 + vr 2

NX 32 a (1- )

3q2h2E 2  (r 2+v) (18)

Ny 32 a2 (1-V )

Nxy =0

for the movable edges

Nx = NY = Nxy = 0 (19)

the complete stress function is given by F = Fp + Fc . Introducing

these expressions for w and F in Eq. (1) and applying Galerkin's proce-

dure yields the modal equation
q 0 q + a = ) (13)o q+ Bq3 P"  (13

where

2 =2 D 2 16n4( 2 4o oh- ' 0o-=  (3+2r +3r)

m = 9 ph 2/16 (20)

=c -- (Sp + 0 ) D

8



and

p* 1 1 2 1

1 + I

+ + (21)2(4+r )2(1+4r)
++v + r(

c 2r4

Equation (13) represents the undamped, large amplitude vibration of a rec-

tangular panel with simply-supported and clamped edaes.

The methods commonly used for determining the damping coefficient are

the bandwidth method in which half-power widths are measured at modal reso-

nances and the decay rate method in which the logarithmic decrement of decay-

ing modal response traces is measured. The values of damping ratio

S(= c/c) range from 0.005 to 0.05 for the common type of panel construc-

tion used in aircraft structures. Once the damping coefficient is determined

from experiments or from existing data of similar construction, the modal

equation, Eq. (13), now reads

+0 2 O  + 02q + 3 .= t
q w+ q+q m (22)

The method of equivalent linearization 1: cployed to determine an approxi-

mate RMS displacement from Eq. (22).

2. Method of Equivalent Linearization

The basic idea of the equivalent linearization (Reference 12-14) is to

replace the original nonlinear equation, Eq. (22), with an equation of the

form
9



q+ 2 w0  + a2 q + err (q) =P(t) (23)

m

where Q is an equivalent linear or nonlinear frequency, and err is the

error of linearization. An equivalent linear equation is obtained by

omitting this error term, then Eq. (23) is linear and it can be readily

solved. The error of linearization is

err = (w 2 0  2) q + q3 (24)

which is the difference between Eq. (22) and Eq. (23). *ihe equivalent linear

frequency Q is chosen in such a way as to make the error of linearization

term, err (q), as small as possible. To this end the mean-square error

err is minimized, that is = o (25)

If the acoustic pressure excitation p(t) is stationary Gaussian and

ergodic, then the response q computed from the linearized equation,

Eq. (23), must also be Gaussian. Substituting Eq. (24) into Eq. (25)

yields (References 10 and 12)

2 0 + 3 aq (26)

where q is the maximum mean-square deflection of the panel. Dividing

4both sides of Eq. (26) by D/phb yields

A2 X + 3 q q (27)

where x2 is a nondimensional equivalent linear or nonlinear frequency

parameter. 10



An approximate solution of Eq. (23) is obtained by dropping the

error term, the mean-square response of modal amplitude is

-'- S(w)j H(w 2 dw (28)
q j o

where S (w) is the spectral density function of the excitation pressure

p(t), and the frequency response function H(w) is given by

2 1 (29)

For lightly damped (r < 0.05) structures, the response curves will be

highly peaked at si. The integration of Eq. (28) can be greatly simplified

if the forcing spectral density function S(w) can be considered to be

constant in the frequency band surrounding the nonlinear resonance peak

0, so that

qR & 420(30)-'-4m2 a2

In practice, the spectral density function is generally given in terms

of the frequency f in Hertz. To convert the previous result one must

substitute

= Zirf

and S(M) = S(f)/27 (31)

into Eq. (30), the mean-square peak deflectiori is simply

32 Sf
-o for simply supported panels

q 0
32 Sf (32)

for clamped panels

81cx



The pressure spectral density function S(f)/2w has the units

(Pa)2/Hz or (psi) 2/Hz, and Sf is a nondimensional forcing exci-

tation spectral density parameter defined as

Sf = 24S 4(f)l (33)Sf h (~4D/phb4)/

The linear frequency parameters X0 in Eqs. (32) are given in

Eq. (14) and Eq.(20) for simply supported and clamped panels,

respectively, and the equivalent linear frequency parameters

X2 can be determined through Eq. (27).

3. Solution Procedure

The mean-square response q in Eq. (30) (Or Eq. (32)) is

determined at the equivalent linear frequency P (or x) which is in

turn related to q through Eq. (26) (or Eq. (27)). To determine the

mean-square deflection, an iterative procedure is introduced. One can

estimate the initial mean-square deflection q using the linear frequency

W through Eq. (30) as

2 - 3 (3 4 )
4m 2

This initial estimate of qo is simply the mean-square response based

on linear theory. This initial estimate of qo can now be used to obtain

2 2 -refined estimate of P through Eq. (26), o w + 3a qo , then

q, is obtained through Eq. (30) as
II

42o1 (35)

4m 02

12



As the iterative process converges, thp relation

- S(n) 2
q 4m2 q qn (36)

becomes satisfied. In the numerical results presented in the following

section, convergence is considered achieved whenever the difference of the

RMS displacements satisfied the relation

< 10-  (37)

4. Stress and Strain Response

Once the RMS nodal displacement is determined, the bending stresses

on the surface of the panel can be determined from
_6D

a 6 (w, +V W, )
0xb xx yy

(38)

_6D (w +vW,
0yb = Wyy xx

The corresponding strains are given by
h WExb = - xx (39)

