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I. INTRODUCTION

The principle of minimum cross-entropy provides a general method of
inference about an unknown probability density éf vhen there exists a prior
estimate of d’ and new information about d' in the form of constraints on
expected values. The principle states that, of all the densities that satisfy
the constraints, one should choose the posterior q with the least cross-entropy
Hlq,pl -J‘d:.:' q(x)1og(q(x)/p(x)), where p is a prior estimate of qf.
Cross~entropy minimization was first introduced by Kullback (1], who called it
minimum directed divergence and minimum discrimination information. The
principle of maximum entropy [2],[3) is equivalent to cross-entropy
minimization in the special case of discrete spaces and uniform priors.

It is useful and convenient to view cross-entropy minimization as one
implementation of an abstract information operator ¢ that takes two arguments
--- a prior and new information --- and yields a posterior. Thus, we write
the posterior q as q = p*I, where I stands for the known constraints on
expected values. Recent work has shown that, if the operator ¢ is required to
satisfy certain axioms of consistent inference, and if ¢ is implemented by
means of functional minimization, then the principle of minimum cross-entropy
follows necessarily [4].

Cross—-entropy minimization satisfies a variety of interesting and useful
properties beyond those expressed or implied by the axioms in [4]. Some of
these just reflect well-known properties of cross-entropy [1],[5], but there
are surprising differences as well. For example, cross-entropy does not in

general satisfy a triangle relations involving three arbitrary probability

densities. But in certain important cases involving densities that result
Note: Manuscript submitted January 23, 1980.
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from cross-entropy minimization, cross-entropy satisfies triangle inequalities
and triangle equalities. (See Properties 10, 12, and 13.)

It is the purpose the present paper to state and prove various fundamental
properties of cross-entropy minimization. For completeness, we z2lso restate
the axioms from [4]. After introducing necessary definitions and notation in
Section I1, we consider first properties that are valid for both equality and
inequality constraints on expected values (Section II1) and then properties
that are valid only for equality consttaints (Section IV). We conclude with a
brief discussion in Section V. We also include an Appendix in which we
discuss general analytic and computational methods of finding minimum

cross-entropy posteriors.
II. DEFINITIONS AND NOTATION

In this section, we introduce the same notation as in [4, Section II].

The discussion here places somewhat greater emphasis on mathematical questions
relating to the existence of minimum-cross-entropy solutions. (See also the
discussion following Property 1.)

We use lower-case boldface Roman letters for system states, which may be
multidimensional, and upper-case boldface Roman letters for sets of system
states. We use lower-case Roman letters for probability densities, and upper
case script letters for sets of probability densities. Thus, let X be a state
of some system that has a set D of possible states. Let D be the set of all

probability densities q on D such that q(x)3 0 for x€D and

5 dx q(x) =1 . a)
2

We use a dagger * to distinguish the system's unknown "true" state probability




density qfél). When SGD is some set of states, we write q(gég) for the set

of values q(x) with x€S.

New information takes the form of linear equality constraints

J‘ a5 o (e (x) = & 2)
.
and inequality constraints
? -
J dx q (.’S)ck(l‘) . C (3)
D

for known sets of functions & Cpr and known values :'k’ ?k. The
probability densities that satisfy such constraints always comprise a convex
subsetJ ofD. (a uetw{ is convex if, given 0S A% 1 and q,r‘!l, it
contains the weighted average Aq+(l-A)r.) We refer to the functions a,

c, as constraint functions and\/ as a constraint set. For a given

constraint set there may of course be more than one set of constraint
functions in terms of which it may be defined. We frequently suppress mention
of a particular set of constraint functions, using the notation I = (qfe«) to
mean that q" is a member of the constraint set «5.@ and referring to I as a
constraint. We use upper-case Roman letters for constraints.

Let pez be some prior denmsity that is an estimate of q.r obtained, by any
means, prior to learning I. We require that priors be strictly positive:

p(x€D) > 0 . 4)
(This restriction is discussed below.) Given a prior p and new information I,

the posterior demsity qEJ that results from taking I into account is chosen

by minimizing the cross-entropy Hlq,p) in the constraint aetJ H

Hlq,p] = min Hlq',p) (5)
’ q'eii ’
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where
Hlq,p] = sz q(x)log(q(x)/p(x)) . (6)
D

We introduce an "information operator" © that expresses (5) using the notation

q = pel . (7)
The operator © takes two arguments -~- a prior and new information --~ and
yields a posterior.

For some subset Sg D of states and x6S, let

Azlzed = q@s’/f ' alx" (8
S

be the conditional density, given zé 5 corresponding to any q€ . We use

q(x | x€S) = q*s 9)
as 1 shorthand notation for (8).

In making the restriction (4) we assume that D is the set of states that
are possible according to prior information. We do not impose a similar
restriction on the posterior q = poIl since I may rule out states currently
thought to be possible. If this happens, then D must be redefined before q is
used as a prior in a further application of ®. The restriction (4) does not
significantly restrict our results, but it does help in avoiding certain
technical problems that would otherwise result from division by p(x). For
more discussion, see [S5].

When D is a discrete set of system states, densities are replaced by
discrete distributions and integrals by sums in the usual way. In a more
general setting for the discussion than we have chosen, D would be a
measurable space, and p and q would be replaced by prior and posterior

probability measures. By continuing to write in terms of probability

RN Ty = v e e —a e s . o SRR -



ﬂ - T S S R S5 SN b SR L A S TR 1 Lt 455 . e

densities, we would then be implicitly assuming some underlying measure with
respect to which the rest were absolutely continuous. Indeed such a measure
: certainly exists if we demand that no event with zero prior probability can
have positive posterior probability, which in the present context we are in

effect demanding by assuming (4).

