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INVESTIGATION OF COMPLEX ANGLE PROCESSING
TO REDUCE INDUCED ANGLE POINTING ERRORS

David G. Burks and Edward R. Graf

Abstract

This work is an analysis of the effect of a tangent ogive radome on
the pointing accuracy of a monopulse radar that employs an aperture an-
tenna. The radar is assumed to be operating in the receive mode and
the incident fields at the antenna are found by a ray-tracing procedure.
Rays that enter the antenna aperture by direct transmission through the
radome and by single reflection from the radome interior are considered.
The theory of monopulse radar and the transmission and reflection
properties of planar dielectric slabs are presented first to form a back-
ground for the radome analysis.

Two orthogonal polarization states which can be combined to pro-
duce an arbitrarily polarized incident field are considered. The anten-
na can be scanned in two angular directions and radar pointing error is
presented for both these angles as a function of antenna scan angle
and polarization of the incident field. Throughout the work, compari-
son of two different radome wall designs is made in order to both il-
lustrate the analytical techniques and to show the engineering trade-
offs in radome design.

A method that can be used to compensate for radome-induced error
is presented. Complex angle processing for the purpose of pointing

angle reduction was investigated based upon the simulation described




above. It was concluded that the complex angle could not be uniquely
related to radar pointing error, but rather appeared to correlate

with phase-front curvature. This quantity is not considered useful for

pointing error correction.
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I. INTRODUCTION

The Institute of Electrical and Electronics Engineers gives
the following definition [1]

RADOME. An enclosure for protecting an antenna from

the harmful effects of its physical environment, gen- !

erally intended to leave the electrical performance

of the antenna unaffected.
Skolnik [2] divides radomes into these two major classifications,
based on application and geometrical constraints: ground-based
radomes and air-borne radomes. This study deals with radomes used
on high-speed missiles which require a high degree of streamlining.
Streamlining places severe constraints on the geometry of the radome

and the radome material, which must withstand the temperature, pres-

sure, and possibly rain or lightning encountered during high-speed
flight. The antenna considered here is part of a radar system
that provides information concerning target position and velocity
to the guidance system of the missile. The radome may be considered
a2 "necessary evil" because it has no beneficial effects on the per-
formance of the radar but it is essential for protection of the antenna
and for good flight characteristics of the missile. Of particular
interest is the angular pointing error of the radar. This study is
addressed mainly at that problem.

Airborne radomes first had extensive application on aircraft
in World War II. Many design criteria and construction requirements

1




2

were formulated during this period. Much of this work in the
United States and England is summarized in a volume of the MIT
Radiation Laboratory Series [3]. In another volume [4] of the

same series, radomes are discussed in conjunction with antenna in-
stallation problems. These two works 1ist the essential character-
ics of radome behavior and contain references to most of the war-
time work.

A1l early radome work relies on ray tracing to obtain the electro-
magnetic energy reflected from or transmitted through the radome wall.
This method was extended by Tricoles [5] who treated the receiving
problem by tracing rays through the radome to a receiving aperture,
but then obtained the antenna voltage by an empirical method based on
aperture response to Huygen's sources. In a later paper [6] he used
the same methods to obtain the transmittance of an axially symmetric
missile radome. Each of these papers indicate that scattering from
the radome vertex may be responsible for some of the measured radome
behavior, and the second paper includes a crude approximation of this
scattering.

Analysis of radome effects on antenna performance has been carried
out for both transmitting and receiving antennas. The most frequently
. calculated antenna parameter in radome analysis is the far-field anten-
na pattern. Paris [7] has presented a technique for determining the
transmitting antenna pattern of a horn antenna covered by an aircraft
radome. His procedure is based on calculating the near-fields incident

on the radome by using a previously developed aperture integration pro-

gram [8], treating the incident fields as local plane waves, applying




plane-wave transmission coefficients, and then treating the fields ex-
terior to the radome as equivalent sources of the radiated fields. A
similar approacn is taken by Wu and Rudduck [9] to obtain transmitting
boresight errors for a circular aperture behind an ogive radome. They
simplify the determination of the near fields incident on the radome
; by expressing these fields in a plane wave spectrum. For the uniformly
illuminated circular aperture they consider, this results in an ana-
lytic expression for the near fields. |
Since virtually all radome work has military application, few
results of development and testing appear in the open literature.
Most dissemination of radome information has been through a series
of symposia begun in the mid-1950's under the title of either Radome
Symposium or Symposium on Electromagnetic Windows. These symposia

F were originally sponsored jointly by Ohio State University and the

U.S. Air Force and later by the Georgia Institute of Technology and the
U.S. Air Force. In recent years the Georgia Institute of Technology
has been the host and sponsor of the symposium. The proceedings of
these symposia provide an indication of the work performed in the ra-
dome area, but due to the unavailability of the proceedings, and the
abbreviated nature of the papers in them, they provide little concrete
information for other researchers to draw upon.

The importance of radomes in both radar and antenna systems
] is accented by the inclusion of full chapters on radome design and
; characteristics in a major radar handbook [10] and a major antenna

handbook [11].
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The most extensive treatment of radomes is contained in the two

volume report edited by Tice and Walton [12]. This report was intend-

ed to survey and summarize all of the radone work done up to that

time. The report covers all aspects of radome design and testing,

both electrical and-mechanical. An extensive bibliography is in-

cluded with references to both the open and classified literature.

It is unfortunate that these volumes are not widely available due to @

their restricted circulation. |
More recently, an entire handbook has been devoted to radome

research [13]. This volume mainly treats materials, but there are

chapters on electrical and operational considerations and a historical

introduction. A report on radome design has also been prepared for

NATO [14]. This report contains an excellent summary of how environ-
mental, structural, electrical, and material considerations are com-
bined in successful radome design. A subsequent NATO report [15]
gives consideration to radome materials.

Simply stated, the radome problem is to find the voltage in the
antenna feed line wher a plane wave is incident on the radome. An exact
solution of the radome problem is extremely difficult. The reasons for
this are the complicated geometry of the problem, the boundary condi-
tions which are imposed on the fields, and the large size of the struc-
tures as measured in wavelengths at the operating frequency.

The response of an aperture antenna may be determined from
the fields incident on the antenna and the known characteristics ?

of the antenna. The radome problem can thus be considered as that

of finding the incident fields at the antenra in the presence of the '




radome and the antenna. The incident fields at the antenna are
composed of two distinct parts: the fields passing directly through

the radome to the antenna and the fields that are scattered from

the various objects near the antenna including the radome, metal
tip, support structure and various feed structures on the antenna.

The second category implicitly includes multiple scattering between

any combination of the mentioned objects. An exact solution to the i
radome problem would consider all of these phenomena simultaneously

by obtaining a solution to the electromagnetic field equations that

would satisfy the boundary conditions at all surfaces of material 1
discontinuity. Such a problem could be formulated in terms of
integral equations for the tangential field components over a closed

surface surrounding the antenna. The complicated form of the boundary

conditions and the typically large electrical size of the structures
have made exact techniques intractable and approximate solutions
must be sought.

As previously mentioned, the response of a given antenna may
be determined from the incident fields. The importance of radome
effects should thus be ordered according to the influence on the
incident fields at the antenna and an approximate analysis will
consider only the most important of these effects. A primary
consideration is the effect of the radome wall on the part of the
incident field directly incident on the aperture. A well-designed
radome will be highly transparent and this component will constitute

by far the largest amount of energy incident on the aperture. Since




the radome wall is a curved surface with a transmission coefficient
that varies with angle of incidence and polarization, the effect of
the radome wa:1 on the direct wave will be attenuation, depolarization
and phase shift.

Of secondary priority is the incident field component that is
singly reflected from the internal radome wall. This component may
be quite significant at angles of incidence several degrees off bore-
sight where specular reflection from the radome wall into the aperture
is favorable.

Most airborne radomes designed fdr high-speed flight will be
equipped with a metal tip to increase the erosion resistance of the
radome. This tip is a source of indirect scatter at all angles of
incidence. The support structure behind the antenna proper is thought
to contribute 1ittle to the antenna voltage, since the feed is shielded
by the aperture and a well-designed feed will have 1ittle spillover at
the aperture. However, the structure behind the antenna can contribute
to scatter back to the radome and in turn to the aperture: multiple
scatter. Also multiple scatter can occur from the feed and its support
structure,

The emphasis of this study is on the analysis of existing
radomes as opposed to design of radomes having desired specifications.
Of primary interest is the prediction of the pointing error of a
monopulse radar operated in the radome. For the type radomes of
interest, the transmission properties of the radome wall and

refiection from the internal wall are considered to be the major




contributors to pointing error with the first predominating at small
gimbal angles and the latter at angles well off the radome axis.
Radar poiating error can be a significant limitation to the
accuracy of missile guidance systems. Also, the rate of change of }
pointing error with aspect angle, commonly called boresight error
slope, will influence the radar's measurement of target angular
velocity. The analysis performed in this work is directed toward

the prediction of these sources of error in order to determine their

impact on missile guidance and to evaluate methods for error compensa-
tion.

This work is organized to consider the fundamental elements of
radome, antenna, and radar analysis separately. This is done in the
following chapter. The third chapter contains an analysis of these
i items as a system with primary emphasis on prediction of angular

4 pointing errors. Methods to compensate for angular errors are the ;

topic of Chapter IV. ]




II. FUNDAMENTAL FACTORS IN
RADOME ANALYSIS

This chapter may be considered a survey of the basic information
needed for radome analysis. The approach taken here is to examine the
subsystems encountered in the radome-radar problem and some of the
models used to obtain tractable solutions to realistic problems. The
first section in this chapter deals with the theory of monopulse radar :
operating ideally without radome, signal distortion, or noise. The
second section introduces the radomes that will be considered in this
work. A discussion of tangent ogive geometry is presented. Next are
sections on the transmission and reflection properties of planar slabs
and the technique of ray tracing. These basic optical methods will be

used to model the local properties of the radome surface. The final p

section of this chapter discusses ray tracing which forms the basis

for the treatment of propagation within the radome.

MONOPULSE RADAR

Monopulse is a technique for obtaining target direction informa-
tion from a single radar return, hence the origin of the term. The
theory of monopulse operation is well known and discussed in many in-
troductory radar books such as Skolnik [13] and Barton [17]. The most
definitive treatment of the mathematical theory of monopulse and the

underlying principles is Rhodes early monograph [18]. A recent volume
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[19] edited by Barton contains reprints of many of the key papers on
monopulse and is recommended reading for anyone wishing a historical
perspective on the developments in this area.

This section is designed to serve as an introduction to mono-
pulse operation under ideal conditions and to form a foundation for
the later analysis of a monopulse system operating in an environment

containing a radome. In the main body of this work it will be shown

that, in general, a radome introduces spatial distortion into the
wavefront incident on the receiving antenna. This violates one of the
key assumptions concerning the received wave and is a source of radar
pointing error.

Fundamental to the theory of monopulse is the assumption that
the wave scattered from the radar target is a uniform plane wave over
the receiving antenna or that the antenna is in the far-field
of the target. When this assumption is satisfied the response of a
receiving antenna is completely described by its far-field antenna
pattern. The far-field antenna pattern of a radar antenna is easily
measured and analytic expressions for such patterns are not difficult
to obtain.

The first basic problem addressed in this study is the determi-
nation of a method to obtain the response of a monopulée system to a
non-planar non-uniform wave. This problem has been addressed in the
literature in studies on radar response to glint [20], multipath [21],
and unresolved targets [22]. The approach taken in each of these studies,

however, does not answer the basic question raised here. When analyzing
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the above-mentioned sources of a distorted wavefront, the approach taken
has been to decompose the target into smaller parts, each of which
scatters a wave that is uniform and planar at the receiving aperture.
Hence, the principle of superposition can be applied to obtain the mono-
pulse response in these environments. Treating a general wavefront as

a superposition of plane waves traveling in different directions is a
well-documented analytical technique, often known as plane-wave spectrum
analysis [23].

The resolution of a received wave that is distorted by a radome
into a plane-wave spectrum representation is a difficult problem and is
not justified if only the monopulse response is desired. Techniques
are presented in this section for obtaining the monopulse response
directly from the fields incident on the antenna, be they planar, dis-
torted, or whatever, However, a most elementary monopulse system in
the form of an interferometer is examined first. This provides an easy
way to visualize how monopulse works. Later, the receiving
properties of the more practical parabolic reflector antenna are pre-
sented.

Consider a receiving antenna system made up of two elements sepa-
rated by a distance D as shown in Figure 2-1. Assume a time-harmonic
plane wave traveling in free space is incident on the receiving ele-
ments. Here and throughout this work the time variation of all time-
varying quantities is assumed to be ej“t where j = V-1, w is the fre-

quency in rad/s, and t is the time in seconds. Furthermore, the time

variation will usually be suppressed and the conventions of ac circuit
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analysis, or phasor notation, will be employed. Thus the electric

field amplitude of the incident field, Ei, is given by

£l a E; ejk(x sing + y cose) (2.1)

where E; is the magnitude of the field, k is the propagation constant
given by 2«/x, x is the wavelength of the wave, and 6 is the incident
angle as indicated. The phase reference for the incident wave and the
antenna system is taken to be the origin.

Induced potentials that are proportional to the incident electric
field will exist across the terminals of the receiving elements. These

signals can be written as
D . 0
vy = v, ek sin (2.2)
at element 1 and

D,
= -jk3 sine

at element 2 where Vo is the voltage magnitude which is identical for
element 1 and 2.

The distinguishing feature of monopulse is the method of com-
bining V] and V2 so that the angle of incidence can be determined.
This is done by adding and substracting the antenna voltages to form
two new signals known as sum and difference signals. Thus the sum

signal, [, is given by

L=V + Y, (2.4)

-4
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and the difference signal, a, is given by
A= VI - VZ- (2.5)

The method of forming these signals is shown in Figure 2-1.
It is convenient to introduce a new variable to represent the
phase of V] and V2 as given in (2.2) and (2.3). The symbol, u, will

be used to denote this phase angle or,

u= k) sino = R sine ; (2.6)

where it is noted that u contains the element spacing normalized to
the wavelength. Using the variable u and substituting (2.2) and (2.3)

into (2.4) and (2.5), the sum and difference signals can be written

as

t~
]

v, eJl 4 v oetdv (2.7)

>
]

Ju iy
Vo & v e (2.8)

or by using Euler's identity,

&~
[}

2Vo cos(u) (2.9)

A= JV, sin(u) (2.10)

Signals V1 and V2 together with £ and A are conveniently'disp]ayed on a
phasor diagram as shown in Figure 2-2. It should be pointed out that
the choice of the origin as the phase center causes £ to be purely

real, and A is in phase quadrature with ¢.
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Figure 2-2. Phasor Diagram of Interferometer
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Incidence angle detection is accomplished by taking the real part

of the ratio of -ja to ] or,

-ja 2Vg sin(u)
= = 2.1
8a Re { 3 } 2 cos(a) tan(u) ( )

The ratio Re{-jA/Z} is known as the monopulse ratio and is the output
signal of the monopulse system. Figure 2-3 is a plot of the sum and
difference response and the monopulse ratio. For tracking radars, the
angle of incidence will be near the antenna axis, and thus u will be
small. Using the small angle approximation, tan(a)=a, and the

definition of u, equation (2-11) can be written as

Re (248 = y = ;—D sino . (2.12)

[

Again using a small angle approximation (sin(a) = a), (2.12) can be
solved for o,
1

6 = [f‘l]' Re {:%'A} . (2.13)

Thus, by measuring the monopulse ratio and multiplying by a constant,
the angle to the radar target may be determined. This information may
be fed to a gimbal system that repositions the antenna so that a moving
target's position is continually tracked.

Some comments are in order concerni:g this monopulse system.

First, the system will have zero output when the amplitude

and phase of the voltages at elements 1 and 2 are identical. If the
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phase of the signals at elements 1 and 2 are different, an output signal
is produced that is linearly (for small angles) related to the angle of
incidence of a plane wave that would prodice the element voltages. In
this respect the two-element intereferometer monopulse system is iden-
tical to the method used by Sims and Graf [24] for determining wave-
front distortion due to glint. Their method involved sampling the wave-
front at two points separated by a distance representing the receiving
aperture diameter and using the phase of the wave at these points to
make a linear approximation of the wavefront across the receiving
aperture. The angular difference between the normal to this wavefront
and the true angle to the target was then defined as the radar pointing
error due to glint.

Note also that the sign of the incidence angle is determined by
the phase of the difference channel with respect to the sum channel.
When the incidence angle is positive, A leads Z by 90° in phase, and
lags ZAby 90° when the incidence angle is negative. The phase-sensitive
detector shown in Figure 2-1 indicates the sign of the incidence angle
by measuring this phase relationship. One final comment concerning
monopulse systems is that incidence angle determination does not involve
the amplitude of the incident wave. This is because incident angle
determination occurs in the form of a ratio. Of course the signal
levels must be significantly above the noise level for reliable opera-

tion and this is assumed throughout.
Next the receiving properties of a monopulse system employing a para- 1

bolic reflector antenna are examined. The parabolic reflector is a commonly
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used antenna and has received considerable attention in the literature
[25, 26]. As previously mentioned, almost all antenna analysis treats
the transmitting situation and obtains the fields at points far removed
from the radiating structure. The receiving antenna has been treated
in general [27], but little attention has been given to the aperture
receiving antenna. The purpose of the remainder of this section is to
derive expressions for the response of a monopulse receiving antenna
excited by an arbitrary (non-planar, non-uniform, randomly polarized,
but time-harmonic) incident field. The results are applicable to all
aperture antennas.

The Lorentz reciprocity theorem will be employed to find the
receiving characteristics of the parabolic reflector antenna. In order
to use this theorem, the behavior of the antenna in the transmitting
mode must be known. This is most easily done through the use of the

equivalence principle, that is, by finding a set of sources which produce

"

the same fields as are produced by the antenna in the region of interest.

As will be seen, the equivalent sources play an important role in the

monopulse receiving system.

The parabolic reflector antenna system is composed of two princi-
pal parts, a feed antenna and a reflecting surface in the shape of a
paraboloid of revolution. As shown in Figure 2-4, the feed antenna,
the primary radiator, is located at the focus of the parabola. The
spherical wavefront leaving the feed antenna will be reflected at the

parabola and become a planar wavefront traveling paraliel to the

antenna axis.




Parabolic
Reflector

Figure 2-4. Parabolic Reflecter Antenna
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The planar circular area that is perpendicular to the antenna axis
and has its perimeter at the reflector's edge is called the aperture
plane. The fields over the aperture plane can be used to determine the
transmitting and receiving characteristics of the antenna. This is
shown first for the transmitting case where the fields produced by the
antenna in region z > 0 are to be found.

The region z > 0 is source free, so by the uniqueness theorem (28]

the fields in this region are uniquely related to the tangential field

components over a closed surface that contains the actual sources. It
is convenient to enclose the sources by the surface formed by the xy-
plane and a large hemisphere with center at the origin. The hemisphere
may be thought of as being of infinite radius or of finite radius but
large enough so that the fields over the hemisphere are negligible.
Thus the fields in the region z >0 are uniquely related to the tangen-
tial field components over the xy-plane.

The electric and magnetic field intensity produced by the antenna
will be denoted by E® and H?, and it will be assumed that B and A® are
zero in the region z < 0, that is; behind the reflector. This will
occur when the feed does not produce fields in this region (no spill-
over in the terms of antenna engineers), and when scattering from the
reflector edge is neglected. Thus, all the antenna fields in the Xy-
plane are confined to the aperture plane.

The equivalence principle [29] will next be used to further simplify

the antenna analysis. As guaranteed by the uniqueness theorem, the
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fields in the region z > 0 are now completely determined by the tangen-
tial field components in the aperture plane. According to the equiva-
lence principle, these same aperture fields may be supported by equiva-
lent surface currents, 32 and ﬁg, in the aperture plane, and all the

fields in the region z < 0 may be set to zero. The equivalent currents

are found from,

3;’ =nx® (2.18)
and
B2 =Fxn, (2.15)

where Ea and @ are the fields produced by the antenna and ﬁ is a unit
vector normal to the aperture plane as shown in Figure 2-4.

The equivalent surface currents given by (2.14) and (2.15) follow
from the electromagnetic boundary condition equations which state that
discontinuities in tangential field components are associated with surface-
current densities. At a smooth interface separating regions labeled

1 and 2 these equations are:

M = [E; - E,] « n, (2.17)

where subscripts 1 and 2 indicate the fields at the interface in region

1 and 2 respectively, E represents the electric field intensity, H the

magnetic field intensity, Js is the electric surface-current density, ﬁg

is the magnetic surface-current density, and n is a unit vector normal
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to the interface directed into region 1. Thus (2.16) states that elec-
tric surface-current densities are associated with discontinuities in
tangential magnetic fields and (2.17) states that magnetic surface-
current densities are associated with discontinuities in the tangen-

tial electric fields.