-h

yb = - 1Wyy

The membrane stresses in the panel are obtained from Eqs. (3)

and the corresponding stress function F. Membrane strains are given by

_ T (F vF,xxCxm - Y xy

ym  -(F,-xx vF,yy) (40)

13



a. Simply Supported Panels

From Eqs. (3) and (38), and using Eqs. (4), (6), (7) and (10), the

expressions for the nondimensional stresses on the surface of the panel

with immovable edges are given by

oxb2  b2

= (Uxb + Oxm) Eh2

.i2 1 irx

1z1_2) (r2+v) cos - cos q

+ ( 12 co rY)q2 +[ 2 (1 + vr2)] q2

8r T b 8r 2(lV2)

ob2  2
(yb + aym) b (41)

-2 (1 + Cos 1 X CsY] q
2(1v2) r2 a b

2 q2 T2(r2+v) 2
+(g- cos a-) +[ 2 ] q8a8 r2 (1I v2 )

The tensile strains, Eqs. (39) and (40), on the surface of the panel

are then given by

Ex :[2- (h)2 Cos a U s ' q

2 h2 1 2 21x q
+ - 0 (- 7cos - OS

--' b r a

+[~ 2h2 1 + vr2 - v(r 2 + VIA q2
+[E-( )2  r2(1_v2)- •

(42)

14
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cy[ jb) 2 cos cos b

+ W4_7)2 (cos 2j- 4L cos q (42)

+ [+_i h2r +v-v 1+ vr 2  2
9) - r 2(1-v 2 )

For movable inplane edges, the last term in Eqs. (41) and (42) vanishes.

b. Clamped Panels

Similarly, from Eqs. (3) and (38) and using Eqs. (7), (15), (17), and

(18), the expressions for the nondimensional tensile stresses on the sur-

face of a clamped panel with immovable edges are

.x _ T2 [1a-2  2(i-v 2) r2 cos A x(1 + cos B y) + v(1+cos A x) cos B y] q

2 2

8 [-4- cos B y + 22 cos A x cos B y +-- cos 2 B y
r (1+r ) 4r

+ r22 Cos 2 A x cos B y + 4cos A x cos 2 B yq 2

(4 + r)(I + 4r)
+ [3-2 1+ vr2

32r' (1-v ) (43)

a b2  
2
2 [(1 + cos A x) cos B y + v- cos A x ( 1+cos B y)] q

Eh 2(1-v ) r

I22
+ [cos A x + cos 2 A x + r2 2  cos A x cos B y

(1 + )

(4 2 2 cos 2 A x Cos B y + 22 cos A x cos 2 B y] q2

(4+r) (1+4r2

3n 32 (r 2 +v )q2

32r 2(1-v 2)

15
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where A = 2 i/a and B = 2 /b. The corresponding -ensile strains are

given by
1 2 h)2

x = 2-- ( cos A x( 1 + Cos B x)] q

itr h 2 1_ 2
+ 8 b' [ cs ( 2 2 cs A x cos B y

+ 1 cos o B y + 24
+-Cos2By+ 22 cos 2 A x cos B y + +4r cos A x cos 2 B y]
4r 4  (4r 2) 2(1+4r 2) 2

v [cos A x + 4 cos 2 A x + -. 2 2CsA) o-r-2- (lA + r cos A xcos By
r

+ 4 1 A 2
4 2 2 cos 2 A x cos B y + 14r 2 2cos A x cos 2B y] q

(4 +r ) (1 4

+ 3T2 (h )2 1 + Vr2 -A(r2 + )] q2 (44)
32 d r (1-v2)

TT 27 h 2 -y 2 1 + cos A x) cos B y q

+-( cos A x + cos2A x + 2) 2 cos A x cos B y
(1 + r)

+ Cos2AxCosBy+ I
(r + r 2) 2  o(+4r2 )  cos A x cos 2 B y

A 21
r- CosBy+ 22 cos A x cos B y +4 cos 2 B y

r (1+r )4r

+ 1 4
+r2) 2  cos 2 A x cos B y + i4r2)2 cos A x cos 2B y] q 2

(4+r )2(1+4r)

32 h 2 r 2+v-v(1+vr 2  2
+ 1 32 r2 (1 2) q



For movable edges, the last term in Eqs. (43) and (44) vanishes.

Examining Eqs. (41) - (44), a general expression is obtained for the

stress (or strain) at any point in the structure as

a = C1q + C2q2  (45)

where C1 and C2 are constants. The expressions for C! and C2 can be found

from Eqs. (41) to (44). The constants can be determined from material pro-

perties, dimensions of the panel, and the location and direction at which

the stress is to be measured. The mean-square stress (or strain) is then

related to the mean-square modal amplitude in a general expression as

U27 C2 2 (qI)2 (46)1 Cq + 3C2 (

Once the mean-square deflection q2 is determined, Eqs. (36) and (37), the

mean-square stress (or strain) can then be obtained from Eq. (46).

17



SECTION IZI

RESULTS AND DISCUSSION

Because of the complications in analysis of the many coupled modes,

only one-mode approximation is used in the formulation. The assumption

for fundamental mode predominacy is admittedly overly simplified; the

conditions under which this is a valid approximation remain to be inves-

tigated. However, a simple model sometimes he.lps to give basic under-

standing of the problem.