ITI. PROPERTIES GIVEN GENERAL CONSTRAINTS

This Section concerns properties that apply in the case of both equality
and inequality constraints (2)-(3). We follow the formal statement of each
property with a brief discussion and then a proof or an appropriate
4 reference. Throughout, we assume a system with possible states D, probability
# density q*GD, an arbitrary prior pGZ), and arbitrary new information

1= (q"EJ ), wheref GO contains at least one density q such that H(q,p)< 9.

Property 1 (Uniqueness): The posterior q = pel is unique.

Discussion: A solution to the cross-entropy minimization problem, if one
exists, is unique provided only that Hlq,p) is not identically infinite as q
ranges over the constraint setJ + To guarantee that a solution exists, a

little more is required. One condition that suffices for existence is that,

in addition to containing a density q with finite cross-entropy, the

iiatss iy .o .

constraint set o be closed. (We call ¥ closed if it contains every
probability density q that is a limit of densities qi“. Limits are taken
in the sense that q,-% q means jlqi(g)-q(z)'dz 20.) For of to be

closed, it suffices in turn that the constraint functiona be bounded. (And

conversely, any closed convex set of probability densities can be defined by

equality and inequality constraints (2), (3) with bounded constraint

i
!
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functions, except that infinitely many may be required.) It is also possible
to assert existence of peI under less stringent conditions, which do not imply
that ¥ is closed -- see Theorem 3.3 in [6) and Appendix A. This is
fortunate, since a number of examples of practical importance involve
unbounded constraint functions.

Proof of 1: See [6], [4, Section IV.E].

Property 2: The posterior satisfies q = peI = p if and only if the prior

satisfies p&l.

Discussion: If one views cross-entropy minimization as an inference procedure,
it makes sense that the posterior should be unchanged from the prior if the
new information doesn't contradict the prior in any way. Consider the example
of (A.10)-(A.12). If a, -;k for k = 1,...,m, then q(x) = p(x).

Proof of 2: Property 2 follows directly from the property of cross-entropy

that Hlq,p]2 0 with H[q,p] = O only if q = p ([1, p. 14]).

Property 3 (idempotence): (peI)el = pel .

Discussion: Taking the same information into account twice has the same
effect as taking it into account once.

Proof of 3: Since (p'I)E‘, idempotence follows from Property 2.

. . X/
Property 4: Let I1 be the information 1:1 = (q 641) and let 12 be
the information I, = (q‘rGJz), for overlapping constraint sets
4,4,8D. 1f (po1))ed, holds, then
peL, = (pOIl)"(IlAIz) - (1:011)012 - pO(Ill\Iz) (10)

holds.
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Discussion: If the result of taking information Il into account already
satisfies constraints imposed by additional information 12, taking I2 into
account in various ways has no effect. For example, let Il and 12 be the

constraints

”
jdx xq‘r(x) = a
and 3

jdx 2 (x) = 242, (11)
0

respectively. For an exponential prior p(x) = r exp(-rx), the posterior given

I, is q = poI, = (1/a)exp(~-x/a) (see (A.10)-(A.12)). The second moment of

1
q is just 2a2, so that q satisfies qGJz, as well as q = qO(Ill\Iz),

q = qol,, and g = p.(IIAIZ)' If the right side of (11} were anything
but 2;2, the result of po(IlAIZ) would be a truncated Gaussian or

undefined and not an exponential [7, pp. 133-140]

Proof of 4: Since (p»Il)EJ1 holds and, by assumption, (p‘Il)éylz

also holds, it follows that (p°Il)€ f ln“z) holds. The first two
equalities of (10) then follow directly from Properties 2 and 3. The last

equality of (10) follows from q = pel. having the smallest cross-entropy

1
Hlq,p] of all densities in Jl and therefore inJlﬂJz.

Property 5 (Invariance): Let!: be a coordinate transformation from x6&D

to ze D' with (L‘q)(z) = g-lq(z), where g is the Jacobian
g - 3(2)/)(5). Let T be the set of densities I'q corresponding to
densities q€6D . Let (IJ)E(I‘D) correspond to €J). Then

(Tp)e(f1) = T (pel) (12)

and




H[[(pOI),!:p] = H[pel, p] (13)

hold, where I'l = ((Tq")€ (IN)).

Discussion: Eq. (12) states that the same answer is obtained when one solves
the inference problem in two different coordinate systems, in that the
posteriors in the two systems are related by the coordinate transformation.
Moreover, the cross-entropy between the posteriors and the priors has the same
value in both coordinate systems.

As an example, let y, and y, be the real and imaginary parts of a
1 2

complex sinusoidal signal; let x, be the total power x = y§+y§,

and let x, be the phase, so that

2

(ypsy)) = Dix;px,) = (xilzcos(xz), xilzsin(xz)).

Then the Jacobian is constant:

-1/2 1/2

) %xl cos(xz) -x) sin(xz) /
= det = 1/2 .
~ 1,°1/2 in(x,) xl/2 os(x,)

-ixl 81 2 1 cos x2

Therefore, if the prior density p(i) is uniform in some region in the X
coordinate space, the transformed prior (I'p)(y) will be uniform on a

corresponding region in the y coordinate space. For example, suppose

1/278%, (0¢ x, $ RZ, -w< x, &)

p(x) =
0 y otherwise ’
which makes p uniform in a certain rectangle. Thus, we find that
182, (yf+y§$ r?)
Tp)(y) =

0 y otherwise
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which makes I'p uniform on a certain disk. (Notice l/ll'R2 'J-l(llmz).)