By choosing region 2 to be the region z < 0 and by setting all
the fields in this region to zero, (2.14) and (2.15) are seen to follow
from (2.16) and (2.17). The fields in the region z > 0 are the same
as before but now they are supported by the "equivalent currents", 3;
and ﬂg. Thus the entire problem of finding the antenna fields is reduced
to the problem of finding the fields of the currents given by (2.14) and
(2.15).

It should be noted that the above treatment of the reflector antenna
results in the same formulation as the classical optics problem of
diffraction from a circular aperture in a conducting screen. A1l such
aperture problems may be solved by the same method based on the equiva-
lence principle.

A comment concerning the anténna feed is in order before proceeding.
As seen in Figure 2-4, part of the field radiated by the feed will be
reflected back to the feed and interact with it. This is often referred
to as aperture blockage and may have a significant effect on the perfor-
mance of the antenna system, particularly when the size of the feed is
an appreciable part of the reflector size. Consideration of aperture
blockage is beyond the scope of this work and it will be assumed that
the antenna system can be represented completely by the equivalent

currents as previously discussed.
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There are several ways of determining the fields of the antenna
from the equivalent currents. These include direct integration, use of
potential functions, and the plane-wave-spe:trum technique. The fields
radiated by the antenna will not be found here since it is the antenna's
receiving properties that are of greatest interest. These receiving
characteristics can be derived from the Lorentz reciprocity theorem.

The Lorentz reciprocity theorem, which follows directly from
Maxwell's equations, is a way of relating two sets of sources and their

fields. An integral form of this theorem is given by [30],

ﬁ?-ub-n*‘-ﬁb)dwﬁib-ﬁ“-ﬁb-ﬁﬁ)dv (2.18)

vol vol

where superscripts indicate a set of sources and associated fields as
used previously, and the integrations extend over all space. Rumsey [31]
has given the name reaction to the relation between sources and fields
expressed by either side of (2.18). The recripocity theorem thus states
that the. reaction of the field a on source b is equal to the reaction of
the field b on the source a.

In order to apply (2.18) to the receiving antenna problem the a
source and field are chosen to be that of the equivalent currents
representing the parabolic reflector antenna and the b source is chosen

to be a point electric current element (dipole) given by,

P TP SRR (2.19)
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where Ug contains the magnitude and direction of the current element,
R' is a vector from the origin to the element's location, R is the posi-
tion vector (R = xx + y§ + zi). and § is the Dirac delta function. ﬁb
is set to zero.

Substituting (2.19) into the left-hand side of (2.18) and recog-
nizing the sampling property of the Dirac delta function yields,

/t"-:rbauﬁ-ﬁ-;)dv P.Jb (2.20)
vol 0 (o] R =R

If Ubb is chosen to have unit amplitude and to be in the direction of B
then (2.20) is simply the magnitude of the electric field at the point
dipole produced by the sources J° and °. From the right-hand side of
(2.18), it is seen that the magnitude of E? at R', as given by (2.20),
is equivalent to the reaction of the fields of the unit-amplitude dipole
on the equivalent currents of the parabolic antenna.

The behavior of a transmitting antenna at distances much greater
than the antenna dimensions (in the far-field) is completely charac-
terized by the electric field it radiates, due to the transverse nature
of the radiated fields. The far-field response of a transmitting anten-
na, defined as the magnitude of the electric field, is obtained from
(2.20) when [R'| is large. The response of the same antenna in the
receiving mode, defined as the open-circuit voltage at the antenna

terminals, is oroportional to the right-hanc side of (2.18) [31]. In

the remainder of this section the receiving-mode response of the para-

bolic antenna is discussed.
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The right-hand side of (2.18) can be rewritten using the aperture
fields as given by (2.14) and (2.15) yielding,

f!"-(nxﬁ‘)-ﬁ*’-(?xﬁ) ds, (2.21)
A |

where A indicates that the integration is only over the antenna aperture
since the a currents are zero everywhere else. Throughout this study

it is assumed that E® and H° are of constant phase and related like a
plane wave in the aperture. For a linearly polarized antenna B2 will
have the same direction over the aperture and i will also be uni-
directional and at right angles to B,

B

As an example, assume that in the aperture is given by,

B

[]
m
[}
><

(2.22)
and 72 is

7 - ]

"
X
< 1]
<
"
{
m
o
<

(2.23)

where zero subscripts indicate magnitude. The second part of (2.23)
is obtained from the plane-wave nature of E2 and ﬁa, and n is the intrin-
sic impedance of free space (n = /u/c). Figure 2-5(a) illustrates

these aperture fields,
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Substituting these a fields into (2.21) yields,

f—E" . (%ani) +B . (E2y) ds (2.24)
A

~

where the cross products have been evaluated for ﬁ =z,

an is common to both terms in (2.24) and can be factored to yield
fsoa [y - 18- 1. (2.25)

Thus it is seen that Eg acts as a weighting function for the integration.

Also, since Eg has constant phase, it can be assumed purely real. By
adjusting the variation of Eg over the aperture, various antenna pat-
terns may be obtained. In practice this is accomplished by design of
the antenna feed.

The importance of the form of Ez will be emphasized by giving it

the name aperture illumination function and using the symbol, g, for

this function. The monopulse sum and difference patterns are produced
by the proper aperture illumination functions. To see how this is
accomplished it is first necessary to find the antenna response to an

incident plane wave.

To obtain the antenna response, assume that a distant point dipole
produces a field which is incident on the aperture as in Figure 2-5(b).
This field, which is denoted by b, will be a uniform plane wave over

the aperture and can be written as,

jksinex -
b . Eob a

E (-cosex + sineé) (2.26)




(a) Aperture fields

—5(|§'§] 1)

"

=

(b) Plane wave incident on aperture

Figure 2-5. Fields of Parabolic Antenna and Sampling Source.




b .
E Jksinex 4
. 2. (y) (2.27)

where Eob is the magnitude of the electric field.

Substituting (2.26) and (2.27) into (2.25), performing the dot pro-
ducts, and using the symbol for the aperture illumination function
yields,

E® ., jksinex 2 26
fgf—n-*";Eo cos 8] e ds (2.28)

A
By removing the constants from the integral and making the substitution,

kx = k sins, (2.28) becomes,

Jk.x
—]n-Eob(l + cose)fg e X ds. (2.29)
A

l The integral in (2.29) is immediately recognized as a Fourier transform
of F and expresses a well-known relation between the aperture illumination
r function and the far-field antenna pattern.

The integration in (2.29) is most easily performed in circular

cylindrical coordinates for the circular aperture under discussion. Writing

the integral completely, (2.29) becomes,

- 2n D/2 jkxpcos¢

LeP 1+ cose) ff a(p,0) e odods,  (2.30)
0o o

9
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where the functional dependance of g is now shown and p and ¢ are the
coordinates indicated in Figure 2-5. In order to normalize this expres-
sion as was done for the interferometer, the following variable change

is introduced,
r=2/0 , (2.31)
us= E% sine. (2.32)

Using these variables, expression (2.30) is written
1 b 02 2r 1 jurcosé
. Eq (1 + coss) n f fg(m) e rdrde¢ (2.33)
o o
where g(r,¢) replaces g(p,¢) according to (2.31).

As with the interferometer, an aperture antenna used with a mono-
pulse system will have two far-field response patterns which are again
called the sum and difference patterns. These patterns are deter-
mined by the aperture illumination function. The sum pattern is an even
function of @ and the difference pattern is an odd function of 8. It
has been shown that the far-field pattern of the aperture involves the
Fourier transform of the aperture illumination function (2.29).
According to elementary Fourier transform theory [32], the transform of
an even function is even and the transform of an odd function is odd.
Thus the aperture illumination functions for the sum pattern will be

even, and the aperture illumination function for the difference pattern

will be an odd function of x.




30

In this study two commonly used sum-pattern aperture illumination

functions will be considered. The first is uniform illumination, or

9(pd) =1, 0 <5 . (2.34)

This illumination is sometimes called ideal because it is constant to
the edge of the aperture but zero outside. It would be impossible to
create in practice due to the discontinuity in the fields at the
aperture edge.

The second sum illumination function is tapered from the center of
the aperture to the edge according to a cosine function,

9(p.9) = cos(®B) , o <D . (2.35)

The integral part of (2.33) is called the aperture pattern. It will
be shown that for large apertures the aperture pattern contains all the
significant variation of (2.33) with 8. The aperture patterns for the
two aperture illumination functions are shown in Figure 2-6. These
patterns are normalized to their respective maxima and are plotted in
dB versus u. It is noted that the tapered illumination function pro-
duces a wider main lobe but has lower side-lobe levels than the uniform
illumination. These aperture patterns could be obtained analytically,
by using a two-dimensional fast Fourier transform algorithm, or by
numerical integration. Figure 2-6 and the remaining figures in this
section were obtained using the numerical integration technique
that is used to find the response of the antenna with radome.

Figure 2-6 may be regarded as an "universal" aperture pattern since

the response for any size aperture, any wavelength, and any incidence
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angle can be looked up. This study is concerned with electrically
large apertures, and as an example an aperture with a diameter of 8 wave-
lengths will be used. The statement that :he aperture pattern contains
the significant angular variation of the antenna response is now justi-
fied. The response function given by (2.33) is the product of two
terms that vary with 8: the term (1 + cose) and the aperture pattern.
Figure 2-7 is a plot of these terms in dB versus incidence angle, 8.
Each curve is normalized to its maxima. It is seen that the term
(1 + cose) is only 3dB down at ¢ = 65° and a maximum of 6dB down at
90°, while the aperture pattern is greater than 30dB down for alil
angles greater than about 30°. Since the antenna response in dB is
the sum of these two terms, little error is introduced by ignoring
the (1 + cose) term,

A method'presented by Barton and Ward [33] will be used to obtain
the difference pattern illumination functions. They note that
the difference pattern of monopulse antennas resembles the derivative
of the sum pattern. If this relation is taken to be exact, the difference
illumination function, denoted by 940 is related to the sum illumination

function, g, by,

gd(xs.Y) = ‘Z‘E g(x,.Y) ’ (2.36)

where it is noted that 9% is the product of the sum illumination and
the linear odd function, x; LS is a constant. Since g is even, gy

is odd.
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The constant, Ls, is the effective aperture i]luminétion power

width in the terminology of [33] and is given by

Ak
!_-[(wa)2 la(x,y)|? ds '
L = A . ) (2.37)
[ 1axn? o
A
L -
For the case of uniform illumination in the circular aperture, Ls is

Dr/2, and for cosine tapered illumination (2.37) yields LS = 1.0718670.
When the difference illumination is defined by (2.36) with LS
given by (2.37), the sum and difference illumination functions contain

equal power. This would be expected in a well-designed monopulse
antenna.
Using (2.36) and the above constants, the difference illumination

for uniform sum illumination is,

D
99 * P<7; (2.38)

and for cosine illumination is,
5.861962X
9 =5 cos(E%) s P <% : (2.39)
where a mixed coordinate system is used for convenience.
The sum and difference illumination functions and the far-field

response function of an 8\ diameter aperture are shown in Figure 2-8

for uniform illumination, and in Figure 2- ) for cosine tapered illumina-

tion. The response functions are again normalized to the maximum of the

sum patterns, but are now shown with a linear ordinate scale.
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Monopulse angle detection is accomplished by connecting the sum and
difference outputs of the parabolic antenna to an angle detection circuit
as was shown in Figure 2-1. The angle of an incident plane wave, LY

is determined from the monopulse ratio, or
0; = K Re{:%é& (2.40)

where K is the slope of the normalized difference pattern evaluated at
8 = 0. For the case of uniform sum illumination, the value of K is given
by Barton and Ward to be 1.573 0/ for e,i measured in radians. For the
cosine-tapered illumination, K can be shown to be 1.475 D/x.

The incidence angle equations for the 8\ diameter aperture considered

in the example become,
6; = (12.585)") Re{:%é} , (2.41)
for the uniform illumination, and

oy = (11.800)7 Re3ldy (2.42)

for the cosine tapered illumination, where 8, is in radians. These two
equations and the methods outlined above will be used to find the indi-
cated target angle in the next chapter.

To conclude this summary of monopulse principles, it is pointed
out that the interferometer may be considered as an aperture illumination

function given by,

9=E s[IR- (50,011 , (2.43)
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since the interferometer samples the incident wave at the points (t%, 0, 0)
as described earlier. It is useful to keep this simple idea of wavefront

sampling in mind while considering the belavior of radomes.

TANGENT OGIVE RADOME GEOMETRY

The geometry and coordinate system of the tangent ogive radome are
discussed in this section. The tangent ogive is used for the radome
shape throughout this study because it weill represents the nose section
of high-speed missiles. For minimum drag the high-speed missile must
be highly streamlined. With proper Parameter selection, the ogive makes
a satisfactory shape for the missile nose.

The tangent ogive is a surface of revolution generated by the arc
of a circle as shown in Figure 2-10. The axis of the ogive is chosen
to be the y-axis, and the generating arc is centered on the z-axis in
order to obtain tangency along the contour where the ogive joins the
missile body. The radius of the ogive, p, may be expressed as a func-

tion of position along the axis, y, and the generating parameters by

p=yRE-y2 s ¥ g, (2.44)
2 ;

where R is the radius of the generating arc, and W is the base diameter.
A measure of an ogive's streamlining is the length-to-diameter ratio,
£/W. This ratio is encountered in aerodynamic studies where it was given

the name "fireness ratio". The greater th2 fineness ratio the more

streamlined is the ogive.
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Figure 2-10. Tangent Ogive Geometry.




It is convenient to express the length of the ogive generating arc
in terms of the fineness ratio and the ogive base diameter, W. This can
be done by considering the right triangle OTO' in Figure 2-10. The
sides of OTO' are related by,

R = 22 + [R - g&z . (2.45)

which can be solved for R yielding,

L W

R=WFH+E . (2.46)

This expression is useful for calculating R for an ogive with specific
fineness ratio and diameter.

The shape of the tangent ogive is sometimes specified by the para-
meter, caliber. The caliber, C, is defined as the ratio of the genera-

ting arc length to the base diameter or,
C=R/M (2.47;

In addition to knowing the ogive shape, the unit vector normal to
the ogive surface is required for the incidence angle calculations dis-
cussed later. It is most convenient to express this unit normal, ﬁ,

as a sum of three rectangular components, or

n=nx+ nyy +nz2 (2.48)
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where n_, n_, n_ are the components of n in the coordinate directions

x* 'y’ 2z
X, ¥, and 2 respectively. These components can be found from geometri-
cal considerations, or by evaluating vf/|vf| with f given by the surface

equation. The component of n in the axial direction, ny, is given by

= .49
ﬂy y/R . (2.49)

The component of n perpendicular to §, N., is then found from the re-

quirement of unit magnitude, or

»

ne = 01 - 0715 (2.50)

and n, and n, are given by,

3
(]

x = e x/o (2.51)

=}
]

g=n. 2/ . (2.52)

The radomes considered in this study have uniform thickness and fill

the region between two concentric ogives. Thus a radome with thickness,

t, and an inner surface formed by an ogive with generating radius R, has

as an outer surface an ogive with generating radius (R + t).

TRANSMISSION AND REFLECTION PROPERTIES OF PLANAR DIELECTRIC SLABS

In this section the transmission and reflection coefficients for
plane waves incident on an infinite planar dielectric slab, or several
slabs sandwiched, are derived. Virtually all analyses of radomes have
used such plane-wave transmission coefficients to relate the electro-

magnetic field on opposite sides of a radome wall; and good results are
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obtained. The technique of modeling the radome wall is discussed in
the following section. Although transmission coefficients for planar
slabs have been presented in the literature in varying degrees of com-
pleteness and generality (Collin [34] being one of the better examples);
they are derived here in order to define the notation and demonstrate
the method of solution. The technique used here is similar to the

equivalent circuit approach used by Robinson [35].

The problem of transmission and reflection of a plane wave inci-
dent on a planar dielectric slab is an electromagnetic boundary condi-
tion problem. Transmission and reflection of an incident wave are
necessary results of the boundary conditions at surfaces of material
discontinuity. Complex transmission and reflection coefficients can
be used to express the fractions of the incident fields that are
respectively transmitted through and reflected from the dielectric
slab as well as giving the phase of these fields. The general equa-
tion for a plane wave is used to express all the fields.

Electromagnetic fislds in homogeneous, isotropic, time-invariant,

source-free regions satisfy the vector Helmholtz equation,
F-ue =5=0 (2.53)

where F is either the electric field intensity or the magnetic field

2

intensity, v< is the vector Laplacian operator, time dependence is

ejwt, u is the permeability of the medium, and e is the cbmp]ex permit-

tivity of the medium given by
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e = ¢(l - j tan §), (2.54)

with ¢ the permittivity and tan & the loss tangent of the medium
(tan § = g/we). The use of the complex permittivity in (2.53) accounts
for attenuation of the fields due to loss.
The solution to (2.53) for fields that vary in only one direction
(plane waves) may be written as,
- jkan er

F= Fo e s (2.55)

where 5n is a unit vector in the direction of wave motion; r = x; + y§ + zi;
k = mAJ;:z and Eo is a complex-vector constant representing the ampli-

tude, direction, and phase of E or H at the origin; and the time depen-
dence is suppressed.

It will be useful to define the vector E as L

k = k a, = kxx + kyy + kzz. (2.56)

This vector is in the direction of the Poynting vector and is sometimes

called the wave vector. The components of E must satisfy

2
Ky

2

2 _ 2.
+k Sk = e (2.57)

This relation provides a very convenient way to treat the boundary
condition problem of a plane wave incident on a planar dielectric slab.
The geonetry used for a dielectric slib which may be. located

between two dissimilar regions is shown in Figure 2-11. For the
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practical case of a single layer, the regions z < 0 and z > d will
contain the same material, usuvally air.

The fields in the various regions are classified according to
location and direction of travel as presented in Table 2-1. Super-

scripts identify each category.

Table 2-1
Classification of Dielectric Slab Fields

Name Location

Incident Fields z<0 £, 4
Positive Internal Fields 0<z<d Eu, WY
Negative Internal Fields 0<z<d Ev’ HY
Transmitted Fields z>d T
Reflected Fields z2<0 £, W

These classifications are straightforward but a comment is in

order concerning the internal fields. When a wave is incident at z = 0,

in general, there is a field transmitted through the interface at

angle 8. This field will travel to the z = d interface and be
partially reflected, return to z = 0 and again be partially reflected
and so on. The notation Eu and HY means the superposition of all fields
in the slab traveling in the generally positive z direction. A1l of
these fields will have the same wave vector, iu’ as will seen by Snell's
reflection law. Similarly EV and gv mean :the sums of all: fields travel-

ing in the generally negative z direction. These definitions are neces-

sary to solve the "steady-state" problem.
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Two orthogonal polarization states can be considered for the inci-
dent field. The polarization directions are with respect to the plane
of incidence: the plane containing the normal to the slab and Ei. Per-
pendicular polarization means Ei is perpendicular to the plane of inci-
dence, and parallel polarization means Eﬁ is contained in the plane of
incidence. An arbitrarily polarized incident field can be expressed as
a superposition of a parallel polarized Ei and a perpendicular polarized
E.

Parallel polarization will be considered first, then the transmis-
sion and reflection coefficients for perpendicular polarization will
be obtained using the principle of duality. The equations for the

parallel polarized plane waves listed in Table 2-1 are as follows:

£l = E; e-j(k;ry ' k;Z) (-cosei § + sine, 2) (2.58)
H =23 € e-j(k;'y *k?) (x) (2.59)
£’ = E; e-j(k;y ) ng) (-coser } - sing_ 2) (2.60)
H =270 € e-j(k;y " kg2 (-x) (2.61)
EY = e e-j(k;y tkpe) (-cose, y + sine z)  (2.62)
i =2y e e-J(k;y tkpe) (x) (2.63)
A Eov e-j(k;y ) kZVZ) (-:osev 9 - sinev_i) (2.64)
=2, €, e-j(k;’y " kp'2) (=x) (2.65)

|
|
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ot ot

- ~j(k'y + k_o(z-d)) R -

Ef-e" e y (-cose, y - sine, z) (2.66)
ot Lt

- - -j(kyy + k (z-d)) .

H =23 et e y (x) (2.67)

where the subscript, "o", indicates the quantity is a complex constant

th

and Zn is the intrinsic impedance of the n~ region as given by

[

Z =

n (2.68)

€
Zn is the ratio of transverse components of E and H in a uniform plane
wave traveling in the medium of the nth region. Note that the phase
reference of the transmitted fields is taken at (0,0,d).