Using the present formulation, response of nonlinear rectangular

panels with all edges simply supported and all edges clamped subjected to

broadband random acoustic excitation are studied. Both immovable and

movable inplane edges are considered. In the results presented, the spec-

tral density function of the excitation pressure S(f) is considered flat

within a certain region near the equivalent linear frequency f and a

value of Poisson's ratio of 0.3 is used in all computations, unless other-

wise mentioned. Mean-square modal amplitudes and mean-square nondimensional

stresses for panels of various aspect ratios and damping ratios are deter-

mined and presented in graphical form. These graphs can be used as guides

for preliminary design of aircraft panels. The maximum mean-square deflec-

tion can be reasonably obtained from these figures; however, multiple-modes

had to be considered for accurate determination of mean-square stresses.

This has.been demonstrated by Seide in Reference 15 for a simple beam

subjected to uniform pressure excitation and in Reference 16 for large

deflections of prestressed simply supported rectangular plates under

static uniform pressure.

Comparison with experiment is also given. It demonstrated that the

present formulation given remarkable improvement in predicating RMS

responses as compared with using the linear theory.
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1. Simply Supported Panels

Figure 2 shows the maximum mean-square nondimensional deflection

versus nondimensional spectral density parameter of acoustic pressure

excitation for rectangular panels of aspect ratios r = 1, 2, and 4, and

a damping ratio 0.02. It is clear from the figure that an increase

of r will cause "closing" of the curve. This occurs because as r increases

the panel becomes less stiff, and the mean-square deflection has to be

finite. It can also be seen from the figure that the mean-square deflec-

tion of the movable inplane edges case is approximately twice as that of

the immiovable edges.

Figures 3 and 4 show the maximum mean-square bending stress and the

mean-square membrane stress, respectively, for a simply supported square

panel with C = 0.02. The maximum mean-square bending stress of the mov-

able edges case is approximately twice as much as that of the immovable

edges, whereas the mean-square membrane stress of the movable edges case

is found to be somewhat less than that of the immtovable edges. In Figure

5, the maximum mean-square nondimensional stress (bending plus membra~ne

stress, at the center of the panel and in the y-direction) is given as a

function of excitation spectral density parameter for simply supported rec-

tangular panels of various aspect ratios and a damping factor 0.02. Results

showed that the difference of maximum mean-square stresses between immnov-

able and movable edges is small as compared with the difference of mean

square deflections between the two edge conditions.

Figure 6 shows the mean-square deflection versus forcing spectral

density parameter for simply supported square panels of different damping

ratios. The corresponding maximum mean-spare stress (bending plus membrane

stress, at the center of panel). is shown in Figure 7. As it can be seen

from the figures that the precise determination of damping ratio from
19



experiment is important, e.g. stress increases by 25-30% as C is decreased

from 0.015 to 0.01 (for S f between 5000 to 20000). Again, the difference

of maximum mean-square stresses between immiovable and movable edges is small

as compared with the difference of mean-square deflections.

Plots of the equivalent linear or nonlinear frequency parameter

x2 versus mean-square modal amplitude for simply supported rectangular

panels of aspect ratios r = 1, 2, and 4 are shown in Figure 8. The

lowest value of x 2 corresponds to the linear case.

2. Clamped Panels

In Figure 9, the mean-square deflection is given as a function of

excitation spectral density parameter for rectangular panels of aspect

ratios r = 1, 2, and 4 and a damping ratio 0.02. The maximum mean-

square deflection of the clamped panels is somewhat much less than that

of the simply supported. The corresponding maximum mean-square nondi-

mensional stress (bending plus membrane stress, in the y-direction and

at the center of the long edge) versus spectral density parameter is

shown in Figure 10.

Figure 11 shows the mean-square modal amplitude versus spectral

density parameter of excitation for a square panel of different damping

ratios. In Figure 12, the equivalent linear frequency parameter is given

as a function of mean-square deflection for clamped rectangular panels

of aspect ratios r = 1, 2, and 4.

3. Comparison with Experimental Results

The experimental measurements on skin-stringer panels exposed to

randomn pressure loads reported in References 3 and 4 are used to demon-

20



strate the improvement in predicting panel responses by using the pre-

sent formulation. The structure was a skin-stringer, 3-bay panel as

shown in Figure 13. The panels were constructed of 7075T6 aluminum

alloy. Details of the test facility, noise sources, test fixture, and

t5t nsultft; are given in Reference 3. The important properties of

the panel are:

Length a = 27 inches

Width between the rivet lines b = 6.63 inches

Thickness h = 0.032 inches

Damping ratio - 0.0227

Poisson's ratio v = 0.33

Young's modulus E = 9.6 x 106 psi

Weight density p = 0.1 lb/in 3

The tests were conducted with an overall sound pressure level (SPL)

of 157 decibels (dB) with a range of ± 1.5 dB which corresponds to

an average spectrum level of 125.26 dB (see Table IV of Reference 3

or Table 8 of Reference 17).

The central bay of the 3-bay test panels is simulated by a flat

rectangular plate. The linear frequencies for both simply supported

(iq. (14)) and clamped (Eq. (20)) support conditions are calculated

and shown in Table 1.

Test measurements and finite element solution are also given

for comparison. Table 1 also shows the equivalent linear or nonlinear

21
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Table I Frequency Comparison

Natural Equivalent linear
frequency f0  frequency f157

Simply supported - Immovable edges 71 321
- Movable edges 71 240

Clamped - Immovable edges 159 311
- Movable edges 159 264

Finite element (Ref. 4) 155

Experiment (Ref. 3) 126,

frequencies at overall SPL 157 dB. Frequency at high intensity noise

level was not reported in Reference 3. From the results shown in Table 1,

it is clear that the central bay of the test panels did not respond to

the acoustic excitation as though it were fully clamped on all four edges.