Now, let new information I specify the expected power

L] v +
fdxljdxz x,q (x) = P .
o vim

The resulting posterior q = pel is exponential with respect to x,?

A exp[-Xx,], (0\‘x1$ Rz, -Mex, &7 )
q(;:') =-
0 ’ otherwise

for certain constants A and A. The new information in the transformed

coordinates,!" I, is

and the resulting posterior q' = (Tp)o(I'I) has the form of a bivariate
Gaussian inside the disk:
2A expl-l(yf*'yg)] ’ (Yi"'}’gé r?)
q'(y) =
~
0 , otherwise

The two posteriors q and q' are related by q'(z) = (Eq)(z), as stated in (12).

Proof of 5: See [4, Section IV.E]. The proof of (12) follows directly from

the fact that cross-entropy is transformation invariant. Eq. (13) is just a

special case of this invariance.

Property 6 (System Independence): Let there be two systems, with sets

D, and D, of states and probability densities of states q.€0, and
~l ~2 11
qzebz. Let p €D ;| and pzeb , be prior densities. Let

I, - (q‘{éJl) and 1, = (q:e\lz) be new information about the

two systems, vhere\lls-zl and « ngz. Then




T

e

(plrz)‘(ll'\lz) - (pl"Il)(szIz) (14)
and

Hlqyq,, pyp,] = Hlq;y p)) + Hlq,, p,l, - (15)
hold, where q = pOIl and 9, = pel,.

Discussion: Property 6 states that it doesn't matter whether one accounts for
independent information about two systems separately or together in terms of a
joint density. Whether or not the two systems are in fact independent is
irrelevant: The property applies as long as there are independent priors and
independent new information. Examples can easily be generated from the
multivariate exponential and multivariate Gaussian examples in the Appendix.

Proof of 6: See [4, Section IV.E]

Property 7 (subset independence): Let §l""’§u be disjoint sets
whose union is D. Let the new information I comprise information about
the conditional densities qr*gi. Thus, I = Ill\ 12/\ ...Aln, and

I, - (q"*ﬁieJi), vhere Jiszi and § i is the set of

densities on §.. Let M = (q’éﬂl) be new information giving the

probability of being in each of the n subsets, vherem is the set of

densities q that satisfy

jd,:s q(x) = m
]

~i

for each subset §i, where the m, are known values. Then

(pe(1 AH))*gi - (P*§i)°li (16)
and
m,
H{po(1AM), p] = 2 . nill[qi,pil + Z m, log ;’* (17)
i i i
10

Db e iR a2
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‘ hold, where p, = p*S., q; = p;eI,, and the s, are the prior

probabilities of being in each subset,

: s -I dx p(z) . (18)
8.
~l
Discussion: Tiis property concerns situations in which the set of states )]
decomposes natvrally into disjoint subsets gi' in vhich the new information
I=I1IA1

) R ]
probability densities q"*gi in each subset, and in which there is also new

Al AL comprises disjoint information about the conditional

information M giving the total probability m, of being in each subset gi'
Given this information, there are two ways to obtain posterior conditionsl
1 densities for each subset: One way is to obtain a conditional posterior
(p*gi)OIi from each conditional prior p*§.. Another way is to obtain a
posterior q = po(IAM) for the whole system and then to compute a conditional
posterior q*-§i' Property 7 states that the results are the same in both ,
cases: it doesn't matter whether one treats an independent subset of system
states in terms of a separate conditional density or in terms of the full i
system densaity.

To illustrate Property 7, suppose that a six-sided die was rolled a large

number of times, The frequencies with which the different die faces turned up !
were not recorded individually, but the mean number of spots showing was
determined separately for the odd results and for the even results. There was
no prior reason to expect any face of the die to turn up more often than any

other. Indeed, the probability for the number of spots showing to be odd

turned out to be .5. However, the mean number of spots showing, given that

the number was odd, was found to be 4; the mean number of spots showing, given

]

11

PSR S -




fRts-gy .

L e A R R R N R

that the number was even, also was found to be 4. Given this informationm,

are asked to estimate the probability for each face of the die to turn up,
well as the conditional probability given whether the face is odd or even.
Let 5, = {1,3,5} and §, = {2,4,6}. We will firet solve the problem on

]

and 8 separately and then solve it on §IU§ .

1
In all cases, the prior is uniform. The prior P, on §1 is

pl(l) = p1(3) = pl(S) = 1/3. The information 1, giving the expected

value for an odd number of spots is

2 nql(n) = 4 ;
o€g,

therefore, we compute a posterior q p1°Il on §1 by minimizing

H[qupll subject to ql(l) + 3q1(3) + 5q1(5) = 4. The result is
ql(l) = 0.1162, q1(3) = 0.2676, q1(5) = 0.6162 .

Similarly, the prior p, on §2 is p2(2) = p2(4) = p2(6) - 1/3,

the posterior q, is subject to the constraint 12,
2q2(2) + 4q2(4) + 6q2(6) = 4,

and the result of minimizing ﬂ[qz,pzl is
q2(2) = 1/3, q,(4) =1/3, q2(6) = 1/3.

