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I. INTRODUCTION

The principle of minimum cross-entropy provides a general method of

inference about an unknown probability density q when there exists a prior

estimate of q and new information about q in the form of constraints on

expected values. The principle states that, of all the densities that satisfy

the constraints, one should choose the posterior q with the least cross-entropy

H[q,p] -=Jdx q(l)log(q(x)/p(g)), where p is a prior estimate of q

Cross-entropy minimization was first introduced by Kullback [11, who called it

minimum directed divergence and minimum discrimination information. The

principle of maximum entropy [211[3J is equivalent to cross-entropy

minimization in the special case of discrete spaces and uniform priors.

It is useful and convenient to view cross-entropy minimization as one

implementation of an abstract information operator * that takes two arguments

a prior and new information --- and yields a posterior. Thus, we write

the posterior q as q - pol, where I stands for the known constraints on

expected values. Recent work has shown that, if the operator * is required to

satisfy certain axioms of consistent inference, and if * is implemented by

means of functional minimization, then the principle of minimum cross-entropy

follows necessarily [4].

Cross-entropy minimization satisfies a variety of interesting and useful

properties beyond those expressed or implied by the axioms in [41. Some of

these just reflect well-known properties of cross-entropy [11,151, but there

are surprising differences as well. For example, cross-entropy does not in

general satisfy a triangle relations involving three arbitrary probability

densities. But in certain important cases involving densities that result

Note: Manuscript submitted January 23, 1980.



from cross-entropy minimization, cross-entropy satisfies triangle inequalities

and triangle equalities. (See Properties 10, 12, and 13.)

It is the purpose the present paper to state and prove various fundamental

properties of cross-entropy minimization. For completeness, we also restate

the axioms from [4]. After introducing necessary definitions and notation in

Section 1, we consider first properties that are valid for both equality and

inequality constraints on expected values (Section 1II) and then properties

that are valid only for equality consttaints (Section IV). We conclude with a

brief discussion in Section V. We also include an Appendix in which we

discuss general analytic and computational methods of finding minimum

cross-entropy posteriors.

II. DEFINITIONS AND NOTATION

In this section, we introduce the same notation as in [4, Section II.

The discussion here places somewhat greater emphasis on mathematical questions

relating to the existence of minimum-cross-entropy solutions. (See also the

discussion following Property 1.)

We use lower-case boldface Roman letters for system states, which may be

multidimensional, and upper-case boldface Roman letters for sets of system

states. We use lower-case Roman letters for probability densities, and upper

case script letters for sets of probability densities. Thus, let j be a state

of some system that has a set D of possible states. Let#0 be the set of all

probability densities q on D such that q(x)* 0 for xG D and

D

We use a dagger to distinguish the system's unknown "true" state probability
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density qIE). When SGD is some set of states, we write q(xEC) for the set

of values q(x) with x.

New information takes the form of linear equality constraints

d '(x)ak W (2)

and inequality constraints

dx t (x Ck() (3)
D d q1*) k k

for known sets of functions ak, ck  and known values k ck The

probability densities that satisfy such constraints always comprise a convex

subset 4 of, . (A setd is convex if, given 0.A*l and q,r4d, it

contains the weighted average Aq+(l-A)r.) We refer to the functions ak,

ck as constraint functions and 4  as a constraint set. For a given

constraint set there may of course be more than one set of constraint

functions in terms of which it may be defined. We frequently suppress mention

of a particular set of constraint functions, using the notation I - (q1-) to

mean that q is a member of the constraint set and referring to I as a

constraint. We use upper-case Roman letters for constraints.

Let p4E* be some prior density that is an estimate of q obtained, by any

means, prior to learning I. We require that priors be strictly positive:

p(xfi) > 0 . (4)

(This restriction is discussed below.) Given a prior p and new information 1,

the posterior density qE 4  that results from taking I into account is chosen

by minimizing the cross-entropy HRq,p) in the constraint set 4 :

H[q,p) " Mq H[q',p] (5)
q ' ~

3



where

H[q,p] - dx q(x)log(q(x)/p(x)). (6)

We introduce an "information operator" 0 that expresses (5) using the notation

q - p. (7)

The operator * takes two arguments --- a prior and new information and

yields a posterior.

For some subset SS D of states and xGS, let

q(x I Sx ) = q(x)/f dx' q(x') (8)

be the conditional density, given xe S, corresponding to any qEZ). We use

q(xIxC-) - q*S (9)

as i shorthand notation for (8).

In making the restriction (4) we assume that D is the set of states that

are possible according to prior information. We do not impose a similar

restriction on the posterior q - p*1 since I may rule out states currently

thought to be possible. If this happens, then D must be redefined before q is

used as a prior in a further application of *. The restriction (4) does not

significantly restrict our results, but it does help in avoiding certain

technical problems that would otherwise result from division by p(,). For

more discussion, see [5).

When D is a discrete set of system states, densities are replaced by

discrete distributions and integrals by sums in the usual way. In a more

general setting for the discussion than we have chosen, D would be a

measurable space, and p and q would be replaced by prior and posterior

probability measures. By continuing to write in terms of probability
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densities, we would then be implicitly assuming some underlying measure with

respect to which the rest were absolutely continuous. Indeed such a measure

certainly exists if we demand that no event with zero prior probability can

have positive posterior probability, which in the present context we are in

effect demanding by assuming (4).