This was also demonstrated in Figures 12 and 17 of Reference 3 in the

sense that the highest measured RMS strains did not occur at the center

of the long edges. The central bay of the test panels actually behaved

somewhere between fully simply supported and fully, clamped support

conditions.

The acoustic pressure spectral density S(f) is related to the

spectrum level L as

8.41 x 10(L/l0 - 18) (psi) 2/Hz

S(f) = (47)
4 x 10 (L/10 - 8) (dynes/cm 2) 2/Hz

22



r . .. ............ . .. . . ...

A white noise pressure loadin9 with spectral density of S(f) = 2.824 x l0
5

(psi) 2/Hz (or nondimensional spectral density parameter Sf = 5100), which

corresponds to an average spectrum level L = 125.26 dB, is used in the com-

putations. The RMS stresses (Eq. (46)) at the center of the long edges for

simply supported (Eq. (41)) and clamped (Eq. (43)) boundary conditions are

calculated and given in Table 2.

Table 2 Stress Comparison

RMS Stress (kpsi)A F 
Linear Nonlinear Linear Nonlinear
theory theory theory theory

Simply Supported 0.0 0.58 (Immovable) 0.0 3.28 (Immovable)
0.17 (fiovable) 2.74 (Movable)

Clamped 2.17 1.12 (Immovable) 6.57 3.83 (Immovable)
1.32 (Movable 4.24 (Movable)

Finite element 2.4 7.7 -
(Ref. 4)

Measured (Refs. 3,4)
on panel A 0.63 2.2

B 0.94 2.9
C 0.78 2.5
D 1.1
E 0.84 2.2

Measured average 0.87 *2.5

Table 3 shows the RMS deflections using the present formulation. The

measured and finite element RMS stresses and RMS deflections in Reference

4 are also given in the tables for comparison. It demonstrates that a

better correlation between theory and experiment can be achieved when

large deflection geometrical nonlinearity effect is included in the

formulation.
23



Table 3. Deflection Comparison

(wmax/h)2

Linear theory Nonlinear theory

Simply Supported 8.0 1.8 (Immovable)
2.4 (Movable)

Clamped 2.7 1.4 (Immovable)
1.6 (Movable)

Finite Element (Ref. 4) 3.1

Measured (Ref. 4) 2.0

24



SECTION IV

CONCLUSIONS

An analytical method for predicating response of rectangular nonlinear

structural panels subjected to broadband random acoustic excitation is pre-

sented. The formulation is based on the Karman-Herrmann large deflection

plate equations, a single-mode Galerkin approximation, the equivalent

linearization method, and an iterative procedure. Both simply supported

and clamped support conditions with immovable or movable inplane edges

are considered. Panel mean-square deflection, maximum mean-square stress,

and equivalent linear frequency at given excitation pressure spectral

density can be determined, and they are presented in graphical form.

These graphs can be used as guides for preliminary design of aircraft

panels under high noise environment. Results obtained agree well with

the experiment. It is suggested that further research be carried out

with special attention to employ multiple-modes in the formulation,

and additional test data on simple panels are needed for an adequate

quantitative comparison.
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APPENDIX

C LARGE AMPLITUDE. RSPUN5E li AIRCRAFT PANELS S98JECTSD TO IRCAUBANTD
C RANDOM ACOUSTIC EXCITATIONS
C SIMPLY SUPPORTED ALONG ALL FOUR EDGES
C RECTANG11LAR PANEL - SIMPLY FtIPPORTE') ALONG ALL FOWIR EDGES
C SIMPLY SUPPORTED ALONG ALL POUR EDGES

C014MJR! A&(,AR2P[,PI2,UN,ENU

C MOVABL=FLAG FOR INPLAN4E EDGE CONDITIONS
C SET MOVABL= 0, FOR IMMOVABLE EDGES
C SET MOVABL=+1, FOR MOVAPL-7 EDGES
C HOV.ABLO OR +1 ?

MOV A3L=l
C ASGNQ=AN ASSIGNED SP~ALL CONSTANT FOR CONJVERGENCE TEST OF RMS
C MAXI?4U' DEFLECTION

ASGNQ=I.OE-3
C

P1=3. 1415926i
P12=P1*PI
P14=PI2'*'I2

C ZETiA=IAMPING FACrOR OF PANE.L=C/(C CRITICAL)
ZFTA=0.020

C UN=POISSON'S RATIO
UN=0. 3
!.'NUl1.0 - UN*UN

9001, rORI'AT(12)
9056 FORMAT(F10.3)
C HUMSF=NIJMBEH OF EXCITATIJN SPECTR~AL DEN~SITY
800C FOJRMAT(4a!1 HOW MAN~Y k6XCITAZION SPECTRAL DENSITY ARE THERE?,14)

READ (5,9000) NUMSF
NRITE (6,8000) NUP'SF
svRITE (6,q1O0)
V.3 100 NSF=1,'MUMSF

8100 FORP~AT(231F WHAT ARE THEIR VAL4ES?)
R~EAD (5,9050) SvSD(ASF)
&RITE (6,9150) SP3D(NSF)

915C FORV AT(5X,E15.0)
C SPSD=NONDIMENSIOUAL FORCING EXCIrATION SPECTRAL DENSITY
C PARAfPET&P=Si(F)I((RH~l**2) * (H**4) * (DFACTOR**1.5))