Relations between the fields listed above are obtained from
boundary conditions (2.16) and (2.17). Since no surface currents will
be present on dielectric sheets, these boundary conditions reduce to

continuity of tangential fields or,

E

E H

H

£2 at z (2.69)

1]
o
-

t1 t2 t1

E

"

E

£2 £3 th = Ht3 atz=d , (2.70)

where the subscript t indicates total tangential field, and the number
refers to the region.

For parallel polarization (2.69) and (2.70) refer to the y- compo-
nents of E and the x-components of H. In terms of the field components

(2.70) can be written as
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SEEAEES l, « 4 (2.71)

X X X lz =d (2.72)

Substituting (2.62) - (2.67) into (2.71) and (2.72) yields

-i(k )y + k_“d) -3(kYy - k 'd)
u y z i v y z .
E° e ( coseu) + Eo e ( cosev)
.t
-jk,y
=gt Y
E° e ( coset) (2.73)
. u 7LV v
-1, u 'J(kyy thdl 'J(kyy “ k) e -kt
Z, E, e -2, E e =2 E e v

(2.78)
Equations (2.73) and (2.74) must hold for any y, given the follow-

ing relation,
kY=k"=kt (2.75)
which can be written in terms of the wave angles as

u _. T -t .
k™ sine, = k sine, = k sine,. (2.76)

Since kY equals kY (waves in the same medium), the first equality in
(2.76) expresses Snell's reflection law: angle of incidence equals
angle of reflection. The second equality in (2.76) is Snell's law of
refraction. The same relationship holds at the z = 0 boundary and can

be applied cosecutively for layered media.
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By taking advantage of (2.75), equation (2.73) and (2.74) can

be simplified to

-Jjw +jv
u v _ t
E° e cose, + E0 e cose, = Eo cose, (2.77)
| u -Jv v v S B
22 [Eo e - Eo e J-= 23 Eo (2.78)

where 8, and 8, have been replaced by 8, and where ¢ is given by

= (LY = (LY = LU
¥ (kz d) (kZ d) = k'd cose, . (2.79)
A matrix equation can be written to combine (2.77) and (2.78),
- . o I T
v v -3v dv u v ¢
e ; e chosez (e 5 e ) (Eo + Eo )cosez‘ E, cose,
-Jv jv  Ju ~Jv : -
e - e e +e - u v -
oEY .Y 2. E
Z.,cose, 2 "2 2 o 0 3 o
2 2
— — = — —-(2.80)—J
The use of hyperbolic functions allows this to be written as
— — _— —
R . . u v t
cosh(jy) -chosezs1nh(gw) (Eo + Eo )cose2 E° cos8,
-sinh . -1 u v -1 t
chose2 cosh(jy) I, (Eo - Eo ) Z3 Eo
—— — — L.y

Multiplying each side of (2.81) by the inverse of the coefficient matrix
yields,

_ —
(eY+eY) co:;] r:;;h(' ) Z,c0s8, sinh(jy) [;—t cose
0 0 2 Jv 2 2 Jv 0 t

{

i

v !
)

-1 u .
Z. (EY - E sinh(ju) . -1 .t
2 0 0 Z,coso, cosh(jy) | Z; E,
(2.82)
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This is a very useful result since it relates the tangential fields

on one side of the slab to those on the other side or in general,

E
= (2.83)
Hen| 1¢ D |Meweny | »
where N and N+1 indicate the total tangential fields at the N'" and
(N+1)th interface and A, B, C, and D are identified from (2.82). This

result is analogous to the ABCD matrix used in circuit theory to relate
the input voltage and current of a two-port network to the output volt-
age and current.

The left-hand side of (2.82) contains the tangential fields at the
z=0" boundary, which must be equal to the tangential components of the

incident fields. Writing this in matrix form yields,

(€] + E") cose (EY + £Y) cose
0 o] i . 0 0 2 (2.84)
-1 i r co=1 u v

21 (Eo - Eo) . ZZ (Eo - Eo)

Since E; and E; are both of interest they can be factored out of the
left-hand side of (2.84) and the right-hand side can be replaced using
(2.82)

c0S8 . C0SH.
! ! 0 (2.85)

-‘I
Zy

This equation contains all the information needed to find the transmis-

sion and reflection coefficients. For the usual case of a slab with
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the same medium on both sides, 6. = et and Z] = Z3. This case is

i
considered here. The parallel polarization transmission coefficient,
T]], is defined as
Et
Ty, = — (2.86)
1 g}
(o}

and is found from (2.85) to be

T 2

(2.87)
1

The parallel polarization reflection coefficient, r1], is defined

as, r
Ty = 2, (2.88)
N gl
0
and is from (2.85),
B
A+ W - CZ-,COSG_i -D

I (2.89)

—
A+ 21(:—05.9—1- + CZ1C0591- + D
One additional parameter of interest is the insertion phase delay
(IPD) which is defined as the phase of Eg minus the phase of E; at
(0,0,d), when the slab is removed. This is the additional phase shift
introduced by the presence of the slab. The IPD for parallel polariza-

tion is given by

10, =-_<T” - Re{k'} d cose (2.90)

Transmission and reflection coefficients for perpendicular polari-

zation can be easily obtained from the above by duality. The symmetry

of the electromagnetic field equations permits the following substituticus

n- B .
A +T_CT91+ C Z]COSei + D
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to be made in any equation to obtain a dual equation: ﬁ replaces E,
-E replaces ﬁ and Z'] replaces Z. These and other duals are listed
in many electromagnetic texts such as [36]. As seen in Figure 2-13(a)
and (b), these substitutions transform parallel polarization to perpen-
dicular polarization,

The ABCD matrix that relates tangential field components at the

slab boundaries becomes,

HtN A B Ht (N+1)
= (2.91)
-Et” c D -Et (N+1) ,
where,
cose, sinh(jy)
A B cosh(jv) 7
2
Z, sinh(jv) (2.92)
C O —__EBEEE—-_' cosh(jv) R
and y is still given by (2.79).
The dual of (2.85) is
0S8, COS0 . Hi A B Ht coso
j i 0 (o] t
= (2.93)
r t
Z] -Z] H0 cC D 23 H0

and can be used to find the transmission and reflectijon coefficients.

The perpendicular polarization transmission coefficient, TL’ is

now found from,

(2.94)
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(a) Parallel polarization

(b) Dual of (a)

e i AT

(c) Perpendicular polarization

Figure 2-12. Reference Polarization
Directions.

LR




and is given by,

T =

2

4
A+

B Z] C cosei

+ +D
cosei Z]

(2.95)

The perpendicular polarization reflection coefficient, Ty is

defined as,

r
'Ho
I‘_L _ T , (2.96)
()
and is given by BZ, C cose,
-A - cose * Z] +D
I'_L = B Z] C Cosei (2.97)
A +D

+ +
cosei Z]

The minus sign in (2.96) is chosen to conform to the reference direc-
tions of Figure 2-12(c) in order to make T ® TL at normal incidence.

The insertion phase delay for perpendicular polarization is found
by substituting T_L for T]] in (2.90).

Practical radomes are usually constructed of several different
materials arranged in laminated layers in order to achieve design
goals for strength, weight, rain erosion resistance, etc. The above
formulation permits the quick calculation of transmission and reflec-
tion coefficients for multiple layered slabs. Recall that the ABCD
matrix related the tangential fields at opposite sides of a homoge-
nous layer. when several layers are present the “output" fields of

one layer become the "input" fields to the next layer. Thus by

cascading the transfer matrices for each layer the overall transmission




55

and reflection properties of sandwiched layers can be determined.

The system transfer matrix is given by

.- (2.98)
1 DLl B Loy Dy
where N layers are present and the terms are given by (2.82) or (2.92)
depending on the polarization. Transmission and reflection coeffi-
cient are given by the same formulas with the ABCD parameters deter-
mined from (2.98). Subroutine TRANS listed in the appendix computes

the transmission and reflection coefficients used to model radome

walls in thic study.

Radomes with high transmission coefficients are desirable in most

applications. A lossless planar slab can be designed to have a trans-

mission coefficient with a magnitude of one for a particular angle of
incidence. This is seen for a single-layer slab by examining the denom-
inators of the transmission coefficient expressions (2.87) and (2.95).
When the slab material is lossless, y is purely real and these denomi-

nators will equal 2 whenever y = nm, with n an integer. For a slab

constructed of a given material this is achieved by making the thickness
of the slab, d, according to

nAo
d = T s (2-99)

. . 2 <
2[”r€r - sin ei]

where Ao is the free-space wavelength; Wy and €. are the relative perme-

ability and permittivity of the slab respectively; and (2.76) has been
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used to write cose, in terms of sinei, the incident angle. For normal
incidence, (2.99) indicates that the slab thickness must be an iategral
number of half wavelengths in the slab for 100% transmission. How-
ever, the transmission coefficient for this case is unity only at

normal incidence and decreases as the incidence angle increases. Figure
2-13 shows the transmission coefficient of a half-wave-thick slab as a
function of incidence angle for both polarizations. Insertion phase
delay is also plotted. The reflection coefficients for this slab are
shown in Figure 2-14.

The incidence angles for the radomes in this study are quite large,
as will be shown in the next chapter and a slab designed for complete
transmission at an angle in the range of angles actually encountered
will make a better radome wall. Figure 2-15 shows the transmission
coefficients for a slab with a 75° design angle and Figure 2-16 con-
tains the reflection coefficient for the same slab. It should be
noted that the IPD of both polarizations are equal at the design

angle and the reflection coefficient vanishes at this angle.

PRINCIPLES OF RAY TRACING

This section discusses the application of ray tracing to obtain
electromagnetic fields that are transmitted or reflected by planar
dielectric slabs. The previous section dealt with infinite planar
slabs and truc plane waves (infinite in extent). Ray tracing fits
this theory to finite structures.

The technique of ray tracing is based on the fact that all electro-

magnetic fields behave locally like plane waves whenever they interact
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with matter thét is large with respect to wavelength, and has radii of
curvature large with respect to wavelength. Macroscopic materials have
these properties at optical frequencies, and ray tracing is frequently
used in the analysis of optical systems.

A ray is a directed line that is everywhere perpendicular to a
wave's surfaces of constant phase. Rays are in the direction of wave
propagation which is the direction of power flow or the Poynting vector.
When dealing with plane waves,:as in the previous section, it is easy to
visualize the wave traveling in the direction of the rays in the various
media.

Snell's transmission and reflection laws are used to predict the
directions of the "transmitted ray" and "reflected ray" whenever a ray
intersects a material discontinuity. Ray tracing of a transmitted ray
will be considered here first, and a discussion of ray reflection will
end this section.

Consider an arbitrarily polarized wave incident on a planar slab.
This wave can be decomposed into a sum of parallel and perpendicular
polarized waves as shown in Figure 2-17. The perpendicular component is
found by first forming a unit vector perpendicular to the plane of inci-
dence. (plane containing the ray and the surface normal). This unit

-

vector, b, is often called a binormal vector and is found from,

b =20, . (2.100)
Ir x nj
where r and n are unit vectors in the directions of the ray and surface

normal respectively as shown in Figure 2-17.
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The pekpendicu]ar component, ;l, of the incident electric field,

Ei, is found from the dot product as
i_gi ¢
E, =E b . (2.101)

Since the incident field is transverse to ;, the parallel component of
the incident field can be found by vectorially subtracting the perpendic-

ular component from the total incident field or,

i _zt =i
Ell - E - E.L 'Y (2.]02)

where E}l is the parallel polarized component of the incident field and

i. .
;i is given by

Bl = (& . b)b . (2.103)

Of course, the total field is now the superposition of the parallel

and perpendicular parts or,
E'=E), +E . (2.104)

This decomposition is useful since a parallel polarized incident wave

produces only a parallel polarized reflected and transmitted wave. Like-

wise there is no cross-polarization for the perpendicular case.

The ray angle of incidence, 85 is important since the transmission
and reflection coefficients are functions of this angle as shown in the
preceding section. The angle of incidence can be found from the vectors

r and n by use of the dot product, or, '

8; = cos'] (-; . ﬁ) (2.105)
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The ray incident on the slab at angle 8, will enter the slab at
angle_e2 given by Snell's refraction law, (2.76), and emerge on the op-
posite side acain at angle 8- Although the transmitted ray exits at
the same angle as the incident ray, there is an offset between them
because 8, is less than 8y for dielectric slabs in air. This offset is
indicated by d in Figure 2-17. The amount of this offset will depend on
the slab material, slab thickness, and the angle of incidence. Jenkins

and White [37] give the following expression for d produced by lossless

dielectric slabs,

. n Cose,i
d=1t s1ne1. 1 - m] (2.105)

where n and n, are the indices of refraction of the immersing medium and
slab respectively, as given by /E:—Z; for the appropriate medium.

Plots of d normalized to the slab thickness versus angle of inci-
dence are shown in Figure 2-18 for non-magnetic slabs with various
permittivities. It is noted that for intermediate values of dielectric
constant, as frequently encountered with radome materials, the deviation
is approximately linear with incidence angle.

In addition to the ray that initially emerges from the dielectric
slab, other rays will be transmitted after multiple reflection from the
interior slab boundaries. These rays exit periodically down the slab
and their energy diminishes geometrically with the number of interior
reflections. The transmission coefficients previously derived consider

all these reflections in order to satisfy the boundary conditions at the

interfaces.
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The approach taken in this work is to ignore the ray deviation pro-
duced by transmission and assume the incident ray continues linearly
through the slab. The radome walls under cinsideration here have thick-
nesses on the order of one-quarter of a free-space wavelength and even
at the high incidence angles encountered, the ray deviation is approxi-
mately two-tenths of a wavelength. The error introduced by this assump-
tion is considered to be in 1ine with other approximations made. Multi-
ple reflections are taken into account through the use of the transmis-
sion coefficients from the last section.

The transmitted electric field at a given point is found by consid-
ering an incident ray which would pass through the point with the slab
removed and then weighting the field of this ray with the appropriate

transmission coefficient, or in equation form,

-t _ -i . -i .
EE=E, T, *E T, (2.106)

with E}I_and El are the previously derived parallel and perpendicular
components of the incident field, f“ and tL are the insertion transmis-

sion coefficients given by,

T, = 1Tl e (3P0, (2.107)
and
T =T, exp (-5 1PD)). (2.108)

Since the two transmission coefficients generally have magnitude

less than one and differ in both magnitude and phése, equation (2.106)
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indicates that the transmitted field is, in general, attenuated, phase
shifted, and depolarized. Furthermore each of these undesirable charac-
teristics is a function of incident angle. A1l these phenomena contrib-
ute to radome-induced radar pointing error.

Reflection may also be treated by ray tracing. Consider again a
plane wave incident on a dielectric slab as shown in Figure 2-19. The
incident field is composed of parallel and perpendicular components as ;l
given by (2.102) and (2.103). The unit vector, r, is in the direction
of the incident ray and the unit vector, ﬁ, is in the direction of the
primary reflected ray.

According to Snell's reflection law, the angle of incidence, 8y» is
equal to the angle of reflection, e This results in the following

~

equation for finding the reflected ray vector, p:

p=r-2(n-rn |, (2.109)

where n is the outward unit surface normal.
As in the transmission case, additional rays emerge from the slab
due to multiple internal reflection as seen in Figure 2-19. Again for
the purpose of ray tracing these rays will be ignored; however, the
reflection coefficients used to find the magnitude and phase of the re-
flected ray take into account multiple reflection as discussed in the
previous section. i

The perpendicular-polarized reflected field, Er, is given by

Q=&q, (2.110)
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where [l is the reflection coefficient for perpendicular polarization,

El

J_is given by (2.103), and the expression is evaluated at the boundary.

The equation for the parallel polarized reflected field, ETI is not
as simple as (2.110). Recall that the reference direction for E7I was
chosen as shown in Figure 2-19 so that parallel and perpendicular
polarization would coincide at normal incidence. ETl must lie in the
plane of incidence and be normal to the direction of propagation. Thus,
there is no scalar constant which gives ETI when multiplied by Eil
(except at normai and grazing incidence).

According to the reference directions of Figure 2-19, the tangential
components of the incident and reflected field are related by the reflec-
tion coefficient, but the normal components are related by the negative of

the transmission coefficient. The normal component of E}l is given by

-2 ~ ~

1 = £ .
and the pangential component can be found by subtraction as
(2.112)

where n and t in the subscript indicates normal and tangential respective-

ly. The reflected components at the boundary are,

=r _ =i

ITRTRITEE (2.113)
and

-p - (2.114)
Bin = -0 By

for the reference directions used here.
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The total reflected field is the sum of (2.113) and (2.114) which
simplifies by substitution of (2.111) and (2.112) to,

e, =Ty, [E’;i - 2(E’;‘ . n)nl. (2.115)

This equation gives the magnitude, phase, and direction of the reflected
field at the interface.

As discussed in conjunction with the transmission problem, an inci-
dent field will, in general, have parallel and perpendicular field compo-
nents. The reflection coefficients for these two polarization states
differ in magnitude and phase. Thus, as was the case with transmission,
the fields reflected from a planar dielectric slab will be attenuated,
phase shifted and depolarized. One might hastily conclude that these
effects must degrade radome performance, but it will be seen that indeed
any reflection from a radome wall is undesirable.

This chapter has discussed the basic elements used in radome analy-

sis. The following chapter will connect these elements to analyze radome

system performance.




II1. RADOME-INDUCED RADAR
POINTING ERRORS

In this chapter the effect of an ogive radome on an incident uni-
form plane wave is considered. It will be shown that the radome causes
amplitude, phase and polarization distortion in the wave transmitted
through the radome. This distortion causes the radar inside the radome
to indicate erroneous pointing directions.

Two mechanisms for wavefront distortion are considered. The first
is due to the variation of the radome wall transmission coefficient with
incidence angle and the second is due to reflection of energy from the
interior of the radome wall. The methods for treating these sources of
distortion are based on techniques presented in Chapter II. Radar
response to wavefront distortion is obtained by integration of the inci-
dent wave over the radar antenna aperture.

This chapter begins with a short section discussing pointing error.
Sections on the two sources of wavefront distortion and the composite
effects of distortion follow. The chapter is concluded by considering

radar response to radome-induced wavefront distortion.

CONCEPT OF POINTING ERROR

Radar pointing error is the difference between the angle that a
radar indicatns to a given target and the true angle to that target. A
similar term given by the Institute of Electrical and Electronics

Engineers (IEEE) is boresight error which is defined as "the angular

deviation of the electrical boresight of an antenna from its reference
71
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boresight" [38]. Although the IEEE gives no definition for the word
"boresight", it obviously originated from the practice of using optical
instruments mounted on the antenna to calibrate the electrical output
of the radar with the mechanical position of the antenna.

Sources of radar pointing error may be broadly divided into two
categories: internal sources and external or environmental sources.
Internal sources of error refer to imperfections in the radar hardware
(or software) and would include amplitude and phase unbalance in signal
forming networks, noise in signal channels, nonlinearities, and quantiza-
tion errors. External sources of error are due to environmental factors
which would cause even a "perfect" radar to indicate an erroneous direc-
tion to the radar target. Some external sources of error are glint,
multipath, non-uniform propagation media, clutter, jamming, and of course
radomes. (A different point of view will be taken in the next chapter
where the radar and radome are considered a single system.)

As a simple example of how pointing error can arise consider a
uniform plane wave incident on a dielectric prism as illustrated in
Figure 3-1(a). According to the familiar principles of the prism, the
waves entering and leaving the prism are in different directions due to
the unequal optical path lengths of the rays through different parts of
the prism. A radar measuring the direction to the source of the wave
leaving the prism will indicate that the source is located in the direc-
tion perpendicular to the wavefront at the antenna as was discussed in
the previous chapter. The difference between the direction to the target

indicated by the radar and the trve direction to the target is the point-

ing error,
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(a). Plane wave incident on dielectric prism.
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(b). Plane wave incident on radome.

Figure 3-1. Two Illustrations of Wavefront Distortion.
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While this example may have no practical counterpart, it does
illustrate an environmental source of pointing error that behaves much
like the radorie. (This example is also similar to propagation through
a stratified atmosphere.)

The‘separation of colors when white 1ight strikes an optical prism
illustrates still another property of environmental sources of pointing
error. Color separation is due to variation of the prism dielectric
constant with frequency. This causes the exit angle from the prism to
vary with frequency (color). For white light incident at a given angle,
the angle to the source, as indicated by an optical sensor behind the
prism, would depend on the frequency to which the sensor is sensitive.
A1l of the previously mentioned environmental sources of pointing error
are frequency dependent (some quite strongly).

As a preview to the remainder of the chapter, consider a uniform
plane wave incident on a radome as illustrated in Figure 3-1(b). As was
seen in the discussion of plane waves incident on planar dielectric
slabs, the wave transmitted through the radome will have amplitude and
phase that varies with the angle between the radome surface normal and
the incident rays. Variation in the amplitude of the transmission
coefficient causes the transmitted wave to be non-uniform. Variation in
the phase (time delay) of the transmission coefficient causes the wave
to be non-planar.

