
AD-AO85 404 GENERAL RESEARCH CORP SANTA BARBARA CA F/6 9/2
AN AUTOMATED PROGRAM TESTING METHODOLOGY AND ITS IMPLEMENTATION-ETC(U)
1960 .J P BENSON, D M ANDREWS F49620-79-C 0115

UNCLASSIFIED GRC-M O-23AFOSR-TR-0-43 B NLu..urnrnIND

111112.

11112 '.*'ll1.

MICROCOPY RESOLUTION TEST CH*T
NATINAL BUJREAUJ OF STANDAIFDS- 19631

AN ATMTDPORMTESTING fflTHODOLOGY

AND ITS IMPLEMENTATION

D. '.Benson

ED)D M1.H./ Andrews

Sponsored by the Air Force Of fic fem k AS)
United States Air Force, Under Contrac F496Zd-79-PC 115

GENERAL
RESEARCH CORPORATION

0 5383 HOLLISTER AVENUE *PHONE (805) 964-7724
P.O. BOX 6770, SANTA BARBARA, CALIFORNIA 93111

4/6 __ 175 AP06.w

Paper to be presented at 10th \'Thternatl anal
Symposium on Fault Tolerant Computing in Kyoto,
Japan, October 1-3, 1980.

a !.I\. II/0,

r-Ic,.

AIR FOC Fc
-1 , F-INII E1R1 AFC

AN AUTOMATED PROGRAM TESTING METHODOLOGY
AND ITS IMPLEMENTATION

D. M. Andrews and J. P. Benson

General Research Corporation

5383 Hollister Avenue

Santa Barbara, California 93111

1-805-964-7724

ABSTRACT

One of the themes emphasized at recent conferences is that new

methods for testing and system development are going to be necessary to

keep up with the trends of the future. Specifically cited as challenges

for the 80's were the need to make software less labor intensive and the

need for automated programming tools. The testing phase is one area

where there are automated tools which subject software to static tests,

but there exist few tools which automate the process of testing a

program dynamically. Unlike hardware testing where a test pattern may

be automatically stepped through and the test results evaluated by

comparison with a agold unit$, software has had no similar testing

capability. We are Just concluding a research effort directed toward

rectifying this lack by combining an existing automated testcase

generation and evaluation technique with the use of executable as-

sertions to provide a means of automatically assessing the test results.

Since the violations of assertions can act as a common denominator to

any application, this methodology may be applied to any test object.

This method goes one step farther even than the traditional hardware

testing methods, because it also has the capability to automatically

generate new testcases by perturbing the input values in accordance with

an automated *intelligentl evaluation of the past performance of a

sequence of inputs.

.1 _1

This paper describes the implementation of this testing method and

its use to test a program which computes orbital state vectors from

orbital element vectors. The testing of this program required devel-

oping assertions for the program, choosing and inserting representative

errors into the program, and implementing the search and data collection

algorithms for testing.

INTRODUCTION

Developing methods for showing that a computer program is correct

has been an active research area in computer science in recent years.

One result from this research has been the development of executable

assertions. If assertions are used to describe the correct behavior of

a program, then they can be used to determine whether or not the program

ran correctly. This removes the need of examining the output from the

program in detail. The number of assertions which are violated during a

test becomes the output of the program. The value of this single output

indicates whether the program is operating correctly or not; it also can

be mapped as an "error function" which is defined over the input space

of the program.

Expressing the correctness of a program in terms of the error

function also yields a solution to the problem of generating testcases.

It allows standard techniques for maximizing and minimizing functions in
multi-dimensional spaces to be applied to the problem of program

testing. Automated search techniques such as complex search and

heuristic search can be used to find the maximum values of the error

function. The input values for which assertions are violated are the

input values for which the program fails to work correctly; therefore,

it is desirable to find the areas with the maximum violations.

-2-

1 PROBLEMS ASSOCIATED WITH TESTING SOFTWARE

Testing has played a rather nebulous part in the development of

software. Specifications for the test plan for software systems are

often dependent upon the whims and vagaries of the tester. Occasionally

the test object may be chosen by size alone, such as, execute the

program for a certain length of time or run a large program through the

system. The crucial nature of many applications of software at the

present time make it imperative to develop a methodology of testing that

is general and can be applied to many types of programs, thus avoiding

the subjective nature of present testing techniques. One way to

eliminate subjectiveness is, of course, to have someone who has not

worked on the project do the testing; but this solution in itself

brings new problems. One is that extra time must be allowed to bring

that person up to speed so that he is familiar enough with the project

to be able to intelligently make up testcases and a procedure for

testing. Although testing and quality assurance are often a separate

department in an organization, it is not commonly the case for software

testing.