III. PROPERTIES GIVEN GENERAL CONSTRAINTS

This Section concerns properties that apply in the case of both equality

and inequality constraints (2)-(3). We follow the formal statement of each

property with a brief discussion and then a proof or an appropriate

reference. Throughout, we assume a system with possible states D, probability

density qtEiD, an arbitrary prior p t3, and arbitrary new information

I = (q 4 ), whereJSZcontains at least one density q such that H(q,p)< o.

Property 1 (Uniqueness): The posterior q = p*I is unique.

Discussion: A solution to the cross-entropy minimization problem, if one

exists, is unique provi4ed only that H[q,p] is not identically infinite as q

ranges over the constraint set14 . To guarantee that a solution exists, a

little more is required. One condition that suffices for existence is that,

in addition to containing a density q with finite cross-entropy, the

constraint set4 be closed. (We call 4 closed if it contains every

probability density q that is a limit of densities q1 . Limits are taken

in the sense that qi-* q means $qi(x)-q(x)ldx4#.) For to be

closed, it suffices in turn that the constraint functions be bounded. (And

conversely, any closed convex set of probability densities can be defined by

equality and inequality constraints (2), (3) with bounded constraint
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functions, except that infinitely many may be required.) It is also possible

to assert existence of pei under less stringent conditions, which do not imply

that 4 is closed -- see Theorem 3.3 in [6) and Appendix A. This is

fortunate, since a number of examples of practical importance involve

unbounded constraint functions.

Proof of 1: See [61, [4, Section IV.EJ.

Property 2: The posterior satisfies q - pel - p if and only if the prior

satisfies pE.

Discussion: If one views cross-entropy minimization as an inference procedure,

it makes sense that the posterior should be unchanged from the prior if the

new information doesn't contradict the prior in any way. Consider the example

of (A.l0)-(A.12). If ak -=xk for k = 1,...,n, then q(x) - p(x).

Proof of 2: Property 2 follows directly from the property of cross-entropy

that H[q,p], 0 with H[q,p] - 0 only if q - p ([1, p. 141).

Property 3 (idempotence): (p*I)oI - poI

Discussion: Taking the same information into account twice has the same

effect as taking it into account once.

Proof of 3: Since (poi)4 , idempotence follows from Property 2.

Property 4: Let I1 be the information I1  N *-I ) and let 12 be

the information 12 (q' 4" 2), for overlapping constraint sets

'41 2a. If (p.i1)64 2 holds, then

psI = (Poi 1 )e(ll^ 2 ) - (Pol1)@12  pe(1IA 2) (10)

holds.
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Discussion: If the result of taking information I into account already

satisfies constraints imposed by additional information 121 taking 12 into

account in various ways has no effect. For example, let II and 12 be the

constraints

dx xq () -a

and 2'

J dx x(x) 2)

respectively. For an exponential prior p(x) = r exp(-rx), the posterior given

I is q - polI * (l/a)exp(-x/a) (see (A.10)-(A.12)). The second moment of

q is just 2a2 , so that q satisfies q64 2 , as well as q - qo(llAl2),

q = q*12 , and q - pe( 1l1 2 ). If the right side of (11) were anything

2
but 2a , the result of po(I1Al 2) would be a truncated Gaussian or

undefined and not an exponential [7, pp. 133-1401

Proof of 4: Since (p.1)C41 holds and, by assumption, (po1)E
4
2

also holds, it follows that (po.1)E(4 1 n4 2) holds. The first two

equalities of (10) then follow directly from Properties 2 and 3. The last

equality of (10) follows from q - psI 1 having the smallest cross-entropy

H[q,p] of all densities in 4
1 and therefore in4 l 2

Property 5 (Invariance): Let r be a coordinate transformation from x6 D

to yGD' with (rq)( ) J-lq(x), where J is the Jacobian

J k(y)/(x). Let rM be the set of densities r q corresponding to

densities qEXb . Let (r4)S(rJo) correspond to 4D. Then

rrp).(ri) - r(p.i) (12)

and
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Hjr(po), rp] - Hip.I, pi (13)

hold, where ri - ((rq t )e(r)).

Discussion: Eq. (12) states that the same answer is obtained when one solves

the inference problem in two different coordinate systems, in that the

posteriors in the two systems are related by the coordinate transformation.

Moreover, the cross-entropy between the posteriors and the priors has the same

value in both coordinate systems.

As an example, let y1 and Y2 be the real and imaginary parts of a

2 2
complex sinusoidal signal; let x1 be the total power x1  y - +

and let x2 be the phase, so that

1/2 1/2
(y1,Y2) = £(xi,x2) (x1  cos(x2 ), xI  sin(x2 .