Both of these forms of distortion lead to radar pointing error in

the monopulse radar which is designed to operate with uniform plane

waves incident at the antenna. Throughout this work it is assumed

"f“?!‘
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that radome-induced distortion is the only source of error present; that
is, all radar elements and other propagation considerations are assumed

to be ideal.

WAVEFRONT DISTORTION DUE TQ TRANSMISSION

In the receiving formulation of the radar problem, the radar
response is calculated from the fields incident on the antenna aperture
and known characteristics of the antenra. A radome around the antenna .
introduces distortion into the wave that is incident on the antenna.

The first distortion mechanism to be considered here treats the radome as
locally planar and modifies the incident wave with a transmission coeffi-
cient to obtain the transmitted wave. Ray tracing is then carried out

to account for propagation to the antenna aperture.

The radome and incident field are depicted in Figure 3-2. The
incident wave is regarded as being made up of parallel rays traveling
perpendicular to the wavefront. The radome is treated as being locally
flat in the region near the intersection of a ray and the radome surface.
This planar approximation to the radome surface is oriented to coin-
cide with the plane tangent to the radome surface at the ray-radome

intersection point, and the thickness of the planar slab approximation

is the same as the radome wall thickness at the intersection point.

The incidence angle, Bs» for a given ray is determined by equation
(2.105). Parallel and perpendicular compoi ents of the incident field
are formed with respect to the plane of incidence as outlined in Chapter

II. The parallel and perpendicular components of the incident field are

then weighted by the appropriate plane wave transmission coefficients
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for the planar slab. These weighted fields now make up the field
transmitted to the radome interior.

The ray thus transmitted to the radome interior is traced, without
deviation, straight to the antenna aperture. This is, of course, an
approximation as was discussed in the previous chapter. The field over
the entire antenna aperture is obtained by considering each of the rays
in the incident wave that passes through the aperture. The appropriate
tangent plane approximation of the radome wall must be determined for
each ray, since the direction of the surface normal varies over the
radome. With this discription of the ray tracing procedure as back-
ground, a more explicit discription of the details is now given.

The tangent ogive has been previously discussed, and the same con-
ventions and notations will apply to the present discussion. The axis
of the ogive will be taken as the y-axis. The y coordinate of a point
on the ogive surface with x and z coordinates given by x and z is found

from,

y=[R% - g+ 22+ R -2, (3.1)
wherer2 + z2 is recognized as the perpendicular distance from the
y-axis, and other variables are as defined for equation (2.44).

A separate coordinate system will be used for the antenna aperture.
The rectangular coordinate axes of this system are designated x', y',
and 2', and the axis of the aperture is taken to be the y' axis. The
origin of the x'y'z’' system will lie on the ogive axis. Figure 3-3
shows an outline of the ogive and the antenna aperture with their

respective coordinate axes,
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The origin of the aperture is translated with respect to the ogive
origin so that clearance with the missile body is achieved for large
aperture scan angles. The symbol yg is used for this translation.

The aperture can be rotated about its x' and z' axes to direct the :
antenna in any direction in the forward half-space. The order and
directions of these rotations are significant, and the convention adopted
A here will be to rotate first about the x'-axis and then about the L
z'-axis. Positive rotation will mean that the rctation of the primed
coordinate system with respect to the unprimed coordinate system is in

the direction that the fingers of the right-hand curl when the right

thumb is directed in the positive coordinate direction of the axis of

rotation. The symbol o will be used to denote the positive rotation
angle about the x'-axis, and g will denote the positive rotation angle
about the z'-axis. The angle a« is shown in Figure 3-3 and g8 is zero.

It is important to be able to locate points with primed coordinates
in the unprimed coordinate system. The transformation that accomplishes

this is given by,

X cos8 -sing 0 X' 0
y| = | cosa sing cosa COSB -sina || y' |+ Yg (3.2)
2 sina sing sina cosB cosa | | 2' 0

Without loss of generality, the incident rays will be assumed to be
parallel to the yz-plane since the coordinate axes of the radome can

always be rotated to achieve this orientation due to the symmetry of

the radome. A rotation of the antenna aperture about its y'-axis would
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be necessary to consider waves incident on the aperture from arbitrary
directions, however, since the antenna does not have rotational sym-
metry due to its polarization and aperture llumination function.

Points on an incident ray obey the equation,
y=(z- z)) tane +y (3.3)

where y and z are coordinates on the ray, Yo and z, are the y and z
coordinates respectively of some point on the ray, and 6 is the angle
of the ray as measured from the xz-plane (the same for all rays since
they are parallel) as shown in Figure 3-3 for a ray passing through the
aperture center. Of course, all z-coordinates on any particular ray
are the same.

In order to obtain the field over the antenna aperture, rays wiill
be traced to the intersection points of a rectangular grid over the
aperture. Suppose (xa, Yas Za) is a point in the aperture expressed in
the primed coordinate system. The coordinates of (xa, Yy Za) in the
unprimed coordinate system are obtained by applying transformation (3.2).
The equation for the ray passing.through (xa, Ya Za) is given by (3.3)
with Yo and z, being replaced by the appropriate transformed coordinates
(X35 ¥as 24)-

Next the intersection of the ray and the radome must be found. The
intersection point must satisfy the equation of the ray, (3.3), ard the

equation of the ogive, (3.1). Siultaneous solution of these two equa-

tions results in finding the roots of a (rather messy) fourth-order equa-

tion. Since the x coordinate of the rav is constant, the intersection
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point must have this x coordinate. Equation (3.1) thus reduces to a
function of one variable that expresses the height of the radome along
a slice parallel to the yz-plane as a function of z.

The intersection point is the point where the ray has the same
height as the ogive. This point is found numerically by a procedure
based on Mueller's method [39] for finding the roots of functions of one
variable. Subroutine INTRSC listed in the Appendix performs these
computations.

The incidence angle of the ray at the radome is found from a unit
vector along the ray and the unit vector normal to the radome at the
intersection point. The unit vector, 5, pointing out of the radome at

the intersection point and along any incidence ray is given by,
a=sing y + cose z . (3.4)

A method for finding the unit vector normal to the radome surface has
been previously discussed. Subroutine NORM listed in the Appendix makes
the calculations necessary to find this vector. The incident angle of

the ray is then given by,

0, = cos™) [a - ﬁ] , (3.5)

where 8, is the incident angle, and ﬁ is the unit surface normal at
the intersection point.

The polarization of the incident wave is transverse to the direc-
tion of propagation since this field is a uniform plane wave. Two

principal polarization directions will be considered here. These
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polarization directions are defined with respect to the yz-plane and
form a basis to express an arbitrarily polarized incident field. An
incident field will be said to be TE polarized (for Transverse Electric)
if its electric field lies transverse to the yz-plane, that is in the
X direction, for any incident angle .

An incident field is TM polarized (for Transverse Magnetic) if its
electric field is parallel to the yz-plane for any incident direction.
Unit vectors in the directions of TE and TM polarized fields are given

by,

;g =X (3.6)

for the TE field, and
5TM = coso y - sine 2z, (3.7)

for the TM field, where 6 is the previously defined angle of the
incident rays. These unit vectors are indicated in Figure 3-3.

Any incident polarization can be expressed as a sum of TE and TM
components with appropriate amplitude and phase. Waves polarized in
only the TE or TM directions will first be considered. Later waves with
diagonal linear polarization and circular polarization are discussed.

The procedure for obtaining the fields transmitted through the
radome and directly incident on the aperture is summarized as follows.
Beginning at a point in the aperture with known aperture coordinates,
the radome coordinates of the point are found. Next a ray is con-

structed through the aperture point. The intersection of this ray with




83

the radome wall is found numerically. At the ray-radome intersection
the radome wall is approximated by a planar slab, and the ray angle of
incidence is found from the dot product of the unit surface normal and
a unit vector in the ray direction.

The incident field at the ray-radome intersection is decomposed
into parallel and perpendicular components with respect to the local
plane of incidence as prescribed by equations (2.101) and (2.102). The
transmitted field is then found by multiplying the incident field compo-
nents by the appropriate plane-wave transmission coefficients for the
planar slab approximation to the radome wall. The transmitted field,

EL, is given by

Bt E R, (3.8)
where f: and E?1 are the perpendicular and parallel components, respec-
tively, of the field incident at the aperture point in the absence of
the radome; and T] and T]1 are the insertion transmission coefficients
for perpendicular and parallel polarization, respectively, as given by
(2.108) and (2.107).

It has been previously noted that T] and f]] are, generally,
unequal functions of incident angle. Because the radome surface is
curved the local ray incident angle will, in general, be different for
any two different rays. Thus, equation (3.8) indicates that the phase

and amplitude of the transmitted field will vary over the antenna aper-

ture. Furthermore, since the radome surface is curved, the parall-’

and perpendicular components of the incident field will be different for
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different rays in the aperture. The above phenomena are summarized by
the expression: wavefront distortion due to transmission.

An example is presented to illustrate the ray-tracing technique.

The radome considered is a tangent ogive with length of 30)\° and a base
diameter of 10A0 for a fineness ratio of 3. The radome wall is taken to
be a lossless non-magnetic homogeneous dielectric with relative permit-
tivity of 4. The wall has a constant thickness of 0.2855xo which is the
thickness of a planar slab designed for 100% transmission at an incidence
angle of 75°. The transmission curves for this dielectric were presented
in Figure 2-15. A design angle of 75° was selected since it is near the
mean of the actual ray incidence angles of a wave that is incident along
the axis of an ogive with fineness ratio of 3. Most of the rays in this
case are incident at angles ranging from 70° to 80°.

Primary emphasis in this section will be placed on the phase of the
field over the antenna aperture. As can be seen from the transmission
curves, the amplitude of the transmission coefficients remain near unity
over the entire range of the angles encountered; however, the phase of
the transmission coefficients varies about 20° over this same range.

The amplitude of the field over the aperture is thus approximately con-
stant, but the phase is not. Since the monopulse radar indicates the

direction to the target as perpendicular to the weighted phase slope,

the phase of the fields incident on the aperture is of extreme impor-

tance.

As noted earlier, only linear polarization in the TE and TM direc-

tions will be considered initially and the phase of the incident field
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across the antenna aperture will be found for a given polarization and
incidence angle. The slope of the phase-front across the aperture leads
to radar pointing errors and this phase front distortion varies with
incidence angle. Radar pointing errors have a corresponding angular
dependence. Thus, considerable insight into radome-induced radar
pointing error is provided by the phase front across the aperture.

Figures 3-4 through 3-8 contain the insertion phase delay for TE
polarized rays traced through the radome to the aperture, plotted as a
function of position in the aperture. This series of figures has a
progressively lower angle of incidence (o) with the incidence angle
noted on each figure. The small diagram in the upper-right-hand
corner of each figure is similar to Figure 3-3 and shows the incidence
angle for a ray to the aperture center as well as the coordinate axes.
Also indicated on the small figure is the polarization of the incident
field.

For each of these figures the aperture was rotated to be normal to
the incident rays. Thus, each figure can be considered as the phase front
of the distorted wave across the aperture when the antenna is adjusted
for zero pointing error.

The aperture used for these figures has a diameter of 8\ and the
IPD of a ray is plotted above the base plane only for rays incident on
the aperture. The height of the antenna gimbal point above the radome
base (v, in Figure 3-3) is 21, and the small figure shows this to scale.
The grid spacing in this series of figures is AO/Z.

Several attributes of these figures should be pointed out. First

the IPD is symmetric about the x' = 0 plane. This is due to the mirror
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symmetry of the radome and incident polarization about this plane. The
shadow of the radome tip is observed in Figure 3-4 as the point of mini-
mum phase delay since the lowest angle of incidence occurs for the ray
passing through the tip. The phase front is observed to increase from
the center due to the increase in the angle of incidence of the corre-
sponding rays and the monotonic increase in the IPD with incidence angle
for this radome wall.

In Figure 3-5 the shadow of the radome tip is seen about midway
between the aperture center and edge as the point of minimum phase delay.
At 80° incidence the tip shadow has moved out of the aperture, but the
phase front is still observed to slope down toward that point. At the
lower angles of incidence the phase front is seen to have less variation
over the aperture because the incident rays are now passing through the
(relatively flatter) side of the radome.

Also it will be noted that as the incidence angle decreases the
average height of the IPD across the aperture decreases. Again this is
due to the monotonic variation of the IPD with incidence angle over the
range of angles encountered.

Next a TM polarized incident wave is considered. Figures 3-9
through 3-13 show the IPD for this polarization with all other parameters
as in Figures 3-4 through 3-8. Again the IPD is noted to be symmetric
about the x' = 0 plane due to the symmetry of the incident field and the
radome. At on-axis incidence TE and TM IPD differ only by a 90° rota-
tion about the y axis. However, at non-axial incidence the TE and TM

IPD are different. It will be seen later that radar pointing error can

be a strong finction of polarization at certain incidence angles.
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Insertion Phase Delay of TM Polarized Field
with 70° Incidence Angle.
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Another example will be considered to illustrate some additional
properties of wavefront distortion due to transmission. In the previous
example, it was noted that the insertion phase delay of the planar slab
designed for 100% transmission at 75° is a monotonic increasing function
of incidence angle over the range of angles encountered (less than 80°).
This feature is responsible for the concave phase front over the aperture
at normal incidence. The effect of changing the wall thickness is now to
be considered.

In this example the radome wall is considered to be polyimide
quartz, a common material used for radome construction due to its good
mechanical and thermal properties along with good electrical character-
istics. Polyimide quartz is non-magnetic, has a relative permittivity
of about 3.2, and a loss tangent of about 0.008 at x-band. A wall
thickness was selected for a 60° design angle using equation (2.99)
and ignoring losses. The transmission coefficients for this wall are
shown in Figure 3-14.

The first thing that should be noted about these transmission
curves is that the magnitudes are not unity at the design angle. This is
due to the non-zero loss tangent of the material which prevents 100%
transmission. Next, the parallel polarization IPD is seen to be
increasing for angles up to about 82°, but the perpendicular IPD
increases for angles up to only 75° and then begins to decrease. This

will be seen to have serious effects on phase front distortion and radar

pointing errors.
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The insertion phase delay through a radome constructed of this new
wall material, but with all other parameters as before, is presented for
the incidence angle ¢ = 80°. Figure 3-15 is for TE polarization and
Figure 3-16 is for TM polarization plotted as before. A striking
difference now exists between the two polarization states. The TE IPD
now has an average negative slope in the z' direction but the slope is
positive near the z' axis. The slope of the TM IPD is positive in the
2' direction.

Since the pointing direction indicated by the radar is related to
the slope of the phase front across the aperture, Figures 3-15 and 3-16
show that a reversal in the direction of pointing error can occur at a
given incidence angle due to a change in the polarization of the incident
field.

The large differences in the slopes of the phase fronts above are
due to the differences in the IPD of the planar slab for parallel and
perpendicular polarization. For minimum phase distortion the IPD of the
two po1afizations should be nearly equal over the entire range of inci-
dence angles encountered. By thfs criterion the 75° design wall is
better than the 60f design wall for the tangent ogive radome with fine-
ness ratio of three. Radar pointing error curves confirm this.

So far, incident polarization states that are symmetrical about the
radome's x' = 0 plane have been presented. This symmetry is not present
for linear poiarization in any but the pure TE or TM directions. Figure
3-17 illustrates what may be referred to as diagonal polarization for a
ray traced to the aperture center. The incident polarization in this

case has components in both the TE and TM directions.
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Figure 3-15. Insertion Phase Delay of TE Polarized Field Incident

at 80° on Polyimide Quartz Radome.
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A unit vector, ;E’ in the direction of the incident field can be

expressed as

;E = cos(y) ;TE + sin (y) ;TM . (3.9)

where y is the polarization angle as shown in Figure 3-17, and ;TE and
;TM are the previously defined unit vectors in the TE and TM directions
respectively.

Since diagonal polarization is not symmetric with respect to the
x'= 0 plane, there will be differences in the fields transmitted to the
x' > 0 and x' < 0 halves of the antenna aperture. The aperture is free
to rotate about its z' axis to track the incident field. (Figure 3-17
shows the aperture rotated through the angle 8 positively about the z'
axis.) Radar response to diagonal polarization will be a pointing error
in the B rotation direction as well as the previously mentioned pointing
error in the a rotation direction. These pointing errors are related to
the phase-front distortion in the x' and 2' directions respectively.

To illustrate this phase-front distortion, the insertion phase delay
over the antenna aperture is plotted for the polyimide quartz wall for
several polarization angles. Figures 3-18, 3-19 and 3-20 show the phase
front for polarization angles of 22.5°, 45° and 67.5° respectively.

This series of figures have the same parameters as were used in Figures
3-15 and 3-16. The polarization angle is noted on the small inset figure
as before.

This series of figures shows a continuous change in the phase front

from TE polarization, as was shown in Figure 3-15, to TM polarization as

i s it i il o s s oS s i s
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was shown in Figure 3-16. 1In fact, all of these figures may be taken
together to represent the transition from 0° polarization (pure TE) to
90° polarization (pure TM). Note also that the maximum average phase
slope in the x' direction appears at a polarization angle of 45°.

The phase-front plots presented in this section provide considerable
insight into radome-induced radar pointing error. They will be referred
to when pointing errors are considered, but before doing this another

radome distortion mechanism is considered.

WAVEFRONT DISTORTION DUE TO INTERNAL REFLECTION

This section concerns the analysis of the electromagnetic energy
that arrives at the antenna aperture after passing through. the radome
and being reflected from the interior of the radome wall a single time.
Ray tracing is used to account for propagation, and the radome wall is
approximated by planar dielectric slabs as before.

The geometry for internal reflection is illustrated in Figure 3-21.
A direct ray is again shown passing through the radome wall to the
aperture center. The second ray shown cannot enter the aperture
directly, but enters the aperture after being reflected from the inside
of the radome wall. The term internal reflection will be used to refer
to illumination of the aperture by rays that are reflected from the
interior of the radome wall.

Internal reflection contributes to racar pointing error and
increased antenna sidelobe levels, because the internal reflected ener-

gy does not arrive at the aperture from the direction to the target.

‘I DE— .. - — .lm“l"“.-‘l‘




Aperture

108

Internal
Reflected
Ray

Direct
Ray

Figure 3-21. OQutline of Tangent Ogive Radome
Showing Internal Reflection.




pr———————— -

109

The total field over the aperture is the superposition of the
direct and reflected fields. For this reason internal reflection is
sometimes referred to as the Lloyd's mirror effect due to its similarity
with an optical experiment in which an interference pattern is obtained
with a single 1ight source by using the light direct from the source
and light reflected from a planar mirror [40].

It has also been pointed out that the internal reflection phenomena
is similar to holography [41]. Recall that holography involves recording
the interference pattern of a reference beam and an object beam. In the
radome case, the reference beam is the direct wave and the object beam
is the internal reflected wave. The two waves interfere over the aper-

ture which is analogous to the photographic plate used in optical holo-

graphy. Use of this concept may provide a powerful tool for optimizing :

! radome performance.

In this section, only the internal reflected field that is incident
on the aperture will be obtained. The total field in the aperture and
the radar response to internal reflection are considered in the follow-
ing sections. The beginning point is to obtain the field that is 1
incident on the inside wall. Note that internal reflection is impossible
for on-axis incidence. Thus, internal reflection need not be considered

until the incident field is far enough off axis to make ray reflection

into the aper:ure possible.

In this study, it was decided to consider only the internal reflect-

S ——T T

ed rays that enter and are reflected at points on opposite halves of

the radome. The reason for this can be seen by considering a ray that
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enters and reflects from the same side of the wall (ray entry and
reflection at points where z < 0 in Figure 3-21). Under this condition
the ray incidence angle is extremely high at the entry point. Since
the wall transmission coefficient is rapidly going to zero toward
grazing incidence, little energy can enter the radome at these angles.
It must be mentioned, however, that these are precisely the
conditions favorable for excitation of a surface wave on the radome.
Consideration of surface waves are beyond the scope of this analysis,
but some of their possible effects will be mentioned in the next section.
Under the conditions of opposite-wall transmission and reflection,
the shadow of the radome tip in the y = 0 plane lies outside the radome.

The angle at which this occurs is used in the computed calculations to

signal the possibility of internal reflection. When internal reflec-
tion is possible, the intersection of the ray and radome must be found
at two points: the transmission point and the reflection point. ;
The' ray-radome intersection points are found by the numerical
search procedure previously described. The transmission point is found
from the root of the ray-radome difference equation with z coordinate
between zero and the radome base radius. The reflection point is K

associated with the root to the left of zero, and inside the radome as

shown in Figure 3-21. The radome generating parameters for the radome

interior surface are used in finding the re‘lection point. }
At the transmission point, the transmitted field is obtained from

the incident field in exactly the same manner as for a direct ray. That }

is, the wall is modeled as a planar slab; the ray incidence angle is k
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found from the surface normal; the field {s decomposed into parallel
and perpendicular components; the transmission coefficients are found
for the incident angle; and the transmittec field is given by the pro-
duct of the incident field and the transmiision coefficient. This
transmitted field becomes the incident field at the reflection point.

