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where the state of the system x is an n~vector, and the input u('):R+*Rm. A an4
B are nxn and nxm dimensional matrices, respectively, When the state of a phy-~
sical system is represented by an infinite dimensional Hilbert space H, we have
the following abstract differential equation describing the system:

%X = Ax + Bu (*)

where x is the state vector and is ¢ H. The input u:R+*U, where U is the Hil-
bert space of input vectors. The linear operator A is the infinitesimal gener-
ator of a CO (strongly continuous at the origin) semigroup. The linear oper-

ator B ¢ B(U;H), implying the control is distributed.

The stability problem is one of finding a criterion to be satisfied by the
infinitesimal generator A which will imply that the "solution" of (*) (for a
given initial state and u(*) = 0) converges, in some sense, to the origin as
t > ©. A related problem to that of stability is the problem of stabilizability
That is, the problem of finding a linear operator F ¢ B(H;U) such that the un-
forced system

x = (A + BF)x (*%)
is, in some sense, stable.

The familiar finite dimensional applications of Liapunov's direct method to
the stability and stabilizability of linear systems involve the existence of
certain positive matrices which satisfy some form of algebraic Riccati equation/
Former extensions of these results to infinite dimensional systems in Hilbert
space fef—Ff61;- 7 8 —t9t amd—E3331) apply exclusively to exponential
(uniform asymptotic) stability. Recently, recognizing that exponential stabil-
ity is a very strong property to expect of some physical systems, some attentior
has been paid to weaker forms of stability, €c-f+ [2F, [201, (21} and [27]).

This thesis generalizes the results of Liapunov's direct method to infinite
dimensional systems in a manner that addresses these weaker forms of stability.
This is accomplished by developing the distinct concepts of nonnegative, posi-
tive, and strictly positive operators. The resulting stability and stabiliza-
bility theorems are stated in terms of weak stability, but they are shown to be
applicable, in many cases, to strong and exponential stability as well. _These
theorems are applied to examples which cannot be handled by the existing\infi-
nite dimensional Liapunov theorems developed in [8] and [10].

The different concepts of positive operators are further exploited by rede-
fining exact and approximate controllability in terms of the degree of posi-
tivity of a controllability operator. The controllability operator is shown to
be positive if the system is approximately controllable, strictly positive if
the system is exactly controllable, and compact if the input operator B or the
semigroup generated by A is.

The above results on controllability and stabilizability are then combined
in a single inequality from which Benchimole's main result on weak stabiliza-
bility and approximate controllability (2], and an extension of Slemrod's re-
sults on exponential stabilizability and exact controllability [27] follow
immediately. The final result is an extension of Benchimole's main theorem
to semigroups which are not contractions.
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ABSTRACT OF THE DISSERTATION

The Stability and Stabilizability of
Infinite Dimensional Linear Systems

Via Liapunov's Direct Method

by

Alan Paul Ross
Doctor of Philosophy in Engineering
University of California, Los Angeles, 1979

Professor Nhan Levan, Chair

This dissertation attempts to extend to infinite dimensional linear
systems in a Hilbert space some of the stability and stabilizability
results that have been obtained for finite dimensional systems using

the direct method of Liapunov.

A finite dimensional linear system has the representation:
X = Ax + Bu
where the state of the system x is an n-vector, and the input

+ . . ,
u(+):R +R™. A and B are nxn and nxm dimensional matrices, respec-

tively.
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When the state of a physical system is represented by an infinite
dimensional Hilbert space H, we have the following abstract differ-

ential equation describing the system:
X = Ax + Bu (*)

where x js the state vector and is € H. The input u:R++U, where U
is the Hilbert space of input vectors. The linear operator A is
the infinitesimal generator of a CO (strongly continuous at’ the
origin) semigroup. The linear operator B € B(U;H), implying the

control is distributed.

The stability problem is one of finding a criterion to be satisfied
by the infinijtesimal generator A which will imply that the "solution"
of (*) (for a given initial state and u(-) = 0) converges, in some
sense, to the origin as t » =. A related problem to that of stability
is the problem of stabilizability. That is, the problem of finding

a linear operator F € B(H;U) such that the unforced system
x = (A + BF)x (**)

is, in some sense, stable.

The familiar finite dimensional applications of Liapunov's direct
method to the stability and stabilizability of linear systems

involve the existence of certain positive matrices which satisfy
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some form of algebraic Riccati equation. Former extensions of these
results to infinite dimensional systems in Hilbert space (c.f. [6],
(73, [81, [9], and [33]) apply exclusively to exponential (uniform
asymptotic) stability. Recently, recognizing that exponential
stability is a very strong property to expect of some physical
systems, some attention has been paid to weaker forms of stability

(c.f. [2], [20], [21] and [27]).

This thesis generalizes the results of Liapunov's direct method to
infinite dimensional systems in a manner that addresses these weaker
forms of stability. This is accomplished by developing the distinct
concepts of nonnegative, positive, and strictly positive operators.
The resulting stability and stabilizability theorems are stated in
terms of weak stability, but they are shown to be applicable, in
many cases, to strong and exponential stability as well. These
theorems are applied to examples which cannot be handled by the
exjsting infinite dimensional Liapunov theorems developed in [8]

and [10].

The different concepts of positive operators are further exploited
by redefining exact and approximate controllability in terms of the
degree of positivity of a controllability operator. The controlla-
bility operator is shown to be positive if the system is approximately
controllable, strictly positive if the system is exactly controllable,
and compact if the input operator B or the semigroup generated by A

is.
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The above results on controllability and stabilizability are then
combined in a single inequality from which Benchimole's main result
on weak stabilizability and approximate controllability [2], and an

extension of Slemrod's results on exponential stabilizability and

exact controllability [27] follow immediately. The final result

is an extension of Benchimole's main theorem to semigroups which

are not contractions.
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CHAPTER 1

PROBLEM FORMULATION AND PRELIMINARIES




1.1 MATHEMATICAL BACKGROUND AND MNOTATION

This paper will investigate the stabilizability of the system (A,B)

which is described by the abstract equation
x = Ax+Bu, x(0) = XOCD(A)

where A is the generator of a strongly continuous semigroup of bounded
Tinear operators on a separable Hilbert space H; T(t), t 20, and B is
a bounded linear operator from a Hilbert space U into H. H is called
the state space and U is the input space, and u{(.) : [0,»] - U. By

analogy with the finite dimensional case, we expect
t
x(t) = T(t)XOf/HTt-s)u(s)ds
0

to be the "solution" to the above equation under some appropriate
definition. The form of this definition will, in general, depend on

what restrictions are placed on u(.).

For our purposes, it will be convenient to Took at the homgeneous

equation

x(t) = Ax(t) , O0<tc<cew

x(0) € D(A).




This equation has the unique solution x(t), where (see [1])

a) x(t)€Dd(A), t=0,
b) x(t) is absolutely continuous for t > 0,
c) lix(t) - x(O)} » 0 as t > =,

d} x(t) = T(t)x(0).

Now suppose the infinitesimal generator A is subject to a bounded
perturbation of the form BF, where B is as defined above and F is a
bounded operator, F : H —U. We can associate this problem with the

abstract differential equation
x = (A+BF)x, x(0)< D(A+ BF) = D(A)
This equation is equivalent to the original system (A,B) being subject

to the feedback control BFx(t). The resulting equation has the

solution
t
x(t) = T(t)x(0) + JfT(t-z)BFx(z)dz.

0

If we designate the Co semigroup generated by A + BF as S(t), we get
t

S(t)x(0) = T(t)x(O)-+./}(t-z)BFS(z)x(0)dz
0

where the above are Bochner integrals.




A property of C0 semigroups‘that will be useful in what follows is the
"Exponential Growth Property." This states that there exists a posi-

tive real number Wy such that for each w > g
T(t) < M(w)e"t (1.1.1)

for some positive real number M(w) 2 1. If IIT(t)| < 1, then T(t) is
a contraction semigroup. Contraction semigroups have the following

properties which will be used in the sequel:

1. If A is the infinitesimal generator of a contraction

semigroup, then
2Re(Ax,x) £ 0 , Vx & D(A).

2. T*(t) is also a contraction semigroup with infinitesimal

generator A*,

1.2 STABILITY DEFINITIONS

Suppose the system described in Section 1.1 has B = 0; i.e., the
system is uncontrolled. In this condition, the behavior of the solu-
tion T(t)x, for a given initial state x € D(A), may tend to the origin
as t - =. Qbviously, this "stability" property is very desirable for
physical systems. However, the question remains as to the manner in

which T(t)x approaches 0. For instance, the system may tend to the




origin in the weak, strong, or uniform topology. In this section, we

define these different stability concepts.

Definition 1.2.1.

A semigroup is weakly stable if and only if x, y € H imply

Tim (T(t)x,y) = 0.

t >

Definition 1.2.2.

A semigroup is strongly stable if and only if for all x € H

im IT(t)x!l = 0.

t > o

Definition 1.2.3.

A semigroup is uniformly stable if and only if

Tim (e = o.

t > o

Definition 1.2.4.

A semigroup is exponentially stable if and only if there exists two

real numbers M 2 1 and w > 0 such that




IT(e)l < Me™t . t> 0.

In reference [10], Datko shows that uniform stability is equivalent to
exponential stability. In the following chapters, this strongest form

of stability will be referred to according to the latter definition.

1.3 THE STABILIZABILITY PROBLEM

In solving the stabilizability problem, we are trying to take the

system (A,B), represented by the abstract differential equation
x = Ax + Bu , x{(0) € D(A),

which has been defined in the previocus sections, and bring an arbitrary
initial state x(0) € D(A) to the origin via a feedback contral of the
form u(t) = Fx(t), F € B(H,U). Using the development of Section 1.1,

we are asking that
t
S(t)x(0) = T(t)x(0) +/0‘T(t-z)BFS(z)x(O)dz+ 0

as t » =. Note that S(t) is the semigroup generated by A + BF. Hence,

this is the same as asking that S(t) be stable.

If we want the trajectory starting at x(0) to approach the origin in
the weak sense, then we want the semigroup S(t) to be weakly stable.

Similarly for the strong 1imit and strong stability. If S(t)x(Q) is




to tend to zero uniformly in x(0), then we need exponential stability

of the S(t) semigroup.

1.4  CONTROLLABILITY

Consider the following nonhonogeneous equation:
x(t) = Ax(t) + Bu(t) , x(0) €D(A) (1.4.1)

where A and B are as described in Section 1.1, and u(t) €IL2[(O,a);U],

i.e., u(t) is weakly measurable and

a
f”u(z)l,’zdz <w , Va€ (0,=).
0

Then, if x{t) is strongly continuous at the origin, equation (1.4.1)

has the "solution"

t
x(t) = T(t)x(0) +.4§T(t-z)8u(z)dz

in the sense that

%£X(t),y) = (X(t),A*}/) + (BU(t),y) a.e.

and

limo(x(t),y) = (x(0),y) , Vy € D(A*)

e —— o A——— — e



(see [1]).

