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1. INTRODUCTION

1.1 Background

Fillet welds are extensively used in ship structures. 1In
a typical ship hull construction, about 75% of the welds are
fillet welds. (1) This is because a ship hull is essentially
composed of a number of panel structures. A typical panel
structure is composed of a plate and transverse and longitudinal
stiffeners. These stiffeners are usually fillet welded to the
panel. For example, a 50,000 deadwelght ton cargo ship, of
which the hull weight is approximately 15,00U tons, has approxi-
mately 7 x 105 feet of fillet welds, of which the weld metal
weighs approximately 60 tons.

An overriding concern by ship designers and fabricators
over the years has been to make sure these fillet welds are
strong enough. Although many efforts have been made to reduce
the weight of the ship structure by reducing thickness and
dimensions of structural members, little attention has been placed
on reducing the size of fillet welds, weight of which represents
only a fraction of the structural weight. Rules on the size of
fillet welds in ship structures have remained virtually unchanged
for many years. It is quite possible that current specifications
on fillet welds are too conservative.

The reduction of fillet sizes can have a significant impact
on construction cost by reducing construction time, labor cost,
the weight of welding consumables, etc. For example, 20% red-
uction in the fillet leg size will result in 36% reduction in
the amount of the weld metal. The welding and assembly of ship
hulls requires approximately the same number of manhours, and
these two functions combined amount to about 60% of the total
manhours for the completion of the hull structure.(2) This
indicates that the welding operation accounts for about 30% of
the labor cost in planning and constructing ship hulls. If we
look at the total linear measure of the welded fillet joints
employed in ship construction (75%), the labor cost in fillet
welding is about a quarter of the total labor cost for constructing
a ship's hull.

Reduction of the fillet size will also result in reduction
of weld distortion. The reduction of out-of-plane distortion
may result in an increase in bucklin% strength when the panel
is subjected to compressive loading. 3)

This project was initiated with an ultimate goal of finding
whether sizes of fillet welds could be reduced without affecting
the structural integrity of a ship. More specifically, the




original objective was to recommend updated fillet weld re-
quirements for domestic ship application by reviewing the
development of current marine fillet weld requirements and
available test data.

1.2 Outline of the Study

The one-year study included the following tasks:
1. Literature survey,
2. Review of welding standards,
3. Contact with experts,
4. Analysis, and
5. Recommendations.

There have been many publications on various aspects of
ship structural analysis,studies on the overall strength of a
ship hull, and studies to determine stress distributions in various
structural members. In fact, large-scale finite-element
methods (FEM) have been developed by various research groups
including ship classification societies in various countries
for computing stress distributions in various structural members
of a ship hull. However, no published articles specifically
discuss stress distributions in fillet welds.

After searching for suitable techniques for analyzing
the fillet weld strength, the finite-element method was found
to be a reliable tool and probably one of few techniques which
could fulfill the needs of this project. Therefore, efforts
were made to develop a computer application of an existing
program, named "ADINA" (Automatic Dynamic Incremental Nonlinear
Analysis) which was developed by Professor K.J. Bathe in the
Department of Mechanical Engineering at M.I.T.




2. LITERATURE SURVEY
A literature search used the following key words:
Static Strength
Fatigue Strength
Residual Stress
Weld Defect
Inspection
Welding Cracking
Welding Process
to generate the 81 papers that were surveyed in Appendix 1.

A review of assumptions and conclusions of the major past
contributions (9 papers) in improving the understanding of fillet
weld strength is summarized in Table 2.1

The survey showed:

1. The requirements for fillet weld size used in the codes of
various classification societies were based on eguivalent shear
loads between a riveted and a welded structure.

2. The first attempt to compﬁfe experiment with theory was done
by Vreedenburgh in 1954, '% (11)

3. The most recent attempt was by_Xato in 1974, using a finite
element method (FEM), but again with some simplifications.

4. An accurate analysis has not yet been done.

5. Fillet welds are very strong when the current requirements are
applied.

6. The statistics indicate no fillet failures and the weld size
relates only weakly to cracking at the toe of the fillet.

7. More papers discuss fatigue strength than static strength.

8. Faiégue strength is more critical than static strength in fillet
welds.

9. Contact angle between the base plate and the weld surface, welding
defects such as undercut or cracks near the fillet toes in the
base metal, and root gap are factors contributing to reduction
of fatigue resistance and a fillet weld failure.

2.1 Statistics on Ship Hull Damage Related to Weld Defects

A study on hull damage related to weld defects has been
carried out by Nippon Kaiji Kyokai{l4) The study dealt with
general structure damages of four types of ships: tankers,
ore carriers, containers and general cargo ships. Out of 1200
surveyed ships, cracks in shell or strength deck plating were