At the reflection point, the radome wall is again modeled as a
planar slab. The reflection coefficient and direction of the reflected
ray are of interest at this point. The reflection coefficient is a
function of incidence angle and polarization, thus these must be known.
The incidence angle is determined in the same manner as for a transiitted
ray; except now the inward unit vector normal to the radome wall is used.

The reflected field at the reflection point is obtained by decompos-
ing the incident field into parallel and perpendicular components and
then multiplying by the appropriate plane wave reflection coefficient.
This reflected field then becomes the incident field at the aperture
after propagation from the reflection point.

The reflected ray leaves the reflection point in the direction
predicted by Snell’'s reflection law. Equation (2.109) gives an expres-
sion for a unit vector in the direction of the reflected ray when the
vectors that apply to the present case are substituted.

Not all reflected rays will intersect the antenna aperture. Thus,
it is importart to know if a given ray will be incident on the aperture.
Indeed, there is no point in performing the above calculations for rays
that do not contribute to the radar response -- thus this condition is

checked first. The method used is to ignora all rays that
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reflect at points in back of the aperture and to ignore all rays that
intersect the aperture plane at points outside the aperture peri-
meter.

The point at which a reflected ray intersects the aperture is im-
portant, because it determines the value of the aperture illumination
function to be applied to that ray during aperture integration. The
distance from the ray reflection point to the aperture intersection
point 1s also important, because phase retardation occurs over this
distance. The method used to find these two quantities is described
next.

Suppose (xr, Y. zr) are the rectangular coordinates of a ray

r
reflection point and E is a unit vector in the direction of the reflected
ray as obtained from the incident ray direction and the radume surface
normal by equation (2.109). The coordinates of a point (x, y, z),

on the ray trajectory are given by,

X =cs+X, (3.10)
y=esty., (3.11)
Z=Cs*z, (3.12)

where s is the distance from (Xr’ Yps zr) to (x, y, z) and Cyr Cyo €,
are the rectangular components of ¢ which are simply the direction

cosines of the ray. The problem is to find s such that (x, y, z) lies in

tne antenna aperture plane.

|
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The equation for the antenna aperture plane can be obtained in i

radome coordinates by inverting the matrix in (3.2) and solving for

the points, y' = 0, since these points describe the aperture plane. The

y coordinate of the aperture plane is

- tan g
Y * S8 avx tan a z + Ygr (3.13)

where a and g8 are the antenna rotation angles.

The distance, s, from the ray-reflection point to the ray-aperture
plane intersection point is obtained by substituting (3.10), (3.11), and
(3.12) into (3.13) and solving for s. This yields

tan 8 _
rcos o« ~Jr

tan 8
-c = + +
X Tos a cy cz tan o

-2z tana +y
L =3 (3.14)

The ray-aperture plane intersection point is obtained from (3.10), (3.11),
and (3.12).

Before considering some examples, the procedure for finding the
internally reflected field at the aperture js briefly summarized. The
process begins by tracing the incident ray through the radome. The
intersection points are found by a numerical technique. At the trans-

mission point the incident ray is modified by the transmission

coefficient. The transmitted ray becomes the incident ray at the
reflection point on the opposite side of the radome. At the reflection
point the ray is modified by the reflection coefficient and redirected

according to Snell's reflection law. The ray then travels to the




antenna aperture. The phase of the internal reflected field at the
aperture is determined by the transmission and reflection coefficients
as well as the propagation distances involved.

A radome with constant wall thickness (designed for 100% trans-
mission at 75° incidence) will again be used for an example. The
transmission and reflection coefficients of this wall were presented
in Figures 2-15 and 2-16. The radome is a tangent ogive with the same
dimensions (length 30A., base diameter 10A,) used before, and the
antenna aperture has a radius of 4x,. Incident fields with TE and T™™
polarization are considered.

In Figure 3-22 the magnitude of the internal reflected, TE polar-
ized field over the antenna aperture is shown for the incident angle,
@ = 70°. Recall that internal reflection does not occur for incidence
angles near axial. Seventy degrees (or 20° off axis) represents the
beginning of favorable conditions for internal reflection.

The magnitude of the incident field outside the radome is unity
in Figure 3-22 and all similar figures to follow. Thus, the neignt
of the reflected field surface provides a comparison of the relative
magnitudes of the direct and reflected fields.

It should be noted in Figure 3-22 that the reflected field is
confined to the left-rear edge of the aperture. The reason for this is
apparent in F.gure 3-21 where it is seen trat favorable conditions for
ray reflection exist only for rays to the left edge of the aperture at
high incidence angles. As the incidence angle decreases, the reflected

field spreads over the aperture.
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Figures 3-23 through 3-25 show the reflected field for incidence
angles beginning at 60° and decreasing in 10° increments. At 50°
incidence, the reflected field covers the entire aperture. At incidence
angles less than 40° internal reflection is no longer possible because
the reflected rays either pass over the aperture cv intersect the
aperture from the rear. However, multiple internal reflection becomes
a possibility at these low incidence angles.

Figures 3-22 through 3-25 were made by considering a set of rays
spaced A,/2 in a square grid perpendicular to the direction of propaga-
tion. Each ray was traced through the radome, reflected, and checked
for intersection with the rotated aperture. If a ray intersected the
aperture, the complex value of its vector components were associated
with the aperture grid point nearest the intersection point. Whenever
two or more rays intersected the aperture in the same grid cell, they
were coherently summed to produce the total field in that cell. Of
course, a given grid cell in the aperture might have several or no rays
intersecting it. The peaked appearance of some of these figures is a
result of the ray spacing. Use of a finer grid would tend to fill the
region between peaks.

The above approach is like considering the rays as centers of ray
tubes which direct the flow of energy. If two or more ray tubes inter-

sect at the ajerture, the total field is th2 coherent sum of the fields
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in each ray tube. The total field magnitude may £§ke on any value from
zero to the sum of the individual ray magnitudes, depending on the
amplitude, phuse, and direction of the individual fields.

The left-rear edge of the aperture is seen to have a high reflected
field magnitude for all angles of incidence. This is due to a focusing
effect of the radome. The concave shape of the radome surface reflects
rays to this region and the path lengths are such that the fields there
interfere constructively.

Reflected fields for TM polarization are considered next. Figures
3-26 through 3-29 contain these data presented in the same manner as the
TE case. By comparing these figures with the corresponding figures for
the TE case, it is seen that the spatial distributions of these reflected
fields are the same (since this is determined by geometry alone), but
the magnitudes are considerable less.

The difference in the TE and TM"fef1ected field magnitudes can be
explained by the wall reflection coefficients and the polarization of
the field at the reflection surface. At the points favorable for ray
reflection, a TE polarized field is mostly perpendicularly polarized
with respect to the wall; while a TM polarized field is mostly paral-
lelly polarized. Upon-referring to the wall reflection coefficients
(Figure 2-6), one sees that the magnitude of the reflection coefficient

for perpendicilar polarization is larger ttan that for parallel polari-

zation at the high incidence angles. This points out the need for a

[
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wall with a high transmission coeffient (low reflection coefficient)
at the ray reflection points as well as the transmission points.

This last point is further emphasized by considering the internal
reflection properties of the polyimide quartz radome introduced in the
last section. Recall that this wall was designed for 100% transmission
at 60° incidence, but the design goal is not achieved due to loss. The
reflection coefficients for this wall are given in Figure 3-30.

The magnitude of the internal reflected field over the aperture
will be presented as in the last example with no changes other than
the wall construction. Figure 3-31 shows the magnitude of the reflected
field for TE polarization and 70° incidence. Note that a different
scale is used for the magnitude and the peak is nearly ten times larger
than the peak in Figure 3-22. Recall that the incident field outside
the radome has magnitude of only one. The increased reflection coeffi-
cient of the wall together with the focusing effect have produced a
field with magnitude of about six at the aperture edge.

The internal reflected field at 60° incidence is shown in Figure
3-32 again for TE Polarization. This figure also shows higher field
magnitudes than the corresponding 75° wall case (Figure 3-23).

The 50° incidence angle case is shown .in Fiaure 3-33. Comparison
with Figure 3-24 shows that the internal reflections are less than for
the case of Figure 3-24. This is because =he incidence angle has now

decreased to values where the wall reflection coefficient is small.
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These last few figures indicate the reason why radome wall thick-
ness is frequently tapered in practice. By varying the wall thickness,
the radome can be made highly transparent i1 the region that fields
enter and highly transparent in the areas that would contribute unwanted
reflections.

The effect of internal reflection on radar pointing error will be
presented after the next section which concerns the composite effects

of radome-induced wavefront distortion.

COMPOSITE WAVEFRONT DISTORTION

The previous two sections have considered two factors that produce
radome-induced wavefront distortion: transmission and internal reflec-
tion. The operating radome-radar system will have pointing errors due
to these two sources and several others all acting together to produce
a composite effect.

Primary emphasis in this study is placed on transmission and
internal reflection; however, other factors may produce greater pointing
error in some systems or at certain angles in any system: In this
section some of the composite effects of transmission and internal
reflection are discussed. Also, some of the possible sources of radome-
induced pointing error that have been neglected in this study will be
mentioned.

A radome produces amplitude and phase iistortion in the wave

transmitted directly through the radome to the antenna aperture.
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Furthermore, for scan angles sufficiently far off axis (greater than
about 14° for the tangent ogive with fineness ratio of three), the
aperture is also illuminated by internal reflected fields that do not
arrive from the general direction to the radar target. Both of these
sources of aperture illumination contribute to the radar response.

The principle of superposition is used to determine the total
incident field over the aperture. Thus the total field over the aper-
ture is the coherent, vector sum of the direct and reflected fields.
As such, the relative phase and direction of the fields are important
along with the field amplitudes.

At low scan angles, the internal reflected energy is incident only
at the edge of the aperture near the reflecting surface. This energy
arrives in phase from the various reflecting points, so a large
reflected-field amplitude is observed at the aperture.

At large scan angles, the internal reflected fieid spreads over
the entire aperture. There is rapid phase variation of the reflected
field over the aperture in this case because the arrival direction is
far off the antenna axis. Later it will be seen that the radar has
little response to these fields, since their sum over the aperture is
small.

In addition to the internal reflected field, other factors contri-
bute to the total field incident at an ape-ture in a real radome. One

such factor is tip scattering. Even if the radome wall is homogeneous,

the vertex of an ogive is a source of scattered energy. This phenomena,
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which is much like edge diffraction, is due to the discontinuity in 1
surface derivative at the vertex. Frequently a missile radome will

contain a metal or ceramic insert in the tip to reduce rain errosion

and improve strength. Such a tip insert can further enhance tip scat-

ter because of the material discontinuity at the tip. Also some mis-

PPoTY

sile radomes contain a Pitot tube at the tip which is another source
of unwanted scatter. Tne effects of any of these factors are diffi-
cult to estimate. Empirical investigation is likely to provide the

greatest rewards in this area. Indeed, even the canonical oroblem of

4 scatter from the vertex of a hollow dielectric cone has not been solved 3

1 completely.

Another way energy may arrive at the antenna aperture is via a |
surface wave. A surface wave is a field that is bound to, and propa-
gates along, a material's surface. Such fields attenuate exponential- |
1y away from the surface. Surface waves may be excited on a body by a
wave that is incident near grazing, such as is often the case for a
radome. Since the surface wave attenuates with distance away from the
surface, it is likely that any effect on the radar system would be due

to interaction with the edge of the antenna near the radome wall.

Additional scatterers inside the radome can contribute unwanted
fields to the receiver. Such scatterers could include the antenna s
feed horn and supporting structure, tubing to Pitot tube, heating wires
for a radome de-icer, metal behind the antenna, etc. Any'of these

items may contribute to distortion of the received wave.
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Multiple scattering between the radome internal wall, or the wall
and one of the above items, or between any two items mentioned above, or
between the antenna and any other item, or any combination of these,
may affect the received wave at the aperture.

In order to determine the radar response to all of the above
factors, and others not mentioned, it would be necessary to solve a set
of integral equations for the fields everywhere in and around the
radome, taking into account all of the matter present and enforcing
boundary conditions everywhere. Such equations are not likely to be
formulated in the near future and can not be solved for practical size
radomes because of the limitations of even the largest and fastest
computers. For this reason, high-frequency approximations have proved
most useful in radome analysis. They provide considerable insight into
the physical phenomena involved, and they will 1ikely continue to be
used and improved.

Just as the case with antenna analysis and design, engineering
practice and simplifying approximations must be used in radome analysis
and design with systematic improvement being based on experiment.
Transmission aberrations and internal reflection are considered to be
the greatest source of radome-induced radar pointing error, but it
must always be remembered that the radar response is the composite

effect of many factors.
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RADAR RESPONSE TO WAVEFRONT OISTORTION

The effect of a tangent ogive radome on the performance of a
monopulse radar is considered in this section. Primary emphasis is
given to the most undesirable effect of the radome--radar pointing
error. Wavefront distortion produced by the radome has been discussed,
therefore this section begins by considering how monopulse signals are
obtained from the incident field at the antenna. Throughout this sec-
tion, reference is made to the aperture phase and amplitude plots of
earlier sections in order to relite the phenomena of wavefront distor-
tion to radar pointing error. The effects of various wall thicknesses,
aperture illumination functions, and polarizations are also compared.

In Chapter II the receiving properties of an aperture antenna were
discussed. It was assumed that a uniform plane wave was incident on
the aperture. The received signals were determined from the incident

field and equivalent currents representing the antenna by

means of the reciprocity theorem. The same procedure will now be used
to find the received signals when the antenna is enclosed by a radome.
As explained in Chapter II, the voltage at the terminals of an

aperture antenna, operating in the receive mode, is
V=1(1+cos a)C f [ 35 ds, (3.15)
A

where a uniform plane wave with electric field intensity, Fi, is inci-

dent at the aperture; s is the angle between the normal to the antenna

aperture and the direction to the source of the incident field; J_ is
Vs
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the equivalent electric current for the antenna operating in the
transmitting mode; C is a complex constant; the integration is over the
antenna aperture; and V is either the sum nr difference voltage, de-
pending on whether the equivalent currents used are for the sum or

difference pattern.

When radome-induced wavefront distortion is present; the inci&ent
field at the aperture is not planar and the angle, 8, in (3.15) becomes
meaningless. However, since the distorted wavefront is well behaved
over the aperture, a local angle of incidence can be found. The
incident angle can then be brought inside the integration and considered

as a variable, yielding
v=_¢ J/. (1 + cos e)fi -3; ds. (3.16)
A

In order to obtain numerical results, this integral is approximated
by a finite sum over the aperture with E' determined by the previously
discussed ray tracing procedures. A rectangular grid of sample points

is used in the aperture to find the voltage produced by the direct

N
53
m=-N N

n
with m- + n2 < N2

wave. This yields
N
—i T ] ]
Z (1 + cos emn)E . JS(mAX ,nax') as, (3.17)

where 8 mn is the incident angle at the mn-—h sample, the functional

dependence of E' . J is indicated, As is ax'ax; and N is given by

N = [D/(2ax")] , (3.18)
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with D the aperture diameter, ax' the sample point spacing, and the
brackets take the largest integer less than or equal to the quantity
inside.

The contribution of internal reflected energy to the sum and differ-
ence signals is determined from the reflected rays that intersect the
antenna aperture. As previously described, a set of regularly spaced
rays are traced through the radome, reflected, and traced to the aper-
ture plane. Those rays actually entering the aperture contribute to

the sum and difference signals according to
£ F () o1
V=_¢C :E::Z: (1 + cos emn)E . Js(x ,2') As , (3.19)

with (x')2 + (2)% < b/2

where x“and z’are the aperture coordinates of the ray-aperture intersec-

tion point, ¢__ is the angle between the antenna normal and a reflected

mn
ray, and the summation extends over all possible singly reflected rays.

The surface current density, 3;, above serves the dual role of
sampling the tangential component of the incident field (through the
dot product) and weighting the summation. The name, aperture illumina-
tion function, was given to the magnitude of 3;, and two examples were
presented in Chapter II: uniform and cosine taper. Radar pointing
error for these two aperture illumination functions will be compared

in the examples that follow.

. .
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Throughout this section the receiving antenna is assumed to be
circular polarized. This is done so that the antenna will be sensitive
to incident fields with any linear polarization. Actual missile radar
systems may transmit and receive either Tinear or circular polarization,
but the field scattered by the target will, in general, have time-
varying polarization due to the complex geometry of the target. The
assumption of a circular-polarized receiving antenna is made in order to
compare the effects of various incident field polarizations.

A circular-polarized receiving antenna can be represented by an
equivalent surface current density that rotates at an angular velocity,
w (the radian frequency of the fields), in the aperture plane. Jordan
and Balmain [42] describe how a rotating unit vector in the direction of
this current can be constructed. The rotating unit vector is composed
of two orthogonal vectors having quadrature time dependence with left
or right sense determined by their phase relationship (which vector
leads).

For the aperture antenna under discussion here, two suitabie ortho-

gonal vectors in the aperture plane are X' and Z' (see Figure 3-3).

These vectors are combined to produce the rotating unit vector in the
right-hand direction, Sr, as given by
a_ = Lz - g2, - (3.20)
2
where propagation in the -y' direction (receiving) has been assumed.

that is

The square root of two factor is necessary to normalize a

r,

dhicindiitahitaici
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make ir . Sr = 1. Recall that one vector is conjugated when taking dot
products of complex vectors. (The "unit" vectors given by Jordan
and Balmain have not been normalized.)

The left-hand unit vector is simply the conjugate of (3.20). It
is not difficult to show that Teft and right circular polarizations are
orthogonal. Left-circular polarization will not be considered here.

The equivalent surface current density, 3;, for the aperture

antenna can now be written as
Jg = 9lr.e) & (3.21)

where g is the (scalar) aperture illumination function, either uniform
or cosiqe taper here.

A computer program was written to perform the numerical aperture
integration described in this section. The fields at the antenna are
calculated by ray tracing. The radome wall transmission and reflection
coefficients are calculated and stored at 3° intervals before any
aperturé integrations are performed. Whenever a transmission or
reflection coefficient is requiréd, the three closest stored values

are interpolated with a second-order polynomial to provide the desired
coefficient. This interpolation scheme was found to provide better

than five decimal-place accuracy, which is well within the accuracy of

other approximations used.

The complete program used for radome error calculation is listed

in the Appendix.
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This program has two options after monopulse signals have been
computed. The first is to reposition the antenna to the angles indi-
cated by the computed monopulse signals. Indicated errors are then
recomputed and the antenna repositioned according to the new indicated
angles. This procedure is repeated until the antenna is repositioned
less than a user-specified amount. Radar pointing error is then the
difference between the pointing angle of the antenna and the angle of
the incident field.

The second option is to define radar pointing error as the angle
indicated by the monopulse signal when the antenna has no pointing
error. This option was included in the program when it was discovered
that after the initial repositioning of the antenna according to the
first option, the next indicated errors were consistently zero within
numerical accuracy. Thus, both options provide the same resuits, but
the secend requires only about half the computer run time. The pointing
errors presented throughout this work are the indicated errors according
to the second option.'

Some examples of radar pointing error are now considered. For
each of these examples, the radome is considered to be a tangent ogive 3
with constant wall thickness and fineness ratio of three. The radome

base diameter is 10i, and the antenna aperture diameter is 8i,. The

antenna gimbal point is 2i, above the radome base plane (yg = 2X, in

Figure 3-3). A1l these conditions are the same as for previously

presented examples.
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The antenna aperture can be rotated in two orthogonal angular
directions: the a and 8 scan angles of Figure 3-17. Radar pointing
error for a given scan direction is definec as the scan angle of the
antenna minus the scan angle of the incident wave. Pointing errors in

the a scan-angle direction are called in-plane pointing errors since

they are in the plane formed by the incident field direction and the
radome axis. Pointing errors in the g8 scan-angle direction are called

cross-plane pointing errors.

A radome with the wall design for 100% transmission at 75° is
considered first. The transmission and reflection coefficients for
this wall were given in Figures 2-15 and 2-16. The incident field is
polarized in the principal polarization directions, TE and TM, but
the right-hand circular component of these fields is detected at the
aperture.

The in-plane pointing error for this case is shown in Figure 3-34.
The aperture illuminiation function is uniform. Pointing error is shown
as a function of the a scan ang]g and the effect of including internal
reflection is illustrated. Note that internal reflection has no effect
on pointing error for scan angles up to about 14° since internal
reflection is not possible for these angles.