Definition 1.4.1,

The system (A,B), representing equation 1.4.1, is said to be approxi-

mately controllable if

CR( J/} z)Bu(z)dz) = H

where-er(t-z)Bu(z)dz is a map from LZ((O,a);U) + H.
0

In other words, the uniop-of the range of this mapping for all posi-
tive values of a is dense in H. Two other equivalent definitions of
approximate controllability are provided by the following theorem and

its corollary (Balakrishnan [1]).

Theorem 1.4.1.

The system (A,B) is approximately controllable if and only if

OR(T(t)B) = H.
t20

Corollary 1.4.1.

The system (A,B) is approximately controllable if and only if




a
J/FT(Z)BB*T*(Z)XdZ = 0
0

for some x € H and every a > 0 implies x = O.

Corresponding to the definition of approximate controllability given
by Corollary 1.4.1, we have the more restrictive property of exact

controllability.

Definition 1.4.2.

A system (A,B) is exactly controllable if and only if

a
uR(fT(a-z)Bu(z)dz) - W
az0 0

Therefore, the union of the range of the above mapping for all posi-

tive values of a is not just dense in H, but is equal to the whole

space. In this case, the following theorem applies (Balakrishnan [1]).

Theorem 1.4.3.

The system (A,B) is exactly controllable if and only if for some

tf >0

tf
R([T(tp-2)Bulz)dz = H.
0




Analogous to the above property, which is equivalent to exact control-

lability, we have

Definition 1.4.3.

A system (A,B) is approximately controllable in finite time if and

only if for some tf >0

te
ﬁ{/PT(tf—z)Bu(z)dz) = H.
0

Note that this is a stronger property than approximate controllability

(see Doleki reference [11]).

1.5 POSITIVE OPERATORS

In the literature on linear operators, there is frequent reference

to nonnegative/positive operators. Unfortunately, there is no general
agreement on the terminology employed in designating various degrees
of positivity. For the purpose of this paper, three different types
of positive operators will be considered. The following definitions

will serve to fix our terminology.

Definition 1.5.1. -

A bounded self-adjoint operator P on a Hilbert space H is said to be

a.nonnegative operator if and only if

10
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(Px,x) > 0

for all x € H.

Definition 1.5.2.

A bounded self-adjoint operator P on a Hilbert space H is said to be

a positive operator if and only if

(Px,x) > 0

for all x € H and not equal to zero.

Definition 1.5.3.

A bounded self-adjoint operator P on a Hilbert space H is said to be

strictly positive if there exists a positive number m such that

(Px,x) > m{ x{|2.

It follows from Definition 1.5.3 that if P is strictly positive,
then it has a bounded inverse. If P is positive, then it still has

an inverse; however, it may not be bounded.

Theorem 1.5.1.

If P is positive, then there exists a closed operator P7l, such that

11




P lpx = x for all x € H, and PPx = x for all x € D(P"1).

PROOF: Since Px; = Px, implies P(x{ - x,} = 0, P is one-one onto its
range. Therefore, there exists an inverse linear mapping P-! defined
on R(P). But H = N(P) @ R(PJ, and N(P) = {0} by Definition 1.5.2.

Hence, R(P) = D(P 1)

Now, let x, € D(P71)

H. Consequently, P! has a dense domain.

u

R(P), x. + x and P'lxn + y. Then there exists

n

= - -1 = p~l = e
Yn such that Pyn X, > X It follows that P Xq = Pyn Yp > Y-
This implies that x, = Py - Py and Py = x or P lx = y. Therefore,

the linear operator P”! is closed, and the theorem is proved.

12




CHAPTER 2
SURVEY OF EXTANT RESULTS




2.1  EQUIVALENCE OF STABILITY CONCZPTS

In Section 1.2, essentially three different degrees of stability are
defined, ranging from weak to exponential. Most of the theorems in
later chapters are stated in terms of weak stability. However, the
following theorems show that for many important types of semigroups,

weak stability is equivalent to strong or exponential stability.

Theorem 2.1.1.

If T(t) has a compact resolvent R(x,A), then it is strongly stable

if and only if it is weakly stable (see [2]).

Theorem 2.1.2.

If T(t) is a self-adjoint semigroup (T*(t) = T(t)), it is strongly

stable if and only if it is weakly stable.

PROOF: To show that in this case weak stability implies strong

stability, simply note that

IT(e)xll2 = (T(t)x,T(t)x) = (T(2t)x,x} ~ O

as t » =,

Theorem 2.1.3.

If T(t) is compact for some to > 0, then T(t) is exponentially stable

14




if and only if it is weakly stable.

PROOF: See [2].

2.2 THE DIRECT METHOD OF LIAPUNOV

We now establish the basic definitions and notation associated with

the Liapunov technique in infinite dimensicns. The following theorems

are generalizations of the familiar finite dimensional results, and

are stated in references [14], [16] and [31]. Unfortunately, some of

the proofs are not given in these references. Proofs will be prov.ded

here when they are not available in the literature.

Definition 2.2.1.

Let T(t) be a C0 semigroup, t 2 0, on a Hilbert space H. A continuous

functional V:H — R is said to be a Liapunov functional for the semi-

group T(t) if V(0) = 0 and VS 0 ¥x € H. V is defined by the equation

V(x) = lim sup %(V(T(t)x) - V(x)).
§+0* te(0,8)

In what follows, let W:H — R be a continuous functional such that
V < -W(x) < 0 for all x € H.

Lemma 2.2.1: Let V be a Liapunov functional for a semigrouc T(t) on

a Hilbert space H. If x &€ H, then

15




PROOF: (see [31], Lemma 3.4)

Theorem 2.2.1.

Let A be the infinitesimal generator of the CO semigroup T(t) on the

Hilbert space H. Let V:H » R and W:H -~ R be continuous on H, and

let V be Fréchet differentiable on D(A) such that
§V{x;Ax) < -W(x) £0 forall x¢g D(A).

Then:

(a) if V(0) = 0, V is a Liapunov functional on H with
V(x) € -W(x) £ 0 for all x€ H,
(b) for x € D(A), V(x) = sV(x;Ax),

t
V(T(t)x) - v(x) = /6V(T(s)x;AT(s)x)ds,
0

(¢) for x € H, V(x) < -W(x),

t
V(T(t)x) - V(x) £ -/W(T(s)x)ds.
0

16




PROOF: (Theorem 3.9, [31])

Theorem 2.2.2.

In addition to the assumptions of Theorem 2.2.1, let us assume that

(i) there exists a continuous nondescreasing scalar function

a such that «(0) = 0 and, for x = 0,
0< alilxl) sv(x) ;

(i1)  there exists a continuous scalar function y such that

v(0) = 0 and W(x) satisfies, for all x = 0,
-W(x) < -v(lixi) < 03

(iii) there exists a continuous nondescreasing scalar function

8 such that 8(0) = 0 and
v(x) < s(lixll) 3
(iv)  a(llxi) » = as x|+« .

Then the Co-semigroup T(t) is strongly stable.

PROOF: Take any xq € H, then there exists C,(llxgll) > 0 such that

3(Hx0H) < a(Cq) by assumption fv. Now take any 0< € < ilx4il. There

17



exists +(€) > 0 such that 3() < a(€), because 3 is continuous and
3(0) = 0. Denote by CZ(C, ! xoll) > Q the minimum of the continuous
function y on the compact set [v(€), C](onll)]. Let (€, HxOH) =
S(HXOH)/CZ(C, HXON)-

Suppose now that HT(t)xON > v over the interval 0 <t <t, by i, ii and

Theorem 2.2.1, we have

0< a(v) £ V(T(t))xg)

IA

V(xo) :{W(T(s)xo)ds

T

< V(xg) -/‘.:(”T(S)xo)ds )
0

ButHT(s)xOH 2 v by assumption, and

a([T(s)xgl) < v(T(s)xg) < V(xg)

IA

BlbglD) < a(c;)

which implies

v < HT(S)XOHS Cy» s € [0,7].

18




We then have
0<alv) g 8(lx40) - <C, = 0,
a contradiction. Since
a(v) < 8(v) < a(€) £ allxyl) implies v < ixgi,

it must be true that for some t € (0,7) say ty, we have~HT(t])x0H =y,

Therefore,

a(IT(t - )Tty )xgl) < V(T(E - £))T(2y)%()

IA

V(T () )xg)

IA

8(V) < a(€)
for 2ll t 2 t]' Hence
“T(t)x0||< € forall t212t,

which proves strong stability.

19




2.3 THE INVARIANCE PRINCIPAL

In order to employ the direct method of Liapunov, as presented in
Theorem 2.2.1, it was assumed that the Liapunov functional V(x)

satisfies
V(x) € -y(iix!) < 0,

where y is a continuous scalar function such that y(0) = 0. This
condition may in some cases be too restrictiv- In this section, the
invariance principal (also known as Liapunov's second method) will be
used to weaken this assumption. However, stronger conditions on the

nature of the trajectory {T(t)xo, t 2 0} will be required.

Before stating the invariance principal, the following definitions

are needed.

Definition 2.3.1.

Let T(t) be a Co semigroup on the Hilbert space. H. The positive orbit

0+(x) though x € H is defined to be.

0t (x) = UT(t)x
t20
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Definition 2.3.2.

A set M" is a positive invariant set for the Cy semigroup T(t) if

xeu implies T(t)x € M

for all t &€ R+.

We must also define the set

s = {x€H; V(x) = 0}

where V is a Liapunov functional for T(t).

Definition 2.3.3.

The positive 1imit set 1"+(x) of the orbit through x is the set of
p € H such that there is a nondecreasing sequence {tN}, tN > 0,
tN + = sych that

IT(ty)x - pll~ 0 as n>= .

In other words,

tfx) = A (U T(t)x) .
20 t2<t
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We can now state and prove the invariance principal.

Theorem 2.3.1.

Suppose T(t) is a Co-semigroup on H. If V is a Liapunov functional,

H > R+, and the positive orbit 0+(x0) is in a compact set of H, then
T(t)xg + MToas t o=,

+ .- . . .
where M = the largest positive invariant set in s.

PROOF: We know that V(x(t)) is monatonically nonincreasing and
bounded from below. Therefore, V(x(t)) » c as t+ =. Now if

pe r+(xo), then there exists (ty}, ty > 0, t, + = such that
HX(tN) - p“-’O as n-> =

this implies V(x(tN)) + V(p) = ¢c. In addition, r+(x0) js invariant
because T(tN)x0 + p implies T(s + tN)x0 + T(s)p. Therefore, V(p) = 0
for all p €Zr+(x0). Also, T(t)x0 - r+(x0). If this were not true,
then there exists (ty}, t, + = such that dist (r'(xg), T(ty)xg) 2€ > 0.
But some subsequence of {T(tN)xo} must converge to a limit Po because
of the compactness assumption, giving us a contradiction. In the same

way, we show that r+(x0) is not empty. This establishes the theorem.
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An obvious limitation of this theorem is the fact that for each x € H,
T(t)x must remain in a compact subset of H. Also, the set s must be

determined in such a manner as to yield useful stability information.