sjusutiadxa pue Axoayy usamiaq Juswaaiby mwmwewwwmmw anbryed | gr61 mNaWovc
.ﬁmumewmw oM
*n ATRIERS o
axaym
MI\\UD = un@EP
‘ST PTOM
RSTT113 23 Jojutod
P SS9I31S Ieays
Syl usaym INODO0
11w Butyesaq(z
“3I2TTTF @Yz 3JO 300X 3Yy3 e pPaxIaIndoo ‘PAINGIIISID | (sTshreue ‘W I d)
sfemte amited .SWWCWH pue 9z2Ts awes a3yl Jo ST Wx_&mwmw.mﬁu SpTeM 9113 AH.HV
SPTaM 32113 TeUTPN3ITOUOT ueyy 13buoiys s9y aIe soe} Wﬁﬁwcwu wﬂu 9sIdASURIY JO
SpIa~ 3IBTTIF 9SIvGASULI] ‘UOTINTOS OT3ISLTS WOId| uo ssaxls 309xTA(T yszbusays orzeas o3ex
*peizodax sT buTpeo] OTI3USDD2 IIpun spiam o1)
3317113 jo sdnoxb pue sjutol buor jJo yjzbusaizs (sauswtIadxy) yzbuaxis o13e3S | TL6T jaeld
*£31oedes UOT3RUIOIOD UT SSEIADVP (6)
® MOUS INg SPIdM Teutpn3 Tbuoy I9A0 85EIIDUT
yibusays spp INOQE MOUS SpIam 2sadASURI] (syusutaadxy) yzbusays o13e38 | TL6T [ARTINN ‘I3T3Ng
“9AXND N-S (8)
swes ay3 Aq ’Arsjewixoadde ‘pajuassxdaa aq ued
1293s 37Tsua3l ybiy pue pyTu Ut suswidads peploMm {s3usutIadxy) anbryed | 6961 USOUSUM [0S
*butusad asn onbiyej (L)
91240 yb1y 103 w:m butputab osn snbrjey a124o so1I03RLOQe]
#MO0T 103 “‘poudad asumrey Io punoxb a3yzrs useq yoxeasay
aaey Asyz uauym @wwuomwu sT sjuto(l papram I3TLT3 896T | ISUI bButpriom
30 yabuaays anbTrjel uT ISEIIOUT ISTQRIIPTSUOCD (sjuswtaadxd) snbryed ay3 3o 3xodey
*sdiysuor3erex SpTaM 331113 (9)
juswederdsIp @0l ~ A3Tsusjur burresays ay3z uo Teutpnitbuot 3o
uoTieor7dde peol pue ssauz3zTis uTol Jo 309333 Teays wroztun( uabusxls ost1els | 8961 11ouUems
*sa3erd I2A00 pue uTRW BY3z spToM I9TTTI (S)
3O S3ZTS dATIRTISX Y3 Aq poOOUSINTIUT ST SpIom 9sxaasueay S961T uusTixey
391113 9sasasuery ayy jo yzbusizs subries ayy (sjuswutxadxy) 3o snbiyed sueraejoEl
*S3INS3X [BOTIBIOSY] AJTpoOw O3 S3U2TOTFIS0D
TeotaTdws aonpoxjul °*sjuswrradxa yY3lTm
291be 3,upTp L9yl aouts sayoeoxdde Teorzsioayly )
30909y *yzbusays pyam 3o adoroaus paaTIaP
A1Tejuswurxadxs ue uo paseq aqpinoys ubrsaqg (sausutaadxd) yabusays 013038 | PSET | UbINqUIPIIIA
SNOISNTINGD SNOTLdWNSSY 12309nS [ Yv3aA IWYN

XIAENS TIALVIIALIT 40 RYVWWAS T1°7 TIGVL

.



found in 101 ships. Almost all of these were fatigue-crack

initiated from the toe of fillet joint connecting internals to
shell or deck plating, transverse members to shell plating and
horizontal girders to bulkhead plating.

Other statistical studies made recently in the general area
of the hull structural damages were reviewed and the following
seven uritical joints were identified:

. Internals (longitudinal members) to shell plating.
Internals (longitudinal members) to strength-deck plating.

. Primary transverse members to shell plating.
Horizontal girders to bulkhead plating.

. Double bottom floor to inner bottom.

. Double bottom girders to shell and inner bottom.

~N O U e W N
.

. Face plates on deep web haunches.

These critical joints are also sensitive to fillet weld
defects according tc the statiftical studies conducted by (15)
Nippon Kaiji Kyokai (Japan)(l Newport News Shipyard (USA)

and Prof. Antoniou (Greece).( 6]

2.2 Review of Static Strength of Fillet Welds

In order to study the effect of the direction of applied (9)
load on the strength of fillet welded joints, Butler and Kulak
conducted tests and analyzed resulting data.

The tests were conducted in four groups, each with the weld
axis being inclined at angles of 0 (longitudinally loaded), 30,
60, and 90 (transversely loaded) degrees, respectively, to the
direction of the applied load, (as shown in Figure 2.1) The
mat2rial of the test specimens was CSA G40.12 which has a speci-
fied yield stress of 44 ksi and a minimum tensile strength of
62 ksi. AWS E60XX electrodes were used for welding the speci-
mens.

Butler and Kulak chose to analyze their experimental data
employing a load-deformation response for mechanical fasteners
of the following form.

- -ul, A
ult (1 )
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FIGURE 2.1 SCHEMATIC REPRESENTATION OF THE TEST
SPECIMEN (9
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Where
R = fastener load at any given deformation
Ruit = ultimate load attainable by fastener
A = shearing, bending, and bearing deformation

of fastener and local bearing deformation
of the connected plates

H,A = regression coefficients
e = base of natural logarithms
Trial-and-error curvefitting of the experimental results
was used to obtain the following expressions for the dependent

variables in the equation. The inclined angle,f, is the only
independent variable to be given.

. ) 10 + 6
ult 097 + 0.06030
bnax = 0.225 (8 + 5)°0-47
y _ 95 G0-01148
\ _ 5.4 o0-01468

Where & is the weld inclined angle to the direction of the
applied load.

Readers are cautioned that these expressions were developed
specifically for % inch (leg size) fillet welds made with E60XX
electrodes; and, therefore, care should be used before applying
these to other size welds or welds using different electrodes.

Table 2.2 compares test results and predicted values
for the ultimate load and the maximum deformation.

Figure 2.2 summarizes the results of load vs. deformation
with respect to different inclined angles. The strength of
the fillet welds tested increased approximately 44% as the
angle of loads changed from zero degree (longitudinally
loaded weld) to 90 degrees (transversly loaded weld); however,
there was a substantial decrease in deformation capacity as the
strength increased.