On § t’§2, the prior p is p(1) = p(2) = *** = p(6) = 1/6. The

1
information Il’ which concerns {'*gl, may be expressed as

L o
q (1) + 373 + 5¢T(5) = aqT(1) + ¢T3 + TSN,

We therefore subject the posterior q to the constraint

(19)

(20)
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- 3q(1) - q(3) + q(5) = o. (21)

Similarly, because of 12, we have the constraint
- 2q(2) + 2q(6) = O. (22)
Finally, because of the information M, we subject q to the constraint

q(1) - q(2) + q(3) - q(4) + q(5) - q(6) = o0, (23)

since this is equivalent to q(1) + q(3) + q(5) = .5 = q(2) + q(4) + q(6).
Upon minimizing Hlq,p] subject to the constraints (21)-(23), we find that

q= pO(IIAIi“H) is given by

q(1) = 0.0581, a(2) = 1/6, 3
q(3) = 0.1338, q(s) = 1/e, (264) -
q(5) = 0.3081, q(6) = 1/6 .

To find the conditional probabilities q*§1 and qf§2, we divide both
columns in this result by .5; the results agree with q, and q, as computed
above ((19),(20)), and as stated in (16).

Proof of 7: See [4, Section IV.E].

Property 8 (weak subset independence): For the same definitions and

notation as Property 7, ‘ :
(pOI)*gi = (p*§i)01i (25)

and

r,
Hlpel, p] = zi ril![qi, pi] + zi r;log ;i- (26)

hold, where p; = pfgi, q; = piOIi, the s, are the prior




probabilities of being in each subset (18), and the r; are the posterior

probabilities of being in each subset,

r -I dx q(x) , (27)
S.
~i
for q = pel.

Discussion: This property states that the two ways of obtaining the posterior
conditional densities also lead to the same result in the case when one does
not have information giving the total probability in each subset. Results for
the full system posterior, however, will not in general be the same for the
cases covered by Properties 7 and 8. That is, q°I and q®*(IA M) will not in
general be equal.

To illustrate Property 8, we solve the example problem from Property 7,
omitting the information M that the probability of an odd (or of an even)
number of spots is .5. The separate solutions on §1 and §2 proceed
exactly as before and yield the same posteriors q and 9 The solution
on §1t’§2 differs from the previous one only in that we minimize Hlq,p]

subject to the constraints (21) and (22), but not subject to (23). The

result, q' = pO(IlAIZ), is given by

q'(1) = 0.0524, q'(2) = 0.1831,
q'(3) = 0.1206, q'(4) = 0.1831,
q'(5) = 0.2778, q'(6) = 0.1831,

and differs from the previous result (24). Moreover, the subset probabilities
r, and T, do not satisfy M: summing the two columns gives L% 0.4508

and r, = 0.5492. However, dividing the two columns respectively by 121 and
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r, gives the ssame conditional probabilities as before: q'*gl -q, and

q'*§2 = q, (see (19), (20)).

Proof of 8: Por q = p°I, let r, be given by (27). Then let R be
information R = q'éﬂ , vhere R is the set of densities satisfying (27). It
follows from Property &4 that pel = pe(IAR) holds; (25) and (26) then follow

from Property 7.

Property 9 (subset aggregation): Let $17 859 +o+r 8 be disjoint

sets vhose union is D. Let g be a transformation such that, for any qGQ,

q' =¥q is a discrete distribution with

q'(xi) = Idz q(x),

i
where x, is a discrete state corresponding to 5631',' Thus the

transformation ?aggregatea the states in each subset §i. Suppose new
information I' = ((!qf)GVI') is obtained about the aggregate distributiom

!‘)qf, wheref' is a convex set of discrete distributions. Then for any
~

prior pfz,
p*‘s'i = (p.I)*gi ’ (28)
Wplo1' = !’(pOI) ) (29)
: and
4 H(!’(pd),i’p] = Hlpel,p) (30)
all hold, where I = W-II' is the information I' expressed in terms of q.'

~

instead of in terms of qu. (That is, 1 = (q*é (!-14‘)), where
(V.IJ')SD are the densities q such that (!q)él'.)

15




Discussion: Note that (29) and (30), in which 1’ is a many-to-one mapping,
have the same form as the invariance property, which holds for one-to-one
coordinate transformations ‘: (see (12)-(13)). 1Indeed, both invariance and
subset aggregation can be viewed as special cases of a more general,
measure~theoretic invariance. In mathematical terms, the operator ¢ is
functorial.

Proof of 9: Let the information I' be a set of known expectations

zi gkiqf'(xi), for ¥ = 1,...,m, or bounds on these expectations, where

q"' = qu. In terms of q‘l’, this becomes a set of known or bounded expectations
r
J dx q (g)fk(z) ,
D

-~
where fk(zé gi) = 8,; is constant in each subset §;- The posterior

q = p#I has the form

m
q(x) = p(z) exp (— AO - z Akfk(‘g) ’ (31)

k=1
vhere some of the terms in the summation over k may be omitted in the case of
inequality constraints (see (A.4)). Since £, is constant on each subset,
(31) has the form q(z(-gi) = Aip(gens;i), where A, is a subset
dependent constant. This proves (28). Now, in general for any q,p e.D, the

cross-entropy Hlq,p] can be expressed [4] as

r,
- e Y
Hlq,p] zi rin(qi,pi] + Zi rilog 5 (32)

where P; * P*sia q; - q*si’




In the present case we have q; = p; from (28). 8ince llqi,qil =0,

S e T e R RO

(32) reduces to
T,

Hlq,p] = z ) rilog -.l
1

i
- n[gq,tp] .
Minimizing the left side subject to I, yielding q = pel, is equivalent to

minimizing the right side subject to 1I'. This proves (29) and (30).

h Property 10 (triangle relations): For any réJ ,

n[r,P] 2 ﬂ[l‘,q] + ﬂ[q’l’] ] (33)
vhere q = pol. When I is determined by a finite set of equality

i constraints only, equality holds in (33).