100 CONTINUE
C NA&.=NUMPER OF ASPECT RATIOS
8200 FORAAT(24H HJW M4ANY ASPECT RATIOS?,14)

READ (5,9000) NAR
W91TE (6,8200) NA'I
DO 900 NTIME=1,NAR

C AR=ASPECT RATIO OF PANEL=AL/BL
C AL=LEhGTH
C BL=WIDTH

READ 0~,90t)0) AR
AR2=AP*AR
AR4=AR2*AR2

C FLkDO2=LAMBDAO SQUARE - :ONr)IMENSIONAL LINEAR FREQUENCY SQUARE
FLMD02=P14*(1.0 + AR2)*(1.0 + AR2)IAR4
FLNPO= SQRT(FLPTYI2)

C BETAP=NONLlNEARITY COEFFICIENT
C EEITAC=NONLINEARITY C(OEFFICIFNT

BFTAP=0.75*PI4*ENU*(1.0 + 1.OIAR4)
BETAC=1.5*P14*(I.0 + UN*Al~l + AR2*(AR2 + UN))AR4

C FOh MIVABLE INPLANE EDGES, qETA =BETAP
C F9t' IM~fJVAaLE I'NPLANE EDGFS, IETA=BETAP + B'FTAC

TETA=BETAP + RETAC 39



IF (N')YAJL .EQ. 1) 16TA=ljPTAP
C

U0 900 NSF1l,NUy?~S
SF=SPSD(NSF)
A RITE (6,9100) AF(,SFQE'rA

9100 FrhkVAT(//17hlASECT RATIO=AR=pF6.2/,
1 47H1 NINPIMENSIUVAL EXCITAT19N SPECTRAL !)E4SITYSF=,
2 E13.5131d &ONLINEARITY COEFF1CIEAJT=93ETA=,E15.6)

IF (MOVADL .-7(. 0) WR~ITE (6,8300) ZFTA
3300 FORPAT(46q SU~iLY-SUPPORTED 6I11 IMMOIVA13LE INPLANE EDGES,

1 /34il DAMPING FAr.TOR=C/C CRITICAL=ZETA=,F7.4)
IF (MOVAiiL Q.1) W~rTF (6,8310) ZFTA

8310 FORVAT(44F SIYLY-St!PPOR'TED 61TH ?'OVAPLE INPLANE EDGES,
1 /3411 DAMPIiC~ FACTOR=CIC CRITICAL=ZETA=,F7.4)

C ITFP=0 CJRRESPORDS TO THE LINIEAR SOLUTION
ITER=0
idRITE (6,9150)

115U FOkMAT(//41P ***S'ALL-DEFLECTION (LINEAR) SOLIITIO]N***)
C CO.=14EAN SQUARE MA~XIMUM DEFLECTION - L14EAR STRUCTURAL THEORY

,lO2=32. 0*SF/(U 14*ZETAf*FLMDO*FLMD02)
C Q9=RCYE R.EAN 1111ARI tPAXI.!4tW DEFLECTION

QO= SQRT(002)..
WRITE (6,9200) FLuDl2,FLMDO,QO2,Q9

9200 FOH1PAT(4X,3lH FREI. i ARA!NETER SQUARE=FL'D12=,El5.7,
1 5X,2314 FRF-4. PADAVLiTEP=FLMDO=,El5.7/,
2 8x,279l M6,AN-SQUAeE AMPLITUDE=O2=,E15.7,
3 lOx,183 R'4S AMPLITUDE=QOz,F7.3)

C CO'-.PUTE RMS STR~ESSES OR STRAlNS BASED ON LINEAR STRUCTURAL THEORY
*RITE (6,9250)

925C~ FORPAT(/3X,9i LOCATION,20X,194I !1iAN-SQUARE STRLSS,19X,
1 lh RM S S;TRF3/29X,91 X-COM~PS.,6X,9H Y-COMPS.,14X,
2 9F X-COP.WF.,6X,9H Y-COR'PS.)

CALL STRESS(0.0,0.0,Q02,MIOVABL.,ITER)
CALL STRESS(0.5,0.0,Q32,tiJ3VAEL,ITER)
CALL SlRLSS(0.O,0.5,Q2,Y)VA8L,ITER)
CALL STRESS(0.b,0.5,'fl2,NOVABL,ITER)

C STORE Q012, 00 AID FLA1DO FOR CONVERGENCE TEST LATTER~
Q 2P~V = 02
ilp v= 4 0
FLMDPV=FL MOO

C
C STAKRT ON ITERArION - ITER=ITERATION COUNTER
C

1 TER=1
10 CONTINuEF

FLMD2=FLMD0l2 + 3.O*T3ETA*Q2PV
Q2=32. 0*sF/(PI4*-ErA*LMDI*FLVD2)
iELEbD= SrQRT(FL ID2)
4= SIQT(-j2)