1.1 Testcases

There are two ways to make testing more secure or thorough: either

increase the number of cases or make the cases more specific to the
problem. This latter approach requires a lot of human ingenuity in

thinking out where the weak spots are and how to test for them. It also

contributes to making the cost of testing skyrocket when each set of

testcases must be tailor-made to each new set of software.

It is important to choose testcases which uncover errors early in

the development cycle, not only because the cost of fixing errors

increases dramatically with time, 1 but also because of possible devas-

tating catastrophes that can result from latent errors.

K -3|

2-3
There have been many papers on the subject of choosing test-

cases because it represents one of the most intriguing problems about
testing. How does the tester know when enough input data has been

chosen to result in meaningful tests? In fault tolerant applications
the test data must include not only the usual values of input data but

also the unexpected values in case there are intermittent hardware

faults. Therefore, it is also necessary to test that the software will

function properly when unexpected input values cause the software to

reach unexpected states. Software has so many states, an order of

magnitude greater than that of the hardware for a given computer, that

the number of testcases can be monumental. Even in hardware testing

there is a need for fault collapsing because of the large number of

input values when there are a large number of input parameters - the

number of testcases required increases exponentially.

1.2 Test Results

Software testing is unlike hardware testing because there is no
"gold unit" that can be set up to use as a basis for determining if the

results of the testing are correct. Unfortunately, test results must be

checked manually. In some applications, e.g. ballistic missile defense

software, checking test results from one run can take several weeks.4'5

With software, it is not a matter of determining if a switch is on or
off; there is a lot of output to read and analyze.

Last but not least is the psychological aspect of testing that

works against ensuring a productive testing phase. Once the software is

completed, the programmer is anxious to get onto some other project.

The challenging and interesting part is designing and implementing the

code, not testing it. No one really wants to find errors in his own

code, and, furthermore, checking the output is so tedious that it makes

the testing process seem routine and boring.

-4-

I -LOO

2 HOW THIS TECHNIQUE ADDRESSES THE PROBLEMS OF TESTING

The major theme that connects most of the problems associated with

testing is that of time; it takes time to construct good testcases,

time to run them, and time to look at the results. Therefore, one of
the ways to address the problem of testing is to automate as much as
possible of the testing sequence and to eliminate as much subjectiveness

and human intervention as is practical. Fortunately, the basic mech-

anism to do this, called the Adaptive Tester, has been developed over

the past several years in response to the need of the Ballistic Missile

Defense Advanced Technology Center to develop tests for complex soft-

ware. The Adaptive Tester has the following functional components:

1) Machine aids for specification of the testing environment

2) Automatic preparation of initial test cases

3) Automatic performance evaluation

4) Adaptive or learning algorithms for selecting test cases

This present research effort has utilized the components of the

Adaptive Tester that generate testcases by automatic perturbation of the

input parameters; evaluate past performances of the constructed test-

cases; and, using this information in a feedback system, generate

subsequent testcases. To adapt this powerful capability to this

particular application, it was necessary to utilize executable as-

sertions as a means of providing data to the performance evaluator. The

executable assertions allotr the method to be prescribed in general terms

and used for any application, since the only thing that varies from one

application to another are the assertions themselves.

2.1 Executable Assertions

Executable assertions can be used to implement complex fault
6tolerant schemes, but they also have been found very effective as a

f-5-t

simple debugging technique and have been utilized extensively in the

development of the Software Quality Laboratory (a large verification

system). Assertions have been an operational part of the code long

enough to permit an impartial assessment of their value. The primary

motivation for adding them was to make debugging easier and quicker

because the exact statement number of an assertion that is evaluated to

"false" during program execution is stated in a message in the output.

For example, if the assertion INITIAL (J .G. 0 .AND. J .LE. MAXJ), is

evaluated as false, then it is clear that J is negative or it has

exceeded the maximum value for J (MAX.J). Without assertions to direct

attention to the parts of the program that are not operating as expec-

ted, it is often impossible to find the source of the errors that are

causing the problems.