In the TM case, the internal reflected fields cause almost no
change in pointing error. But in the TE case, internal reflection
causes a oscillation in the pointing error about the no-reflection

value. As was seen in Figures 3-22 through 3-29, TE polarization
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produces much larger reflections to the aperture than TM polarization.
The perturbation of the TE pointing error is thus related to the inter-
ference between this larger reflection and the direct wave.

It is also noted in Figure 3-34 that the pointing errors are nega-
tive for all scan angles (except TE at 0° to 6°). This is due to the
slope of the phase front of the incident field at the aperture. As
was shown in Figure 3-5 through 3-8 and 3-10 through 3-13, the average
slope of the phase front over the aperture is positive in the z' direc-
tion when the aperture has zero pointing error. This means that the
aperture must scan in the negative « direction in order to become
aligned with the average phase slope, so the radar pointing error is
negative.

Next, consideration is given to the effects of substituting a
different wall design in the above example. The wall design for 60°
incidence previously presented will be used. The transmission and
reflection coefficients for this wall were given in Figures 3-14 and
3-30. In-plane radar pointing error for this wall design, but with all
other parameters the same as for Figure 3-34, are presented in Figure
3-35.

Note the differences. Beginning with zero pointing error on

axis, the TE error curve increases while the TM error curve decreases.
Maximum error is larger and occurs at a lower scan angle than for the
75° wall design. It was shown in Figures 3-15 and 3-16 that for the 60°

wall design and 10° scan angle, the average phase slope across the
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aperture in the z' direction had different signs for TE and TM polariza-
tion. These different phase slopes lead to radar pointing errors in
different diractions. This could have serious implications for the
tracking radar, since the indicated direction to the target could

change by a large amount simply because of a change in the incident
polarization.

The effect of internal reflection in Figure 3-35 again begins
at a scan angle of about 12°. But now instead of causing a small per-
turbation on the no-reflection error curve, internal reflection causes
large deviations from this curve. TE polarization is again seen to have
the greater sensitivity to internal reflection effects. The large
reflected fields that illuminate the aperture, as seen in Figures 3-31,
are responsible for these ]arge.errors.

At large scan angles, say greater than 45°, internal reflection
produces little effect on radar pointing error. As previously discussed,
the reflection surface becomes highly transparent at the larger scan
angles, thus less reflected energy is entering the aperture. Also at the
larger scan angles, the reflected field has several cycles of phase
variation over the aperture; thus, the integrated response to internal
reflection is smaller. This last effect is similar to the response to
a plane wave that enters the aperture through a side-]obe of the antenna
pattern.

The effect of the aperture illumination function on radome-induced
pointing error is considered next. In Chapter II it was noted that

uniform aperture illumination produces a far-field antenna pattern
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with a narrower main lobe than cosine tapered illumination, but higher
sidelobe levels are associated with uniform illumination. When receiv-
ing, the aperture illumination function serves to weight the incident
fields during aperture integration.

In-plane radar pointing error for the two principle polarizations
and both aperture illuminations are shown in Figure 3-36 for the 75°
wall design and in Figure 3-37 for the 60° wall design. Internal
reflection is included for both figures. In each figure it is seen that
cosine taper reduces the effect of internal reflection. This is
because cosine taper reduces the contribution of fields near the aper-
ture edge to the aperture integration.

However, at low scan angles, the radar pointing error is greater
for the cosine-tapered illumination. This is thought to be due to the
effect of fields near the shadow of the radome tip. In this shadow

region the field is highly distorted because of the large variation of

incidence angle in the tip region. At low scan angles, the tip shadow
1s near the aperture center (the region given highest weight by cosine
taper), thus the aperture is responding to the most distorted part of
the incident field.
So far, only polarization in the pure TE and TM directions has been ;

considered for the incident field. Radar response to a diagonal, linear-

ly-polarized incident field is now considered. Such a field has both TE i

and TM components as given by equation (3.9). The polarization angle,

Y, indicated in Figure 3-17 will be used as a parameter. Diagonal
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polarization leads to both in-plane and cross-plane radar pointing
errors, as would be expected from the phase-front plots presented
earlier.

In-plane radar pointing error versus scan angle, a, is shown in
Figure 3-38 for the 75° wall design and in Figure 3-39 for the 60°
wall design. Error curves are plotted for the polarization angles
indicated. Uniform aperture illumination is used for both figures; and
the effect of internal reflection is included. In Figure 3-38, it is
seen that little variation in pointing error occurs as the polarization
is changed. This is due to the near-equal insertion phase delay of the
75° wall design for parallel and perpendicular polarization. Thus, the
phase delay in passing through the radome wall will be about the same
whatever the incident polarization.

Something very different happens with the 60° wall design. The
opposite-sign errors for TE polarization {y = 0°) and TM polarization
(y = 90°) have been pointed out. Pointing error is now observed to take
on intermediate values between these two as the polarization angle
changes. The phase front across the aperture for a = 10° was shown in
Figures 3-15 through 3-20 for each of the linear polarization angles
considered. It is interesting to see how the phase slopes relate to
the radar pointing errors. |

In addition to an average slope in the z' direction across the

aperture, diagonal polarization leads to an average slope in the x'
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direction. This average phase slope in the x' direction produces radar

pointing error in the B8 scan angle or cross-plane pointing error. Mono-
pulse signals are formed for the 8 scan direction in the same manner as

for the a scan direction. The tracking radar measures the angle to the

target in both the o and 8 directions simultaneously and repositions the
antenna to obtain zero indicated error signals in both angles.

The antenna has zero cross-plane error when 8 = 0 according to the
convention adopted for the incident field (see Figure 3-17). The cross-
plane pointing error is thus taken to be the 8 scan angle of the
antenna when the cross-plane monopulse signal is zero.

Cross-plane pointing error versus a scan angle is presented for
the two radomes previously used for examples. Figure 3-40 is for the
75° wall design and Figure 3-41 is for the 60° wall design. Note that
both radomes have zero error at o« = 0, but the cross-plane error for the
75° wall design rises slow and almost monotonically, while that of the
60° wall design rises to a peak at about a = 10° and then decreases to
small erfors past o« = 30°.

At first thought, it would Qeem that Figures 3-40 and 3-41 contain
mistakes since the cross-plane error is not zero for 0° and 90° polariza-
tion, the cymmetrical polarization states. The apérture phase front
plots did show these fields as being symmetrical about x' = 0. But that
which was plotted in these figures was the component of the field at the
aperture with the same polarization as the incident field. Radome-
induced distortion has mirror symmetry about the x = O plane. A TE or

T™M polarized antenna also has symmetry about the &' = 0 plane. However,
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a TE polarized antenna would have no cross-plane error at any scan angle
when a TE polarized incident field is present; likewise a TM antenna has
no cross-plane error when a TM field is incident.

The errors plotted in rFigures 3-40 and 3-41 are for a right-hand
circular-polarized receiving antenna. The circular-polarized anten-
na does not have mirror symmetry about the x' = 0 plane. Thus the
circular-polarized antenna does not have zero pointing error even
when symmetrically distorted fields are present.

A circular-polarized antenna has been used here so that the same
antenna will receive all incident linear polarizations. If a linear-
polarized antenna were used, the received signal level would drop sub-
stantially for cross-polarized incident fields. The radar pointing
error due to a poor signal-to-noise ratio is likely to be much greater
than the radome-induced pointing errors.

Pointing error curves for incident fields having the same polariza-
tion as the receiving antenna (RHC) are shown in Figures 3-38 through
3-41. For this case, no cross-plane error is present (again due to
symmetry considerations). Both Figures 3-40 and 3-41 show that the
pointing error for 0° polarization and 90° polarization are almost
equal and opposite. Since circular polarization is made up of equal
parts of these two polarizations, the net pointing error is zero.

It is also noted in the cross-plane error curves that maximum

error is for 15° polarization at all scan angles. This is the polariza-

tion angle with maximum asymmetry.
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In this chapter some fundamental concepts have been applied to
obtain approximations for radome-induced distortion. Although the
approach take1i has been quite simple, it provides good insight into
radome behavior. Throughout the chapter the relation of wavefront
distortion to pointing error was stressed. Several of the factors
necessary for a good radome have also been pointed out. Next, a tech-
nique to compensate for pointing error and some additional information

available from monopulse are considered.

i e e et et




IV. RADOME-INDUCED RADAR POINTING ERROR CORRECTION

In this last major chapter, an error compensation technique is
presented. The technique is easily implemented and should be quite
effective in the digital-computer-controlled radar systems of today and
the future. The second section of the chapter treats the relation of
the complex indicated angle and radome-induced wavefront distortion.
The relation of the complex indicated angle to some other sources of
distortion has been presented in the literature, but treatment of the

radome problem is thought to be new.

ERROR_COMPENSATION

The concept of error compensation is very simple: if the error
characteristics of a system are known a priori as a function of system
parameters, then the error can be removed from the measured output to
yield an error-free measurement. Of course, a sufficiently simple
system is required so that each output can be uniquely associated with
a given input. This is the case for radome-induced radar pointing
errors.

The traditional approach to radome-induced error reduction is trial
and error. Beginning with a wall design optimized for other system
considerations (strength, errosion resistaice, thermal properties, etc.),
the pointing arrors are then measured. Next the radome is "patched-up"
by applying layers of dielectric tape to parts of the radome interior.

The errors are measured again and the process is repeated unti) a con-
156
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figuration having acceptable error characteristics is found. It is
obvious that this procedure requires considerable experimental time
spent by very experienced personnel. All this adds up to high costs.

In 1976 Loyet [43] presented a scheme for digitally compensating an
angle tracking system for radome-induced error. The technique involves
measuring the error characteristics of the system only once. The
measured errors are then stored as a function of scan angle. In flight
the radar is allowed to track normally, but the angle sent to the guid-
ance computer is the actual angle of the antenna minus the pointing
error for that angle as obtained by interpolating the stored error
values.

There are several advantages of this technique over the traditional
method. The system need be measured only once, thus range time is saved.
No high-level expertise is required, as for patching The technique is
easy to implement with a microprocessor, which adds negligible weight
to the system and can be tucked away in any unused space. By increasing
the number of stored error values, the pointing error can be reduced to
arbitrarily low levels; while some error always remains due to patching.

The remainder of this section presents a compensation scheme based
on the error calculations of the previous chapter. An angle compensator
will be easier to implement if 1ittle error is already present; thus a
radome design having low initial error characteristics should be selected
as a starting point. For the example to bi: considered here, the tangent
ogive with constant wall thickness designed for 75° incidence will be
used. The in-plane pointing error for this radome with the previously

used antenna were presented in Figure 3-38.
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Compensation for pointing error is accomplished by subtracting the
pointing error at a given scan angle from that scan angle to obtain a

new estimate of the target direction. The new estimate is given by,

a' =a - ags (4.1)

where a' is the new estimate of thea scan angle to the target, a is the
scan angle of the tracking null, and g is the in-plane pointing error
at a.

The scan angle to the target takes on a continuous range of values,
but the errors can only be stored for a finite number of angles. To
obtain the error for an arbitrary scan angle some sort of interpolation

is necessary. Two methods suggested by Loyet for doing this are 1. to

fit a polynomial to the nearest data points and 2. to fit an analytic
expression to the entire set of data. The approach taken here is to
simply perform linear interpolation between the nearest two data points
to obtain a value for g A scheme using second-order interpolation
of the three nearest data points was found to offer no significant

improvement.

The in-plane pointing error curve for 45° polarization was selected
for the reference error curve. As seen in Figure 3-38, this error curve §
is near the average overall polarization angles. Reference data was i

stored for 6° increments beginning at « = 0. Figure 4-1 shows the error

in o' obtained by (4.1) as outlined above. This figure should be
compared with the original error curve, Figure 3-38. The difference in

ordinate scales is over six.

- 4
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Again error curves are shown for five polarization directions (y in
Figure 2-17). The error for 45° polarization is zero every 6°, and the
other curves are generally on opposite sides of the 45° curve depending
on whether y is more or less than 45°,

The new pointing errors are smaller than the original at all scan
angles except near zero where the compensation scheme actually increases
the error. This is because linear interpolation of the error between
0° and 6° gives a negative error curve, while the actual error is posi-
tive. A better interpolation scheme might begin at a = 4° and not
apply error correction to angles less than 4°. Details such as this
would need to be worked out for an actual system. This example is
presented only to illustrate the method.

Another benefit of the error compensator is that the residual
error curve is more rapidly varying and noise-like. This actually
improves the system performance. Recall that one of the primary func-
tions of the radar is to provide angle time-rate of change to the guid-
ance coﬁputer. In the tracking scenario, the target is initially far
off axis and moves toward the ax{s throughout the flight.

When the slope of the error curve is positive the radar will
over estimate the angle rate of the target. Oscillatory flight charac-
teristics may result as the missile trajectory is changed to intercept
what appears to be a target with a high angle rate. When the error slope
ts negative tlie target's angle rate is under estimated. This results
in a sluggish missile response to target motion. Thus, the uncorrected
system will over estimate the angle rate at the beginning of flight,

while near the end of flight the rate will be under estimated.

EPVRCRO ON
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Kuehne and Yost [44] have shown through computer simulation of
missile flights that greatest accuracy is achieved when the radar
pointing error changes slope frequently. Under these conditions,
periods of target-angle-rate over estimation are rapidly followed by
periods of under estimation and vice-versa. Filtering by the guidance

Toop and missile dynamics can reduce the effects of this type error.

1 Thus the error tends to average to zero instead of having effects that
accumulate with time.

The simple error correction technique presented here has great

promise and should receive further attention in both system simulation
studies and experimental verification.

This section will conclude with some comments on cross-plane errors.
Cross-plane errors result from asymmetry in polarization and aperture
i illumination function. After the above discussion of in-plane error
| correction, the next question is logically--can the same thing be done
for cross-plane errors?

Recall from the cross-plane error curves, Figures 3-40 and 3-41,
that at a given a-scan angle the error is a function of polarization
E angle (y in Figure 3-17). The cross-plane error is a zero-mean function
; of y at any fixed scan angle. It can be shown that the cross-plane
;

error curve versus y has half-wave symmetry with period, I, that is,

Bo¥) = -8o(y +1/2), (4.2) ;

where Be is the cross-plane error, y is the polarization angle, and a

is fixed. This is for a linear-polarized incident field and a circular- {
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polarized receiving antenna. For a linear-polarized receiving antenna
the cross-plane error would be odd.

If the polarization of the received wave were linear with a rapidly
changing radome direction with zero mean, the cross-plane error indicated
by the radar would be zero. Also if the received wave were same-sense

circular polarized there would be no cross-plane error, as seen before.

Further consideration of the cross-plane error problem must be coupled
with some knowledge of the scattering properties of the target.

As a last comment, it is noted that a very "smart" radar system
could resolve the polarization of the incident field by use of a dual
polarized antenna and necessary signal processing. Having determined

this, error correction could be made as outlined before.

COMPLEX INDICATED ANGLE AND WAVEFRONT DISTORTION

In this section, a somewhat more general measure of radar pointing
angle is discussed. This measure is known as the complex indicated angle
(CA). In Chapter II, the incidence angle of a plane wave impinging on a
radar antenna was determined from the ratio of the sum and difference

output voltages by

o =K' Ret=dly (4.3)

where 8 is the incidence angle measured from boresight, K is the slope of

the normalized difference pattern at boresijht, and A and £ are the dif-

ference and sum voltages respectively. {see (2.40)}
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The real operator (Re) in (4.3) is not necessary when a plane wave
is incident on the antenna, since it was shown in Chapter II that A and
g are in phase quadrature in this case. However, when the incident field
is not a plane wave, the phase of A and I generally differs by some-

thing other than 90°. In this case, the angle indicated by the radar

may be considered as the complex quantity,

CA = K-][:%Aﬂ ) (4.4) 1
Since a complex indicated angle is due to a non-planar wave at the antenna,
the term "direction to the target" may have no meaning. However, the real
and imaginary parts of the CA are due to specific attributes of the in-
cident weve and, therefore, do provide information about the incident
field.

Sherman [45] was the first to study the complex indicated angle.

R

This work considered a distorted wave at the antenna due to the inter-
ference of two far-field targets with different amplitude, phase and
direction. He showed that by processing the CA from several radar re-

turns, the direction to each of the two targets could be determined

although the targets were unresolvable with an ordinary monopulse radar.

Sherman [46] further extended the theory of the CA to include the effects

of multipath providing the second target return signal.
Peebles and Goldman [47] also considered the CA method for targets

with multipath by examining the effects of the terrain surface reflecticn

coefficient and system noise. They showed that the CA method provides




164

significant improvement in target location when the signal-to-noise
ratio is greater than 20dB and the surface is almost planar. Sub-
sequent experimental work [48] indicated that the assumption of a
planar terrain was a severe limitation to the CA method for multipath
because the roughness of the actual terrain led to diffuse scattering
which caused ambiguities in the locations of the target and image.

To see how the complex angle method works for two targets or a
target and its image over a planar terrain, consider two unequal am-
plitude plane waves incident on a monopulse antenna near boresight at
angles 61 and 8, as measured from boresight. By the principle of super-
position, the total sum and difference output voltages are the suber-
position of the voltages produced by the two plane waves acting alone.
Thus, the complex angle is

cA = k71 [19473% (4.5)
S IR
where subscripts identify the source of the signals.
Since the signals arrive from near boresight, the difference

voltages may be written in terms of the sum voltages and the angles of

arrival by the use of (2.40).

This yields,

(4.6)
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Dividing numerator and denominator of (4.6) by I simplifies the ex-
pression for CA to

_qle, + 8,2 exp (j¢)
= k12

1 +a exp (§¢)
where zz/z] has been expressed as an exp (jo). This is the general form
for the complex angle produced by two plane waves.

Several things are to be noted about CA. First, if signal 2 van-
jshes, (a=0) then the radar indicates the direction to the source of 1,
8. Likewise if 1 vanishes, the indicated angle is in the direction of
source 2. However, if both signals are present, the CA is truly complex
and CA depends on the ratio of amplitudes and the phase difference as well
as the angles of arrival. The real part of CA is no longer an indicator
of the direction of arrival of either wave and in fact, it may indicate
the "source" to be well outside the angular region subtended by the two
targets, a fact confirmed by glint and multipath studies.

The complex angle technique for resolution is based on the ob-
servation that the CA (4.7) is a bilinear transformation [49] of exp (js).
Hence, as exp (j¢) traces a circle in the complex plane as ¢ varies
through 360°, the CA also traces a circle in the complex plane. The
radius of the CA circle is determined by the constant a.

The method proposed by Sherman was tc display the CA on a properly
calibrated oscilloscope screen. Since the relative phase of the two
target returns, ¢, will be rapidly varying due to the motion of the tar-
gets, the spot on the screen would trace a

circle. The constant a is then determined from the circle radius.

(4.7)

ciaatiaoi it
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Equation (4.7) could then be solved for 8, and e2 by decomposing the
complex equation into two real equations.

Althougt the above approach gives the mechanics of the complex
angle technique, it is only a signal analysis approach and gives little
insight into the structure of the fields that are incident on the aper-
ture. Radome-induced wavefront distortion is the source of a complex
indicated angle which is far more complicated than the two plane wave
case. In order to understand how this arises, it is necessary to begin
at the aperture.

To illustrate how the CA arises for radome distortion, the aperture
integrations used in Chapter III will be reduced to one dimension and
the incident field will be assumed to have only one vector component.

With these restrictions, the aperture integration (3.15) reduces to
W,
L= U/Pf(x)g(x)dx, (4.8)
-W

W,
= f dx, 4.9
8 _wf (x)g4(x)dx (4.9)

where f(x) is the incident field; g(x) is the sum illumination function,
gd(x) is the difference illumination function, and 2w is the aperture
width. Recall that g must be even and 94 must be odd. Also g and gq are
assumed to be real.

The incident field, f(x), is a comple: function and can be decom-
dosed into the sum of even and odd functions according to

fmfgt 3fig *+ fo+3f

re ; (4.10)

io
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where subscripts e and 0 are for even and odd, subscripts r and i indicate
real and imaginary, and each fxx is real. The sum and difference signals

can be written as

£= + s, (4.11)

A= Ar + jA'i (4.]2)
where '

z, /f g dx, (4.13)

Z; /ﬂe g dx, (4.14)

5. J/}ro gy 4, (4.15)

b5 i/‘fio gq 9% (4.16) i

the limits of integration are as for (4.8) and full advantage has been

taken of the properties of even and odd functions integrated over sym-

metrical limits. The complex angle is now expressed by

-1 84794,

CA = K~ 7=
L HiL; (4.17)

which can be rewritten as Z

=L, -j{z.a, +
-1 (er1 z1Ar) J(Z1A1 ZrAr)

CA = (4.18)

2 2
Ip * I

Recall that in the case of the single off-axis plane wave the even and oid

components ar2 in phase quadrature and (4.78) predicts a purely real CA.
Examination of the imaginary part of (4.18) reveals that CA becomes

complex when the sum and difference voltages are no longer in phase qua-

rature. This may arise in the case of two or more plane waves incident an
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the aperture or because of radome distortion. One of the goals of this
study has been to determine if the imaginary part of the CA would pro-

vide additional information that could be used to reduce radar pointing

‘ error due to radomes. After examination of the simulation results of

i the previous chapter, it was concluded that the imaginary part of CA could
not be uniquely related to radar pointing error but appeared to correlate

g with phase front curvature. Thus, this quantity is not considered useful

for pointing error correction.