2.4 THE QUADRATIC LIAPUNOV FUNCTIONAL

For linear time invariant systems, the Liapunov functional invariably
takes on a quadratic form; i.e., V(x) = (Dx, x) where D is a positive

operator on H. Hence,

V(x) = (DAx, x) + (x, DAx)

for all x € D(A). In order to conclude some form of stability, it is

required that

(DAX, x) + (x, DAx) = -(Cx, x)

for all x € D(A) where the self-adjoint operator C is at least non-

negative. [(n the finite dimensional case, we have

Theorem 2.4.1.

A necessary and sufficient condition for the origin 0 of an autonomous
linear system x = Ax to be gxponentially stable is the existence of

strictly positive matrices C and Q satisfying the equation

A*Q + QA = -C.
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PROOF: (See [16], Section 9.4.)

This theorem has been generalized to the infinite dimensional case by

Datko [8].

Theorem 2.4.2.

Let T(t) be a strongly continuous C0 semigroup on H with the infini-
tesimal generator A. A necessary and sufficient condition for the
semigroup T(t) to be exponentially stable is the existence of a
strictly positive operator C, and a positive self-adjoint operator Q

such that

2Re(Qx,x}) = ={(Cx,x), ¥x € D(A).

2.5 SOME STABILIZABILITY RESULTS

The stabilizability problem has been approached, in the finite
dimensional case, in the context of an optimal control problem with
quadratic cost functional. Assuming that the resulting Riccati
equation has a strictly positive steady state solution, we end up
with the following algebraic Riccati equation for the finite dimen-

sional linear system (A,B):

DA + A*D - DBB*D = -C. (2.5.1)
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In this equation, C is a positive definite n x n matrix and the feed-
back control is of the form -B*Dx(t). This leaves us with the

stabilizability result

Theorem 2.5.1.

1f the Riccati equation (2.5.1) has a strictly positive solution D,
then the system (A,B) is exponentially stabilized by the feedback

matrix -B*D.

PROOF: This is easily seen by applying Theorem 2.4.7 to
x = (A - BB*D)x.

For the infinite dimensional case, we can modify equation (2.5.1) to

get
2Re(DAx,x) - (DBB*Dx,x) = -{Cx,x) (2.5.1")

for all x € D(A).

In this case, Theorem 2.5.1 generalizes to

Theorem 2.5.2.

i
If, for the linear system (A,B) described in Section 1.1, the Riccati

equation (2.5.1) {(where C is now a strictly positive operator) has a
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self-adjoint positive solution D, then the system (A,B) is exponen-

tially stabilized by the feedback operator -8*D.

PROOF: Apply Theorem 2.4.2 to x = (A - BB*D)x.

The next question that comes to mind after looking at the above

theorems is: when does equation (2.5.1) have a solution? One answer

to this question involves controllability and will be discussed in
Section 2.7. Another answer was given by Datko [9]. The results

will be presented in the remainder of this section.

First, we define a cost functional for the system (A,B) on LZ(I;H):

C(u,I,xo) = d/Q(qu(s),xu(s)) + (u(s),u(s)))ds (2.5.2)
I

where I = (0,t), and
t
(

xu(t) = T(t)x0 + J/}
0

W is a strictly positive operator on H.

Theorem 2.5. 3.

Let I = (O,tn) be a monotonically increasing sequence of intervals

such that tn + =, If for each X< H

26
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e ————————————

1im  min C(u,In,x) C+m
n-= ueLZUn)

then there exists a seif-adjoint endomorphism D such that for each
Xg € H

(on,xo) = d{;(w + DBB*D)x(s,xO),x(s,xo))ds

where

t
x(t,xo) = T(t)x0 - Jéﬁlt - s)BB*Dx(s,xO)ds .

PROOF: Theorem 2, Lemma 1, and Theorem 4 - Datko [9].

It is easily seen that D is a solution to equation {2.5.1') where
C = W. )

A

2.6  STATE SPACE DECQMPQSITION

In Section 2.7, we will examine the application of the concept of

controllability to the stabilizability problem.
authors have found it convenient to decompose the Hilbert space H
into two subspaces, H = H] <) H2, that reduce the semigroup,

T(t) = T(t)]H] ® T(t)'Hz' Usually the restriction of the semigroup

to one of these reducing subspaces already exhibits the desired

stability properties. Hence, it is sufficient to stabilize the
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system on the remaining unstable subspace. In this section, two such

decomposition theorems will be presented.

The first decomposition result is a combination of the Nagy-Foias
conical decomposition of contractive semigraups ([24], p. 145), and
Foguel's Thearem ([17], p. 723). It apolies to contraction semigrouns

and weak stability.

Theorem 2.6.1.

Let T(t) be a contractive semigroup with infinitesimal generator A.

Then there exists subspaces H U (T} and Hu(T) such that

c.n.
H=H (T) @ H,(T), and T(t)

c.n.u. T (t) @ T (t), t20.

c.n.u.

Te ny (t) = T(t)‘H (T) and T (t) = T(t)%HU(T) are completely

nonunitary and unitary semigroups, respectively, on their associated

subspaces. Moreover, D{A}FﬁHuiTi = Hu(T) and HU(T)

Hu(T*).
PROOF: See Levan reference [20], p. 722.

Corollary 2.6.1.

A completely nonunitary semigroup is weakly stable.
PROOF: See Levan, reference [20], p. 723.

The second decomposition theorem establishes sufficient conditions

for decomposing a CO semigroup into an exponentially stable part and
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an "unstable" part. Before presenting this theorem, it will be

necessary to introduce the spectrum determined growth assumption.

Recall from Section 1.1 that for a CO semigroup T{t), generated by A,

there exists a positive real number g such that for each w > g

L3

T(t) < Me"t

1Y
for some bositive real number M 2 1. Now, if Wg = Sup Res(A), we say
that A satisfies the spectrum determined growth assumption. C(learly,
if A satjsfies the spectrum determined growth assumption and sup

Reo(A) < 0, then T(t) is exponentially stable.

Theorem 2.6.2.

Let 5§ > 0, and consider the following partitions o (A) and aS(A) of

u
the .spectrum o(A) of A;

au(A) c(A)N{Xx:Rex = -5}

aS(A) a(A)N{x:Rer < -3} .

Assume that the set ou(A) is bounded and is separated from the set
aS(A) in such a way that a rectifiable simple closed curve can be
drawn so as to enclose an open set containing cu(A) in its interior

and ag(A) in its exterior. Then
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(i) The cperator A may be decomposed according to the decom-
position H = Hu ® HS; i.e., Hu and HS are invariant -
under A.

(i) a(AS) = o {(A) and a(Au) = °h<A)’ where A = Al,, and

)HS

(119) T(£) = Ty(t) @ Tg(t), where T (t) = T(t)], and

My
- I
T (t) = T(t)le are C, semigroups on their associated

subspaces, generated by Au and As’ respectively.
PROOF: See reference [19], p. 178.

Corollary 2.6.2.

If AS satisfies the spectrum determined growth assumption, then Ts(t)

is exponentially stable on Hs'
PROOF: Triggiani [30], p.392.

Note the semigroups with compact self-adjoint resolvents satisfy the

conditions of both Theorem 2.6.2 and Corollary 2.6.2.

2.7  EXACT CONTROLLABILITY AND EXPONENTIAL STABILIZABILITY

Theorem 2.5.3 establishes the following condition for exponential

stabilizability:
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Jefinition 2.7.1.

The system (A,B) satisfies the stabilizability condition if for every

Xq € H there exists a control function u £ Lz([O,w);V) such that

-/]-lxu(t;xo)]lzdt< + @ (2.7.1)
0

where

t
xu(t;xo) = T(t)xO + J/}(t - s)Bu(s)ds .
0

From the form of the stabilizability condition, one might expect the
concepts of controllability and stabilizability to be related. In
fact, for the finite dimensional case, Kalman [17] has shown that
controllability implies inequality 2.7.1. In attempting to generalize
this result to infinite dimensions, it should be noted that for
infinite dimensional systems, the properties of exact and approximate
controllability are not equivalent. Triggiani [28] has provided
several examples of approximately controllable systems which are not
exponentially stabilizable. However, Zabczyk [33] has shown that an
exactly controllable system satisfies inequality 2.7.1 for some

u €'L2([0,m);H). The proof given by Zabczyk is quite terse. We
will, therefore, state the theorem and give a more complete proof

here.
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Theorem 2.7.1.

If the system (A,B) of Section 1.1 is exactly controllable (see
Section 1.4), then inequality (2.7.1) is satisfied. Hence, there
exists a D € 8(H,H) such that the system (A,B) is exponentially

stabilizable by the feedback operator -8*D.

PROOF: Using the definition of exact controllability given in Section

1.4, we know that

t
ﬁ(S)BB*T*(S)dS = C
0

is a self-adjoint operator with a bounded inverse. We therefore let
I, >t in equation (2.5.2), and substitute the following control

function into equations (2.5.3) and (2.5.2):

{ B*T(% - s)c-lT(E)xO 0<s<t

0 t<s

This gives us

t t

uCT;?In)C(u’I"’XO) S'/Ozwxa.(s),xa(s))ds + ’é‘(i(s),ﬁ(s))ds

for all n 2 some Ny and xOC H.
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The above, along with Theorems 2.5.2 and 2.5.3, gives us our result.

It follows from the above theorem that exact controllability is a
sufficient condition for exponential stabilizability. However, it
is not a necessary condition. Triggiani [30] shows that a semigroup
T(t), with infinitesimal generator A satisfying the conditions of
Theorem 2.6.2 and Corollary 2.6.2, is exponentially stabilizable
provided it is exactly controllable on the unstable subspace Hu' In

order to see this, the system {A,B} is decomposed as follows.

Let P be the projection operator onto the subspace Hu' Then applying

P and (I - P) to both sides of equation 1.4.1 yields

X, = Auxu+PBu s Xgy T Px0€ D(Au)

NKe
1]

Axg + (I - P)Bu , = (I - P)x0€ D(AS)

Xas

Operator C of Theorem 2.7.1 becomes

t[ T,(t) 0 P8
C =
fo 0 Tt)]|(T-P)B
T, *(t) 0

[B*P, B*(I - P)]| 0 T _*(t) |dt
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11 12

21 22

where

ry

1 /Tu(t)PBB*PTu*(t)dt
0

(9]
i

t
¢y = /Tu(t)PBB*(I - PIT *(t)dt
0 .
_ *
Ca C12
1
C‘22 = _[Ts(t)(I - P)BB*(I - P)TS*(t)dt

It is now possible to state anc prove

Theorem 2.7.2. (Triggiani [30])

Let the semigroup T(t) and its infinitesimal generator A satisfy the
conditions of Theorem 2.6.2 and Corollary 2.6.2. Further, let the
projection of (A,B) onto Hu (Au, PB) be exactly controllable. Then

the system (A,B) is exponentially stabilizable.
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]

PROOF: The fact that (A, PB) is exactly controllable implies that

the operator C” : Hu - Hu’ defined above, has a bounded inverse for

some t > 0. Therefore, for each Xy € D(A), et

=1
} {Cn T,(t)Pxg
-B*T*(t - s) 0 0<s

0 t<s

1A
ot

u(s) =

It folluws that

D t
ﬁmt;xo)uzat = {!lx;(wo”'zdt i

f‘” Tt -1 [ T, (D)Px,

T | O T (t - 1) T(EN(T - Plx,
/f Tu(?- s)PBB*PTu*(f -s) Tu(f - s)PBB*(I - p)TS*(f -s)
0 Ts(f-s)(I-P)BB*pTu*G -s) TS(E - s)(I-P)BB*(I—P)TS*(f-s)

-1 T
o Tu(t)PxO

1 z
0 ds ) !12dt

-
= /]jxa-(t;xo)uzdt +
0
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?: - fdt

© . Y -1
f Tu(t t) 0 'I'u(t)F'xo Ci1 C2 11647 ’l'u(t)Px0
0 0

0 T Ut-D] ([T @-Px] Lo

21 22

‘E‘ @
/{lxu(t;xo)szt + [flTS(t - t)x|j2dt
0 t

where

x|
"

c];lTu(E)Pxo ) (2.7.2)

TS(E)(I f P)xg = Coy

By the corollary on page 615 of reference [8], and the fact that Ts(t)

is exponentially stable on Hs’

ﬁnsu - t)xlldt < + =
t

Hence, inequality 2.7.1 is satisfied and the system (A,B) is exponen-

tially stabilizable. This completes the broof.