Not only are assertions useful for debugging when new code is

being added, but they also have caused latent errors to surface. In

addition, the presence of assertions with concomitant FAIL statements

which invoke an error processing routine usually prevents premature

termination of the execution and allows the program to continue and
7-9

perform its function. Assertions also have proved their worth from

the aspect of maintenance and documentation of the system. The code of

the Software Quality Laboratory is so voluminous that no one person can

be acutely familiar with all parts. The specification in assertions of

acceptable ranges of variables helps immensely when new code is being

written that will interface with existing codes.

2.2 The Adaptive Tester

The Adaptive Tester has been developed in recent years in response

to the need of the Ballistic Missile Defense Advanced Technology Center

to develop tests for the software that would simulate actual battle

conditions. Devising these tests took an inordinate amount of time

because of the number of parameters that could be varied. 4 ' 5 Some way

-6-meer

S~ _ i,

had to be devised which would automatically perturb the parameters. In

addition, it required about a month to examine the results of one run,

so it was necessary also to be able to automate the assessment of the

performance of the software. Various learning algorithms from arti-

ficial intelligence were implemented to make a closed-loop testing

envirorment with the capability of handling large quantities of perform-

ance data.

2.3 Search Routine

The search routine selected for this experiment is called a
10-13

complex search. The technique was developed by Box for solving for

the maximum or minimum of a nonlinear function. The method involves

choosing a set of trial test points at random (called a "complex") and

determining the perfol-nance at each point. The point with the per-

formance farthest from the desired performance boundary is replaced by a

point which lies on a line formed by the rejected point and the centroid

of the remaining points. A set of coefficients is calculated to

determine the exact location of the new point. These coefficients

determine the degree of reflection, expansion, shrinkage, contraction,

and rotation to be applied in forming the new set of points. This

procedure is repeated until a point is computed that matches the desired

performance value.

The performance function may have many independent variables, but

for the search routine to function correctly, there must be one more

point in the complex than the number of independent variables. Figure 1

gives an example of a complex in three dimensions.

Figure 2 shows the effect of each type of operation that can be

done on a triangle by the search routine when it finds the worst point

(the minimum function value of all the points in the complex) and tries

to replace it with a larger function value (the maximum value).

-7-I

* w-**--

f(X,Y)

x

Figure 1. A Complex in Three Dimensions

3 FEATURES OF ADAPTIVE TESTING WITH ASSERTIONS

The testing environment (Figure 3) is very similar to that used

for the original Adaptive Testing project. It consists of several sets

of software each with a distinct function. First there is the test case

construction algorithm which automatically- perturbs the input para-

meters. It uses as Input either the original set of test data which

has been constructed manually or the output of the search algorithm of

the Adaptive Tester. The test object is the program to be tested; it

must contain executable assertions. The function of the assertion

evaluator is to make a tabulation of the number of assertions violated,

including the statement and module number. The information in the test

results file is used as input to the search algorithm so it can locate

the area of maximum assertion violations and choose the direction of the

next test parameter perturbation. Figure 3 shows the feedback system

for adaptive testing with assertions where, once the ..basic test data is

initialized manually, the rest of the process is totally automated.

ILN
- 1

1 7 IREFLECTION

EXPANSION

CENTROID
SUBSTITUTION

CONTRACTION

%SHRINKAGE

ROTATION

Figure 2. Complex Transformations

h _

UST COISTRUCTION TEST PROGRA

AL.GORITHMESLT EVALUATOR,

Figure 3. Adaptive Testing With Assertions

4 HETHODOLOGY FOR ADAPTIVE TESTING WITH ASSERTIONS

Obviously, if assertions are not in the code already, they must be

added; but since they are useful throughout the entire software

cycle, 6 ,9 the optimum way is to incorporate them in the code as it is

being written because then they will have been tested as the code itself

is tested in smaller sections. In this case, since an already existing

program was being tested, it was necessary to write assertions and then

to execute the program with the assertions. to be sure the assertions

themselves were correct. The same thing happened with the second test

object as had happened with the first; once the assertions were added

to the program, they uncovered latent errors that were completely

unsuspected! In most cases, these were errors that only occurred at the

boundary conditions.

Some assertions, such as those to check ranges, are simple to

write and do not require in-depth familiarity with the algorithm of the

code. For example, in a DO loop which has a variable as the upper

bound of the index, it is easy to write an assertion which specifies

that the value of that variable is greater than zero. More complex and

-10-

A _ _ _._ _

difficult to write are the assertions which provide a check on the

results of computations or that express an intricate relationship

between the variables. Since it is necessary to have a firm under-

standing of the program to write these assertions, it is generally best

for the person who implements the code to be the one who writes the

assertions. The success of this testing technique depends on having a

suffient number of assertions which express tight bounds on variables

thereby enabling them to detect errors.