Then the Jacobian is constant:

1t -1/2 ,•1/2
x 1/cos(x2) -x1  sin(x2 )

J - det [ 1/2
-1/2 . 1/2

Sx cos(x21

Therefore, if the prior density p(x) is uniform in some region in the x

coordinate space, the transformed prior (rp)(y) will be uniform on a

corresponding region in the y coordinate space. For example, suppose

-/2WR2, (Ox R 2 , -7<x2 )

P(X) -

0 ,otherwise

which makes p uniform in a certain rectangle. Thus, we find that

{I ) 2  (Y2+y2 <R
2)

(rp)(y)

0 , otherwise
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vhich makes rp uniform on a certain disk. (Notice IMR 'J 1(MM21M

Now, let new information I specify the expected pover

fdxif xlqt(x) - P

The resulting posterior q - poI is exponential with respect toz

JA exp[-)x 1 , (04 X I R 2  -IC X2 m )

q(x)

0, otherwise

for certain constants A and A.The new information in the transformed

coordinates,r i, is

fdy, JdY (Y 2+y 2qWtwy P

and the resulting posterior q' -(prp)(I has the form of a bivariate

Gaussian inside the disk:

2 2 2 2 2
2A(y exp[- A(yl+y2)J, (yl+y 2 4R)

0 otherwise

The two posteriors q and q' are related by q'(y) -(rq)(y), as stated in (12).

Proof of 5: See [4, Section IV.EJ. The proof of (12) follows directly from

the fact that cross-entropy is transformation invariant. Eq. (13) is just a

special case of this invariance.

Property 6 (System Independence): Let there be two systems, with sets

Dand Dof states and probability densities of states q,60, and

q LC2'Let p,-J 1 and P2*60 2 be prior densities. Let

I (qlC6j I and I2 = (q 'Ve 2 ) be new information about the

two systems, where*4~.) and 42 C'#V' Then

9



(plP2 )0( 1Al2) - (pIS1)(pI 2 ) (14)

and

H[q 2, pP2I - H[ql, pl] + H(q2, P219 (15)

hold, where q, - po 1l and q2 " Ps12.

Discussion: Property 6 states that it doesn't matter whether one accounts for

independent information about two systems separately or together in terms of a

joint density. Whether or not the two systems are in fact independent is

irrelevant: The property applies as long as there are independent priors and

independent new information. Examples can easily be generated from the

multivariate exponential and multivariate Gaussian examples in the Appendix.

Proof of 6: See [4, Section IV.E]

Property 7 (subset independence): Let S1'" "'5n be disjoint sets

whose union is D. Let the new information I comprise information about

the conditional densities q *Si . Thus, I I I A ... Al , and
^P1 2 tn'i - (*S ir), where 4i1 i andJ . is the set of

densities on S.. Let N = (qtO J) be new information giving the

probability of being in each of the n subsets, wherein is the set of

densities q that satisfy

Idx q(x) - m.

for each subset Si, where the u. are known values. Then

(p-(IAN))*S i - (p*Si)eI i  (16)

and

[po(IA), p I 2[q,p i ] + og (17)
Si si

10



hold, where pi * P*li, qi PIeli and the si are the prior

probabilities of being in each subset,

- dx p(x) .(s

S.

Discussion: TWis property concerns situations in which the set of states

decomposes natcrally into disjoint subsets Sit in which the new information

I - A I A .. .I comprises disjoint information about the conditional
1 2'

probability densities qt*S. in each subset, and in which there is also new

information M giving the total probability mj of being in each subset

Given this information, there are two ways to obtain posterior conditional

densities for each subset: One way is to obtain a conditional posterior

(p*S.)oI from each conditional prior p* Si. Another way is to obtain a

posterior q - pe(IAM) for the whole system and then to compute a conditional

posterior q*Si. Property 7 states that the results are the same in both

cases: it doesn't matter whether one treats an independent subset of system

states in terms of a separate conditional density or in terms of the full

system density.

To illustrate Property 7, suppose that a six-sided die was rolled a large

number of times. The frequencies with which the different die faces turned up

were not recorded individually, but the mean number of spots showing was

determined separately for the odd results and for the even results. There was

no prior reason to expect any face of the die to turn up more often than any

other. Indeed, the probability for the number of spots showing to be odd

turned out to be .5. However, the man number of spots showing, given that

the number was odd, was found to be 4; the mean number of spots showing, given

111

nn'Ii.-. _n_ ...



that the number vas even, also was found to be 4. Given this information, we

are asked to estimate the probability for each face of the die to turn up, as

veil as the conditional probability given whether the face is odd or even.

Let S1 0 t1,3,53 and S2 - (2,4,6). We will first solve the problem on

S1 and S2 separately and then solve it on SIUS2.

In all cases, the prior is uniform. The prior p1 on Sl is

Pl(l) - pl(3) . p1(5) - 1/3. The information I giving the expected

value for an odd number of spots is

Snq1(n) -4;
nt

therefore, we compute a posterior q, - p1II on S1 by minimizing

H[ql,p1 ] subject to ql(l) + 3q,(3) + 5q1(5) - 4. The result is

ql(1) - 0.1162, ql(3) = 0.2676, ql(5) - 0.6162 . (19)

Similarly, the prior P2 on S2 is p2(2) = p2(4) - p2(6) - 1/3,

the posterior q2 is subject to the constraint 12,

2q2(2) + 4q2 (4) + 6q2(6) - 4,

and the result of minimizing HRq2,p21 is

q2 (2) - 1/3, q2(4) - 1/3, q2(6) - 1/3. (20)

On SlUS 2 , the prior p is p(1) - p(2) - " p(6) - 1/6. The

information I1, which concerns q *S1, may be expressed as

q (1) + 3q (3) + 5q t(5) - 4(q t(1) + q t(3) + qt(5)).