Remark 2.7.1.

In both Theorem 2.7.1 and Theorem 2.7.2, the controllability assump-
tions are used in establishing the existence, for each x, € D(A),

of a'U(t;xo) which drives the initjal state X to a "exponentially

stable state" x. The term exponentially stable state is used here

to denote a state x for which
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/:T(t);rfzdt <+ =,

0

In Thearem 2.7.1 X = 0, where as in Theorem 2.7.2, X is given by
equation 2.7.2. Note that the exponentially stable states of a
semigroup T(t) form an invariant subspace M. Hence, one passible

criterion for exponential stabilizability is that the set

t
M (U \J(T(t)xo + fT(t - s)Bu(s)ds)
t20 u€Ly([0,=)3u) 0

be non-empty for each Xy € D(A).

2.8 APPROXIMATE CONTROLLABILITY AND WEAK STABILIZABILITY

The exponential stabilizability results of the last section require
that the system (A,B) (or at least the unstable part of it) be exactly
controllable. Unfortunately, many systems of interest are not exactly
controllable. Consequently, some authors have investigated the
stability implications of approximate controllability. As pointed

out in Section 2.7, approximate controllability does not imply
exponential stabilizability. However, as we will see below, approx-
imate controllability does in some special cases imply weak stabiliza-

bility.
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The first results obtained in this regard are those of Slemrod [27].
Although these were improved upon by Benchimole [2], whose main
theorem will also be presented in this section, Slemrod's weak
stabilizability theorem provides an excellent application of the
invariance principal to linear infinite dimensional time invariant
systems. Both theorems require that A generate a contraction semi-

group. The reason for this assumption will be clarified in Chapter 4.

Theorem 2.8.1. (Slemrod [27], Theorem 3.2)

Let A be the infinitesimal generator of a CO contraction semigroup
T(t) on H for t 2 0, and let S(t) be the Cy contraction semigroup
generated by A - BB*, If

(i) for every y € H, S*(t)y remains in some compact set of H

(which may depend on y) for t > 0, and
(ii) the system (A,B) is completely controllable,

then S(t)y - 0 weakly as t - » for all y € H; i.e., (A,B) is weakly

stabilizable.

PROOF: Let C = A - 8B*. Then C* is the infinitesimal generator of
S*(t). Consider the functional on H given by V(x) = 1/2 {Ixil2. Since
IT(e)l <€ 1, we have (x,A*x) < O for all x €D(A*) (see Section 1.1).

Thus, a simple computation shows
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G(s*(t)xo) < - iB*S*(t)xg 2

for xOC D(C*) = D(A*). Now let y £ H. Since D(C*) is dense in H,

there exists {yn} C D(C*) so that Yy =Y in H. Then

V(y) = Tim 1 [V(S*(t)y) - v(»)]
t+-0+

]
= Tim lim + [V(S* -V
Tim limg Dv(s*(t)y,) - V{y,)]

¢
= Tim Hm-‘t-[ V(s*(s)y )ds]
n
t+0+ e 0

IA
o
3
—r
3
J
mm
‘@
*
w
*

(s)y,ll2ds]

< -||B*yll2  for y € H.

Now we can apply Theorem 2.3.1 to the semigroup S*(t). Hypothesis (i)
implies that for the semigroup S*(t), 0*(y) belongs to a compact set
of H. Theorem 2.3.1 then implies that S*(t)y - Mt as t » =, where

M* is the largest positive invariant set in (y € H; V(y) = O}.

We now show that MY = (0}. Let m € M* and define

t
Z(t) = /S*(s)mds.
0
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Since C* ig closed, it follows that Z(t) € D(C*) and

I(t) = Az(t) - BB*2(t) +m for t > g (2.8.1)

From the definition of M, it follows that B*S*(t)m = 0 for a1] t > 0.

Thus, B*Z(t) = 0 for t 20 and we see, using (2.8.1), that

t
Z(t) = d/rT*(s)mds.
a
But B*Z(t) = 0, so
t
J/k*T*(s)mds = 0 fort >0,

0

This in turn implies B*T*(t)m = 0 for all t 2 0 and, employing the
approximate controllability hypothesis, we see that m = 0, Applying
Theorem 2.3.1, we conclude that S*(t)y - g as t > =. Thus, S(t)y - 0

weakly and we hayve proved weak stabilizability.

Benchimole [2] was able to extend this theorem to include general
contraction semigroups by employing the decomposition resultg of

Theorem 2.6.2,
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Theoram 2.3.2. (Benchimole [2], Theorem 3.2.1.)

If the system (A,B) is such that A generates a CO contraction semi-
group, then the system is weakly stabilized by the feedback operator

-B*.

PROOF: Let -B* be the feedback gain. Then A - BB* generates a con-
traction semigroup S{(t). Applying Theorem 2.6.1 to S(t), we obtain
a decomposition of H into two subspaces; Hu(s), reducing S(t) to a
unitary group, and chu(s), reducing S(t) to a completely nonunitary
semigroup. By Corollary 2.6.1, we know that for all x €.chu(s)

S(t)x - 0 weakly as t + + =,

Therefore, we can establish weak stability if we can show that

Hu(s) = {0}. Let x €D(A*) N Hu(s), then for all t 2 0

s+ (X2 = (A% - 88*)S*(t)x, S*(t)x)
+ (S*(t)x, (A* - BB*)S*(t)x) = 0,
since S*(t) is unitary on HU(S) = Hu(S*) by Theorem 2.6.1. But
(A*y, y) + (Y, A*y) £ 0

for all y € D(A*), as A* is a contraction semigroup. This implies

that B*S*(t)x = 0 ¥Vt 2 0. It follows from approximate controllability

4




Of the system that x = 0. Since J{3%) = Hu = Hu’ we have Hu = 10y,

and the theorem is proved.

or Foguel's theorem. In addition, oyr method will yield some nice

exponentia) stabi?izabi?ity results as well.
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CHAPTER 3

STABILITY AND STABILIZABILITY

S e o7
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3.1  SOME QUADRATIC LIAPUMOV THEQREMS

In studying stability and stabilizability of linear systems in Hilbert
space, we use gquadratic Liapunov functionals of the type described in
Section 2.4. In this section, we present two such Liapunov stability
theorems for strongly continuous semigroups. The first concerns
exponential (uniform asymtotic) stability. It is simply a restatement
of Theorem 2.4.2, provided here for comparison with the second
Liapunov theorem which is in some sense a generalization of this
resuit. This second Liapunov theorem has the advantage of being
applicable to the weaker forms of stability defined in Section 1.2

which cannot be determined by the use of Theorem 3.1.1.

Theorem 3.1.7.

Let T(t) be a strongly continuous Cq semigroup on H with the infinite-
simal generator A. A necessary and sufficient condition for the
semigroup T(t) to be exponentially stable is the existence of a
positive operator D € B(H,H), and a strictly positive operator

C € B(H,H) such that

i) V{x) (Dx,x) x € H,

ii) V(x) 2Re(DAx,x) < -(Cx,x) x € D(A).

This is nothing more than a slight modification of Datko's result in

[3], although it is a vast improvement over Theorem 4.7, [31].
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Theorem 3.1.2.

Let T(t) be a strongly continuous C0 semigroup on H with the infinite-
simal generator A. A sufficient condition for weak stability is the

existence of a strictly positive operator D and a positive operator C

such that

-
~——
<l
—
x
~
[}

(Dx,x) x € H,

-
-

g
<<e

~~
>

S

1]

2Re (DAx,x) £ -(Cx,x) x € D(A).

PROOF: Let x € D(A), then

g%(T(t);) = 2Re(DAT(t)X,T(t)X)
< -(CT(L)x,T(t)x) .
Therefore,
t
0 < V(Tex) S V() - f(cr(s);,mmds
0
< V(x) .

This series of inequalities imolies:

a)  (DT{(t)X,T(t)X) < V(X). (3.1.1)
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Note if 0 is strictly positive, then there exists a m > 0, such that

miT(t)x 2 € v(X) for all x € D(A) (3.1.2)

But D(A) is dense in H, therefore,

T(tIxlI? <

BL—-‘

(x) for all x € H.
Using the uniform boundedness principle, this implies
(T s M.
t
b) f(CT (s)x,T(s)x)ds < (DX,x) for all x 2 D(A).
0

Once again, D(A) being dense in H implies this inequality holds for

all x € H.

Since C is positive, there exists a pasitive square root G = /C.

We can now rewrite inequality b)

t
ﬁGT(s)xllzds < (Dx,x) for all t 2 0.
0

This implies

/“GT(s)tzds < {Dx,x).
0

46



Let us now consider ;GT(s)xil>. We know that lim [GT(s)x; = 0. If

Tim "GT(s)xll = 0, then there exists a constant €>0 and a sequence
of disjoint closed intervals Ii = [ai’bi]’ i=1,2, ..., such that

for each i:
i) leT(e))xl = €,
1) € <lieT(s)xll < 2€, s € [a;,0],
i11)  6T(by)x = 2€.

But,

€ = fleT(b,)xl - I6T(a;)xl < I6T(b,)x - 6T(a,)x]

IN

laT(a )l by - as)x - x| (3.1.4)
< Mllait IT(by - a;)x - x| .

This implies that Ibi - ai]-+ 0. Therefore, there exists a subsequence
{lby - akl}, and some § > 0 such that [b, - a | > ¢ for all k. We
then have

-]
-

+to = lim ké€2 < €2 E b, - a,] $f 6T (s)xli2ds,
k=<
k=1 0

which is a contradiction. Hence, 1im GT(s)x = 0, and for any y € H,

Sroo
Tim (GT(s)x,y) = Tim (T(s)x,Gy) = O.
> S
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Now for any x € R(G), 1im (T(s)x,z) = 3, and R(G) is dense in H

S~

because G is positive. Hence, for z £ H, there exists Z, < R(G)

such that z_ - z, and since T(t)}x is bounded

(T(t)x,2)

(T(t)x,z - z.) + (T(t)x,z_)

m

IA

Milxll 1z - zm” + (T(t)x,zm).