Discussion: The triangle equality is important for applications in which
cross—entropy minimization is used for purposes of classification and patteran
t ’ recognition.

Proof of 10: We have

Blq,p] = mig HIq',p].
9P q?a P

The densities q' = (1-t)q + tr belong tod for all té€ [0,1] since qGJ, rGJ,

andJ is convex. PFor a_ll such t we therefore have

H{(1-t)q+tr, p] 2 1Hlq,p) , (34)

or F(t) ) F(0) , vhere we have written F(t) for the left side of (34)., It

follows that P'(0) O (provided F is differentisble at 0). We therefore set

:_t(sd’ [(1-t)q(x) + tr(x)] 1og {i=tlalp) * tr( ) L > o

17
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and differentiate under the integral sign. (For justification of this step
and the existence of F'(0), see Csiszar {6), who gives the proof in a more

general measure-theoretic setting.) The result is

(sz g[r(z) - q(z)] log (1°t)q( ) + tr(i).

p(x)

+ [A-0q() + el R 1B i)' 0,
4 ~ t=0

sz [r(x) - q(z)][l + log %%f))-] 2 0.

This implies

dx r(x) log (%) > | dx q(x) log (
~ ~ ) ] 5 7 [d ~ P 5

’ since jdz [r(x)-q(x)] = 0. Therefore,

Id?.‘, r(x) log ﬁg} 2 fd.’“, r(x) log %f))' + fdz q(x) log 1(‘”(!) . :

Consequently H(r,p] 2 HIr,q] + Hlq,pl.

Now assume I is determined by finitely many equality constraints. Since

q = pol, log(q(g_g)/p(gg)) assumes the form

4 m
8 log %%:)7 = - Xo - kzlakfk(?“')

(cf. (A.4)). But then

m -
sz r(x) log% - -30 - : )kfk = ]dz q(x) logg%;;- = Hlq,p) ,

=1
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since r and q both satisfy the equality constraints. The equality

sz r(f_) log %8))- - jdz r(z) log %g;— + dax r(z) log %&,’-

then implies H[r,p] = H[r,q] + Hlq,p].

Property _l_l:
H[q*,pOI] € E[qf,pl,

holds with equality if and only if pel = p.

Discussion: This property states that the posterior q = pel is always closer

?

to q' , in the cross-entropy sense, than is the prior p.

Proof of 11: Since q‘l’e‘[ holds, (35) follows directly from (33) with r = qf.

IV. PROPERTIES GIVEN EQUALITY CONSTRAINTS

This Section concerns properties that apply when some of the new
information is in the form of equality constraints (2) only. Throughout, we

assume a system with possible states D and an arbitrary prior péz.

Property 12. Let the system have a probability demsity q*ez, and let
there be information I = (q'r&‘) that is determined by a finite set of
equality constraints only. Then

nlq’,pl = Rlq',q) + Rlq,p]

holds, where q = pel.

Discussion: Since the difference H[q?,p]-ll[qf,q] is just H[q,p), and since
H(q,p] is a measure [1] of the information divergence between q and p,
Property 12 shows that H{peI,p] can be interpreted as the amount of infor-

mation provided by I that was not already inherent in p. Stated differently,

N 7 T T
. . T
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H{pel,p) is the amount of information-theoretic distortion introduced if p is
used instead of pel. Since, for any prior p and any density r €0 with
H(r,p) € ®, there exists a finite set of equality constraints I_ such that

r = peI_ (see appendix B), H[r,p] is in general the amount of information
needed to determine r when given p, or the amount of information-theoretic
distortion introduced if r is used instead of p.

Proof of 12: Eq. (36) follows directly from (33), since qfﬁ\l holds.

Property 13: Let the system have a probability density q*e.@, and let
there be information I, = (q G\I ) and information I, = (q EJ ),
where Jl ngﬂ are constraint sets with a non-empty intersection.

Suppose thatJl is determined by a set of equality constraints (2)

only. Then
(peI)e(I,AL) = po(I,AL) (37)
and
Rlq,p] = Hlq,q,] + Hlq,,pl (38)

hold, where q = po(IlAlz) and q, = pel,.

Discussion: When L is determined by equality constraints, (37) holds
whether or not (p°11)6i{2 (compare with Property 4). Property 13 is
important for applications in which constraint information arrives piecemeal,
and states that intermediate posteriors can be used as priors in computing
final posteriors without affecting the results. Like (33) and (36), the
triangle equality (38) is important for applications in which cross-entropy
minimization is used for purposes of classification and pattern recognition.
As an example of Property 13, we consider minimum cross-entropy spectral

analysis [8]. If one describes a stochastic, band-limited, discrete-spectrum




- v ikl

signal in terms of a probability density q‘r(g) - q‘r(xl,...,xn). vhere x
is the energy at frequency fk’ known values of the autocorrelation function

can be expressed as expectations of q*, namely,

: Rr - Jd‘:s (zk Zxkcos(mrfk)) q?(.x.) ’