Once the assertions have been written, the only other part left in

the process requiring human intervention is setting up the first test

case. The remaining part of the testing is automated: the performance

is evaluated and new testcases generated until a given performance

boundary is attained.

5 EXPERIMENTS

Two experiments were performed to determine the usefulness of

executable assertions in testing. The purpose of the first experiment

was to determine if executable assertions could locate errors; and, if

so, what the resulting error space looked like. The first experiment
14has been described elsewhere. The results of the first experiment

indicated that executable assertions were effective in detecting errors;

the error function was reasonably well behaved; and the overhead of

assertions was ten percent'when they are being used with recovery blocks

to provide fault tolerance.

-11-

*" a.a n I~ - - -- I

The prominent research issues for the second experiment were as

follows:

1) Behavior of the error function - Does it confirm the

results obtained in the first experiment?

2) Applicable search techniques - Pending determination of

the behavior of the error function, what search tech-

nique is the most effective in finding errors?

3) Application to large input spaces - What happens when

there is a wide stream of input parameters?

The second experiment was more comprehensive since it actually

combined the adaptive tester capability with the use of executable

assertions. One purpose of this experiment was to provide corroborative

evidence of the first experiment. Therefore, instead of continuing with

the same program a new test object was selected from a set of routines
15

in the TRAID program library, which is used to compute solutions to

orbital mechanics problems. Since the program chosen had been in use

for twelve years and had been the test object in another recent exper-
16

iment, it was assumed to be error free. The function of the program

is to take as input an orbit described by a set of eight parameters or

orbital elements and produce a state vector representation of a point on

the orbit. The state vector includes the time and the position,

velocity, and acceleration in three dimensions. The particular point on

the orbit is specified by a parameter (MODE), which, in conjunction with

another parameter (VALUE), allows the state vector describing the point

to be computed.

In this second experiment, three modes of operation were imple-

mented:

-12-

t' .-!- "-- -- m ---. - ---

I

Grid -

The values of the input parameters were varied in a uniform

set pattern in the form of a grid over the input space. The

results from these grid tests were used as a baseline by

which to evaluate the search technique.

Search -

Given one initialized value for each of the tested inputs,

the search algorithm constructs all subsequent test cases.

Grid and Search -

Instead of having the initial points on the complex being

constructed of random testcases, a set of twelve values

for each of the tested inputs were given as input to the

search alkorithm (these values were derived by sorting on

the number of assertion violations obtained in the results

from running the grid tests; the values of the inputs

associated with the highest number of violations were

passed to the search routine).

In each mode of operation, three variables were varied: MODE,

VALUE, and the eccentricity of the orbit; but for the search mode,

additional tests were run in which all the input parameters were allowed

to vary. The standard orbit was input to the test driver program which

then determined the mode of operation for the test. The data collection

routines recorded the number of assertions violated in each test along

with the values of the input variables.

A test driver was written to interface the search routine with the

test program and initialize the first test. It also initializes the

values of all variables needed to conduct the test and reads in the

basic set of orbital parameters which are common to all tests. It reads

the values of the variables to be varied and their ranges and, for the

grid test, divides the ranges up into intervals and selects a set of

-13-

values for each variable corresponding to this division. It also

calculates the dependent orbital parameters and runs the grid tests.

The search routine itself runs the search tests when the system is run

in this mode.

Errors were generated for the test program using a procedure
17

developed by Brooks. The method uses error types and frequencies from

a previous study18 to randomly select a set of errors to be "seeded" in

the program. Some types of errors were not chosen for the study, such

as documentation, data definition, etc., because the experiment was

specifically concerned with detecting run-time errors. The types of

errors used were computational errors, logic errors, data handling

errors, and interface errors. In generating errors for the experiment,

statement types and other descriptive information about the test program

were generated automatically using an automated program verification

system, SQLAB. Each statement in the program was classified by type,

and a table matching the error catagories to statement types was

constructed. From a list of available error sites, potential error

sites were randomly selected and matched with the error categories. Once

the assertions were written and checked out, errors were introduced one

at a time to determine how effective this technique was in detecting

errors.