S TR TET e T




V. CONCLUSION

A high-frequency analysis of the tangent -ogive radome has been
presented. Geometric optics has been used to account for propagation
of the electromagnetic field inside the radome that is due to a plane
wave incident on the exterior. Transmission and reflection of the
field at the radome surface was obtained by treating the wall and the
wave as locally planar and applying plane-wave transmission and reflec-
tion coefficients. The principles of monopulse radar were also re-
viewed.

It was shown that radar pointing error results from distortion in
the incident field at the antenna. Such distortion is caused by the
transmission properties of the wall and by reflections from the wall
interior. Both these distortion mechanisms were seen to be functions
of incident angle and polarization. Pointing errors were found for both
scan planes of the antenna aperture. It was seen that asymmetry of the
incident polarization leads to cross-plane errors while in-plane errors
exist for any polarization state.

Complex angle processing for the purpose of pointing angle reduc-
tion was investigated based upon the simulation described above. It
was concluded that the complex angle could not be uniquely related to
radar pointirj error, but rather appeared o correlate with phase front

curvature. This quantity is not considered useful for pointing error

correction.
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A simple, but effective, method to compensate for pointing error
was demonstrated. This technique could be applied to any radome with
good results.

This analysis has considered some of the fundamental factors that
give insight into radome performance. Evaluation of the results pre-
sented can only be based on experiments that both validate and indicate
areas for improvement. Such experiments would certainly include com-
parisuns of this work with measured pointing errors and with plots of
t the fields inside the radome. A very interesting area for future work, o
‘ both analytical and experimental, is the effect of the radome tip. Tip

effects may well account for many differences in measured and theoreti-

cal results. .
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APPENDIX

This appendix contains a complete listing of the FORTRAN program
used to compute radome-induced radar pointing error. The program is
extensively documented and even a cursory reading of the comment cards
reveals much about the computations that are performed.

The program requires approximately three seconds for an IBM 370,
Model 155 to execute one aperture integration over an 8A° diameter
aperture with %AO spaced rays, including reflected rays. Subroutine
RTMI, called by subroutine INTRSC, is contained in the IBM Scientific
Subroutine Package (SSP) [39] and, therefore, is not contained in this
listing.

The surface plots presented in Chapter IIl were generated by a

modified version of a plotting program presented by Watkins [50].
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MAIN 1

THIS PROGRAM CIMPUTES RADAR PIINTING ERROR
FOR A CIRCULAR POLARTZZD ANTEINMA UND:R &
TANGENT OGIVE RADGME

THE INCIDENT FIELO IS LINEAR PCLARIZED
FADLR POINTING ERROR IS CALCULATED FCR VARYING
ANGL IS CF INCIDENCE AND POLAPIZATION DIRECTION

OO0

REAL ARG(90) +=RRRCA(90) +ERRRCB(5Q)

RZAL CAAMPLISO) sZALMP2(90) +CAPHS1(SDO) yCAPHS2{(9D)
CIOVYPLEX EXIZWEVIWEZloZPEXEPEYEPEZ,CSPAX,CPAY,EPAL
COMPLEX TPERYyTPAR+RPIRJRPARICEXPL,CMPLX S/ (009 lald/
1 CIMPLEX SUM?2,S5UMB,DIc2,DIFS3

COMPLIX EXT W EYTHFIT,ETTM,,FXRH, YR, IRy ZRTM

COMPLZIX PHASTS o XITZySYITE v 2ZITE ZEXITM,EYITM,EZITM
1 -COMPLEX FMAGl, cMAGR2.PHASIR,CLA4,CAS

‘ COMPLEX SPANML +ZPANX L SPANY ZZFEANZ,,ZRGHT

REAL NXsNYsNZ,MINOSF(3),Pl /43141593217

INTZGER LABEL(2)/*ALPHY, 'BETLY/

EAUT VALENCE (XPoXM) ot ZPsZM) s (COSANGeLZ )y (SINANG,AY)

COMMON/RDATL/ AL2¢CoXM2:,TTHETA,RAD ART
COAAMTN/MESFOS/ XM YM, IM

COMMION S ATIGHT/ APRAL ¢IMS,HCAP

r COMMON/TH/ THIK

PHESDR(X)=CMPLX(CISIX)» SIN(X))

DTR=PI/180.
RTC=130./P!
SORT 2=S0Q0FT{2.0)

O

INITTIALIZ2F TRANSMISSION COTFFICIENT 4ARRAYS
CALL INITI31)

[a N el

ALL DIMSMSTIONS IM MAIN ARE NIPMALIZLT TI WAVILCNGTH
BZTAK=2,%P1!

PADOMZ PARAMITSRS (OUT 3F SUZFACE)

RAD RADIME RADIUS AT BASE

W FADNMS DIBMEITIR 27T 3A3°

APCUOUT RADOMT GENECAT ING ARC

FIMESS RACIMI HIIGHT/D[A4ITER

YG CISTANCE JF GIM3SL PUINT FROM BASE PLANE

IO OO0

REeD RADIME HMN2 ARTENYA DAQLNVITINS
RIAD (3479 ) FADWFIIITEZ Y5, L4PD12

ALiT1 PRAGILCABLE
45 TOBDC e

THIS PAGE 1S BL’T Q’
FPRUM COY 2 Crale
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201 FORMAT(4FY0.0)
RADIN=RAD-THIK
RADIN2=RADIN*RADIN
W=2,*RAD
ARCOUT=(SINESSHFINESS+0.,25)*%A
ARCIN=zARCOUT=THIK
CsARCOUT-P2D
HIGH=SAP T{ (2. ARCIOUT~RAD }¥RAD)

©O O

WRITE RADCME PARAMETERS
WRITZ{6s105) WeHIGH,FINESS
105 FIARMLT(® VL ERADOME DATAY o/ 0! 328T=1,FTa%s />
#0 HETGHT =" oFTede /0! FINENESS RATIO=",F6e24//)

e el

READ CAMPUTATICN 3JPTICNS
READ(SoZOZDHLNGoIMSoIRFPOS.MAXPNT.NAHGE:IPEFL-
#0TLANG, CFLZy ZRRYAX
202 FORMAT{12,511,3X,3F10.0)
APRAD=APDIA/2.
DELX=0ELZ
NUMSL2=APCIL/DELL*1.5
NUMELX=NUMELZ
FIRSTZ=NCLI* (NSATLZ/2])
MONJSF(19=1.028/(1.,617*2°DTA)
MAMGSE(2)1=1629€5/ (1,912 T=APDIA)
ERRMAX=FRRMAX®]JTR
WRITE(6,123)YG,APDIA,IMS,IREPTIC,IREFL
103 FORMAT(Y ¢, 'ANTZHNA GIMBAL PRINT =0y F4 420" LAMDA'Y/
49 PPIRTURL DIAMETIk =1,F 4.2y ' LAMCA', /! 143=t, 12y
#/7.% IREPDS= ', 12,7/, IREFL=',12)

c
c IF IRFPOS=1 AMTENNA IS RIPISITIONED UNTIL RzAL(CAIL
c ERRMAX, AND ERKOR IS GIM3AL ANGLE-INCIDENT ANGLEZ
c ‘
c IF IRFPOS=0 ANTENNA IS NIT P:POSITICNEC AND IFRIR IS
c REZL (CA) WHEN GIMBAL ANGLZ IS AT INCIDENT aNGLE ?
i
CANGZ=90.0/(NANGZ~1)*DTR
c
DO 700 I TETM=1,NLIGE
ANGE=(ITE"M=1) *DANGE
SIMAN==S TN (ANS"
COSaME=CAS(ANG 1)
03 4U0 lANG=1+4ANG
C COMPUTE AMGLE JF INCIDTNT wAVISRONT

AGT=G ) e~ (12%56-1)*DZLANG
WRITT (6,104) ANGI

THISPAGEISBESTQUALI:Y;?AGTIG%%?E
JFROM COLY TR Loiia TOBPC o e
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MAIN 3

104 FORMATIL® ¢, *INCIDENT ANGLE=' yF6e2+'DEGREES!)
ARG(IANG)=90.0-ANGI
ANGY =ANGI*DTR
TTHE TA=TAM(ANGI)

COMPUTE DJIRECTION COSINES JF INCIDENT RAYS
OUTW2RD DIRECTION ASSUMED PCSITIVE

4 AX=0.0

AY=SINIANGI)

AZ=COS(ANGI)

s e Ne

FIM) DIRECTION JF UMIT AMPLITUDE INCIDENT E-FIELD
TE TO Y CASE: EXI=1.0y CYI=0.0, £21=0.,0

e NeNa NS Ne!

TM TO Y CASE: EXI=0Q40s EYI=¢COS(ANGI )y EZI==-SIN(ANGI)
EXITEO=1.0

O

EYITMO=CIS{ANGI)
EZITMO==SIN(ANGI)

(O

SET INITIAL POINTING ANGLE TC INCIDZENT ANGLE
ALPHA=90,0*DTR =ANGI
RETQ =06 0

D2 302 IPDINT=LleMAXPHT

(@]

CASALF=CNS(ALPHA)
SIMALF=SINIALPHA)
COSRET=CUS(BITA)
SIMBET=CIN(BETA)
TANALF=TAN{ALPHA)

SUMA AND CIFA ARE MINJPULSZ SIGNELS IN THZ
IN-PLANE CIRFCTION (ALPKH? SCAN ANGLZ)

SUMB ANMD CIFB ARS MONJPULST SIGNALS IN THE
CROSS-PLALT CIRZCTIZ2HN (23TA SCAN AMGLE)

e Ne el Ne R NS Ne]

2537 SUM £WD DIE
SUM4 3(00000’
i SUMB =(04s04)
DIFE =((as0s)
DIFS =(0es00)

JRC=ARCCUT .
AL2=ARC*{RL

[ X'}

PERENRA APERTJNZ INTZIGRATION JF OIRECT FIgLD

a1 1TY PRACTICABLE
'FAuLLbbbd;QUALlIXFﬁA - .
o ¢ BBC — l

FRUM COrY B U iohsy
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MAIN 4

DO 50 IX=1,NUMELX

XMO=FIRSTZ-{IX=-1)*JELX

(XMoYMy Z4) ARZ RADOIME CIIRDINATES OF INTEGRATION POINT
(XMO 404 9 ZMO) 2PERTURE CODJPOIMATES OF INTEGRATION POINT

OO

DO 150 LI=1.NUMELL
IMO=FISRSTZ-({LI-1)*DELLZ

aa

CHECK FOR MZASUREMENT POINT CUTSIDE APCRTURE
RHIAP=SQRT ( ZMO*ZM I+ XMO*XM] )
IF(RHOAPLGTLAPRADIGO TJ 150

c ROTATE ANTENNA SAMPLE PCINTS FCR THE GIMBALED ANTEMNA
XM=C OSIET* XMD
YM=COSALFRSINS STaXMO~-SINALF®RIMO+YG
IM=S INAL FxSINBET ®XMO+CIS 4L ©*ZM0

OO0

FIND INTEESECTION OF RAY AND RADIME
IRT =SQRT (RAD*RAD=XM*XM™)
CALL INTRSCUXsYoZ0vIMyZR1)

FIND SURFACE NOIORMAL AT FAY-FALDOME INTERSECTION
CALL MORMUX Y ZoeMXoeMY4NZ)

[ Xe} [aNa}

DETERMINZ INCIOJEINT ANGLE OF fAY AT TSANSMISSION PIINT
THETAI=ARCOS{LYENY+AZ%MNZ)

FIND BINCRMAL
B=(N X &)/AES(N X A)
CALL CROSS(NXoNY s NZo0a0sAY,AZ4BX,BY,32)

oD

[ NS

COMPUTE COMPLEX INCIDSNT FRISLDS AT ANTENNA
PHAS S=PHASUR(BITAKR{ZU®AZ+YMrAY) )

(g}

EXITE=EXITFO*PHASZ
EYITM=ZYITMO*PHASE
RIITM=2 Z1TMO*PHAS:E

FXIsEXTTESCOSLNE
EYI=EYITM®SINANE
EZT=C7ZITM»SINENG

£ COMPINENTS

FIND PARALLLL AND PLRPZINDICUL AY
ISIT4 PZINT

~E IHCIDENT FISLD AT TRANS 4!

VDO O

TG LA X XI+AYREYI+52¢7 21
TPEX=RX ¥ MG
i01Y=3Y=IMAGL
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MAIN 5
EPEZ=BL%SMAGL
EPAX=EXT-EPEX
EPAY=EYI=-EPEY

EPAZ=EZ1-CPEZ

FIND TRANSMISSION COEFFICIZNTS
CALL TRANST(THETAI.TPIR.TPAR)

EXT=EPFX*TPER+EPAX*TPAR
EYT=FPIY*TPCR+EPAYXTPAR
ELT=EPELATPER+EPAL*TPAR

FIND TM COMPONENT OF TRANSMITTED RAY
ETTM=COSANG®EY T-SINANG*EZT

COMPUTE RHC CCMPONENT AT ANTINNA
ERGHT=(ZXT=J*ZTTM)/SQRT2

SUVA =SUMA+WSUM{ZMO)=ERGHT
DIFA=DIFA+ADIF(ZIMII¥ZRGHT
SJMB =S M3+ ASUM LI XMI)*EIGHT
DIFB=DIF3+WDIF(XMI)%XFOGHT

C INTINUE
CONT INJE

CWTLL WALL PEFLTCTICONS 8E CZNSICERED?
IF (IQZFLONFL1)GD TC 20090

COMPUTATICN OF REFLECTICN DATA BEGINS HIRZE

CHECK FOR OPPOSITIZ WALL TRAMSMISSIIN-REFLICTION
TIPSHI=ATLN(HIGH/RAD)
IF(ANGI JS3TLTIPSHDIGC T2 2000

ARC=LRCIN

AL2=ARC®ARC
LFIAST==IFIX{HIGH/TTHITA/DELZ)*DELZ
XFIPET==IFIX(RAD/DELX)®DIL X
MUMXP=A/ITLX+! o5
DELZP=DTLZ/SINIANST)
NUMZP=«ZFTFST/OSLIP+0.5

YM=0.0

07 135) IZk=1,'WUMZP
IP=7FIZST+(125-1)2DTLZP

E
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MAIN 6

DO 1053 IXR=1,NUMXP
XP=XAFIRST+{IXR=1)*DELX

DETERMINS IF (XP+0ee2P) IS INSIDE RADIME
IF(XP=XP+ZP*2P LT RAD*RADIGO TO 1050

DSTZRMINZ IF RAY CAN INTERSECT RADCMI
IFIXP=XP.GF.RADIN2)GD TO 1050
IF(SORT(AL2=(C +ABS(XP) )*%2) oLEL~ZP*TTHITA)GD TO 1059

FIND RAY REFLECTION PGINT
2L1=-SORT(RADIN2=-XP*XP)
CALL INTRSC(XRsYR+ZR4ZIL1+0.0)

FIND OUTWARD NORMAL AT REFLECTION PCINT
CALL NIRM{XReYRyZR¢NXsNY,NZ)

FINGC UNIT VICTOR IN DIRECTION OF PEFLEITED RAY
ADOTN2=2,0" (AY*NY+AZXNZ)

CX=ADNTN2* NX

CY=£DITN2¥NY=AY

CZ=2DOTN2%NI~}L

CETEEMINE IF ANGLE OF INCIDENCT JF RIFLICTED RAY IS
GREATER THAN 90. DEGRIES AT ANTINNA APIRTIJRZ

DIRECTION GF INCINSNT FIZLD ASSUMID FOR ANTZIUNA NIF MAL
IFICY=AY+AZ*CZeGT 00,0162 T 1050

FINC ROFLECTED RAY=-ANT=NNA APEFTURZ PLANE INTERSECTION

JIST IS REFLECTION POINT-INTERSECTION POIINT DISTANC:
DIST=(YG-YR=ZR*TANALF)/(CY+CZ*TANALF)

XEND=CXADI ST +X?

YENC=CY®DIST+YR ]
2PND=CZ2%DIST+IR

DZTER]RMINE IF INTEFSECTION IS THNSIDI APERTURS
RHIAP=SORT ( XENTEXEND+2ZTNO® ZEND + (YEND=YG) &>2)
IFIRHOAPLGELAPRARIGD T3 1050

FING RAY TRANSUISSION POINT
1Py = =711
CALL IMTRSCUAT »YT,2T,0.0,2R1)

Coe1hL LACIORNT ESIELD MeGNITUDES
rxi={ 100!0.0)’2"5.\“?
SYT=CHMOLX(UYIT ) Ve )} =3T%ANE

T2t =CMPLX(LTITYd,)e0)* 31 NAND

T‘-\' N Vi N R i b DAL
LS thoe .t :
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MAIN 7

Pmm . b

.l _

(g1}

FIND INCIDFNCE ANGLE AT TRANSMISSION POINT
CALL NIRMIXToYToZT oANXT ¢ ANYT,ANZT)
ANGTRN=ARCOS(AYRANYT+AZ*ANZT) :

FIND TRANSMISS ION COEFFICISENT AT TRANSMISSION POINT
CALL TRANST(ANGTRNTPER,TPAR) .

FIND BINORMAL AT TRANSMISSIOMN POINT
BT=(ANT X A)/ABSIANT X A)
CALL CROSS({ANXToANYT,ANZT,0.0,AY,AZ,B8XT,B8YT+BZIT)

. '
[

FING PARALLTL AND PERPENDICULAR CIMPONENTS
OF INCIDSNT FIZLOD AT TRANSMISSION PIINT

aooOn OO a0

EMAG 1=BXTxE XI +BYTAEY] +82T*£71
EPCX=RXTEEMAGY
EPLY=8YT*ZMAGL
EPEZ=8ZT=EMAGL

EPAX=EXI-EPEX
EPAY=EY]-EPEY i
EPAZ=S21-€P32 _i_

AZIGHT TRANSMITTZID FIZLDS WITH INSERTINN TRANSMISSICH .
COEFFICIANYS: TRANSMITTED FITLOS BFCOME INCIDENT :
FIELDS &T REFLECTION POINT .