Kato and Morita(llgtudied the strength of fillet welded
joints theoretically by employing an approximate solution based




Ultimate load

Maximum deformation,

Ultimate

load

Kips/in.

10.9
14.6
15.4
15.7

Predicted values

Maximum
deformation,
in.
0.105
0.042
0.031

0.026

TEST RESULTS AND PREDICTED VALUES(Q)

FIGURE 2.3 TRANSVERSE LV LOADED

kips/in. in.
Group std. std.
8, deg Mean deviation Mean deviation
"] 16.9 0.67 0.101 0.008
30 14.6 0.03 Q.049 0.011
62 14.1 0.51 0.031 0,004
<0 15.8 0.95 0,026 0,002
”
TABLE 2.2
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DEFORPATION (INCHES)
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on the theory of elasticity and supplemented this by an
elastic-plastic strain-hardening analysis performed numerically
using the finite-element technique. The approximate solution
is based upon the following assumptions:

1. The direct stress (q) on the tensile face of the
weld is uniformly distributed.

2. The pattern of the of the elastic stress distribution
remains unchanged until the braking of the weld.

3. Breaking will occur when the shear stress at a point

of the fillet weld reaches
= ot

/3

Tmax

where

op = the tensile strength of the weld
metal

4. The fillet weld has legs of equal size.

The model used for this study is shown in Figure 2.3.
The maximum strength of a transversly loaded fillet weld was
found to be:

Tt,max = 1.46 Ay tpmax = A ot

3
The oblique plan RP (8 = n/8) in Figure 2.3 is the
fracture plane of a transversly loaded fillet weld and the
throat RQ is the critical section of a longitudinally loaded
fillet weld.

This indicates that transversly loaded fillet welds are 467%
stronger than longitudinally loaded fillet welds of the same
size and length.

2.3 Review of Fatigue Strength of Fillet Welds

It was reported (17) that the fatigue strength of a 5/16-
inch fillet welded Tee-joint was reduced tremendously from
plain-plate strength under certain types of loading and stress
level. Table 2.3 shows the experimental data of such strength
reduction.

Since fatigue strength is a major factor in fillet welds,
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and it is difficult to alter the design to either avoid fillet
welds or place fillet welds in areas of low stress, there is
much interest in methods that may improve the fatigue strength
of joints. The Welding Institute conducted experiments to
determine the effect of peening and grinding on the fatigue
strength of fillet welded joints.(18) fThe test pieces have
non-load~carrying attachments fillet welded either parallel to
or transverse to the direction of the applied stress. These
specimens were fabricated in such a manner that the direction
of stressing was parallel to the rolling direction of the material.
Details of the test pieces appear in Figure 2.4,

To study the effect of peening, the samples were peened
with a pneumatic hammer, fitted with a solid tool having a
rounded end of approximately 1/2 inch diameter, that was
moved along the toe of the weld at a speed of approximately
18 inches per minute. Usually, three runs of peening were
required on each specimen to ensure that the whole length of
the weld toe was subjected to the peening treatment.

Two types of local machining were also studied. The first
consisted of grinding only at the weld toe. This grinding was
carried out so as to ensure that the grinding marks were
parallel to the direction of the stress. The second type of
machining involved machining the whole weld to yield a concave
profile and a smooth blend of the weld into the plate surface.
The goal of this treatment was to obtain the maximum possible
increase in strength that could result from machining.

During the testing, all specimens were axially loaded
with one of the following stress cycles. Either the test
piece was loaded under pulsating tension with a lower limit
of zero or an alternating load causing minimum and maximum
stresses equal in magnitude but opposite in sign. The cri-
terion of failure was the complete rupture of the test piece.

Some of the samples were fabricated with welds around

the ends of the gussets, while others were left with the ends
unwelded. It was found that the fatigue strength of these
two types of samples was the same for the non-load-carrying
longitudinal fillet welds, and increased with both the peening
treatment and local machining. The increase in strength grew
larger as the life increased in the case of peening; whereas for
the local machining operation, the increase was about the same for

e whole range examined. The test results on the effects of
grinding and peening for mild steel specimens with longitudinal
and transverse gussets are shown in Figures 2.5 and 2.6, respect-
ively.
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In the tests employing pulsating tension, it was found
that peening increased the fatigue strength by about 75%. With
both pulsating tension and alternate loading, the full local grinding
operation increased the fatigue strength by about 50% in all cases
except that of mild steel specimens with transverse fillet welds
which yielded nearly 100% improvement over the as-welded condition.
Even though this is less of an increase than that obtained from
peening, the difference in the slope of the S/N curves for peened
and ground specimens accounts for the fact that grinding was found
to be more effective than peening for tests in which the number of
cycles was less than about 50,000. Full grinding of the test
pieces with longitudinal fillet welds normally failed as a result
of initiation at the root of the weld. 1In the case of light grinding
at the weld toe, the improvement varied. This is assumed to be
related to the fact that it is very difficult to control the
degree of grinding. This technique, considered to be unreliable,
is, therefore, not recommended. It is interesting to note that in
tests performed on samples with transverse gussets, fully ground
and also peened, fatigue strengths as high as the parent material
could be obtained (Figure 2.6).
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3. REVIEW OF STANDARDS

3.1 Review of Fillet Weld Specifications

For convenience, the following abbreviations have been used
to represent various classification societies whose specifications
are reviewed in this chapter:

L.R. = Lloyd Register

ABS = American Bureau of Shipping

GER.L.L. = Germanischer Lloyd

AWS = American Welding Society

AISC = American Institute of Steel Construction
D.N.V. = Det Norske Veritas

B.V. = Bureau Veritas

NKK = Nippcn Kaiji Kyokai

USN = The United States Navy

USSR = Russian Classification Society

There are two measures of fillet weld strength extensively
used in the various codes. One of them is based on the effect-
tive throat thickness (t), defined as the shortest distance
from the root (A) to the face of the weld (Figure 3.1). Another
one is based on the fillet leg (W) which, for an equal leg
fillet weld,is equated to the throat thickness by

W=v2 -t

All the rules of the various classification societies give the
minimum required weld size by fillet leg (W) or throat thick-
ness (t).