We therefore subject the posterior q to the constraint

IL 12
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-3q(1) - q(3) +4 q(5) - 0. (21)

Similarly, because of 1 2' we have the constraint

-2q(2) + 2q(6) - 0. (22)

Finally, because of the information H4, we subject q to the constraint

q(1) - q(2) + q(3) - q(4) + q(5) - q(6) - 0, (23)

since this is equivalent to q(l) + q(3) + q(5) -. 5 -q(2) + q(4) + q(6).

Upon minimizing H[q,pI subject to the constraints (20-023), we find that

q -po(1 Al AM) is given by S

q(l) -0.0581, q(2) -1/6,

q(3) -0.1338, q(4) -1/6, (24)

q(5) *0.3081, q(6) -1/6

To find the conditional probabilities q*§1 and q *82 we divide both

columns in this result by .5; the results agree with q, and q 2 as computed

above (009,020)), and as stated in (16).

Pofof 7: See [4, Section IVA.EJ

4 Property 8 (weak subset independence): For the same definitions and

notation as Property 7,

(Pn i- (p*S.)*I. (25)

and

Hip*'? p) r 3 H ~Uqip pj) + r rlog (26)

13



probabilities of being in each subset (18), and the ri are the posterior

probabilities of being in each subset,

ri - dxq(x) , (27)

is.
Api

for q - psI.

Discussion: This property states that the two ways of obtaining the posterior

conditional densities also lead to the same result in the case when one does

not have information giving the total probability in each subset. Results for

the full system posterior, however, will not in general be the same for the

cases covered by Properties 7 and 8. That is, qel and q*(IA H) will not in

general be equal.

To illustrate Property 8, we solve the example problem from Property 7p

omitting the information H that the probability of an odd (or of an even)

number of spots is .5. The separate solutions on S and S2 proceed

exactly as before and yield the same posteriors q, and q2. The solution

on S V S differs from the previous one only in that we minimize H[q,p]

subject to the constraints (21) and (22), but not subject to (23). The

result, q' - pe(ZIAt2), is given by

q'(1) - 0.0524, q'(2) = 0.1831,

q'(3) - 0.1206, q'(4) = 0.1831,

q'(5) - 0.2778, q'(6) - 0.1831,

and differs from the previous result (24). Moreover, the subset probabilities

rI and r2 do not satisfy H: susming the two columns gives r1 = 0.4508

and r2 = 0.5492. Rowever, dividing the two columns respectively by r1 and

14



r2 gives the same conditional probabilities as befores q'al - q, and

q'1J2 - q2 (see (19), (20)).

Proof of 8 For q - pel, let r. be given by (27). Then let R be
1

information R - , whereR. is the set of densities satisfying (27). It

follows from Property 4 that psi - po(IAR) holds; (25) and (26) then follow

from Property 7.

Property 9 (subset aggregation): Let 11' 2' ... S be disjoint

sets whose union is D. Let 4 be a transformation such that, for any q6,

q' - q is a discrete distribution with

q'(x) f fdx q(x),
-S

where x. is a discrete state corresponding to xE S.. Thus the

transformation I aggregates the states in each subset S.. Suppose new

information I' ((*qt)-G') is obtained about the aggregate distribution

*q 1 , wherek' is a convex set of discrete distributions. Then for any

prior pEG,

p (P*I)*s i  , (28)

(4p)oI - (pol) (29)

and

H [0(p&I) ,4#p] H[p*Z, p] (30)

all hold, where I -11' is the information V expressed in terms of q'

instead of in terms of pq'. (That is, I - (ql:( C- 14)), where

(Nr 1
4')lCt are the densities q such that (Oq) '.)

15



Discussion: Note that (29) and (30), in which f is a many-to-one mapping,

have the same form as the invariance property, which holds for one-to-one

coordinate transformations r (see (12)-(13)). Indeed, both invariance and

subset aggregation can be viewed as special cases of a more general,

measure-theoretic invariance. In mathematical terms, the operator * is

functorial.

Proof of 9: Let the information ' be a set of known expectations

X 8k.q1"(x.) ' for k - I,...,u, or bounds on these expectations, where

q', -#qT. In terms of q1, this becomes a set of known or bounded expectations

d! q1t()f ()

where fk(xE Si) - gki is constant in each subset S. The posterior

q - psI has the form

q(x) -p(x) exp(A - 1 f (31)
k-l

where some of the terms in the summation over k may be omitted in the case of

inequality constraints (see (A.4)). Since k is constant on each subset,

(31) has the form q(x Si) = Ajp(x Si), where A. is a subset

dependent constant. This proves (28). Now, in general for any q,p ), the

cross-entropy H[q,p] can be expressed [41 as

U[q,p] r lo (32)

where pi - p*Si, qi q*ip

"i f dx p(x), and r, -J dx q(x)

U 16



In the present case we have qi - Pi from (28). Since Ilqi,qi - 0,

(32) reduces to

H[qp] ril iT

- U[tqtp .