C CHftCI( F~i CINVERGF4CE
DFF=( FLojD-FL~neV)fkL!'
DjEQ=(Q-QPV)/Q
DvQ= ABS(D--.O)

c cni.vEAGENC6 TEST, IF SAT1SFIEn GO TO 12 FOR STRESS COM4PUTATION
IF (DEi .LE. ASINJ) GO TO 12

C STORE FLMD, Q2 AND 0 FJR COVER'GE4CE TEST
FLDP V FL MD
42PV=12

C SAWE C9V'J-p!TATION TP'E AFTER 50 ANI 100 ITERATIONS
IF (ITEP .En. 50) Q2PV=0.5l61j*Q + 4 *QV



IF (ITEP .6nO.100) Q21rV=0-S*(Q*Q + QPV*QPV)
.PV=Q
ITLR=ITFP + 1
GO TO 10

12 CONTINUE
dPITE (6,9400) IrEP

940U iOivAT(/44" *"LARCE-DEF~LEXTION (NONLINE~AR) SOLUTIGN*k**/,
1 4X,1,jI CJNVERGENCE AT,14,13H-TH ITVERATION4)

.iikfTE (65,94';0) FLMD2,FLMD,Q2,Q
9450( FOkdAT(4X,30H FREI~. iARAkETER SfQUARE=FLI'D2=,EA5.7,

I !bX,221 FPT4. PARAMET--R=ILVD=,EI5.7/,
2 8x, 2611 ' AN-SOIUAR AMPLITUD='2:,E.4.6,
3 llx,17.J :WIS AVPLILEQ,F7. )

;IRI1E (6,9500) DEcof)&"

CO! PUIE STRESSE" A ' LSQ't A PLITUVIE
(~IT 6,9250)

CALL STP-;S(.0,O.0,Q,V0LVAL,ITE?)
CALL STPESS(.).5,0. J,c2, 'OVA3L, ITE4)
CALL STPE'3S(0.Q,0.ti,2,MuiVABL,ITiR) '
IF (, r7--. r-.0) C) TD 700

50C C'JN I'~uP?
7 0 i' cc CN I N It
902, -1 1O. 1IN uF

S TO"

C THISf(U[...ChL'9 T,! RM1 STRE-S3--. IN TIHE X (SX) AND Y
C 'V IRLCi1J3N AR TSSS~E NJNDITMENSlr1NAL

CXA:X/A

c.,V=~CfS( 2. 0*"- I*YL)

IF (Yk,'DA?.L .. 1) "),X=0.0

,D1Y=0. 1%~*PT2*C2x

+x=i + ";Mtl,*Ex

+

ir i~f ':PEP,!D To ry3*)ALDF~r[O IERTE~
'F.(2 y~V*j

C SY, PV'.~!. Y)rIT 1 -A'! l'A0 STRL3jSwS(TS**)

C P='I:=sLDTF OF 'ANEL 41



c E=t'PDULUS OF ELASTICITY
C H=T!HCKNESS OF PANEL

SX= SQRT(SX2)
SY= SQRT(SY2)
WRITE (6,9000) XAoSX2tSY2,SXSY

9000 FORWAT(3xo5h X/A=,f5.2t5X,6H TOTAL,3xl2El5.6,8X,2E15.6)
9200 FOR14AT( 3x,5h YIA=,F5 .2,5X, 8H BENDING,1lx,2El5.6,.8X,2E15.6)

SXB= SQRT(SXB2)
SXYI= SQRT(SXIM2)
SYB= SQRT(SVB2)
SYN= SQRT(SYM2)
WRITE (6,9200) YB,SXB2,SYR2,SXB,SYB
WRITE (6,9400) SXM2,SYM2,SX?4,SYM

9400 FORMAT (18x,9H MEHBRANE,2EI5.6,8X,2El5.6)
RETURN
END
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A;-: CE AM -L ITin~~ kESPfJN3 Ci A I17R A kT P A NLS S~t3JLl') " '- NA."
C PAIJDUM A 'OUST1iz FXCHrAT11ThS
C C!.;.P:D ALJJ( ALL FOUR EDCC3
C kcrA~krIL~ PA'4EL - CLAVP_-* ALjJG ALL iJ]UR EDGA:3
C CLAVi'-_D ALCNO ALL F1?JP EDE"

C t<4ArBL=FLAC r'fl. 1% LA. CX'JDITIJNJ3
c SEf AiIVAr3T.= 0, FU). I, YL-VA'.LE EIA"ES
C SET MQVA.L=+l, FJiR v]VA9L- FEVES
C W)*dAEL=0 GR +1 ?

flV APL -
C ASGN=A!! AIGCOE SMALL CT4 ;TANT FWIR CPJVERC(E'CE TEST JF R S

Y AXIMU' D6FLEkTif,
ASGN J=I1 t -3

C
PI= 3.*141 59~265

P12=PI*Pl
P14=?12*P12

C ZE'A='nAViINC FArT9.q CF ?AN!_L=f/CC CRITICAL)
ZET A=0 .020

C UNzPUI3SN'S iRATLO
!J Nj0.3
r'NU=1.0 - UN*U:J

900C FORMUAT(I2)
9054, FORNAT(F10.2)
C NI'PSF=NJUM1'ER OF EXCICArIJN StDSCTiRAL DENSITY
900., F 7R!AT(43H !40W VANY EXCITATICN SP-ECTR~AL DE,.AITY AE T AE,4

READ 0s,9000) NUMY.F
ovkITE (5,POOO) jM5 S7
i4PIT"E C519100)
D91 100 N4SF=I,NJ"lS!