The fillet leg or throat thickness is given as a function
of the plate thickness of the attached members as well as its
position in the ship structure. The latter reflects the different
loading conditions to which the attached members are subject due
to their position.

Some of the codes put limits on weld leg size as well as
some allowances (for example, corrosion allowance) or restictions
( for example, maximum permissible gap). As will be discussed
later, ABS incorpoated a corrosion margin of 1.5 mm (0.059 inch)
in throat thickness when they changed their requirements on fillet
weld size from intermittent to continuous weld. ABS rules have also
incorporated the corrosion margin in the base plate thickness
requirements.
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Fillet weld
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FIGURE 3.1 DEFINITION OF BASIC PARAMETERS IN FILLET
WELDS
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The fillet size requirements specified by ten major clas-
sification societies, the US Navy and the Structural Steel Designer's
Handbook are summarize in Table 3.1. The 1977, or earlier
editions, of the classification societies were used for these
comparisons.

In order to compare the various rules, the required throat
thickness for double contlnuous welds is plotted against the
plate thickness (thinner of the two plates joined by the fillet)
with respect to the location of the most common applications of
structure members up to 24 mm thickness in Figures 3.2a through
3.23. It is seen that the highest value is more than twice
that of the lowest. The plots of fillet sizes also show
dramatically the variation among the various classification
society rules and suggest opportunity for rational improvement.

Investigation of the reasons for the differences in fillet
sizes among the major ship classification societies was not too
successful. Many of the welding specifications were developed
many years ago and the history of their development was not well
documented.

3.2 Corrosion Considerations

In designing welded joints of ships, for general corrosion,
a method commonly used to ensure a proper design is the use of
corrosion margin. The U.S. Navy specifications do not require a
corrosion margin; however, ABS specifications have a corrosion
margin built into the requirements for plate thickness and auto-
matically provide one for the fillet welds because the sizes of
fillet welds are based on plate thickness.

Special protective coatings have been used as an alter-
native for corrosion margin by some ship classification
societies. However, this corrosion margin can not be taken
as the allowable reduction in either plate thickness or fillet size.

Plate materials tend to corrode more than weld materials
as far as usual combinations of plate materials and weld
materials are concerned. The corrosion rate of ordinary ship
hull steels in sea water is, according to Professors H.H. Uhlig
and R.M. Latanission of M.I.T., roughly 0.005 inch per year.
Since this rate decreases due to a build-up of oxides on the
surface, normally a rate of 0.003 or 0.004 inch per year is
used for a period of ten years. If a corrosior margin or 1.5 mm
is imposed on ‘a welded plate, a service life of approximately
20 years can be obtained. " Since most surfaces on a ship that
are exposed to sea water or bilge water are maintained so that:
some form of protective coating is kept intact most of the time,
the corrosion margin of 1.5 mm is considered sufficient
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TABLE 3.1 SUMMARY OF FILLET WELD SPECIFICATIQONS

i Y

Increase due
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up to 15%
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ki, I length is less than 10%
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TABLE 3.1 SUMMARY OF FILLET WELD SPECIFICATIONS (CONTINUED)
WELD SIZE MINIMUM LEG gap INCREASE DUE .
LENGTHR, w max TD GAP allow
§§§Stet waf :eidT;trength factor 3 no no no
Pf Shipping (depends on structur-
al item)
g: factor determined
from the type of
weld
e T, K
).S. Navy wa—L 3
1.414 R2 no no no no
e : weld efficiency
Tls thickness of weaker
member
Rlz UTS of weaker member
Rz: shear strength of
weld deposit
tructural 1.411 Rl Tl
teel Desig~| w » ————————— for 1/8 inch for no no no
er’'s Hand- R, tension [bBuilding, 3/16
ook inch for bridg
1.414 R, T
we 3 "1
R,
33: shear strength of
base metal
10.0 L.
9.0 |-
8.0 L
7.0 |-
6.0 L
5.0 1
4.0
3.0 Lo
1 1 1 1 |
8 12 16 20 24
2LATE THICKNESS (mm)
FIGURE 3.2a CURRENT WELDING REQUIREMENTS FOR JOINTS BETWEEN

DOUBLE BOTTOM FLOOR AND SHELL PLATING (LONG'L FRAMING)

T F_
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FIGURE 3.2b CURRENT WELDING REQUIREMENTS FOR JOINTS
BETWEEN DOUBLE BOTTOM SIDE GIRDERS AND
INNER BCTTOM

10.0

.0
7.0

6.0

T 1T T 7T 1T T

5.0

4“0
3.0 L

T

o
-
-
-
L

12 16 20 24
PLATE THICKNESS (mm}

FIGURE 3.Z2c CURRENT WELDING REQUIREMENTS FOR JOINTS
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FIGURE 3.2d CURRENT WELDING REQUIREMENTS FOR JOINTS
BETWEEN STIFFENERS AND NON-TIGHT STRUCTURAL
BULKHEADS
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FIGURE 3.2e
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for steel weld joints in a sea water environment.

3.3 Fabrication Limits

Metallurgical restraints impose a minimum size of fillet
welds. To decrease a weld specification below 3/16 inch (leg
size) would be unrealistic because it is too small for welding
practice.