where Rr is the autorcorrelation sample at lag .. Let Il be a limited

! set of autocorrelations Rl,...,Rm. Then, for a prior Py with a flat
. (white) power spectrum P, = dx xkpw(z) = P, the power spectrum of the
posterior 9pc © pwoll is just the mth-order maximum entropy or Linear
Predictive Coding (LPC) spectrum [8]. Let 1, be the set of autocorrelation
gamples Rm+1’Rm+2"" that together with I1 fully determine the power
¥ "' i = =
5 spectrum of q' . Then (37) yields U pWO(IlAIZ) qLPc"(IlAIz).
.  Proof of 13: The denmsity q, has the form (A.4),
] .
'?_ ql(g) = p(x) exp —30 - Z Akak(gs) .
k=1
3 ; For an arbitrary density qGD, the cross-entropy with respect to 9 satisfies
i
; q(x)explA, + zkAk‘k(?\‘-)]
) f Hlq, qll = dx q(x) log 1
p(x)
{ = Hiq, pl + Ao + jdﬁ q(x) ZkAk‘k(o’\‘)
’ If q satisfies q“l, this becomes {
RHlq, q;) = Hlq, pl +l° + ):kxk-k, (39) 4
vhere /\o, Ak’ and :k are constants. Since Hlq, qll and H(q, p] differ

by a constant onJl, it follows that they have the same minima on any subset

21
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ole. Since dlhlz)gl holds, this proves (37). Moreover, (39)

and (A.S) yield (38), which is also a special case of (33).

TSR SN Y

Property 14. Suppose there are two underlying probability densities q11’

and q;. Let Il and I2 stand respectively for the sets of equality

s Qi <

3 constraints
18
f"l‘. £ (am = BV (= 1yee,m) (40)
and ‘
sz £ (Daf = D (i=1,...,8), (41) |

where s2 m. Then

(poj[l)o(lz) = p012 (42)

holds. Moreover, if Al(tl)’ Al((u), and /\l(f) are the

Lagrangian multipliers associated with q; = P°l;s q;, = q,°L,,

and q, = pOIZ, respectively, then

1 Aff) = AI((” +Al((12) (k = 0,1,...,m), (43)
' )\i” = );12) (k = m+l,...,8), (44)
: and
F
k- m
1
Hlq,,p] = Hlqy,q,] + Hlq;,p] + Z Af_ )(Ff_l)-riz)) (45)
r=1
also hold.
Discussion: Property 10 can apply to situations in which q‘:’ and qg are ’ !

7 system probability densities at different times and in which q{ or estimates

) of q‘: are considered to be good estimates of q;‘ 1f 12 is determined in

22
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part by expectations of the same functions as Il’ but with different
expected values, then the results of taking Il into account are completely
wiped out by subsequently taking 12 into account. As an example, consider
frame-by~frame minimum cross-entropy spectral analysis in which Ii is
determined by autocorrelation samples in frame i at a fixed set of lags

(s = m). Eq. (42) shows that the results for frame i are the same whether the

assumed prior is an original prior p, the posterior from frame i-1, or some
intermediate estimate. (However, there may be computational or

bandwidth-reductinn advantages to using poli_l as a prior in frame i.) Note

() _ (2
r

that, if s ) m and F_

for r = 1,...,m, Property 14 reduces
to Property 13.

Proof of 14: From (A.4) we have

™
q,(x) = p(x) exp (- Agl) - z Al((l)ak(g)) y
k=1

where the l‘(‘l) are chosen to satisfy the constraints (40). Similarly,

s
qu(:) - ql(;:') exp (— }\(()12)- Z Ailz)ak(s)) ,
k=1

holds. This is of the form p(:t')exp[- (2) _ Zk"iz)‘k(}:)]’
with Xl((z) =Aél)+/\£12) (k=1,...,m) and A‘(‘z) -Al(‘u) ]

(k = m+1,...,8), and it is a probability density satisfying the constraints

(41); it is therefore equal to pel, = q,, which proves (43)-(44). Eq.

(45) follows from straightforward applications of (A.S).
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Property 15 (expected value matching): Let I be the constraints

- 4

J dx q‘r(g)fk(z) = fk (k=1,...,m) (46)
D

1 for a fixed set of functions fk’ and let q = pol be the result of taking
this information into account. Then, for an arbitrary fixed density
q*€Q), the cross entropy Hiq*,q] = Riq*,poI] has a minimum value when the

constraints (46) satisfy

- -
£, = £ = Idg q*(‘g)fk(z). '
D ' |
”n
3 Discussion: This property states that, for a density q of the general form
'f‘ (A.4), Hlq*,q] is smallest when the expectations of q match those of q*. 1In
| particular, note that q = pel is not only the density that minimizes Hlq,pl,
but also is the density of the form (A.4) that minimizes H[q"’,q]! Property 15
is a generalization of a property of orthogonal polynomials [10] that, in the i
case of speech analysis, is called the "correlation matching property” [9, J‘
k! i
3 Chapter 2]. ‘
¥ Proof of 15: The cross-entropy Hlq*,q] is given by 5

Hlq*,q] = dzq*(x)log(q*(z)/q(g))

N W v

dx q*(z) log(q*(z)/p(:)) +fd5 q*(:)(lo + Zklkfk(g))

- faz a*(x)log(a*(x)/p(x)) + Ay + D AT, 1)

L ITmrmmm————r

where we have used (A.4). Now, since the multipliers Ak are functions of

the expected values ?k’ variations in the expected values are equivalent to

NN g

variations in the multipliers. Hence, to find the minimum of H[q¥,q], we solve
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z—x-k-ﬂ[‘I*r‘I] = 0 = )7\: + fk’

where we have used (47). It follows from (A.9) that the minimum occurs when ]

T =T
x - e

V. GENERAL DISCUSSION

Property 1 and Eqs. (12), (14), and (16) are the inference axioms on which
the derivation in [4] is based. It is important to recognize that it is these
inference properties, and not the corresponding cross-entropy properties (Egs.
(13), (15), and (17)) that characterize cross-entropy minimization. For more
information on this distinction, see [4, Section VI] and [5].