3100 FORMA'r(23H 4HAT ARE T;1E:Tk VALUES?)
READ (5,)050) SPSO(:JSF)
iRITE (6,8150) SPSMDCNSF)

815U rORVAT(5X,E15.6)
C SPSD=SONDIME.ASIONAL FOR71AGJ EXCTLATION SPECTRAL OENSITY
C PAAMETEP=SF(F)/((RHI*2 (Hi**4) * (DFAC'9R**1.5))

100 CONTINUJE
C NAi'=NUMRE? OF ASPECT RATIOS

8200 FORMAT(2414 P'OW "ANY ASPECT RATIOS?,14)
REAP (5,9000) U4AR
iiPITE (6,8200) NAR
DO 900 NTIM4E=1,VAR

C AR=ASPECT RATIJ OF PANEL=AL/PL
C AL=LENGTH
C BL=WIDTfl

READ (5,9050) AR
AR2=AR*AR
AR4=AR2*AR2

C FLNDa2=LAPBI)AO SQ11ARE - NI1NDIMENSIONAL LINEAR FRE11UENCY SO'JARE
FLMD216.0*PI4*(3.0 + 2.0*AR2 + 3.0*AR4)/(9.0*AR4)
FL*4DtJ SQRT(FLMD02)

C BETAP=NONLINEARITY COEFFICIENT
C BETAC=NONLINEARITY COEFFICIENT

P!p10 1.0
PH01=1 .0/AR4
PH20=0.06 25
PH11=2.0/(1.0 + 2.0*AR2 *AiR4)
PV102=0.0625IAR4 43



:'12 1=1 . 0/ 16. 0 + . 0*A*2 + A: 4)

P~HS!M=P,!l0 + PU)l + P14 11 P I I + P1462 + 9 c* ( I;2 1 + P! 1 )

~'A~1.*~4C1f)~ J+~ + A 2*(AK2 +
C Fl. YWTL ITPA~~Db3 FTA=7' rA?
C V~i I :llV iL' ='--"-. ~%,3~~~TAP + P,-'TAC

3::'!A=B3TA;P + l-TAC
ic' (YJ]VA7L .A ) q7TA=,,rAP

C
DOi 50() ';SF=1,!Uww

1 47~ .~ H ]'A Xr7ATilii. ),P9(7PAL rDEN ITY=-F'r,

if (.':fVAJL EnI. 6) .;. 11r&: (o,8300) 7ETA
q33( F'l % AT ( 4 7 CL. A j -7U PPlr T Er ~I H I M M)V ADL E I dPLA~ 6IKE

P /4" 1)A"eIC FA7T' dC/C C'3ITICAL=7ETA=,F7.4)

9331: C. FlnAT ( 't~ 1 CI-D -3~SJ P P ]. TD W ITH M-71V A Lr, I 'PL AN -' zG ES,
,. 1 /349 A '.'IW F'llk=iC/C' CiTL'-ALZrTA,F7.4)

C IT'.P=,) C0OP FJt)P!S TJi,41- :~U S,7LUTI'mN

.vPITEw (5, 0 150)
q15G 90' 4MAT(/41" iSJ 1 J (LINiEAR) SrLU~tIUN***)

C Q7--kAN SQ!'AP1-1 lk.XIVll, rFFLZ-CTICN - LINEAR 'S:TR!CTUPAL TH,;CRY
cQ(2=32.O*Si'/C3.kZETA*FL.249O*FriDo2)

C (;)-RO9T kESA' SQ'JARZ' AAXl,'ATJM DEFLEKCTI0'
)O= S')cT(I'42)

gi0u FThYAT(4:,31t1 FP1 PA~AMET7R 3)UARE=FLMD2,Fl5.7,
IX,21F E. P.APAMIET Q=F L,1409= , E 1J. 7

2 d x, 2 7 11 A.,- 3-oU APE A P L IT U D E = 2,E15. 7
3 'IOx,19!,i RIJ3 LT ~ ~ ,7

C Clr.PUA". t 'AS ST>qESSiES 3JR ST .AI:4S aASED 01l LIN~EAR Js1RUCTUIAL TFEJ'RY
,iITE (6,9290)

925%' i0RNAT(/3X,9H LICATIG!,,20X,199 V~EAN-SQUARE SRL733,1,)X,
1 lIE RV"S S Rk.Sq/29X,9)H X-C-'P'.,6X,9!4 Y-CJ'v'S.,14X,
2 911, YJ%3.S. I -CIMP3.)

CALL H S(.,.,J2wV LIT)
CALL S RL:Ss(0 . 5,0. 0, A'02, MIVAFL, ITER~)
CALL SVRESi(0.0,0.5,Q']2,MJVAL, ITFRt)
CALL ST?ESS( 0.3,0.3,GD,,VA3L,IER1)

C STLURE 402 Q AMID FLMDO FOJP CONVERGENr TEST LATrFER
02PV=QJ2
QPV=Qc
F UIDPV =FL MDO

C
C START ON~ ITERATIION - ITER=[TERATIliN CrUNTEF-R
C

ITE'Q=l
10 CONTINJUE

iFLVD2=FLMD0OO2 + 3.0*DETA*92iPV
i2=32. O*F/(dl.0*Z'FA*FL.fDO*FLMD2)

FLMID= 3Qtx (FLYD2)
Q= SQPT(Q2)