For each error, a grid test was run and then tests using the

automated search technique were run to see if the results were the same.
Testing was done in two ways using the search strategy: first by

varying MODE, VALUE, and one other variable; and then by varying all of

the variables in the orbit. The search routine was allowed to run until

it found a preset number of assertion violations (representing the

performance value); then this number was automatically stepped up by

one and the search algorithm tried to find another combination of input

values which would cause the new number of violations to occur. In this

way, the performance value was maximized. The testing process was

-14-

arbitrarily set to terminate when one hundred tests were run, but each

test actually consisted of several subtests because the values of MODE

and VALUE were varied within each test. The report that is produced at

the conclusion of the runs is shown in Figure 4; in this test MODE,

VALUE, and one other variable, ORBIT(6) - the eccentricity - were

varied.

The results of the experiment demonstrated the effectiveness of

the assertions in detecting errors. Of the original 24 errors, nine

(thirty-eight percent) were detected by original assertions, and eight

(thirty-three percent) were detected by assertions that were added after

the testing began. There were seven errors that could not be detected

by assertions. Two of the errors could not be detected by this testing

method because they existed in sections of code which were only tra-

versed when an error had occurred. Most of the remaining errors could

have been detected through the use of static-analysis tools which test

consistency of the variables. Each of these errors and the reason for

it's not being detected is listed in Table 1.

For all but four of the errors, the search methods detected the

same errors as the grid tests; but they were able to do so much more

efficiently and used much less computer time.

Table 2 shows the efficiency of the search technique when all

variables are varied; it lists the number of the test in which the first

assertion violation was detected. Fifteen of the seventeen detectable

errors were detected within the first seven tests devised by the search

technique. The grid technique was initially run for 317 tests and

discovered all but one of the detectable errors; but 683 tests had to be

run to detect error number 52.

~-15-

h _ _ _ _ _ _ _ _

*...e..ses FINAL REPORT e..ee..e

MRUN INPUTI NFALSE ODIFFERENT NODE VALUE
ASSERTION ASSERTION

7 .7526 a 2 4 2477545.659
9 06048 2 2 5 9849931*060

12 .2700 2 2 4 13958923.49
13 .9000 1 1 5 243e9119.03
24 *2899 2 2 4 8871067,739
25 ,3879 2 2 5 1760571.330
30 .2910 2 2 5 20758872.74
34 *7346 1 1 4 22330022.80
35 *1652 2 2 5 27015515.91
37 .3555 2 2 4 19513234.41
14 .6973 2 2 4 4044234.171
#5 *6235 2 2 5 0.
47 .5851 2 2 4 4533190.345
fi .9000 2 2 5 0.
51 e7234 2 2 4 4533190.345
53 '9000 2 2 5 5737662.000
55 .7234 2 2 (7402021.345
63 .7053 2 2 5 Go
65 .6261 2 2 11 4533190345
73 7474 2 2 5 0.
75 .6471 2 2 4 q5s31900345
83 8071 2 2 S 06
85 *6769 2 2 4 4533190o345
86 .1774 1 1 4 23124989.06
87 .9000 2 2 5 1415222o244
89 .7228 2 2 4 55880240,49
90 .9000 2 2 S 1939816.571
91 o155? 2 2 #1 6107643.223
92 .5503 2 2 4 9951144e293
93 *3530 2 2 4 8029393e758
94 .4955 2 2. 4 11674092,79
95 .8433 1. .1 5 18860857.79
96 ,5648 2 2 4 11115483,73

.97 7040 1 1 14988170.76
98 ,6108 11 4 1722b371,99

99 .2554 2 2 5 3876077.074
100 05485 2 a 4 11161715066
101 .4019 2 a 5 75188966567
102 01000 2 + 73310629939

INFUll • ORBIT4S)

NODULE SINT# TYPE FAILURES*

ORP SOS ASSERT 34

OUTCHK 142 ASSERT 38

NOW XANT RUNS EACH ASIERTION FAILEO IN 101 auks

Figure 4. Summary of Search Testing for Error 13

-16-

, A". .