Minimizing the left side subject to 1, yielding q = pel, is equivalent to

minimizing the right side subject to 1'. This proves (29) and (30).

Property 10 (triangle relations): For any rf4,

H[r,p] > H[r,q] + I[q,p] , (33)

where q - psi. When I is determined by a finite set of equality

constraints only, equality holds in (33).

Discussion: The triangle equality is important for applications in which

cross-entropy minimization is used for purposes of classification and pattern

recognition.

Proof of 10: We have

Htq,pI - min H[q',pI.

The densities q' - (1-t)q + tr belong tod for all te [0,I] since qG, rGd,

andvj is convex. For all such t we therefore have

B[(l-t)q~tr, p] / E[q,p] , (34)

or F(t) )/ F(O) , where we have written F(t) for the left side of (34). It

follows that F'(0)>, 0 (provided F is differentiable at 0). We therefore set

d~~~~~ *ttj1 A u tr(3 I
( Ix1-t0q(x) +s tr)lo o 0,E p(V'a1
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and differentiate under the integral sign. (For justification of this step

and the existence of F'(O), see Csizar [6), who gives the proof in a more

general measure-theoretic setting.) The result is

Jdx r(x) - q(x)] log (l'tg(x ) + tr(0

This implies

+d r (Itx)f, lo fdr(x) lo(g)-qz0

since Jc xr(x)-q(x)] - 0. Therefore,

fdx r(x) -ogq - ) fdx +o~ lo Jd0x lg4

Consequently Hlir,pJ lH[r,qJ + lH[q,p].

Tow assume I is determined by finitely many equality constraints. Since

q - poT, log(q(x)/p(,)) assumes the form

mp

log pm " >

k=1

(cfe (A.4)). But then

dxr(x) log " f0 kog - Jdxq(x) lo - q,p]
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since r and q both satisfy the equality constraints. The equality

Jdx r(x) log~ f dx r(x) log~ + fdr(z) lo

then implies H[r,p] - H[r,qI + H[q,pl.

Property 11:

H1' *pl ~qt'I (35)H~q ",peI] U[q1',p], (

holds with equality if and only if p-l - p.

Discussion: This property states that the posterior q - psi is always closer

to qt, in the cross-entropy sense, than is the prior p.

Proof of 11: Since qtfi holds, (35) follows directly from (33) with r - ql.

IV. PROPERTIES GIVEN EQUALITY CONSTRAINTS

This Section concerns properties that apply when some of the new

information is in the form of equality constraints (2) only. Throughout, we

assume a system with possible states D and an arbitrary prior p e .

Property 12. Let the system have a probability density q1'EZ, and let

there be information I - (qtE4 ) that is determined by a finite set of

equality constraints only. Then

H[q ",p] - H[q ,q) + Hlq,p] (36)

holds, where q - pal.

Discussion: Since the difference H[q, p]-Hqt,qJ is just H[q,p], and since

H[q,p] is a measure (11 of the information divergence between q and p,

Property 12 shows that l[pel,p] can be interpreted as the amount of infor-

mation provided by I that was not already inherent in p. Stated differently,

19
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F H~pOI,pJ is the amount of information-theoretic distortion introduced if p is

used instead of psI. Since, for any prior p and any density rE v-D ith

R(r,p)< 0, there exists a finite set of equality constraints I such thatr

r -OI(see appendix B), H(r,p] is in general the amount of information

needed to determine r when given p, or the amount of information-theoretic

distortion introduced if r is used instead of p.

Proof of 12: Eq. (36) follows directly from (33), since qt F_ holds.

Property 13: Let the system have a probability density qtEZ, and let

there be information I = (q E 4
1) and information 12 -(qtE2)p

where i 1 4 2CZ)are constraint sets with a non-empty intersection.

Suppose thatjl is determined by a set of equality constraints (2)

only. Then

(POIl)O(1iA12) = po(I1A1 2 ) (37)

and

Htq,p] = H(q,ql] + H[ql,p (38)

hold, where q = po(1A 1 2) and qI - poI.

Discussion: When I1 is determined by equality constraints, (37) holds

whether or not (pol)G 1
2 (compare with Property 4). Property 13 is

important for applications in which constraint information arrives piecemeal,

and states that intermediate posteriors can be used as priors in computing

final posteriors without affecting the results. Like (33) and (36), the

triangle equality (38) is important for applications in which cross-entropy

minimization is used for purposes of classification and pattern recognition.