There are occasions in which fillet welds made under op-
timum welding conditions tend to be slightly undersized, as
shown in Figure 3.3, It is a common attitude for an inspector
to reject these slightly undersized fillet welds. In many cases,
two or more passes of weld metal must be added to satisfy the
requirements. It is usually, in this case, impractical (if not
impossible) to add only a small amount of weld deposit. The weld
is always overwelded, as shown in Figure 3.3b. This not only
wastes time, labor, and material, but also creates more distortion
which causes more fabrication errors in other joints. This kind
of waste can be reduced by allowing some undersized welds, if
the structural integrity of a ship is not impaired. Distortion
can also be reduced by not adding more weld material to the ijoints.

The maximum gap requirements and the allowable convexity for
fillet welds specified by the U.S. Navy is discussed in Section 3.4.
ABS rules have the same maximum gap requirement but do not require
the maximum allowable convexity. Other classification societies
do not mention requirements for either gap or convexity.

3.4 Review of U.S. Navy Welding Specifications

The U.S. Navy welding specifications are presented in a
different format than the other standards discussed in the previous
section. The required weld sizes are presented in graphical form of

a plot of plate thickness versus joint efficiency.* Different plots
are presented for each different combination of construction materials
and electrodes used, and types of welded joints. Rather than use

a different graph for various joint locations in the ship, the

Navy specifications for joint efficiency include the factor of

joint locations. A partial listing of the required joint efficiency
is given in Table 3.2. For a complete listing, see reference 19.

* Joint efficiency is defined as the ratio of ultimate strength
of weld deposit to ultimate strength of base material.
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Required fillet
size by specification

-

]

a. Slightly Undersized Fillet Weld

Required fillet
size by specification

L

]

b. Overwelded Fillet Joint as a Result of
Additional Welding Two Passes

FIGURE 3.3 UNDERSIZED AND OVERWELDED FILLET JOINT
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TABLE 3.2 REQUIREDUSN JOINT EFFICIEN%

? FOR VARIOUS FILLET
WELDED JOINTS

I1E
19

Item Connection Joint Efficiency
(Per Cent)
Bilge Keels Connections to shell 75
Bulkheads, Longi- Main subdivision bulkheads 100
tudinal and Trans-
verse
Decks and Platforms Longitudinal 75
Transverse
With deck on dnly one side 75
With deck on both sides 100
Shell and interbottom 75
Foundations Gun Foundations 100
Framing, Longitudi- Connections to flanges or
nal and Transverse faceplates around lightening
holes End connections to 75
intersecting members
Ordinary frames (less than
24-inches in depth) 100
Masts and Booms All joints 100
Piping Penetrations Shell plating and supports 100
Vertical Keel Connections to flat keel and
rider plate 75
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One example of the Navy welding specifications is shown in
Figure 3.4. The graph is plotted for a continuous, double-
fillet welded tee-joint made of medium steel (U.T.S. 60,000
PSI) using MIL-601l electrodes.

Comparisons of the U.S. Navy specifications to other
welding standards for required weld size versus plate thickness
for joints between double bottom floors and shell plating, between
web frames and shell plating, and between decks and shell plating
can be seen in Figures 3.5,3.6, and 3.7, respectively. While
Germanischer Lloyd is the most conservative, followed by the
American Bureau of Shipping and the U.S. Navy , Bureau Veritas,
Lloyd Register and Det Norske Veritas are the most liberal.
Also, it is very apparent that there is a wide range between the
most conservative rules and the most liberal rules. 1In fact, there
is over a factor of two difference in some cases. This difference
may not be as large as it seems because the specifications may be
based upon slightly different models or include or exclude dif-
ferent considerations. For instance, one may include a corrosion
allowance and another may tell the designer to add on a margin in
addition to what is required by the chart.

The U.S. Navy specifications have the same maximum gap re-
quirements as that required by ABS specifications. The maximum
gap that is allowed without increasing the weld size is 1/16 inch.
If the gap is greater than 1/16 inch, the required weld size is
equal to the normal required size plus the gap. The maximum per-
mitted gap even with increasing the weld size is 3/16 inch.

The U.S. Navy specifications also limit the maximum
allowable convexity for fillet welds which varies with the weld
size as shown in Figure 3.8.

The tolerance on fillet weld size is as follows(lgk "Fillet
welds up to and including 3/8-inch size shall not vary below the
specified size by more than 1/16 inch, and any such variance shall
not extend for a total distance greater than 1/4 of the joint
length nor for more than 6 inches at any one location. Fillet
welds, 7/1l€-inch size and larger, shall not be less than the gage
limits for their respective sizes."
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4. DEVELOPMENT OF ANALYTICAL METHOD

To study the stress details in the welds of a fillet joint,
cither a photoelastic analysis or mathematical stress-strain
analysis, can be used. With complex structures such as ships,
thousands of combinations of different types of joints and their
applied loads may exist. The photoelasticanalysis is not practical
to apply to all joint-load combinations in a ship. For this reason,
mathematical stress-strain analysis is considered a more useful
and effective means for calculating stresses in fillet welds.

4.1 Analytical Method

A finite-element computer program, named "Automatic Dynamic
Incremental Nonlinear Analysis (ADINA)", was used to develop the
tool for reviewing the currently existing fillet weld specifications.

Program ADINA, a general purpose finite-element computer
program for linear and non-linear, static and dynamic, three
dimensional analysis, is an out-of-core solver, i.e., the
equilibrium equations are processed in blocks, and very large
finite~element systems can be considered. Also, all structure
matrices are stored in compact form, i.e., only non-zero elements
are proce:ssed, resulting in maximum system capacity and solution
efficiency.

Inputs in the program are the joint dimensions and geometries,
coordinates of each node, applied loads, boundary restraints and
material properties, such as Young's modulus E, tangent modulus
E, (for the case of strain hardening), yield stress o, and
Pgisson's ratio v, of the base material and weld deposit.