Taking the limit with respect to t first and then with respect to m,
we have lim (T(t)x,z) = 0 as t ~ =, for all x,z € H. This completes

the proof.

The above theorem generalizes, in a form different from Datko [8],

the famjljar finite dimensional result.

Note that in the statement of Theorem 3.1.2, we required the operatcr
D to be strictly positive. This property is used in establishing the
uniform boundedness of the CO semigroup T(t). For some important
classes of infinitesimal generators, this assumption can be weakened

so that D need only be a positive operator.

Corollary 3.1.1.

In Theorem 3.1.2, if the infinitesimal generator A is the generator
of a uniformly bounded semigroup, then D need only be a positive

operator.
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PROOF: The only use made of D being strictly positive in Theorem
3.1.2 was in part a) where we used this property to establish the

uniform boundedness of the semigroup.

The most important class of semigroups which satisfy the uniform
boundedness hypothesis of Corollary 3.1.1 are contraction semigroups.
This is the case, as we mentioned in Chapter 1, if the infinitesimal

generator A is dissipative, i.e.,
2Re(Ax,x) <0 x € D(A).

In fact, almost all semigroups met with in practice are contraction

semigroups.

Now, suppose we have an integro-differential equation of Volterra

type such as

aW(t,e) . fR(g,s)w(t,s)ds,
o

it

where (Q,8,u) is a o-finite measure space, and R(g,s) is anm x m

matrix function defined on @ x @, measureable g x 3, and such that

IRlz = / Tr. R(E,SIR(E,S)% dly x u) <= .

QxQ
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Then, if R(s[s) commutes with its adjoint, the generator A defined by

Af = g; gft) = fR<t,S)f<s)d». tEn,
2

mapping H = Lz(n,s,u) into itself, is a compact normal linear operator.

In this case, the operator 0 in Theorem 3.1.2 need only be positive.

Corollary 3.1.2.

In Theorem 3.1.2, let the infinitesimal generator A be compact and

normal. Then, it is sufficient that the operator D be positive for
the semigroup to be weakly stable.

PROOF: Suppose in the hypothesis of Thearem 3.1.2, the operator D

is positive. Since

2Re(DAx,x) < -(Wx,x}) Vx € D(A)

the null space of A must be {0} . Therefore, R(A) = H and the
assumption that A is a compact normal operator on the Hilbert space

H implies that the eigenvectors of A, {¢k}?, form an orthonormal

basis for H. But, as in the proof of Theorem 3.7.2 equation 3.1.1,

it can be shown that

(0T(t)x,T(t)x) £ (Dx,x) vx € H.
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Letting Ak be the eigenvalue associated with the eigenvector O

we have
(OT(t)e, T(t)o) = (Dp, k", &k
e(2Re>\k)t (D¢k’¢k)
< (D§59,)
for all t 2 0.

Since D is a positive operator, and O is an eigenvector, it follows

that
(D¢k’¢k) > 0.
Hence
eZReAkt <1 for all t 2 0.

Therefore, Rexk < 0, and letting

«

X = Z (x50, )6,

k=1

it is easily seen that
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(Ax,x) + (x,Ax)

ZZ Re.\k(x,bk)-
k=1

IA
(=)

Consequently, T(t) is a contraction semigroup and Corollary 3.1.1 can

be used to conclude weak stability.

For many applications in physics and engineering, the systems encoun-
tered have an infinitesimal generator with compact and normal resolvent.
As in the above examples, we may again weaken the hypothesis of Theorem

3.1.2 and allow D to be positive.

Corollary 3.1.3.

In Theorem 3.1.2, let the infinitesimal generator A have a compact
and normal resalvent. Then, it is sufficient that the operator O be

positive for the semigroup to be weakly stable.

PROOF: The proof of this corollary is similar to that of Corallary
3.1.2. The fact that there exists a complex number Ao in the resol-
vent set of the infinitesimal generator A for which (AOI - AVt s
compact and normal, implies the existence of an orthonormal basis

{¢], (FYERE .} in H and a sequence of complex numbers {A], AZ’ oo}

such that

X = Z (x, ¢n)¢n , and

n=1
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Ax = }E: xn(x,an)@n . for all x € D(A).
n=1

Once again, using equation 3.11 of Theorem 3.1.2, we have
A
(OT(tds » T(t)e ) = (Dse nf, s ehnt) < (D3 .8, )-

This, just as in the proof of Corollary 3.1.2, implies Rekn:S g.

Therefore,

(Ax,x) + (x,Ax) = ZZ Rexn(x,dn)2
n=1

IA
o

Hence, T(t) is a contraction semigroup. Weak stability follows from

Collary 3.1.1.

3.2 EXTENSION TO STRONGER FORMS OF STABILITY

The results of the last section were stated in terms of weak stability.
However, for many important types of semigroups, the conditions of
Theorem 3.1.2 imply strong or even exponential stability. In this
section, we will prove several corollaries which exte;d the results
of the previous section to these stronger forms of stability. This

will be accomplished by making further assumptions on the type of
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semigroup we are considering, and employing the results of Section
2.1. For instance, in almost a1l applications of partial differen-
tial equations with bounded domains, the semigroups turn out to be
compact. In this case, we have the following corollary to Theorem

3.1.2.

Corollary 3.2.1.

In Theorem 3.1.2, if the semigroup T(t) is compact, then it is

exponentially stable.
PROOF: Use Theorem 2.7.3.

Further, if A generates a semigroup and the resolvent R(x,A) is
compact and self-adjoint for some A > Wy then the Hilbert space H
is separable and the semigroup is compact and self-adjoint. In
this case, we can weaken the assumption on D from strict positivity
to positivity and obtain a necessary and sufficient condition for

exponential stability.

Corollary 3.2.2.

Let T(t) be a strongly continuous CO semigroup on H with the infinite-
simal generator A. If the resolvent of A is compact and self-adjoint
for some A > Wy then a necessary and sufficient condition for the
semigroup T(t) to be exponentially stable is the existence of a

positive operator D and a positive operator C such that
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2Re(DAx,x) < -(Cx,x) for all x € D(A).

PROQF : Sufficiency: Apply Corollary 3.1.2 and Corallary 3.2.1.
Necessity: Since R(AO,A) is compact and self-adjoint for some
AO > wgs there exists an orthonormal basis {;‘s], ¢2, - - .7 in H and

a sequence of real numbers {A], Aps . .} such that

X = Z (s pp)e. s
n=]

and

®

Ax = Z Ap(xs )8 for all x € D(a).
n=]

Also, the real numbers {)\.’, X2’ . . .} cannot have an accumulation
point in the finite part of the complex plane, i.e., {,\n} > =. From

the exponential stability of the semigroup, it follows that

Tt = ents mewt

for some M, w> 0. This implies xn < Q for all n. MNow let

= -2 .
Dx an (x, ¢n)°n’
n=1
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and

Then,

2Re(DAx,x) = :E:: -{An!‘l(x,¢n)2

Since D and ¢ are clearly positive, the hypothesis of the theorem is

satisfied. This completas the proof.

We now consider,

Example 3.2.71.

Let T(t) be the compact self-adjoint semigroup

@

HRLERDY e (000,
1

where {¢n} is an orthonormal basis. [f
Bx = :Z: ! (x,6,.)8
E}" :nn’
]
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then D is a positive operator and

3)—

(x5 )2.

2Re DAx,x = -ZZ
1

Define W such that

Wx = ZZ/H(X,On)wn
1

Then, clearly W is a positive operator also, and
2Re(DAX,x) = ~(Wx,x) vx € D(A).

Therefore, by Corollary 3.2.2, T(t) should be exponentially stable.

This is indeed the case since

- 1/2
( > e‘z"t(x,¢n)2)

3
ct

=
[]

-]

1/2
ot (Z 2010t ) 2)

1

IA

e~ ixl.

A

If the infinitesimal generator A is not self-adjoint but does have a

compact resolvent, then the conclusion of Theorem 3.1.2 can still be
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extended to strong stability of the semigroup.

Corollary 3.2.3.

[f the infinitesimal generator A of the semigroup T(t) has a compact
resolvent R(A,A), for some A > wgs then Theorem 3.1.2 can be stated

in terms of strong stability.
PROOF: Use Theorem 2.1.1.

Theorem 3.1.2 can also be strengthened to strong stability of the
semigroup if the generator A does not have a compact resolvent but

is self-adjoint.

Corollary 3.2.4.

In Theorem 3.1.2, if the semigroup T(t) has a self-adjoint infinite-

simal generator A, then it is strongly stable.

PROOF: Use Theorem 2.1.2.

In Section 3.1, we discuss semigroups generated by operators which

are compact and normal. If it is further assumed that the generator A

is self-adjoint, then necessary and sufficient conditions for strong

stability can be established.
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Corollary 3.2.5.

Let T(t) be a strongly continuous CO semigroup on a Hilbert space H
with compact self-adjoint infinitesimal generator A. A necessary and
sufficient condition for strong stability is the existence of a

strictly positive operator D and a positive operator C such that

2Re(DAx,x) < -(Cx,x) for all x € H.

PROOF: Sufficiency: This follows from Corollary 3.2.3.
Necessity: Since A is compact and self-adjoint, we can again conclude
the existence of a orthonormal basis {¢], bpr - - .} in H and a

sequence of real numbers {A], Ags = .} such that

-

x = Z (x,¢»n)¢n, and

n=1
Ax = Z Ap(%:0,)6, for all x € D(A).

Similar to Corollary 3.2.3,

UT(t)¢nH = et as t > =

since T(t) is strongly stable. Hence, once again, this implies Ap < 0
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for all n. Let D = [ and

K

. - ! {
Cx -Z i (%8 e .

n=1
Sa that

Re(DAx,x) = ) I3l (xs0,)?

This satisfies the necessary condition, and completes the proof.

In reference [3], Datko gives the following example of a "stable"

semigroup where Theorem 3.1.1 does nat apoly:

Example 3.2.2.

Let H = 12 and

t/2 , e-t/nx

T(t)x = (e'tx1, e Xps « »

n!

Clearly, T(t) is strongly continuous of ciass CO with infinitesimal

generator

Ax = (-x], “1/2%, o o, SATAL S ).
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It is easily seen that A is both self-adjoint and compact. Letting

D=1 and
Cx = 2(x], x2/2, x3/3, e xn/n, coeY)
we have
2Re(Ax,x) < ~(Cx,x).