3 An interesting aspect of the results presented in this paper is the
interplay between properties of cross-entropy minimization as an inference
procedure and properties of cross—entropy as an information measure. 1
Cross-entropy's well-known [1] and unique {[5] properties as an information

k ; measure in the case of arbitrary probability densities are extended and

| strengthened when one of the densities involved is the result of cross-entropy

minimization. (See the statement and discussion of Properties 10, 11, 12, 13,

‘{ ' and 15.) Indeed, the resulting combined properties have led to a new

* information~theoretic method of pattern analysis and classification [11] that

is a refinement of a method due to Kullback {1, p. 83].
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APPENDIX A

Mathematics of Cross-Entropy Minimization

We derive the general solution for cross-entropy minimization given
§ arbitrary constraints, and we illustrate the result with the important cases
of exponential and Gaussian densities. 1In general, however, it is difficult

or impossible to obtain a closed-form, analytic solution expressed directly in

IR 7 et gk ot o

terms of the known expected values rather than in terms of the Lagrangian
multipliers. We therefore discuss a numerical technique for obtaining the
solution, namely the Newton-Raphson method. This method is the basis for a

3 computer program that solves for the minimum cross-entropy posterior given an
£ arbitrary prior and arbitrary expected-value constraints.

;! Given a positive prior density p and a finite set of equality constraints

J"(f) =1, (A.1)
Jfk(f_)q(g) dx = ?k , (k =1, ... , m), (A.2) ‘
i

we wish to find a density q that minimizes

3 Hlq,p] = Jq(‘:‘:') log %—% dx ,

F subject to the constraints. For conditions that imply the existence of a

unique minimum, see the discussion of Property 1 (uniqueness). One standard
method for seeking the minimum is to introduce Lagrangian multiplieru/ﬂ and

Ak (k =1, ... , m) corresponding to the éonhtraints, forming the expression

m
q(x) log %{5- dx + 16 q(x) dx + Z Ak fk(z)q(z) dx ,
k=1

s
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and to equate the variation, with respect to q, of this quantity to sero:

»
(x) -
log %é)- +1+ '6 + Z Akfk(g) 0. (A.3)
k=1
Solving for q leads to
n
q(x) = p(x) exp |- Ao - Z Akfk(z) ’ (A.4)
k=1

where we have introduced Ao - p +1.

In fact, the q, if it exists, that minimizes H[q,p] has this form with the
possible exception of a set 5 of points on which the constraints imply that q
vanishes. (Such a situation would arise, for instance, if we had a constraint
Jq(z)f(z)dz = 0, where f(g) > 0 vhen x € § and £(x) = 0 when £¢ 8.
Informally, we could then imagine the Lagrangian multipliers becoming infinite
in such a way that the argument of exp in (A.4) becomes - when 3 € 8.
Conversely, if a density q is found that is of this form and satisfies the
constraints, then the minimum-cross-entropy density exists and equals q (6],
[1). Por simplicity in the following, we assume the set 8 is empty.

The cross-entropy at the minimum can be expressed in terms of the Ak and

the ?k by multiplying (A.3) by q(x) and integrating. The result is

|
Rlq,p] = -)o - Z)kfk . (A.5)
k=1

It is necessary to choose /\o and the /\k 80 that the constraints are

satisfied. In the presence of the constraint (A.l) we may rewrite the

remaining constraints in the form

J(fkq;) - £ )a(x) dx = 0 (A.6)
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Now, if we find values for the Ak such that

m
J(fi(g) - -f-i)p(z) expf|- Zakfk(z) dz =0 ] (i - 1’000,.), (Ao’)
k=1

we are assured of satisfying (A.6); and we can then satisfy (A.1) by setting

m
AO = long(:) exp| - zAkfk(z) dx . (A.8)
k=1

If the integral in (A.8) can be performed, one can sometimes find values for

the Ak from the relations

) -
-)T;AO = fk . (A.9)

The situation for inequality constraints is only slightly more complicated.
Suppose we replace all the equal signs in (A.2) by £ . (We lose no generality
thereby: we can change inequalities with # into inequalities
with & by changing the signs of the corresponding fk and ;k’ and any
equality constraint is equivalent to a pair of inequality con@traintn.) The q
that minimizes H(q,p) subject to the resulting constraints will in general
satisfy equality for certain values of k in the modified (A.2), while strict
inequality will hold for the rest. We can still use the solution (A.4),
subjecting the Lagrange multipliers to the conditions Ak‘ 0 for k such that
equality holds in the constraint, and Ak-o for k such that strict inequality
holds in the constraint.

It unfortunately is usually impossible to solve (A.7) or (A.9) for the
Ak explicitly, in closed form; however, it is possible in certain important
special cases. For example, consider the case in which the prior p(x) is a

multivariate exponential,




n
px) =TT (1/a) expl-x /o) , (A.10)
k=1

vhere x = (xl,...,xn) and the x, each range over the positive real line,

and in which the constraints are

Jd_:; xkq(z) = ;k ’ (A.11)

k=1, «.., n. Solving (A.9) in order to express the minimum cross-entropy

posterior directly in terms of the known expected values ;k yields

a® = [] /5 explx,/x]. (A.12)
k

Thus, the density remains multivariate exponential, with the prior mean values
a, being replaced by the newly learned values ;k
Mow consider the case in which the x, range over the entire real line,

and in which the prior density is Gaussian,
- -1/2 _ - 2
p(x) n (mk) exp| (xk n.k) /2bk] .
k
Suppose that the constraints are (A.1ll) and
dx (x -x )% = v
X% T % VX k °
In this case the minimum cross-entropy posterior is
-1/2 -
q(x) = n (2nv,) /e::p[-(xk - x,‘)zlzvkl .
k

Thus, the density remains sultivariate Gaussian, with the prior means and

variances being replaced by the newly learned values.