The outputs from the computer analysis are the stress
distribution over the fillet weld, displacements in every nodal
point and strain conditions (elastic or plastic) of the stressed
areas under certain external loads.

Figure 4.1 shows the general solution procedure of the ADINA
program.

4.2 Method for Determining Minimum Fillet Weld Sizes

To determine the minimum fillet weld sizes, either allowable
design stress intensities or the strain conditions in weld have to
be integrated in the analytical steps of ADINA programming. The
fillet joint dimensions and geometry can be obtained from actual
drawings of ships. Figure 4.2 shows the working process of how the
computer program determines the minimum fillet weld sizes if all
required information is known.
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FIGURE 4.1  GENERAL SOLUTION PROCEDURE OF
THE ADINA PROGRAM
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FIGURE 4.2 PROCESS FOR DETERMINING MINIMUM FILLET WELD SIZE
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Overall stress analysis of the ship structure using either
theory of structures or finite-element stress analysis must be
performed to obtain the local loads acting on the joint. The
boundary conditions supporting the edges of the cut-off joints
are also essential factors in the analysis and have to be rationally
assumed.

A criterion is required in the analysis for determining the
minimum weld sizes. Let X be designated as a criterion guantity
such as yielding, and X equir as the critical quantity. If
X is not equal to X red %ge fillet weld size may be reduced
or increased by an ERSUAES+’ A2 and a new weld dimension is
formed. The iterative process then begins until the situation
of X=X . req 1S reached. The size of fillet welds resulting
from th§g"1E&Efative process is the theoretical minimum size
required vnder certain applied loading conditions. Corrosion margin
may be added to this theoretical weld size. The final fillet weld

size 1s then checked by the manufacturing limits caused by metal-
lurgical or operational ccnsiderations. For example, the smallest
welds that can be made by the available weldlng process or the
miniTum required weld sizes for preventing cracking due to rapid
cooling.

4,3 Mathematical Modeling and General Yielding Criterion

Due to the overall geometry of ships, the local details
of a tee-joint may be analyzed in accordance with the types
of loading which are either longitudinally effective or trans-
versely effective. In some cases the longitudinal and
transverse structures interact, such as the corner welds of a
panel structure,so that a three-dimensional model must be used.
In other cases it is possible to isolate the longitudinal effects
from a transverse structure, treating them as boundary conditions,
and deal only with the transverse joints. In such a case, a two-
dimensional analysis may be applied.

A two-dimensional analysis for a tee-joint under simple tension
acting on the flange was used to check the validity of the
ADINA program and to modify the program for general applications
of the fillet weld strength analysis. Figure 4.3 shows the mathe-
matical model of a tee-joint under simplified loading condition.

The joint with tension on the flange shown in Figure 4.3 may
represent a tee-joint in the floor of midship section, midway
between the stiffeners but with only ship hull girder stress
which is uniformly distributed (approximately) across the flange
thickness.
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e = gap between the web and the flange
o = angle of fillet weld with x axis

2 = fillet leg size

hl = web height

£1 = length of flange

t1 = flange thickness

t2 = web thickness

FIGURE 4.3 MATHEMATICAL MODEL OF A FILLET WELDED TEE-JOINT
UNDER TENSILE LOAD ACTING ON THE FLANGE
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A criterion X gired is needed for determining the minimum
weld sizes in ADINXegnéigsis. In this research, a general
yielding concept was developed. This is to use the general
yielding condition along the weld leg as a determining factor.

The criterion of general yielding is defined by

X = Xrequired
Length of yield plastic zone along the %,
where 1d 1
we eg = T
X = Weld leg size

The required yielding criterion is assumed to be 1.

To illustrate the concept of general yielding criterion
numerically, a calculation was conducted for a tee-joint shown
in Figure 4.3 with rough mesh sizes.* Since the joint is
symmetrical, only half of the joint was analyzed.

Figure 4.4 shows half of the tee-joint with finite-element
meshes. The dimensions of the joint are assumed as follows:

Length (& /2) = 800 mm
Plate 1 thickness (tl) = 18 mm
Plate 2 thickness (t2) = 10.5 mm
Web height (h,) = 300 mm
Fillet weld leg (%) = 5 mm
Root gap (e) = 1.59 mm

The applied boundary conditions are as follows:
(i) Clamped, across face A
(ii) Simply supported, at point B

Since the stress-strain relationship above the yield
point depends on the history of loading, the loading function
of applied tension on the joint flange is assumed tg have 36 step
increments. The load increases from 0 to 50 Kgr/mm“~, as shown in
Figure 4.5.

* Rough mesh size was used in this test run because the
accuracy of results was not important and the purpose of this
run was merely to demonstrate the concept of general yielding.
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The variable finite-element mesh consists of 33 elements and 48 nodes.
The mesh is finer near the root and toe due to possible stress concentrations
in these areas.

Assume that the material properties of base plates and weld
metal are the same ; They are:

21,000 Kgr/mm’

E =
g 2
y = 21 Xgr/mm
v = 0.3
5, - &

40

The analysis is an elastic-plastic, 2-D, plain-strain
analysis, using the Von-Mises yield criterion, with a linear
strain hardening. As the load starts to increase, all elements
are in the elastic region. At some load level, some elements go
into the plastic region. The results of the analysis are shown
in Figure 4.6. The shaded lines give the elements that become
plastic at a given time step.

Hence, at time _step 2 (corresponding to a load of 15 Kgr/mmz),
the small element n2 24 at the toe of the fillet is plastic
(given by vertical lines). Then at time step 5, the next element
becomes plastic and so on.