Hence, by Corollary 3.2.5, the semigroup T(t) is strongly stable. To

see that this is actually the case, first note that

T = sup IT(E)xd
Ixll=1
= Time VNt =
o

for all t =2 0. Hence, T(t) is a contraction semigroup. MNow for any
x € H, there exists a sequence {x], Xps X35 - . .} in H such that
each Xmn has finitely many nonzero elements and Xp = X 35 M > =,

Therefore,
)l < ITCe) (x = x M+ 0T (e)x, I

<llx - x i+ HT(t)xmu.
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Taking the limit as t - =, and then letting m + = in the above
inequality, it follows that IT(t)x!! -+ 0 as t » =, and the semigroup

T(t) is strongly stable.

In both Corollary 3.2.2 and Corollary 3.2.5, assumptions are made on
the infinitesimal generator A which imply the existence of an ortho-

normal basis {¢1, bpr - - .} for the Hilbert space H for which
T(t)e, = ex"t¢n.

In general, if there exists such a basis for H, then for each x€ H

Denote by Fi the subspace of H consisting of those elements having
all of their coefficients {a;, a5, . . .} with subscripts larger

than i equal to zero. Then, in both the above corollaries,

T(t): F, » Fo forall £20.
It can be shown that if the semigroup T(t) of Theorem 3.1.2 satisfies
the above condition, or more generally, if for each x €lFi, for some

i, there exists a j such that T(t)x €IFj for all t =2 0, then weak

stability of the semigroup implies strong stability of the semigroup.
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We state the above assumption formally as

Hypothesis 3.2.1.

Let H have an orthonormal basis, and let T(t) be a semigroup defined
on H. If x € Fi’ for some i, then there exists a j such that

T(t)x € FJ., for all t 2 0.
Under Hypothesis 3.2.1, it is possible to prove

Thegrem 3.2.1.

Let T(t) be a strongly continuous CO semigroup on H satisfying

Hypothesis 3.2.1. Then weak stability of T(t) implies strong stability.

PROOF: Let F denote the subspace in H of vectors having finitely
many nonzero coefficients with respect to the orthonormal basis
{15 855 - . .} of H. Then for each X € F, there exists an m such
that

_ n _ 172
TR = (Z (T(t)x,¢,‘-)2) :

i=1

Since T(t) is weakly stable, T(t)x ~ 0 as t » =. Now for each x € H,
there exists a sequence {EH, ié, . . .} € F such that x, > x as n » =.

Also, since T(t) is weakly stable, [IT(t)] £ M. Hence
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IT(t)x

IA

() (xo= ) 0 + IT(E)x

IN

- x ! i v
Mix - x Il + JT(t)an.

Taking the 1imit with respect to t and then with respect to n of each
side of the above inequality, we see that T(t)x ~ 0 as t - =. The

semigroup is therefore strongly stable. This completes the proof.

As a consequence of this theorem and Theorem 3.1.2, we have the follow-

ing,

Corollary 3.2.86.

Let T(t) be a strongly continuous Cy semigroup on H with infitesimal
generator A. If T(t) satisfies the conditions of Theorem 3.1.2 and

Hypothesis 3.2.1, then T(t) is strongly stable.
PROOF: Use Theorem 3.1.2 and Theorem 3.2.1.

In [10], Datko gives another example of a "stable" (meaning strongly
stable) semigroup for which Theorem 3.1.1 does not apply. We shall

now show that Corollary 3.2.6 does apply to his example.

Example 3.2.3.

Let %y be the Hilbert space of all real sequences x = (x], Xos + - )

such that
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On 195 define the bounded linear operator A by the equation

Ax = (-X] tXgs Xy FXgs ooy X F Xs )

and the infinite system of differential equations

X: = =X, + X,

i ; $+1° i=1,2, ...

The conditions of Theorem 3.1.2 are satisfied for this system by
letting D = I, and C = -(A + A*). That C is positive follows from
the fact that

= 2 2 . 2
(Cx,x) Xy + Xy 2x2x] + Xo
2 . 2
+ Xy 2x2x3 + x3 +

2 . + %2
. Xp anxn+1 X1

B ) (- Xy )2

1=

Therefore,

2Re(Ax,x) ((A + A*)x,x) = -(Cx,x),
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for all x€ H. From the definition of the infinitesimal generator A
and the fact that A is bounded, it is easily seen that T(t) must
satisfy Hypothesis 3.2.1. Consequently, T(t) is strongly stable. To

verify this, observe that

- -t n
xi(t) = e ;i; X pti/nt, (3.2.1)

where xi(t) is the ith component of T(t)x. We then observe that

-] @

1/2é%(HT(t)XH2) = {}E: x;2(t) +:§:: x; ()% 1 ().

i=1 i=1
Hence, by the Schwarz inequality,
d(liT(t)xi)/dt < 0 for all t > 0.

This means that T(t) is a contraction. From the form of equation
3.2.1, it is easily seen that for the elements x in z, with only a
finite number of nonzero coordinates |IT(t)x|l+ 0 as t + =. Thus,
applying the same method used in the proof of Theorem 3.2.1, we have

strong stability of the semigroup.

Two classes of semigroups which automatically satisfy Hypothesis 3.2.1

are those with compact self-adjoint infinitesimal generators, and
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those with generators having compact normal resolvents. Therefore,

it is possible to prove

Corollary 3.2.7.

Let T(t) be a strongly continuous semigroup on H whose infinitesimal

generator A
i) is compact and self-adjoint, or
ii) has compact self-adjoint resolvent.

Then a sufficient condition for strong stability is the existence of

a positive operator D and a positive operator C such that

(DAx,x) + (x,0Ax) £ (Cx,x) for all x € D(A).

PROOF: Use Corollaries 3.1.2, 3.1.3, and Theorem 3.2.1.

3.3 STABILIZABILITY AND THE ALGEBRAIC RICCATI EQUATION

In the previous two sections of this chapter, we have given sufficient
conditions for a strongly continuous CO semigroup to be stable. In
this section, we turn our attention to the stabilizability problem.
Recall from Chanter 1 that the stabilizability problem involves the

abstract differential equation
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x = Ax + Bu (3.3.1)

where A is the infinitesimal generator of a CO semigroup on the Hilbert
space H, u € L, ([0,=);U), and B is a bounded linear operatar;

B :U->H. In order to stabilize this system, we must find a bounded
linear operator F : H - U such that the semigroup generated by A + BF
is in some sense stable. Using the results of Section 3.1, we can |

state the following rather obvious stabilizability theorem,

Theorem 3.3.1.

The linear control system described by equation 3.3.1 is weakly
(exponentially) stabilizable if there exists a bounded linear operator
F:U->H, a strictly positive (positive) operator D, and a positive

(strictly positive) operator W such that
2Re(D(A + BF)x,x) < -(Wx,x)

for all x € D(A).

PROCF: If A generates a strongly continuous CO semigroup, then so
does A + BF, since BF is a bounded operator. Also, D(A + BF) = D(A).

Now apply Theorem 3.1.2 (3.1.1) to the semigroup generated by A + BF.

If we can satisfy the conditions of the above theorem for weak stabi-

lity, it may be possible to conclude strong or exponential stability
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by shawing that the semigroup generated by A + BF satisfies one of the
corollaries of Section 3.2. The sufficient condition of Theorem 3.3.1

can be put in a more familiar form by letting F = -B*D. We then have

Corollary 3.3.1.

The system described by equation 3.3.1 is weakly (exponentially)
stabilizable by the feedback operator -B*D if we can find a strictly
positive (positive) operator D and a positive (strictly positive)

operator P such that
(DAx,x) + (x,DAx) - (DBB*Dx,x) = -{Px,x)

for all x € D(A).
PROOF: Let F = ~B*D and W = P + DBB*D in Theorem 3.1.1.

'We are now faced with the task of finding a solution to the well-

known algebraic Riccati equation
(DAx,x) + (x,DAx) - (DBB*Dx,x) = =(Px,x) (3.3.2)
for all x € D(A). If P is strictly positive and a positive operator D

exists which satisfies this Riccati equation, then the system of

equation 3.1.1 is exponentially stabilized by the feedback operator

-B*D, This is Datko's result presented in Section 2.5. What is new
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here is trat if W is only positive and we can find a strictly positive
solution D, then the system is weakly stabilized by the feedback

operator -B*D.

Remark 3.3.1: We note that in the finite dimensional case, exponen-
tial stability and weak stability are equivalent. Also, a self-adjoint
matrix is positive if and only if it is strictly positive. Therefore,
both the above cases reduce to the stable regulator problem where we
are trying to find a strictly positive matrix D which solves the
algebraic Riccati equation for a strictly positive matrix W. The

stable regulator is then given by the feedback control u(t) = -B*Dx(t).

In [28], Triggiani gives several examples of systems with the form of
equation 3.3.1. In each of these examples both A and B are compact
operators. Hence, for any bounded operator F : H > U, the spectrum
of the compact operator A + BF always contains the origin. Triggiani
therefore concludes that the system is not exponentially stabilizable.
However, we shall present here a modification of one of Triggiani's
examples where A and B are compact but the system is strongly stabi-

lizable.

Example 3.3.1.

Let the system x = Ax + Bu be defined on H = 2y X = (x1, Xps - - .
Let A be the operator whose matrix representation, with respect to the

Jsual basis, has the following entries: I/Zi, i=1,2, . . . on the
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diagonal immediately below the main diagonal and zero elsewhere. The
operator B; H - H is defined such that Bx = (b1x], b2x2, . . .) where
b2 = 1, b2 = (1/2+1/8), . . ., b 2= (12" 12", ... oaf
we et D =1 in Corollary 3.3.1, then

(DAx,x) + (x,DAx) - (DBB*Dx,x) = ((A + A*)x,x)

-(B*x,B*x)

] 1‘
= 2 12tk
=1

(1271 + 1/21.)x1.2

2
-x]

= 2 _ i - 2
1/2x, Z 172" (% = x4,9)2.
i=1

Setting P = -(A + A*) + BB*, it follows that the system (A,B) satis-
‘ies the conditions of Corollary 3.3.1. Therefore, it is weakly f

iat'e. Also, from the form of the infinitesimal generator and the

Aa & k.o o

*r4% ‘¢ is bounded, it is clear that this semigroup satisfies

—
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Hypothesis 3.2.1. Hence, we can conclude strong stability by invoking

Corollary 3.2.6. Noting that Z(I/Zi)2 < =, and z1/2i < =, it follows

that A and B are not enly compact, they are in fact Hilbert-Schmidt.

In order to use Corollary 3.3.1 to stabilize the system (A,B), a
strictly positive operator D must be found which satisfies Equation

(3.3.2). It would be useful to derive a sufficient condition for the

existence of such an operator.

Recall Datko's results for the exponential stabilizability problem

described in Section 2.5. There we defined a cost functional on

L2(I;U) by the expression

Clu,T,x) =ﬁ(qu(S),xu.(S)) + (u(s),u(s))lds (3.3.3)
I

where I = [0,t],

t
xu(t) = T(t)xo +.)r T(t - s)Buls)ds, (3.3.4)
0

and P is a nonnegative operator on H. We then let In = [O,tn] be a

monotonically increasing sequence of intervals such that tn + @, and
assumed that for each x € H

Tim m(In,x) < +m (3.3.5)
N+
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where

m(In,x) = min C(u,In,x). (3.3.6)
uCLZ(In;U)

Under the assumption that the system described by equation 3.3.1
satisfies inequality 3.3.5, it was possible to conclude the existence

of a positive operator D such that

(Dx,x) 14 ft((p DBB*D)S(s)x+»S(s)x,)dS (3.3.7)
X, X = im + * ,S3(s)x . 3.
£ A S XO 0

where S(t) is the semigroup generated by the infinitesimal generator

A - BB*D.