As an example of Property 13, we consider minimum cross-entropy spectral

analysis (8). If one describes a stochastic, band-limited, discrete-spectrum
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signal in terms of a probability density q 1' t..9x ,weex

is the energy at frequency fk' known values of the autocorrelation function

can be expressed as expectations of q ,namely,

wR r - Jdx (Zk 2xko(2Xrfk)) q1*x

whee ris the autorcorrelation sample at lag t r' Let I Ibe a limited

set of autocorrelations R,9... 9R . Then, for a prior pW, vith a flat

(white) power spectrum P Jdx x.kp.(x) -P, the power spectrum of the

posterior q P a pNeI1 is just the nth-order maximum entropy or Linear

Predictive Coding (LPC) spectrum (8]. Let I2 be the set of autocorrelation

samples R E 1 ,R M+2 .... that together with 1I1 fully determine the power

spectrum of q . Then (37) yields q7, - p.~@(I1AI2) -qLPCD(t 1 AI2).

Proof of 13: The density q, has the form (A.4),

qx)- pWx exp x i ~a()

For an arbitrary density q'EZD, the cross-entropy with respect to q, satisfies

fl~q, ql1 f dx q(x) log q()z[ 0 4 kkk-

P(X)

- 0 f ' IkAkk(-x

if q satisfies q(4,,1 this becomes

111q, q1 I - 111q, p] A + I XAt (39)

where IA0  Akv and ak are constants. Since H~q, q1  and H~q, p1 differ

by a constant onVJ,, it follows that they have the same minima on any subset
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ofj,. Since holds, this proves (37). Moreover, (39)

and (A.5) yield (38), which is also a special case of (33).

ItProperty 14. Suppose there are two underlying probability densities q,

and q. Let II and 12 stand respectively for the sets of equality

constraints

1 (1)Jdx fi(x)q,(x) - F. (40)

and 3n dx f (x)qt ) F (2)i ,...,s) , (41)

where s).m. Then

(pal I)O( ) 2 Pei 2  (42)

holds. Moreover, if k , andA( are the

Lagrangian multipliers associated with ql poll, q12 
= q 1 2'

and q2 = PQ12, respectively, then

X(2) A I +A(12) (k - 0,1,...,m), (43)

k k k

(2) = ;j12) (k M m+l,...,s), (44)

k k

and

H[q 2'P]= H[q 2 ql] + H[qlp] + j (l)(F(l)_F(2)) (45)

r-l

also hold.

Discussion: Property 10 can apply to situations in which q and qt are

system probability densities at different times and in which q, or estimates

of q, are considered to be good estimates of q. If 12 is determined in

22
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part by expectations of the same functions as 1l, but with different

expected values, then the results of taking I into account are completely

wiped out by subsequently taking 12 into account. As an example, consider

frame-by-frame minimum cross-entropy spectral analysis in which I. is1

determined by autocorrelation samples in frame i at a fixed set of lags

(s - i). Eq. (42) shows that the results for frame i are the same whether the

assumed prior is an original prior p, the posterior from frame i-1, or some

intermediate estimate. (However, there may be computational or

bandwidth-reduction advantages to using poIi_1 as a prior in frame i.) Note

that, if s > m and F(1) . ¥(2) for r 1 ,...,m, Property 14 reduces
r r

to Property 13.

Proof of 14: From (A.4) we have

k-l

where the are chosen to satisfy the constraints (40). Similarly,

kA

holds. This is of the form p(x)exp[-,22) )
q- W~ -k X lx exp A,

vith=(2 k .A'+2(' 'k - I,...,m) andal ( 2 ) -A 12 )

12 k 'kk akk

(k = m+l,...,s), and it is a probability density satisfying the constraints

(41); it s itherefore equal to prm2 * q2, which proves (43)-(44). Eq.

(45) follows from straightforward applications of ( 4.5).
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Property 15 (expected value matching): Let I be the constraints

f (X)f ( = f (k - 1,...,m) (46)

for a fixed set of functions fk' and let q - p-I be the result of taking

this information into account. Then, for an arbitrary fixed density

q*F , the cross entropy H[q*,qI - H[q*,poI] has a minimum value when the

constraints (46) satisfy

f - f dx q*(x)k fk OW dx*)fk (AX)"

D

Discussion: This property states that, for a density q of the general form

(A.4), H[q*,qJ is smallest when the expectations of q match those of q*. In

particular, note that q - peI is not only the density that minimizes E[q,p],

but also is the density of the form (A.4) that minimizes H[q,ql! Property 15

is a generalization of a property of orthogonal polynomials [101 that, in the

case of speech analysis, is called the "correlation matching property" [9,

Chapter 2].

Proof of 15: The cross-entropy H[q*,q] is given by

H[q*,q] dx q*(x)log(q*(x)/q(x))

D

- dx q*(x)log(q*(x)/p(x)) +fit q*(x)(AO + k~kfk( ))

" Jdx q*(x)log(q*(x)/p(x)) + A 0  k (47)

where we have used (A.4). Now, since the multipliers Ak are functions of

the expected values fk' variations in the expected values are equivalent to

variations in the multipliers. Hence, to find the minimum of H[q*,q], we solve

4
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~-.
j .-H[q*,q - 0 - ' +  k

where we have used (47). It follows from (A.9) that the minimum occurs when

fk k

V. GENERAL DISCUSSION

Property 1 and Eqs. (12), (14), and (16) are the inference axioms on which

the derivation in [41 is based. It is important to recognize that it is these

inference properties, and not the corresponding cross-entropy properties (Eqs.