TABLE I

ERRORS NOT DETECTED BY ASSERTIONS

Description Reason For Not Being Detected

Variables assigned An error must occur for this section
values in incorrect order of code to be executed

Test and branch statement Checks for out of range input values
deleted

Variable name mispelled Difficult to state an assertion for
in computed goto this error

Data statement deleted Fortran compiler initializes all
variables to zero

Real variable declared Difficult to state an assertion for
as integer this error

Subroutine call out of An error must occur for the section of
place code to be executed

Wrong number of arguments Difficult to state an assertion for
in subroutine call this error

-17-

* *- .- --

TABLE 2

DETECTION OF ASSERTION VIOLATIONS BY SEARCH METHOD

Error Test Number of First
Number Assertion Violation

1 5

3 2

13 7

14 5

28 *

31 4

37 5

41 3

47 57

48 3

52 3

54 3

56 5

57 7

64 2

67 5

74 2

• No assertion violations detected.

i -18- t

CONCLUS ION

The results from this experiment indicate that this automated

testing technique has the potential for finding errors (logic, compu-

tational, etc.) that are difficult, even impossible to find in other

ways. In addition, use of the search algorithm completely eliminates

the subjectiveness in constructing testcases and broadens the testcase

base. By automating so many facets of the testing process, the cost of

testing can be reduced dramatically.
I

Another benefit of this project is a further merging of the

testing process with the requirements of fault tolerant computing, since

assertions can be used to detect errors during system operation and to
6

implement methods of recovery from software and hardware errors. In

fault tolerant applications requiring minimal overhead, it may even be

possible to optimize assertion coverage through the use of this testing

technique.

Although the emphasis in this paper has been on the effectiveness

of executable assertions in combination with an adaptive search algo-

rithm to provide testing, this is more than just a new and innovative

way to test software. It is a response to the needs of the future which

require more automation of the software development process and more

accurate testing environments to provide software reliability.

ACKNOWLEDGEMENT

Research sponsored by the Air Force Office of Scientific Research

(AFSC), United States Air Force, under Contract F49620-79-C-0115. The

United States Government is authorized to reproduce and distribute

reprints for governmental purposes notwithstanding any copyright

notation hereon.

-19-

REFERENCES

I Tomlinson G. Rauscher, "A Unified Approach to Microcomputer Software
Development", Computer Magazine, June 1978.

2 John B. Goodenough, Susan L. Gerhart, "Toward a Theory of Test Data
Selection, IEEE Transactions on Software Engineering, Vol. SE-i, No.
2, June 1975.

3 W. E. Howden, "Theoretical and Empirical Studies in Program Testing,"
IEEE Transactions on Software Engineering, Vol SE-4, July 1978.

4 D. W. Cooper, "Adaptive Testing," Second International Conference on
Software Engineering, 13-15 October 1976, San Francisco, CA.

5 D. W. Cooper, Adaptive Learning Requirements and Critical Issues,
General Research Corporation CR-4-708, January 1977.

6 Dorothy Andrews, "Using Executable Assertions for Testing and Fault
Tolerance," 1979 International Conference on Fault Tolerant Com-
puting, Madison, Wisconsin, June 20-22,1979.

7 Sabina Saib, "Distributed Architectures for Reliability," Proceedings
of the AIAA Computers in Aerospace Conference II, Los Angeles,
October 1979.

8 Sabina Saib, "Verification and Validation of Avionics Simulation,"
Proceedings of the AGARD Avionics Panel on Modeling and Simulation of
Avionics and Command, Control and Communications Systems, Paris,
France, October 1979.

9 Dorothy Andrews, "Using Executable Assertions for Testing," Pro-
ceedings of the 13th Annual Asilomar Conference on Circuits, Systems
and Computers, November 1979.

10 M. J. Box, "A New Method of Constrained Optimization and a Comparison
with Other Methods," Computer Journal, Vol. 8 (1965).

11 J. A. Richardson and J. L. Juester, "Algorithm 454--The Complex Me-
thod for Constrained Optimization", Comm. ACM, Vol. 6, No. 8, August
1973.

12 K. D. Shere, "Remark on Algorithm 454," Comm. ACM, Vol. 7, No. 8,
August 1974.

13 K. D. Shere, The Box Optimization Method, Naval Ordnance Laboratory
NOLTR-74-167, October 25, 1974.

14 J. Benson, A Preliminary Experiment in Automated Software Testing,
General Research Corporation TH-2308, February 1980.

-20-

15 T. Plambeck, The Compleat Traidsman, General Research Corporation
IM-711/2, revised edition, September 1969.

16 R. N. Meeson, C. Gannon, "An Empirical Evaluation of Static Analysis
and Path Testing," Proceedings of AIAA Computers in Aerospace
Conference II, Los Angeles, October 1979.

17 N. B. Brooks, An Experimental Evaluation of Software Testing General
Research Corporation CR-1-854, Hay 1979.

18 T. A. Thayer, et al., Software Reliability Study, TRW Defense and

Space Systems Group RADC-TR-76-238, Redondo Beach, California, August
1976.

i~ti -21-

fl!~