For the exponential stabilizability case, the requirement that the
system satisfy inequality 3.3.5 for some strictly positive P is suffi-
cient to insure stabilizability of system 3.3.1 by the feedback
operator -B*D. However, suppose P is only positive. Can we still
conclude some form of stabilizability? It turns out that if the
positive operator D, whose existence is guaranteed by the satisfaction
of inequality 3.3.5, is strictly positive, then system 3.3.1 is

strongly stabilized by the feedback operator -B8*D.
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Theorem 3.3.2.

Let the system described by equation 3.3.71 satisfy inequality 3.3.5
for some p\ositive operator P. Then if the positive operator D satis-
fying equation 3.3.7 is strictly positive, the system 3.3.1 is strongly
stabilized by the feedback operator -8*D, and D satisfies equation

3.3.2.

PROOF: Since D is strictly positive and satisfies egquation 3.3.7,

there exists a positive number m such that

miis(z)xlf2 < (0S(*)x,S{t)x)

t
= lim ((P + DBB*D)S{r + s)x,S{t + s)x)ds
toe 0
t+t
= Jim ((P + DBB*D)S{s)x,S{s)x}ds
o ,

n

fm((P + DBB*D)S(s)x,S(s)x)ds
.0

s

f T((P + DBB*D)S(s)x,5(s)x)ds
q .
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for each x < H and all = > 0. Dividing by m and taking the limit as

T » = gives

Tim {|S(<)x{l2 = 0.
T
Hence, S(t) is strongly stable. This comples the first part of the

proof.

V/2 it follows that GS(£)x » 0 as t » =. We

Letting G = (P + DBB*D)
now show that D satisfies the conditions of Corollary 3.3.1. By

equation 3.3.7,

(D(A - BB*D)x,x) + {x,D(A - BB*D)x)

t
= Tim gl ((P + DBB*D)S(s)x,S(s)x)ds
toe J, S
= Tim JlGS(t)x|2 - Jax|2 (3.3.7)
to

for all x € D(A).

Since GS{(t)x - 0 as t ~ =, we have

(D(A - BB*D)x,x) + (x,D(A - BB*D)x)
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= -((P + DBB*D)x,x), (3.3.8)
or
(DAx,x) + (x,DAx) - (DBB*Dx,x) = -(Px,x) (3.3.9)

for all x € D(A). Thus, D satisfies equation 3.3.2, and the theorem

is proved.

Remark 3.3.2: We note that in Example 3.3.1, the operator A is
bounded. This example is a reply to Triggiani's nonexponentially
stabilizable examples of [28] where the infinitesimal generators are
all compact, and therefore bounded. In'Section 4.2 of the next
chapter, we will present an example with A unbounded and show that

it is stabilizable using the results of this chapter.
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CHAPTER 4

CONTROLLABILITY AND STABILIZABILITY




4.1 SOME CONTROLLABILITY RESULTS

In finite dimensions, the concepts of stabilizability and controllabi-
1ity are tightly connected. Clearly if a system (A,B) is stabilizable,
then it is approximately controllable. It has also been shown that
approximate controllability implies stabilizability for the finite
dimensional case. In an attempt to investigate the implications of
controllability with respect to stabilizability for the infinite
dimensional case, it will be useful to examine the two concepts of

controllability presented in Chapter 1 in greater detail.

Benchimole ([2], Theorem 1.3.5) attempts to give a symmetrical defi-
nition of approximate and exact controllability. This theorem is not
correct as stated, however. Ve will state and prove such a theorem

here, as it will be most useful in the next section.

Theorem 4.1.1.

The system x = Ax + Bu, where A generates a CO semigroup T(t), 1is:

i) Approximately Controllable if and only if the self-adjoint

operator C defined by

J/-e’ZAST(s)BB*T*(s)xds = Cx, A > wo]'
0

1. See equation 1.1.1.
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s Positive.

ii) Exactlx Controllaple if and only if ¢ js strictly positive,

PROOF :

i) To see that € is welq defined, consider for each t>Q

t
C(t) =‘J/ﬂ e'ZAST(s)BB*T*(s)xds.
0

Then

3) (C(t)x,y) = (x,C(t)y),

b) 0 < (C(tz}x,x) < (C(tz)x,x) t7 < t,, and

c) (:/(‘Z-ZAST(S)BB*T*(S)XdS,{)2
a

t
< (f e‘“}B*T*(s)x{e'“{s*r*(s)y{ds)2
0

B*T*(s)y|24s.

t t
< / e—ZAS]B*T*(s)x{zdS / e‘ZlSl
Q ]
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ii)

Now if A > Wqs there exists w, Wp < W <X, and M such that
[T*(s)] = [T(s)| < Me"5.

Therefore, the last expression is

< (M8l Ix[)272(x - w))((M]8] [y])2/2(x - w)).

By Lemma 4 in [8], it follows that there exists a self-
adjoint positive operator C on H such that for each x € H,

Tim [C{t)x - Cx| ~ 0, as t » =,

Mow assume (A,B) is approximately controllable. Then
(Cx,x) = 0 implies |[B*T*(t}x| = O for al1 t > Q, which
implies x = 0. In other words, C is positive. But, if
C is positive, then |B*T*(t)x| = 0 for all t > 0 implies
(Cx,x) = Q. This implies that x = 0, and therefore (A,B)

is approximately controllable.

Necessity: If (A,B) is exactly controllable, then for some
t > 0, the range of

—

t
¢ ¢ f T(E - s)Bu(s)ds @ Ly([0,E1s0) + H
0 ~.

is the whole space H (see [11], prop. 2).




Since Cf is onto

. t (T
& 4 /‘ e ES)T(E - 5)Buls)ds ¢ L,y([0,D)5u) » H
0

where \ > Wy must also be onto. But the bounded linear
operator Ef from L2([O,E);U) into H is onto H if and only

if CE* has a bounded inverse, i.e.,

Gl > milxly

for some m > O, This implies that

t —
/ e 2B )gara(T - s)xl2ds 2 m]x), 2.
0

Letting t = t - s, we have

T
f e DT grTH(c)xl2dr 2 melx]l 2
0

It follows that
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x©

J/ﬂ e'zxsﬂB*T*(s)xMst = (Cx,x) = mlx]?,
0

and C is strictly positive.

Sufficiency: Given that C is strictly positive, we know

that for some y > 0

x

fo e DS [geTx(s)xil2ds 2 vIx|2

where 1 > Wg - Therefore, there exists ¢, M > 0 such that

He’kST(s)H < e M. This implies that for T sufficiently

large and some vy < vy

T
/e'ZASHB*T*(S)XHZdS > yiix(2.
0

Letting « = t - s, we have

t
f e DT para (T - o) xf2dr 2 T2
0

and, consequently, we have the range of
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equal to the whole space H. Since {e'k(t'T)B*T*(E'-r)x;
0<t<trYE L2([O,E);U) for any x € H, CE-is also onto,

and the system (A,B) is exactly controllable.
This completes the proof.

For some systems (A,B), it has been shown that exact controllability
implies the state space H is actually finite dimensional. Two such
situations where this js true are when B is compact, and when the
semigroup generated by A is compact. Triggiani [29] provides a proof
for the case where B is compact and the state space is a Banach space,
but it is fairly complicated. The controllability operator of
Theorem 4.1.1 allows a very simple proof of these facts for Hilbert

space.

Theorem 4.1.2.

If the system (A,B) has a compact input operator B, or if the semi-
group T(t) generated by A is compact, then the contrallability

operator C defined in Theorem 4.1.1 is compact.

PROOF: Note that for fixed t > 0, the set
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{T(t)Bx, x| = 11

has a compact closure by definition of compactness of T(t) cr B.
Given ¢ > 0, it can be covered by a finite number of spheres s(xk;a),

k=1, ..., n, with center at Xy and radius €. For any x such that

it =1,

(T(t + &) - T(t))Bx (T(s) - I)T(t)Bx

(T(s) - Ihx + (T(s) ~ IN(T()Bx - x,)
where T(t)Bx €ZS(xk;s), and § is small enough so that H(T(G)-I)xkﬂ <e
for k =1, . . ., n. Since I(T(s) - I)(T(t)Bx - x ) £ T(s) - Ille ,
it follaws that T(t)B is uniformly continuous for t > 0. But this
implies that T(t)BB*T*(t) is also uniformly continuous, so we can

define for each e > 0, L > 0,

L
/e'Z)‘tT(t)BB*T*(t)dt

€

as a Riemann integral in the topology of L(H,H), i.e., the uniform
operator topology. Since {|T(t)]l is bounded on bounded intervals,
the integral converges in this topology as e » 0, and if Rex > wy,

it converges in the same topology as L + =. Hence
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C = ./“e'z}‘tT(t)BB*T*(t)dt
0

is compact. This completes the proof.

Corollary 4.1.1.

If the system (A,B) is as described in the hypothesis of Theorem

4.1.2, then exact controllability implies that H is finite dimensional.

PROOF: Use Theorem 4.1.1 and Theorem 4.1.2 to conclude that C is a
compact, invertible operator mapping H into H. This implies that H

is finite dimensional.

Remark 4.1.1: In Section 2.7 (Theorem 2.7.2), it was shown that if a
Co semigroup satisfies the Spectrum Decomposition Assumption [30], and
if the stable part of the decomposed semigroup satisfies the Spectrum
Determined Growth Assumption, then exact controllability of the
unstable subsystem (Au,PB) is sufficient to insure exponential stabi-
lizability. With the developments in this section, it can be easily
shown that (as Triggiani mentions in [30]) approximate controllability,
in this case, implies exponential stabilizability providing the

unstable subspace is finite dimensional.

To see this, simply express the controllability operator C in terms

of the stable and unstable subspaces, i.e.,
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tn 12
C =
Cr C22
where
Cyy = f e‘Z“Tu(t)PBB*PTu*(t)dt
0

-]

12 -{ e'mTu(t)PBB*(I - PITH(t)dt

(]
[}

U}

fme‘z“rs(t)(r - P)EBH(1 - P)T *(t)at.
0

Ca2

If (A,B) is approximately contrallable, then by Theorem 4.1.1, C must
be positive, But if C is positive, then C]] must also be positive,
and since C1] {s finite dimensional, it is strictly positive. Again,
by Theorem 4.1.1, this implies that the system (Au,PB) is exactly
controllable. Hence, by Theorem 2.7.2, the system (A,B) is exponen-

tially stabilizable.
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It should also be noted here that approximate and exact controllability

are invariant under feedback. That is, if (A,B) is approximately
(exactly) controllable, then (A + BF, B) is approximately (exactly)
controllable for any F € B(H,U).