(13), (15), and (17)) that characterize cross-entropy minimization. For more

information on this distinction, see 14, Section VII and [51.

An interesting aspect of the results presented in this paper is the

interplay between properties of cross-entropy minimization as an inference

procedure and properties of cross-entropy as an information measure.

Cross-entropy's well-known [1) and unique [51 properties as an information

measure in the case of arbitrary probability densities are extended and

strengthened when one of the densities involved is the result of cross-entropy

minimization. (See the statement and discussion of Properties 10, 11, 12, 13,

and 15.) Indeed, the resulting combined properties have led to a new

information-theoretic method of pattern analysis and classification 111 that

is a refinement of a method due to Kullback [1, p. 831.
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APPENDIX A

Mathematics of Cross-Entropy Minimization

We derive the general solution for cross-entropy minimization given

arbitrary constraints, and we illustrate the result with the important cases

of exponential and Gaussian densities. In general, however, it is difficult

or impossible to obtain a closed-form, analytic solution expressed directly in

terms of the known expected values rather than in term of the Lagrangian

multipliers. We therefore discuss a numerical technique for obtaining the

solution, namely the Newton-Raphson method. This method is the basis for a

computer program that solves for the minimum cross-entropy posterior given an

arbitrary prior and arbitrary expected-value constraints.

Given a positive prior density p and a finite set of equality constraints

J qWx dx I (Al1)

If (x)q(x) dx , ... , ,(A.2)kk Z) (.%)

we wish to find a density q that minimizes

H[q,p] = fq(x) log dx

subject to the constraints. For conditions that imply the existence of a

unique minimum, see the discussion of Property I (uniqueness). One standard

method for seeking the minimum is to introduce Lagrangian multipliers, and

Ak(k - 1, ... , m) corresponding to the constraints, forming the expression

Jq(x,) log q)dx + )8fq(x) dx: + f Wfk (.x)~ (
k-i
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and to equate the variation, with respect to q, of this quantity to sero:

log + I + +d A jf(x) -0. (A.3)
kWI

Solving for q leads to

q(x) - p(xZ) exp A -A f(X), (A)

where we have introduced A0 "18 +.

In fact, the q, if it exists, that minimizes I[q,p] has this form with the

possible exception of a set S of points on which the constraints imply that q
NtV

vanishes. (Such a situation would arise, for instance, if we had a constraint

Jq()f(x)dx -0, where f()) >0 when x6 S and f(x) - 0 when x4 S.

Informally, we could then imagine the Lagrangian multipliers becoming infinite

in such a way that the argument of exp in (A.4) becomes -"0when x E .)

Conversely, if a density q is found that is of this form and satisfies the

constraints, then the minimum-cross-entropy density exists and equals q [61,

[11. For simplicity in the following, we assume the set S is empty.

The cross-entropy at the minimum can be expressed in terms of the and

the -k by multiplying (A.3) by q(x) and integrating. The result is

m .

"[q p " -• (A.5)
0

k1l

It is necessary to choose .A and the.\ so that the constraints are

satisfied. In the presence of the constraint (A.l) we may rewrite the

remaining constraints in the form

-(fv(f> dx 0 (A.6)
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Now, if we find values for the Ak such that

(fi(x) - T)p(x) exp ( Vkfk( d 0 (i l..,), (A.7)

we are assured of satisfying (A.6); and we can then satisfy (A.l) by setting

A0 log p(x) exp(- kikfk(x))dx . (A.8)

if the integral in (A.8) can be performed, one can sometimes find values for

the k from the relations
k

)A O-7 (A.9)

The situation for inequality constraints is only slightly more complicated.

Suppose we replace all the equal signs in (A.2) by . . (We lose no generality

thereby: we can change inequalities with into inequalities

with - by changing the signs of the corresponding fk and 7k' and any

equality constraint is equivalent to a pair of inequality constraints.) The q

that minimizes H(q,p) subject to the resulting constraints will in general

satisfy equality for certain values of k in the modified (A.2), while strict

inequality will hold for the rest. We can still use the solution (A.4),

subjecting the Lagrange multipliers to the conditions Ak(0 for k such that

equality holds in the constraint, and A k-0 for k such that strict inequality

holds in the constraint.

It unfortunately is usually impossible to solve (A.7) or (A.9) for the

Ak explicitly, in closed form; however, it is possible in certain important

special cases. For example, consider the case in which the prior p(z) is a

multivariate exponential,
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n

p(x) T T" (1/a) exp[-lk/ak , (A.1O)

k1l

where x - 1'...,X and the xk each range over the positive real line,

and in which the constraints are

JOx W x d xq(x) - k,(A. 11)

k m 1, ..., n. Solving (A.9) in order to express the minimum cross-entropy

posterior directly in terms of the known expected values xk yields

q(x) - ITf (l/)e[x/x. (A.12)

k

Thus, the density remains multivariate exponential, with the prior mean values

ak being replaced by the newly learned values zk"