So, for each time step (corresponding to a given applied
load), the portion of the fillet weld leg which is in the
plastic region can be found. At time step 2, for example, 10%
of the fillet weld leg is plastic, or using the definition of
X, X=10%. Similarly, at time step 5, X = 20%, at time step 9,

X = 40%, and so on, For a given load, as long as X is less than
X . the fillet size can be reduced and the iteration
pfsggégegontinues until the condition of X = 1 is reached.

In the above example, the state of X = 1 happened a§ time
step 14, with an applied load of approximately 25 kgr/mm".

It is interesting, physically, to examine how the plastic
zone progresses. First, plasticity appears in the toe element
due to high stress concentration (of the order of 1.5). The
next element which goes to plastic region is the one next to the
toe element. Then, plasticity appears in the root of the
fillet. This observation may be a good explanation of the
statistical results which indicated that the fatique crack
always initiated from a fillet toe.
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4.4 Numerical Example of the Effect of In-Plane Tensile Stress
in Bottom Shell Plating on Fillet Weld Strength

The example shown in this section is simply to demonstrate
how the fillet weld sizes can be reduced using the ADINA program.
The effect of root gap on the stress concentration at the toe of
a fillet weld under in-plane tensile load applied on the flange
was also analyzed.

The joint analyzed is shown in Figure 4.3. The finite-
element model consists of 72 plain-strain elements* and 219
nodes,as can be seen from Figure 4.7. Dimensions ©of the joint
shown in the Figure are the same as that between a transverse
floor and the shell plating of an AD-37 class ship.

Assuming that the uniform tensile load is caused by ship
hull girder bending on the bottom shell plate in the midship
section of an AD-37 class ship, t?iﬁ)load may be determined by
simple beam thevry and the load is :

Orp 34,538 psi

24.29 S9L

mm

This load is applied in the line connecting the nodes 1,
2, and 3, and in a negative Y direction.

The analysis performed was an elastic-plastic analysis
using the Von-Mises yield criterion, with a linear strain
hardening. The tangent modulus was assumed to be

= = E
Et mE 20 !
The joint was assumed to be made of mild steel, with the
following material properties:

E = 21,000 Kgr/mm2
oy= 24.5 Kgr/mm2
vV = 0.3

Since an elastic-plastic analysis is performed, it is
important to make small load step increments in the plastic
region. If the step increments are large, no equilibrium
stiffness matrix can be reformed in the program. So, the total
load was applied in three static steps of 50%, 70% and 100%
(Figure 4.8)

* Since the joint is long in the direction of welding compared
to other two directions, a plain-strain condition is assumed
on the weld cross sections.
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This computer model is suitable to perform various kinds
of parametric analysis, provided that only one parameter varies
per time holding all the others constant.

The first calculation was performed by varying the weld
size of the joint under simple t+2nsion (Figure 4.3). The
iterative process started with an arbitrary value, 2, = 4.76 mm*
and gradually reduced the fillet sizes by 10%, (4.284 mm) 20%
(3.808 mm) and 30% (3.332 mm). The results are shown in Figure
4.9, This figure shows that since the slope of the curve X vs.
$ of reduction is still far from zero at the point of 30% reduction,
a 30% reduction is, therefore, feasible in this case.

Ship structures, like any other structures, are never com-
pletely free of imperfections and defects due to design or
fabrication limitations. These imperfections may cause the
real structure to depart from the ideal model which is used in
the strength calculations. Knowledge of the extent of the
departure may provide reasonable insight into the safety con-
siderations which can be integrated into the structural design
procedures.

There are several ways in which a gap can be formed between
the web of the joint and the base plate. The most common way is
due to the fact that plates are never straight. They always

have some initial deflections, so that in a miffo scale, . the
plate shape is like the one shown in Figure 4.1u. At point A

of the figure, the maximum gap occurs. The cross section of
the joint at point A is the one shown in Figure 4.7.

The second calculation was performed by varying the root gap
of the fillet weld from the naximum allowable value of 1.59 mm,
allowed by ABS rules, to as much as 30% more.

The computer calculations were conducted for the following
cases:

Case #1: Maximum allowable gap (1.59 mm)

Case #2: Gap increase of 1l0% (1.749 mm)

Case #3: Gap increase of 20% (1.908 mm)

Case #4: Gap increase of 30% (2.067 mm)

* This value according to ABS rule, is a required fillet weld
size for a joint in the transverse floor of midship section in
the double bottom.
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During all these calculations, the weld leg, the applied
load, the geometery of the joint and the material properties
were held constant. Fiqure 4.11 presents the results of the
computer calculations. This figure shows how the stress
concentration varics with the percent of increase in root gap,
for the element number 38. The conclusion.for the loading con-
dition tested, is that the stress concentration near the :oe of
a fillet weld decreases slightly ae the gap kncrcases.

#* Stress at the toe-elemont no. 38

-
- FIGURE 4.11 STRESS
| CONCENTRATION AT THE
TOE ELEMENT
e
-
-5 5 o 30
GAP INCREASE %
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5. CONCLUSION AND RECOMMENDATIONS FOR FURTHER RESEARCH

Conclusions

Some experimental and simple mathematical studies on fillet
weld strength (mostly fatigue strength) have been conducted by
various researchers, but very little analytical work on detailed
stress analysis in welds has been done.

Comparisons of fillet weld requirements of various classifica-
tion socleties indicate that the most conservative rule may re-
quire twice the size than that required by the most 1liberal rule.

Many failures in ship structures were fatigue cracks initiated
from the toe of fillet welds.

Slightly undersized welds are sometimes inevitable due to the
welding process limitations in actual practice. Overwelding
may arise if corrections are made to satisfy the requirements by
specifications. More distortions as well as waste of time,
labor, and materials may cause many other adverse effects. Up-
dated rules should then be determined through analysis to

accept such slightly undersized welds.