29
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Here is an example of a simple problem for which the solution of (A.7)

cannot be expressed in closed form. Consider a discrete system with n states
X and prior probabilities p(xj) " Py (3 =1, ... , n). The discrete

form of (A.l) is

n
2 91, (A.13)
j=1

where qj = q(xj). Suppose the only other constraint is that the mean m of

the indices j is prescribed: f(xj) = j, and

n
2 i =m. (A.14)
j=1

Then (A.4) becomes 9 * pjexp[-lo-lj], which we write as q; = apsz
by introducing the abbreviations a2 = exb[-)b] and z = exp[-A]. From (A.16)

snd (A.17) we then obtain

G

j=1
and
n

:E: (j-m)pjzj =0, (A.15)
j=1

The problem then reduces to finding a positive root of the polynomial in

(A.15). As in the continuous case, there are special forms for the prior that

lead to important particular solutions. But when n > 5, the roots of the

polynomisl (other than zero) cannot in general be written as explicit, .
closed-form expressions in the coefficients for arbitrary priors. Numerical

methods of solution therefore become important. Our obtaining a polynomial
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equation in the present example was an accidental consequence of the fact that
the values of the constraint function f formed a subset of an arithmetic
progression (j = 1, 2, ... ). Thus, for more general types of problems,
numerical methods are even more important.

One such method is the Newton-Raphson method, which is for finding

solutions for systems of equations that, like (A.7), are of the form
'i(hl’ oo e ’A-) - o 9 (i - 1’ see 9 ‘) . (A.l6)

The method sterts with an initial guess at the solution,

A(l) (A( 1 ), e 3 A ‘:l )) , and produces further approximate

A(z), A® w |,

nolutlonl~ s eoe 1in succession, If the initial guess é

close enough to a solution of (A.16), if the Fi are continuously
differentiable, and if the Jacobian [)ri/a,\jl is nonsingular, then the
will converge to the solution in the limit as r-peo ,

A(r)

(r) .

The method is based on the fact that, for small changes AA in the

A(!‘)

arguments A" ", we have the approximate equality

n (r)
IF.(AT)

(r), . (1) o (r) i (r)
FQQAT+ANT D) F (A )+§ G AAk
k=1 k

up to a term of order °(é£( r)). We therefore takeéwA(r) to be a solution

of the linear equation

= dr, X

(r) (r)
2 3)\' A"k =-F, (A7) (A.17)
k=1

and set é("l) = A(r) + Q&(r). In applying the Newton-Raphson method to

cross-entropy minimization, we let Fi(b) be proportional to the discrete

form of the left-hand side of (A.7); we get
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(r) (r)
!i(b ) = Z fijpjexp - Z Au fuj R (A.18)

j=1 u=]
(r) n m
DF (A )
Z £3565P5exp| - ZAﬁ')fuj , (A.19)
)Ak j=1 u=1

where f.. = £.(x,) - -f.., and we have removed a factor of
ij i3 i

expl- Z " At(xr);u] . With the abbreviation

m
1/2 1 (r)
gj - pj exp (‘ ‘2' Z Au fuj) ’

u=1
we express the right-hand sides of (A.18) and (A.19) in matrix notation as
(£ diag(g) g). and [£ diag(g)zftl. y respectively, where diag(g) is
the diagonal matrix whose diagonal elements are the gj, and ‘ft is the
transpose off. The solution of (A.17) is then given by

AXT) = (£ aing()?£ 57 £ siag(p)] g -

laaa d

We remark that the quantity in brackets is the Moore-Penrosec generalized
inverse {12] of the matrixf diag(g). The approach just described has been
made the basis for a computer program [13], written in APL, for solving
cross—entropy minimization problems with arbitrary positive discrete priors p
and equality constraints specified by utricelf' + The approach is
particularly convenient for programming in APL since the generslized inverse
is a built-in APL primitive function [14]. To solve a minimum-cross-entropy
problem with 500 states and 10 constraints, the program typically requires 15

seconds of CPU time when running under the APL SF interpreter on a DEC-10

system with a KI central processor.




Gokhale and Kullback [15) describe a somewhat different algorithm, also

based on the Newton-Raphson method, that has been implemented in PL/I. Agmon,

Alhassid, and Levine [16],[17] describe yet another cross-entropy minimization
algorithm and a FORTRAN implementation. Tribus [7] presents programs in BASIC

that compute singly and doubly trucated Gaussian distributions as maximum

entropy distributions with prescribed means and variances.




APPENDIX B

Remark on the Discussion of Property 12

In the discussion of Property 12, it was stated that for any prior p and
any density r €D with H(r,p) <9, there exists a finite set of equality

constraints Ir such that r = polr. In fact, at most two are needed. Let

0, r(z) #*0

fl(x) =
~ 1, r(x) =0,

?l -0,

log(p(x)/x(x)) , =(x)#0
f2(§) - ~

0 ’ r(s) - 0 ’
?2 = - H(t,p) ’

and impose constraints
Jq({)fl(z)dz = ?1 ,
Jq(z)fz(z)di - f.

The first constraint implies (peI)(x) = O where r(x) = 0. On the
complementary set, where r(z) * 0, define q(x) by (A.4) with all "j =0
except Az = 1; this gives a function q that satisfies the second constraint
as well as the first and also agrees with r. Hence r = q is the result of

minimizing H(q,p) with respect to (B.l1) and (B.2).
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