4.2 CONTROLLABILITY AMD STABILIZABILITY FOR CONTRACTION SEMIGROUPS

In this section, we apply the theorems that we have developed so far
by establishing Theorem 2.8.2 — the main result of Benchimole [2] —
in a much simpler and direct manner. To do this, we must first

derive a very important inequality.

Consider the system (A,B), defined in Section 1.1, and let A be the
generator of a C0 contraction semigroup. Then A - BB* and A* - BB*
also generate contraction semigroups, since A - BB* and A* - BB* are
closed and accretive (see [13], Chapter 9). Therefore, we can look
at the stability of the contraction semigroup S*(t) (generated by
A* - BB*) by letting

Dx = -/f e'ZXtS(t)S*(t)xdt; A >0,
Q

in Theorem 3.1.1 and Corollary 3.1.1. We know that D is well defined

from the development in Theorem 4.1.1, and we have for x € D(A)
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2Re(D(A* - BB*)x,x)

2Re(J/~Qe'2AtS(t)S*(t)(A* - BB*)xdt,x)
0

zRe/?e'z“s(t)s*(t)(A* - BB*x,x)dt
0

[}

zRefme'z*t((A* - BB*)S*(t)x,5*(t)x)dt
0

./(. e'ZAtZRe(A*S*(t)x,S*(t)x)dt
0

-fze‘z“le*s*(t)xgzcst.
0
But A* s accretive, therefore

2Re(D(A* - BB*)x,x) < -/Ze'z*tls*s*(t)xizdt. (4.2.1)
0
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Now, if we note that exponential (weak) stability of S*(t) implies

exponential (weak) stability of S(t), we have the following theorems.

Theorem 4.2.1,

If the system (A,B) is exactly controllable and if A generates a con-
traction semigroup, then the system is exponentially stabilizable by

the feedback -B8*.
PROOF: Use inequality (4.2.1), Theorem 4.1.1(ii), and Theorem 3.1.1.

Thus, we have an improvement over Theorem 2.1 of reference [27] where

Slemrod requires that T(t) be a C0 group.

As we have mentioned in Section 2.8, in most situations we do not

have exact controllability. We therefore present a more useful theorem

for the case where we have only approximate controllability.

Theorem 4.2.2.

If the system (A,B) is'approximately controllable and A generates a
contraction semigroup, then the system is weakly stabilized by the

feedback operator -B*.

PROOF: Use inequality (4.2.1), Theorem 4.1.1(i), and Theorem 3.1.2.
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Corollary 4.2.1.

If the system (A,B) is approximately controllable and A generates a

contraction semigroup, and if

1) T(t) is self-adjoint, or

2) A has a compact resolvent,

then the system is strongly stabilized by the feedback operator -8*.

PROOF:

1) If A is self-adjoint, then so is A - BB*. Now use Corollary

3.2.4 and Theorem 4.2.2.

2) If A has a compact resolvent, then so does A - BB* (Slemrod

[27], Lemma 2.1). Now use Corollary 3.2.3 and Theorem 4.2.2.

Corollary 4.2.2.

If the system (A,B) is approximately controllable and if A generates
a compact contraction semigroup, then the system is exponentially

stabilizable by the feedback operator -B*.

PROOF: By Theorem 4.2.2, we know that the semigroup S(t) generated
by A - BB* is weakly stable. Also, Corollary 4.12.2 [1] implies

that S(t) is a compact semigroup. Hence, it follows from Corollary
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3.2.1 that the S(t) is exponentially stable.

As we have seen in Section 4.1 when T(t) is compact, it is impossible
for the system (A,B) to be exactly controllable. However, it is
perfectly reasonable (as we shall see in Example 4.2.1) to require
that the system be approximately controllable. Hence, by Corollary
4,2.2, it is exponentially stabilized by the feedback aperator -8*,
providing T(t) is a contraction. In this sense, Corollary 4.2.2 can
be viewed as the alternative to Theorem 4.2.1 for the compact contrac-

tion semigroup case.

We now present some illustrative examples.

Example 4.2.1.

Consider the following constant coefficient diffusion equation with

distributed control:

2
g—’é—(r‘,t) = g?;(r’t) + U(Y‘,t) 0 _<_ r _<_ 211" t > 0,

subject to the boundry conditions

x(0) = x(2r); x'(0) = x'(2n).

2
For this system A = g%r , D(A) = [x;x,x' absolutely continuous and

9
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x'(-), x"(-) €1,[0,2r]], and B = I with input space U = H. Therefore,
A generates a compact self-adjoint contraction semigroup T(t) (see

{11, p. 195) which is given by

«® - 2 -.
Tt =) e Hxpoden, o) = eIV,

-0

t20and xCH = L2[0,21r].

Since B = I, it is easily seen that B*T*(t)x = T(t)x =0, t 20
implies x = @, and the system is approximately controllable. Using -
the feedback operator -B* = -I, the semigroup generated by the

stabilized system is given by

s(t)x = Z e'(“nz)t(x,d:n)«#n

-t

which is clearly exponentially stable.

Example 4.2.2.

For our second example, we have the system

%{- = '%‘f‘:* bu(t), r€[0,2¢], t> 0.
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As in example 4.2.1, H = L2[O,2w], A= - f% and D(A) = [x € H; x
absolutely continuous, x' € H and x{0) = x(27)]. Thus, A = -A* and

T(t) is unitary. T(t) is given by

T(e)x =) e xodon, o, = &

t 20 and x € H.

let b =3 b ¢ , where b = 0. Since b*T(t)x =Xb (x,8 )e'"" = 0

for all t 20 implies (x,¢n) = 0 for all n, we have an approximately
controllable system. Hence, the semigroup S(t) generated by A - bb*
is weakly stable. But A has a compact resolvent, therefore, S(t) is

strongly stable by Corollary 4.2.1.

4.3 CONTROLLABILITY AND STABILIZABILITY FOR NONCONTRACTION SEMIGROUPS

Considering the results of the last section, one might ask if approxi-
mate controllability implies weak stabilizability for general C0
semigroups. As it turns out, this is not the case. Benchimole

(p. 69; [2]) gives an appropriate counterexample. However, we know
from Theorem 3.3.1 that if there exists.a strictly positive operator

D and a positive operator P such that

(DAx,x) + (x,DAx) - (DBB*Dx,x) < -(Px,x) (4.3.1)
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for all x € 0(A), the the system (A,B) is weakly stabilizable by the
feedback operator -B*D. In this section, we will essentially “combine”
this result with the approximate controllability assumption in order

to extend Theorem 4.2.2 to a larger class of systems.

In Section 4.2, the adjoint of the infinitesimal generator A* and the
adjoint of the stabilized semigroup S*(t) were used extensively in
proving that approximate controllability implies stabilizability for
contraction semigroups. It should be no surprise that similar
adjoint operators will play an important role in extending these

results. Specifically, we have the following lemma:
Lemma 4.3.1.

Let the system (A,B) be such that for some strictly positive operator

D
(DA*x,x) + (x,DA*x) < (BB*x,x) (4.3.2)

for all x € D(A). Then

(i) there exists a nonnegative operator C defined for x € H

by

t
tx = lim TK(S)BB*TK*(s)xds
T 0
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| &

where A = A - BB*D.

(ii) If the system (A,B8) is approximately controllable, C is

positive.

PROOQF :

(i) Add -2(BB*x,x) to both sides of inequality (4.3.2) to get

(D(A* - D™1BB*)x,x) + (x,D(A - D"1BB*)x) < -(BB*x,x) (4.3.3)

for all x € D(A*). Let A* = A* - D"1BB* be the infinite-

simal generator of the semigroup TK*(t) = TK*(t). Then

0 < (0Tg*(t)x,Tg*(t)x) = (Dx,x)
t g
+/ E(DT-A-*(s)x,TK*(s)x)ds
0
for all x € D(A*). But for x € D(A*)

LT (s)x,TeH(s)x) = (0BT (s)x, Tg*(s)x)

+ (TK*(S)X,DA*TK*(S)X).
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(i1)

1t follows from inequality (4.3.3) that

t
(DTK*(t)x,Tﬁ*(t)x) < (Dx,x) —“/f HB*Tﬁ*(s)xuzds.
0

Hence,

t
, fHB*TK*(S)XiFdS < (Dx,x)
0

for all %, and all x € D(A*). As in the proof of

Theorem 3.1.2, this implies that

[ Temgrtsniees < (0,0
Q

for all x € H. The existence of C follows from Lemma 2

of [8].

Suppose (Cx,x) = 0. Then by the definition of T, this
implies that B*TK*(t)x = 0 for all t 2 0, But this is
jmpossible, unless x = 0, because the system (A - BB*D™},B)
is approximately controllable if (A,B) is. Hence,

(Cx,x) > 0 for x = 0, and T is positive. This completes

the proof.
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We are now able to prave the main result of this section.

Theorem 4.3.1.

Let the system (A,B) be such that for some strictly positive D
(DA*x,x) + (x,DA*x) < (BB*x,x) (4.3.4)

for all x € D(A*). Then approximate controllability of the system

implies weak stabilizability by the feedback operator -B*D-!.

PROOF: In the proof of Lemma 4.3.1, it was shown that

(DTK*(t)x,TK*(t)x) < (Dx,x)

for all x € D(A*). TK*(t) is, therefore, a uniformly bounded semigroup
(see the proof of Theorem 3.1.2). Now, let C be as described in the

previous lemma. Then

(T (), Tr* (£)0) _/'”(Tx(s)aa*rﬂs)x,x)ds

t

_ t
CRRYACOLL O
e
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Hence

lim(fTi*(t)x,TK*(t)x) = 0. (4.3.5)

tom

Since Tg*(t) is bounded and C is positive, Equation (4.3.5) implies
that TK*(t) is weakly stable. But if Tﬁ*(t) is weakly stable, then

so is Ti(t). This completes the proof.

As usual, the results of Theorem 4.3.1 can be strengthened for some

special classes of semigroups.

Carollary 4.3.1.

Let the system (A,B) satisfy Inequality (4.3.4) for some strictly
positive operator D, and all x € D(A*). Further, let the system (A,B)
be approximately controllable, Then if A generates a compact semigroup,
the system (A,B) is exponentially stabilizable by the feedback operator
-B*D-1,

PROOF: By Corollary 4.12.2 [1], A - BB*D"! also generates a compact

semigroup. Exponential stability follows from Theorem 2.1.3.

Corollary 4.3.2.

Let (A,B) satisfy the conditions of Corollary 4.3.1. Then if A has

a compact resolvent, the system (A,B) is strongly stabilized by the
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feedback operator -B*D-1.

PROOF: 1If A has a compact resolvent, then so does A - BB*D~!. Strong

stability follows from Theorem 2.2.1.

Note in Theorem 4.3.1 that if A is the generator of a contraction

semigroup, then so is A*. Consequently,

(A*x,x) + (x,A*x) < 0
for all x € D(A*). Since BB* is a nonnegative operator, we see that
inequality (4.3.4) is trivially satisfied by D = I, and the system

(A,B) is weakly stabilized by -BB*D-! = -BB*. This is precisely
Theorem 4.2.2.
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