A general yielding criterion which requires a full plastic
zone along the weld legs as the indication of failure is pro-
posed to determine minimum fillet weld sizes.

The "ADINA" prcgram or a similar FEM program with modifications,
can be used for analyzing fillet weld joints under complicated
loading conditions.

Recommended Further Research

It is recommended that further research be made on the follow-
tasks:

Task 1. Determination of Stress Distributions in Ship Structures

to Assist the Analysis 1n Welds. To analyze the stress
and strain conditions in welds of various fillet joints
of ship structures using "ADINA" computer propram, it is
first necessary to determine the stress distributions in
the ship structures. The stress found in the cross-
sections beside a particular joint are used as the stress
boundary condition (local loads) acting on the cut-off
edges of that joint in the computer analysis. Many
analyses and measurements have been conducted to determine
the stresses in the ship structures caused by various
combinations of loads to which the ship is subjected in
the open sea. Theories of structures are usually used

FER
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for determining the stresses caused by simple loads such
as hull girder bending and plate bending due to lateral
water pressure and stiffener restraints. Stresses caused
by some special type of loads, such as liquid sloshing
loads, and stresses in the areas with more complicated
combination of joint geometries are often studied using
numerical techiques. Recently, a finite-element method
has been used to determine the stress distributions over
the entire ship structure of an oil tanker by ABS.
Although the efforts have been made for determining the
stresses in the ship structures, these stresses have not
yet been characterized for reviewing the rules. It is
therefore recommended that stresses in the ship structures
under various combinations of loads be characterized in
terms of joint geometry and joint location for a parti-
cular ship.

Review of Fillet Weld Strength of Various Joints in

Ships by Computer Analysis. Ship Structure Committee
sponsored research has developed a computer method, using
the "ADINA" computer program, for analyzing the strength
of fillet welded tee-joints. A simple tensile load
acting on the two edges of the flange was analyed in a
numerical example to demonstrate the program. It is
recommended that analysis of weld strength of various
joints in shipsusing "ADINA" or similar computer programs
be conducted. The expected results will relate the
minimum allowable fillet weld sizes (where the critical
yield criterion is just met) to the plate thickness of the
joints at a particular location in ships. Photoelastic,
or similar stress analysis, experiments for determining
the fillet weld strength of several tee-joints under
simple loading should also be conducted to check the
validity of the mathematical modeling and the computer
results. Any modifications in the mathematical modeling
or in the computer programs should then be made before
going on to the analysis of the joints under more com-
plicated loading conditions.

Development of a Rational Procedure for Updating the

Fillet Weld Specifications. A ship structure Committee
sponsored study has indicated the possibility of reducing
fillet weld size requirements. One way to achieve a solution
is to develop an algorithm approach. In-this approach,

the required weld sizes would be the sum of the increments
in weld size which are required for each of the factors
that might affect the strength of a welded joint. With-

in each category, the value of the increments could vary
from zero to some maximum value depending on the conditions
of the particular joint in question.

The joints would be classified by type to take into account
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the required joint efficiency, possible different re-
quirements of different classes of ships and the location
of the joint in a given ship. A matrix would be set up
to give the value of each increment for different joint
classifications.

Table 5.1 represents the elements of the algorithm system.

With information previously developed, along with some experiments,

a simple computer program can be developed to take account all the
factors in the algorithm chart and to perform the optimization through
the iterative procedures in the computer. The algorithm charts

can then be reviewed and incorporated in the specificaticns.

Task 4. Study of the Significant Benefits from the Reduction of
Fillet Weld Sizes. The reduction of fillet weld size
requirements can benefit ship construction by allowing
smaller welds, reducing the cost of construction,
accepting slightly undersized welds if the itegrity of
the joint is not impaired, and reducing weld distortion
by depositing less weld metal to the joint. Among the
anticipated benefits, the cost saving may be the most
important concern by the shipbuilders.

A preliminary study on the cost saving due to the {edyction
of fillet weld size has been conducted by Malliris 21),
Based on a possible 30% reduction of fillet weld size

the total cost~saving including welding consumables,
welding time and labor cost in the construction of a
50,000 DWT tanker can reach $102,900 and 22 tons of
welding consumables.

It is, therefore, recommended that an economic study

be undertaken that would include the reduction of welding
consumables, welding time and labor cost.

It is also recommended that the beneficial effect of
reduction of fillet weld size regquirements on the

weld distortion be studied as it may be one of many
important comsiderations in determining the acceptable
undersized weld in actual welding practice. Either
experimental approach or computer analysis, such as

using the computer progngs developed at M.I.T., may

be used for this study.
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TABLE 5.1 FILLET WELD ANALYSIS SYSTEM ELCMENTS

Category di Method of Determination

Static strength dl Computer ¥EM
Fatigue margin d2 Experimental results
Fabrication or workmanship d3 FEM
Welding Method d4 Experimental results
Conditions of welding d5 Industrial data
Environmental:

Corrosion (general) d6 Calculation-experimental

results

Corrosion (local) d7 Experimental results
Quality control:

Ability to detect

defects d8 Industrial data

Test procedure

required d9 Specifications
Design method dlo Judgement
Strengths of the weld metal d11 Experimental results
Metallurgical restraints d12 Experimental results
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APPENDIX I

LIST OF LITERATURE ON FILLET WELDS, 1943 - 1977

Appendix I is a list of literature on fillet welds from

Northeast Acaemic Science Information Center (NASIC) which is

available at M.I.T.

Example 76 005 R

T TELE

Subjects are classified as £
S: Static Strength
F: Fatigue Strength
R: Residual Stress
D: Weld Defect
I: Inspection
C: Welding Cracking

P: Welding Process

a————

ollows:

Subject

Serial Number of the
Year

Year Published (1976)
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