Now consider the case in which the xk range over the entire real line,

and in which the prior density is Gaussian,

p(x) 1 1 (2R bk)-1/2exp[-(xk - ak)2/2bk "

k

Suppose that the constraints are (A.11) and

dx (xk -; )2q(x) - vk

In this case the minimum cross-entropy posterior is

q(x) "- (2TVk)I'/2expt-(Xk- ;) 2 /2vk "
k

Thus, the 8ensity remains multivariate Gaussian, vith the prior means and

variances being replaced by the newly learned values.
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Rere is an example of a simple problen for which the solution of (A.7)

cannot be expressed in closed form. Consider a discrete system with n states

x. and prior probabilities p(z) pj (j - 1, ... , a). The discrete

form of (A.1) is

" qj , (A.13)

j-l

where qj - q(x,). Suppose the only other constraint is that the mean a of

the indices j is prescribed: f(zj) - j, and

n

Z jqj m " (A.14)

j-1

Then (A.4) becomes qj pjexp[-A0 -.Aj, which we write as qj - apjzj

by introducing the abbreviations a - exp[-Aol and z - exp[-A]. From (A.16)

and (A.17) we then obtain

a j (iPz)
and

n

7 (j-m)pjz j - 0 . (A.15)
j-1

The problem then reduces to finding a positive root of the polynomial in

(A.15). As in the continuous case, there are special form for the prior that

lead to important particular solutions. But when a > 5, the roots of the

polynomial (other than zero) cannot in general be written as explicit,

closed-form expressions in the coefficients for arbitrary priors. Numerical

methods of solution therefore become important. Our obtaining a polynomial
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equation in the present example was an accidental consequence of the fact that

the values of the constraint function f formed a subset of an arithmetic

progression (j - 1, 2, ... ). Thus, for more general types of problems,

numerical methods are even more important.

One such method is the Newton-Raphson method, which is for finding

solutions for systems of equations that, like (A.7), are of the form

7 i(*%l, ... ,AU) - 0 , (i - 1, .. ).(A.16)

The method starts with an initial guess at the solution,

), ... (1, and produces further approximate

solutions A(, (2 ), ... in succession. If the initial guess () is

close enough to a solution of (A.16), if the Fi are continuously

differentiable, and if the Jacobian [ iYJ]AI is nonsingular, then the

( will converge to the solution in the limit as r-.o.

The method is based on the fact that, for small changesA(r) in the

arguments A (r), we have the approximate equality

((r) (r)) r) m i (A~r)
A Y A k

k-i k
up to a term of order We therefore takeA r  to be a solution

of the linear equation

kZl i( r )  (r) _(Ar ) (A.17)

'(r) A =

and set A(r) A + (r) In applying the Newton-Raphson method to

cross-entropy minimization, we let Fi(b) be proportional to the discrete

form of the left-hand side of (A.7); we set
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j=1 u-i uU3

=- fijfkjPjex p  (r f (A. 19)

akj-1 u-1 U

where f.. - f.(x.) - f, and we have removed a factor of

exp[- .(r)u-, With the abbreviation

.1/
gj =j P/exp (r f uj/

we express the right-hand sides of (A.18) and (A.19) in matrix notation as

diag(g) g and [diag(g) 2 +tik, respectively, where diag(g) is

the diagonal matrix whose diagonal elements are the gj, and ft is the

transpose off4. The solution of (A.17) is then given by

- diag(g)2 ft)l diag(g)] g

We remark that the quantity in brackets is the Moore-Penrose generalized

inverse 1121 of the matrix - diag(g). The approach just described has been

made the basis for a computer program [131, written in APL, for solving

cross-entropy minimization problems with arbitrary positive discrete priors p

and equality constraints specified by matricesf. The approach is

particularly convenient for programing in APL since the generalized inverse

is a built-in APL primitive function [141. To solve a minimum-cross-entropy

problem with 500 states and 10 constraints, the program typically requires 15

seconds of CPU time when running under the APL SF interpreter on a DEC-10

system with a XI central processor.
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Gokhale and Kullback [15] describe a somewhat different algorithm, also

based on the Newton-Raphson method, that has been implemented in PL/I. Agmon,

Alhassid, and Levine [161,[17] describe yet another cross-entropy minimisation

algorithm and a FORTRAN implementation. Tribus [7) presents programs in BASIC

that compute singly and doubly trucated Gaussian distributions as nazisim

entropy distributions with prescribed mans and variances.
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APPENDIX 3

Remark on the Discussion of Propert 12

In the discussion of Property 12, it was stated that for any prior p and

any density rEO with H(rp) <s, there exists a finite set of equality

constraints I r such that r poIr In fact, at most two are needed. Let

r1, r(x) = 00 ,~ r(x) 0,

f1 - M

( log(p(x)/r(x)) , r(x) : 0

2 , r(Z) -0

f - H(rp)

and impose constraints

Jq(X)f (x)dx - 1

Jq(x)f (x)dx - f12

The first constraint implies (pel)(x) " 0 where r(x) * 0. On the

complementary set, where r(x) O, define q(!) by (A.4) with all A 0j
except A2 

= 1; this gives a function q that satisfies the second constraint

as well as the first and also agrees with r. Hence r - q is the result of

minimizing H(q,p) with respect to (B.1) and (B.2).
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