QOO O

EXI=CTPZX=TPTF+EPAX®TPAR
EYI=SPIYXTPER+EPAYRTPAK
SZI=SPZI=TPTR+E£PAZ*TPAR

o0

FIND IMCIDENCE ANGLE AT RESLECTION POINT :
ANGREF=APCOS (=NY®AY=t1Z®x47) ]

FIND REFLZCTION COSFFICIENT AT RAY RSFLECTIIN POINT !!
CALL TRANSF{LNGRI®,FPIR,RPAR) ‘

OOy [a X&)

COMPUTZ COMPLEX INCICTNT FIZLOS AT RIFLESTION PJINT (
PHASE =PHASCR(BLETAKX (ZR*AZ+YP¥AY) ). X

(@)

EXTaFXI®PHLSE
cEYI=TY[=PY? 3z
FLTI2Z21%pHpCE

FIND BYNTRMAL AT RTSLICTICN PIINT _}
== X A)/2BS(=1 X A)
CALL CROSS{=MNXo=NY s=1Zy0eQs2YyAZy2XRyBYF,322) ]

DO

TﬂLSPAGEISBLSIQUALITYPRAGTLGABLE
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MAIN 8

FIND PARALLEL AND PERPZNOICULAR COMPONENTS
OF INCIDENT FIZLD AT RZFLECTION POINT

EMAG2=B XR*E XTI +BYR*EY] +BLR*271
EPEX=BXR*EMAG2
FPEYSBYRXSIMAG2
EPEZ=BZP =EML G2

EPAX=EXI-FPEX
EPAY=EY]-cPEY
EPPI=ELI-EPEL

FIND NIRMAL PZ2RT OF INCIDENT FIELD PaRALLZL COMPONENT
EPANML=C PAXENX+EPAY®NY +£ PA 72N

EPANXaZT PANMLANX

EPAMY==PANML*NY

EPANZ =S PANMLEMZ

WEIGHT REFLZCTED FIELDS WITH REFLECTION COSFFICIENTS
EXR=ZPEX®XRPCR+RPAR¥(ZPAX=2,0% ZPANX)
EYR=ZPTYXRPEF +RPARX(ZPAY=2,0%TPANY)
FIR=FPIZ«RPIR+RPAAX (ZPAZ=2 ,0¥EPANZ)

COMPJTRE INCIOENT FIcLD AT APSRTURE 3Y ACCOUNMTING FCR
PHASE SHIFT FROM REFLECTION POINT

PHAS E=OHLSOF (=BETAK*DIST)

EXR=EXR¥ PHASE

CYR=ZYR®OHAST

EZIR=FIR*PHALF

ERTM=FYR =S INALF=5 ZR®*COSALF

FIND RHC COMPCNENT CF REFLECTED FIELD
FRGHT={SXR~JxERTM)/SQ3T2

COMPUTF 7JBLIQUITY FACTOR
0BLIQ=06e5-0e5* (AY*CY+AIX(CZ)
LEND=ZINO/COSALF

WOHT SA=WSUM( ZEND ) «IBL IQ
WOHTDA=WOIF(ZTND)=CBLIQ
WGHT S2=WSUM( XZND)Y#CELIQ
WGHT 33=2WII FIXEND ) *DRLIQ

SUME =S MA+LEGHT *WGHTSA

DIFL=D{F +7FGHT=nGHT A

SUMB 231 IMI+{ KCH TH*WGHTSS

DIFB=T]1FR+ERGHTEWGHTC3
1950 CINTI YT
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MAIN 9

c
2000 CONTINUE
c
PRINT102,SUMA,SUMB,DIFA,CIFB
102 FORMAT( ' ¢ 0SUMASY ,2E15,695Xs*'SUMB=?,2E15.6,4/
#e' OIFA=Y,2E15,695Xyv*0IFR=9,2515.,6)

(od e
c COMPUTE COMPLEX INDICATED ANGLES '
CAL=—YCNISF (IMS ) ¥ J*5I FA/ SUMA
CAB=+MONISF(IMS)® J%DI £8/ SUMB
c
CAAMPA=CABS (CAA)*RTD
CAAMPB=ZABS (CA3)#RTD
CAPHSA=ATANZ (AIMAG(CAA) s REAL (CAA) 1 #RTD
CAPHSB=ATAN2(P IMAG(CAB) 4REALICAB)I®RTD
c

WRITE(6,108) CAAMPA,CAPHSA C2AMPB,CLPHSE

108 FJIRMAT(Y ', 92 PHA COMPLEX ANGLS = *,T12,%¢" AT*,Fb6.1,
#' DEGRSFSY,/+' BETA COMPLEX ANGLE =f,E12,4+* AT,
#Fbale?' DEGREES?)

CAAMPLITANG)=CAAMPA

CAAMP2(TANG)=CAAMPS

CAPHSL{TANG)=CAPHSA

CAPHS2{T\NG)=CAP}FSH

ALFSRR=RZ2L(CAN)

BETERR=RFAL(CAB)

ALFG=ALFZRR¥RTD

BDEG=BSTSRR*RTD

" PRINT109,4D5G,8DEG

109 FORMAT(? ¢ ,'ALPHA INDICATED ERFOR=',F10.54¢'DTGPEES Y,/

#0' BETA INCICATIC ERROR=',F10.69*' DOSGRESS']

IF(IREPCS)YT50,750,751

751 ALPHA=ALPHA+ALFZR?
BETA=BITA+BETERR
SIFORA=(ALPHA=PL/2.04ANGT) *RTD
FOFOR3=8 ITA=RTC
IFCABSIALFIRR) oLToSRRMAXANDABSIBETERR ) LT LERFMAX)
#GD TO 3590

300 COMT INYE
GC TO 359

753 FRRIRA=ANDEG6
FRRTRE=827CG
350 PRPINTINGTFROFAIERRDAL,IPCINT

THIS PAGE IS BE3T QUALITY PRACTICABLE
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MAIN 10
FORMAT( ' ¢, 'ALPHA POINTING ERROR= ,F8.5,¢' DEGREES'
#/+.% BETA POINT ING ERROR=', F8e5, ' DEGREES, OB8TAINZD ¢,

ERRRCA(IANG)=FRRORA
ERRRCB(TANG) =Z RRORB

CONTINUE

ANGE =ANGE*RTD

PRINT1Q7.ANGE

FORMAT(® *,'E ANGLE=*,F6.3+' DEGREESY)

CALL LPLOT (ARG.ERRRCA,CAPHSL\NANG,LABELIL1),1)
CALL LOLOT(ARG,EPRRCB,CAPHS2,NANG,LABEL(2),1)
CALL LPLOT(APG,CAAMPL,CAPHSL1,NANG,LASEL(L1),1)}
CALL LPLOT(ARGyCAAMPZ yCAPHS2,NANGILAZEL(2),2)
CONTINUE

STOP
END

NJkM 17

SUBROUTINE NOFMUXoYosZoNXoNY,NZ)

THIS SUBRDUTINZ COMPUTES THE OUTWARD SURFACE
REAL NX,NYJNZoNR
COMMON/RDATA/ AL2,CoXM2,TTHETA,RAD»ARC

XzX+1,%=20
1=7+1,2=20
R=SQRT(X%X+ZI%=2)
NY=Y /ARC
MR=SEQRT(1a~MY®NY)
NX=X /R<NO

NZsZ /R*NR

RETURNM

FMND
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INTRSC 11

SUBRQUTINE INTRSCUX,YsZyXL1sXR1)

THIS SUBROCUTINS COMPUTES Thi RAY-RADOME INTZRSECTION

FOINT. (XeYsZ)s OF A PAY PASSING THROUGH THE PCOINT,
(XMo¥YMo ZM)» AT THE SPHFRICAL ANGLZ THETA
WITH XL1<Z<XR1.

EXTERNAL FCT

DATA EPS/2.0E-4/

COMMON/RDATA/ AL2,CeXM2,TTHETA,RAD,ARC
COMMON/MESPOS/ XM, YM, ZM

XM2= XMEXM

CHFCK FOR NORMAL INCICENCE
IF(ABS(TTHETA) oGT.1.E03)G0 TC SO

EPS IS MAXIMUM ERROR IN AAVELZNGTHS

CALL RTMI(RINOT +FoBCTyXLLoXPL,EPS,25,22F)
I=R0OQT

X=XM

Y=SQFT(AL2={SORT(XM242%Z)+C)**2)
IF(IFRLEQaOIRETURN

PRINT 20,IFR

FORMAT (* *.*SUBROQUTINT RTMI NDID MOT FIND RAYY,
#CINTFRSECTICN POINT'o/,? ERRIR CIDE IS ISR= *,12)
STCP

X=X\

=M

Y=SOQRTIAL2-(SORT{XM2+2*Z )+C)=*2)

RETURN

- END

FCT 12

FUMCTION FCT(Z)

FCT IS 74T CIFFEPENCI IN THE Y=-CCORCINATES J° &

PAY PLSSING THROUGH (XM,YM,2M) AMD THE RBDOM:E
SURFACE AS A FUNCTICH OF Z

COAMIN/RCATE/ PLZICoXM2, TTRITAZRACJART
COMMIN/MEEPOS/ XMy YM, 2"
FCT=YMe(Z=ZM)* TTHeTA=30RTH{ AL 2= (SQRT(XM24 =7 ) +C) =%x2)
RETURY

NN
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INIT 13

SUBROUTINE INIT(N)

THIS SUBROUTINE INITIILIZCS THE MATRICES USED FOR
TRAMNSMI SSIOM AND REFLFCTUGCN COEFFICIENT INTERPOLATION
N EQUISPACED DATA POINTS ARE USED

e Xg Xt X g

COMPLEX ATPER{50)+ATPARISO )} ARPER(50)ARPAR(50)
REAL ANG(5Q0)«P1/3,141593/

CIMPLEX TPERTPARIRPER,RPA2,PHASOR,CMPLX
CAMMON/TOATA/ATPEZRVATPARVARPER yARPARJANG,DIFQ,LIF1,
#DIF2,0CLM,00,01,02

PHASOR({X)=sCMPL XICOSIX)»SIN(X))

DEL=PI/240/FLOAT (N~1)
07 10 I=1,N

ANG( I 1=DEL*([=1) |
CALL TRANS (ANG(I),TPER,TPAR,ARPER(1),ARPAR(I), 1
#PERIPD. PARIPD) |

c COMPUTE INSERTION TRANSMISSION COEFFICIENTS
ATPER(IN=CABS{TPER)*PHASIR(-PERIPD)
ATPAK(T)=CABS(TPAR)*PHASOR(-PARIPD)

10 CONTINUZ
09=2.0=UzL*0EL
Ol==CEL%DZL
ND2=D0
MaN
RETURN
END

WSUM 22

FUNCTION wSUM({ZMO)

SUM WEIGHTING FUNCTICN
REAL PI/3.141553/
COMMCN /A IGHT/ APRADIMS, %

o0

IMS=1 UNIFCRM
IMS=2 COSIN® TAPER

(e X2 X Ne)

GJ TC(19,201,14S

O

13 wSUM=1,0
RFTURN

29 WSUM=CIS(PI/2.%R/APRAD)

RETURN
ZND

2HIS PAGE ¢ & TR A A
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WOIF 23

FUNCTION WOIF(ZIMO)

c DIFFERENCE WEIGHTING FUNCTION
COMMON /WEIGHT/ APRADIMS,R
GO TO(l42)4IMS oy

1 WDIF=ZMO*2.0/4PRAD
RETURN

2 WOIF=22M0%2,93106/APRAD*WSUM(ZIMO)
RETURN
END

TRANST 14

SUBFNUTINS TRANSTIARG,TPERI,TPAR?)

THIS SUARJUTINZ INTEKPCOLATES THE TRANSMISSION CATA
SUPPLIFGD 8Y INIT WITH A SECCN9D CROER CURVE THROUGH
THE THRI® CLOSZST DATA POINTS.

OO0

CCMPLEX ATPSR(5D)4ATPAR(50),ARPER(50) yARPAR (50) t
REAL ANG(S0).AL(3) L
COMPLEX TPFFI,TPAPI.CYPLX,PHASOR ?
COMYON/TCATA/ATPER JATPAR JARPER o A2PAR , ANG ,DIFO,
#DTF1+DIF2,DEL +N+D0 01,02

I=ARG/DEL+1.5
IF(l1eEJdai)]=2
If{I FQaN)IzN=] l
DIFO=2ARG-ANG(1I=Y) :
DIF1=2ARG-ANG{I])
DIF2=2LRG-ANG(1I+1)
AL(1)=D1FL#CIF2/D0
ALL2)=D1IF0=DTF2/D1
AL{3)=D1cQ*0IFL/D2
TPERI=(Ne0+0.0)
TOoAF I’-‘OQDOOQD’
€3 10 K=1,2
TPERI=TPIRI+ATPER(I=2¢K)*AL(K)
1) TPAFI=TPAR I+ TOAR(I=~24K)=AL(K)
R=TUPN
END

+1G# 15 BEST QUALITY PRACTICABLE 4
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TRANSR 15

SUBROUT INE TRANSR(ARG,RPERRPAR)
THIS SUBROUTINE INTERPCLATES THZ REFLECTION DATA

SUPPLIEC BY INIT WITH A SECCND ORDER CURVE.

o000

COMPLEX ARPER(50) +ARPAR{S50)+RPERIRPAR,ATPER(50),
#ATPAR(S0)

REAL ANG(SO).AL{(3)
COMMON/TOATA/ATPER ¢ATPAR yARPZR yARPARyANG DIFO,
#DIF1,0IF2,0EL+N,OCO,01,02

I=sARG/DEL+1.5
1F(leEQel) I=2
IC(1FQeN)I=N=-1
DIFO=2RG=ANG(I-1)
NDIFYL sARG=AMGI(T)
CI1F2=ARG~ANGI(I+1)
AL(1)=DIF1»D1IF2/D0
AL(2)=CIFO>DIF2/D1
AL(3)=D]IFO=DIF1/02
RPER=(0.0,0.0)
RPAR=(D.0,0.,0)
DO 10 X=1,3

\ RPER=RPER+ARPER(I=2¢K)#AL(K)

10 RPAR=RPAR+ARKPAR(I=2+K)XAL(K)

RETURN
END

CROSS 16

SUBROUTINE CROSSUAX.AY,AZ8%X,8Y,82,CX,CY,C2)

THI3S SUBPQUTINC COMPUTES THE NIJRMALIZEC CR3SS
PPODUCT OF A INTO 8
C=(A X B)/ABS{A X 8)

QOO0

CX=pY*BZ=-AZ¥BY
CY=sAZvaxX=-AX*B1Z
Cl=AXxBY=-LY*BX

CME ;=SOPT(CX>C X+CYXCY+C2=CZ]
CX=CX/TMAG

CY= Y/CMAG
C2=C1/0MAG
RE TN T I TN
* WL, . S, -4 ({‘- LA O '
il
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TRANS 18

SUBROQUTINE TRANS(THZTA,TPERP,TPARA,RPERP,RPARA,
PERI PO, PARIPD)

THIS SUBRIUTINT CIMPUTES COMPLEX TRAMSMISSION AND
REFLECTION COEFFICIENTS FOR MULTIPLE-LAYER,
SANDWICHEDs PLANAR SHZETS.

ALL ODIMENSIONED VARIABLES HAVE BEEN DIMENSIONED FOR
A MAXIMUM OF FIVE LAYERS.,

DIMENSICNS IN THIS SU3ROUTINZ ARE IN METERS
P COMPLZX PERPENDICULAR TRANSMISSICN COcFFICIENT

A COMPLEX PARALLZL TRANSMISSION COSFFICIINT
P COMPLZX PIRPENDICULAR REFLECTICN COEFFICIENT

RPARA COMPLEX PARALLEL REFLEZCTION COSFFICIENT

TH=T
NL

3ETA
wu

£pPS1I
TAND
SIGM
54AMM
YIpPt
Y1ipt
THIK
TOTL
PZRI
PARI

A ANGLE OF INCIDINCE
NUMBER OF LAYERS SANCAICHZD TOGETHER
PROPAGATION CCNSTANT IN AIR
PERASABILITY 0% LAYZR RILATIVE TO AIR
LN DIFLZCTRIC CONSTANT CF LAYCER RLLATIVE TO AIR
€P DIELECTFIC LOSS TLMGENT
A CONDUCTANCE OF LAYSP
Al PROPAGATION CONSTANT
RP PTRPINDICULAR ADMITTANCSE
RA PAFALLFL ADMITTANCE
THICKNESS OF LAYER
TOTAL THICKNESS OF SANCWICHED LAYCRS
PD PURPEMDICUL AR INSERTION PHASE DILAY
PD PEFALLEL IMSERTION PHASZ DZLAY

COMPLEX ZoCLXPoCSQRT sLIY+J/(06e05240)/oCUPLX

COMPLEX TPERPsTPARA KZP,GANMMAL yYIPARL $YIPZRPy 2 F
COMPLEX APP,3PP+CPP,CPP,APRyBPRyCPR,DPRyAPRPRBPRPK
COMPLZX CPRPR.DPRPR,APEFR, APAF P, CPARRyDPARR

CIMPLEX SsHoSeToyRPERP JRPARALCCOASH,CSINH

CIMPLIX APrRP{5)s3PZKP(5)y TP=RP(5)4DPERP(S)

COMPLEX APAFL(S5) 43PLFA(5)CPARA(S)yDPLR2LS)
CTVENSICM KMU(S) KEP(5))GAMMAT(S5)YIPIIP(S),YIPARA(S)
DIMEMSICN FPSILNIS)oLYNIS) oTAHIK(S5),MU(S)ySISMALS)
DIMENEICN TAMNDZP(3),20Y(35)

P2l LAMDAMU,PT/3,141593/4K4Y

INYEG22 LFLAG/D/

CQUIVALEMOE(MUWKMY)

COCMMON/TH/THIK WL

CCOEHIZI=(CEXP(Z)+CXP(=2) )72,
CSIMHIZI=(CEXP(2)=CEXP(=2))/2

T QUALITI PRACT1CABLE
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TRANS 19

SINT=SIN(THETA)
COS™T =CIS(THETA)
SINT 2aSINT=SINMNT

CHECK IF CATA IS TQ BZ READ
IF{LFLAG.LE.OIGT TO 100

D0 22 I=1,NL

GAMMAI( I )=J*3ETA*CSORT(KMU(T )*2KEP(TI-SINT2)
YIPTRP(I)=CSQRT(KMU(I)4KZP(I}-SINT2)/KMU(I)
YIPARALTI ) =KEP([)/CSQRTIKMU(I)*KEP(II~-SINT2)
ODY( I)=GAMMAI (I )xTHIK(I)

APZRP (I)=CCOSH(DDY(I))
BPEFP(I)=CSINH(DDY(I))/YIPZRP(])
CPERP(T1)=YIPERP(I)*CSINHI{DDY(I))
DPERP(I ) =APZRP (1)

APARA(T)I=APFRP(I)
BPARA(I)=CSINH(IDY(I))/YIPARA(I)

CPAF AT ,[PARA(TI)I*CSINHIDCY(I))
DPARALT . \CPERP(I)

CCNT 1 UE

IF (NL.FQ.1)GD T2 25

APP=APSRP(])
BPP=BP~RP(1)
CPP=CPSRP(1)
OPP=DPIRPI1)
APF =APARA(])
BPR=EBPAQA(:)
CPR=CPLRA(]1)
DPR=DPARA(L)

ng 35 t=2,ML
APRPR=APP=APERP(I)+8PP2CP:RP
BPIPE=LOP*RPERF(]) +BPPxPSGP
CPRPR=CPP*APTRP(1)+DPP*CPIRP
DPRPR=CPP*BPERP(])+LPP=DPTRP
APZRF =APR®XAPARA(]) #BPR=C PARA
BPLFR=APP*+BPACA(] ) +BP %[ PA L
CPA R=CPARAPARA (T ) +0PIECPARH
DPLRR=CPRYBPARAL] ) +CPR=DPARA
APP=APIPR

RPP=EPR PO

rep=LPPR

DPP=DPF OR

APRz£PLPR
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TRANS 20
BPR=BPARR
CPR=CPARR
DPR=DPARR
CONT INUE
CONT INUE

E=APRPR+BPRPR*COST +CPRPR/CCST+DPRPR
F=AP ARR +BPARR/COST+CPARR*COST+DPARR
TPARA={2.,040.01)/F
TPERE P=(2.,0+0.0)/C

G=APRPR+BPRPR®COST=CPRPR/CIST-DPEPR
H3APRPR+BPRPRE¥COST+CPIPR/COST+0OPRPP
RPERP=G/H
S=AP ARR+BPARR/COST=-CPARR*COST-DPARR
T=¢PAR+BPARR/LCOST+CPARR*CCST+DPARR
RPARA=S/T

PCCN1=8ZTA*TOVDO*CIST
PEAIPD==ATAM2(AIMAG(TPERP) (REAL(TPERP) 1=PCLINL
PART PD==ATANZ { AIMAG(TPARA) ,RTZAL(TPARL ) )=-PCON]

IF{PAFIPD.GE40)GT T 80
PARI PC=PLF[PD+2,%P]

G3 Y3 59
IF(PERIPCeGEeDe) RETURN
PEFIPO=PZFIPC+2,*P]

G3 TJ &9

LFLAG=1

FREQ=11.709

LAMDA=24,0203/FREZC

FREQG=FR3ZQ/1.=S

A2ITEZ(5,107) FRZIQG

FORMAT(® "o 'OPZRATING FREQUENCY IS *,F5.2,' GHZ')

TITD =0,

RETA =2, *PI*FRTQ/3,02038
READ(5.,112)NL
FORMAT (I L)

DO 12 I=1.ML .
READ(Se L) LY (T e THIK(T )0 Ul T ) o ZPSILWIT )+ TANDEP(])
FCEMAT(IL,4F10,3)

TATT=TATO+THIK(])

TRF(LYMN(T)elTak) ORINT]

THLS PAL Lo o0 JUALITY PRACILCABLE
UM CUL X Pl lonew LV wDC -




et TTTTET ewn VT FRARITRY TTETTTRTEN Moy

193

TRANS 21

.- 3 FORMA?('O'.3X.'LAYER Nde THICKNESS My EPSILON',
SIG LOSS TANGENT )

PRINT40LYN(I'.THIK(I)DMU‘I’ EPSILN(I)»SIGMA(I),
#TANDEPI( 1)
4 FORMATI'0? 45X I1299XeFTa5 93X sF5e3+3XsF5.394X956395X,
#12.603X:F8a%1)
KEP(II=EPSILN(II* (1 ,-J*TANDEP(I))
12 CONTINUE
THIKWL=TOTD/LAMOA
WRITF(6,105)
105 FORMAT(*1*)
GO TO 500

25 APRPR=APEFPP(1)
BPRPR=BPERP())
CPRPR=CPERP(1)
DPFPR=DPCSRPI( 1)
APARR=APAPA(YL)
3P2RR=8PARA(1)
CPAAR=CPARAI(])
DPARF=DPAR2(1)
G3 TO 39

el

END
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