C Ct /1r FOR CONVERGENCE
DEF=(FL!AD-FL4T)PVJ)/FL?A!) 44



DEQ= ABS(DEQ)
C C3INVERGENCE TEST, IF SAT13FIED GU TO 12 FOR~ STRESS COlMYTTATIJN

IF (DEQ .LE. ASGNQ) 50 TO 12
C STORE FLMD, Q42 AND Q FOR rONVERCENCF TEST

iLPT'PV=FLD
Q2PV=Q2

C SAVE CDMPUTATION T1YE AFTER 50 AND 100 ITERATIONS
IF (ITER .EQ. 30) 92iFV=0.5*(G*Q + QPV*QPV)
IF (ITER .EQ.100) j2PV=0.5*(,)* + QPV*QPV)
QPV=Q
ITER=ITFR + 1
GO TO 10

12 CONTINUE
WRITE (6,9400) 1T---

9400 FORPAT(//44H ***LA1GE-DEFLECT ION (AONLI14EAR) SOLUTIfla***/,
1 4X,ISH C3NVE E-lL-.C:; AT,14,13H-TH ITERATION)

ARITE (6,9450) FL.MD2,ELMD,Q2,Q
9450 FORNAT(4X,30H F9E'I. PARANETER SQUARE=FLM02=,El5.7,

1 5X,22P FREQ. PARAMT!-RFL9=,E15.7/,
2 8x, 26H MEAti-SQUkRPE Am'PLIYrUDE=Q2=-,El4.6,
3 llx,17H i4MS AYPLITUnl-Q=,F7.3)

,nRITE (6,9503) DEFDEI'
9500 ORMAT(20X,4H!D ;S=,EIL6.6,5,X,4HDEQ=,E15.6)
C CJ>1PUTE 3TIXESSES AT LAR.GF AMPLITUDE

VRITE (6,92SO)
CALL ST-RESS(Q.,0.0,'2,OVAL,IrER)
CALLSTS(.i00?,.JAL T)
'ALL Sr"?ESS(0.0),0.s, 2,.IUVABL,ITEP)
CALL STPESSCO.5,0.5,42,tJVA!)L,ITEP)
IF () G-T. 5.0) GO TO 700

5 00c CO NTINU E
700 CONTINUE
900 CONTINUE

STOP
EIND
SU1,QOUTINE ST S3 (XA, YFf2,M0VAPlL, ITER)
COMIP '-N Aj2, PI,H~2,'UN,Ex-Tl,Pl.10,F !;o,Pp2,illh1j,p I,~1

C T{iiS SUBROUTINE COMPUTF1 rTiE RAS STRESSES IN TilE X (SX) ANU Y
C (S'l) DIPECTIONS - -LHE'-SE STR-S3F3 AxE NONDIMENSI-INAL
C XA=X/A
C YB=Y/3
C Q2=MEAN SQUARE OP Q

CX=COS( 2.0*PI*XA)
CY=COS(2.0*PI*Y3)
C2X=CCS (4. 0*PI*XA)
C2Y=C0S( 4.0*PI* !j,)
UX=0.5*P12*( CX*(1.0+' ,)/AR2 + UN*(1.0+CX)*CY )IENU

V1X=FAC1*(PH0l*CY + P1iil*CX*CY +4.0*PHO02*C2Y +
1 PF21*C2X*CY 4.0*PP12*CX*C2Y)

D2X=3.0*PI2*(1 .0 + t4j.*AR2)/(32.O*AR2tEhI)
lF (MOVA3L 1r. ) D2X=0.0
DY=0.5*P12*( (I.0+CX)*CY +UN*CX*(1.0+CY)/AR2 )/KNU
fAC2=0.125*PI2
DIY=FAC2*(Pl~10iCX + 4.0*PH20O*r2X + PHII*CX*CY+

1 4.0*PH21*C2XxCY +PH1l2*CX*CY)
E2Y=3.O*PI2*(AR2 + U.N)/(j2.O*AR2* ENU)
IF (MIrVABL Efl. 1) D2Y=0.0
DXX=DlX + Tn?X

C ITER=0 CORRESP9NDS Tu T'IE SMALL R FLECTION LINIEAR T46ORY



IF (ITER .En. 0) DXX=0.0
S X 2 =DX*D X*Q 2
SXM2=3.0*DXX*DXX*Q2*Q2
SX2=SXB2 + SXM2
DYY=DlY + D2Y
IF (ITER .EQ. 0) DYY=0.0
SYB2=DY*DY*Q2
S Yk42=3*0 *D YY *DYY Q 2 *Q 2
SY2=SYB2 + SYM2

C SX, SY=DIMENSIONLESS ROOT INEAN SQUARED STRESSES (STRESS*B**2)
C I(E*H**2)
C B=bL=WIDTH OF PANEL
C E=knfDULUS OF ELASTICITY
C H=THICKNESS OF PANEL

SX= SQRT(SX2)
SY= SQRT(SY2)
WRITE (6,9000) XA,SX2,SY2,SX,SY

9000 FORMAT(3x,5h X/A=,F5.2,5X,6H TOTAL,3x,2E15.6,8X,2El5.6)
9200 FaRVAT(3xp5h Y/A=,F5. 2,5X,8I BENDINGolxo2E15. 6,8X,2E15.6)

SXB= SQRT(SXB2)
SXM= SQRT(SXt42)
SYB= SQRT(SYB2)
SVM= SQRT(SY42)
WRITE (6,9200) YB,SXB2,SY82,SXB,SYB
WRITE (6,9400) SX142,SYM2,rSXM,SYM

9400 FORMiAT(18X,9H MEMBRANE,2E15.6,8X,2El5.6)
RET URNl
END
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