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Elastic wave propagation in actual fact is the transport of energy in a
medium that acts as a sink for this energy. Engineering and physical appli-
cations rely upon an understanding of the wave propagation process to model
systems and describe the physical world, and, as such one desires to broaden
his knowledge of the actual propagation process in real inhomogeneous media.
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20. (Cont'd)

a composite loss function, L, to account for the energy loss mechanisms that
occur as the wave propagates. This loss function is incorporated into the
general equations of motion and series solutions for bulk, and surface waves
in the inhomogeneous lossy medium are derived. The displacement fields are
examined over the frequency regime in the near and far field for the waves.
The effective Lame parameters are included in the solution, and their contri-
bution, as well as the frequency contribution to the wave field is seen.
Higher orders of scattering and diffraction are seen as well as the anhar-
monicites and nonlinear effects of losses. These effects may be observed in
the general wavefield description. Also the effect of losses on the dispersion
behavior is observed as a frequency shift of the wave.A

The specific losses for an inhomogeneous granular medium (powder) sur-
rounded by fluid (liquid/gas/or vacuum) are developed and ordered in magnitude
over the frequency spectrum. These losses are then incorporated into the
general solution and a specific solution for the granular powder is obtained.
In addition, further specific examples including source function and loss
function incorporation for a nonlinear lossy situation for geophysical and
engineering instances are handled by the general method with boundary condi-
tions for finite media. Finally, a comparison of the range of validity of
perturbation theory as opposed to the generalized solution in nonlinear series
is made and crossover criteria with regard to loss mechanisms operating
(frequency considerations) is made. The general method may be applied to
acoustics, electromagnetics and seismic wave studies by the appropriate
recasting of the governing equations of motion and development of the functional
forms for the losses in the medium considered, as well as the generation of the
correct constitutive relationships.
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CHAPTER I

INTRODUCTION

For the most part, theoretical work on elastic wave

propagation has dealt with the development of solutions

that do not adequately (if at all) account for the energy

loss mechanisms that take place. Indeed work on scattering

has been done, from a correlation point of view (Chernov,

1960) and from an intrinsic attenuation point (Klemens,

1955). The nonlinear occurrences and effects of strong

scattering as well as the formulation and identification

and actual development of losses and microscopic mechanisms

has not been handled. Up to now layering to linearize

the wave equation has been dealt with by the linear theory

(Kravtsov, 1968) (Brekhovskikh, 1955, 1960). Mathematical

solutions to the wave equation have been developed in

terms of displacement potentials but have not included

loss mechanisms (Ewing, Jadetsky and Press, 1957). The

classical theory of attenuation has been produced but

it has not included non-linear effects. Losses have not

been used in an idealized model (Auld, 1973) (Brillouin

1946, 1960). Wave propagation in inhomogeneous media

has been approached from a geometrical description of

particle stacking and size rather than from a more
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sOphisted mathematico-physical standpoint (Brutsaert,

1964; Bit, 1961). Similar approaches in linearization of

the prob and omission of any other losses but scattering

has beenlowed (Christian, 1973; Egorov, 1961).

Multe order scattering interactions are not handled

completelSkudrzyk, 1957) while an idealized Green's
function ;ution with no losses enumerated has been proposed

(Beaudet, 70). Finally, Burger's equation has been

dealt withn a estimated manner in handling lightly dis-

Sipative mja (Leibavich and Seebass, 1974). Consequently,

solutions dcribing progagation lead to idealized behavior

that can, ia number of instances, depart from observed

phenomena SO-uch that the solution's value is depleted.

This proklem has been undertaken because one desires

to formulate theories in conformity with reality as much

as Possible. A definition of energy transport in the

light of dissipative energy mechanisms occurring in the

propagation process, leads one to the point of developing

a solution that incorporates the loss mechanisms in its

functional form and orders these dissipative processes

over the frequency regions. In this way, the propagation

including dispersion, loss mechanisms, and waveform behavior

is examined and presented in a functional form. One can

then deduce certain physical phenomena that are actually

observed in the propagation process as a result of having

the generalized solution, such as damping of electrical

signals in lossy materials, whereas an idealized solution
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omits these processes. Dominant loss mechanisms occurring

over the frequency spectrum are now investigated and one

is provided with insight into the physical mechanisms

occurring during the propagation process. In this treatment,

a granular, inhomogeneous lossy medium is considered,

but the method developed is applicable to a wide spectrum

of propagation problems that occur in acoustics, elasticity,

electromagnetics, and geophysics.



CHAPTER II

Formulation and Development of Generalized Solution

for Equations Governing Elastic Wave Propagation

in an Arbitrary Inhomogeneous Lossy Medium.

As any elastic disturbance propagates through a lossy,

inhomogeneous medium of arbitrary composition, there are

several sources of energy loss that occur. For an inhomo-

geneous granular medium composed of solid and fluid com-

ponents, one encounters the following loss mechanisms.

S - (1) Scattered energy out from the primary wave

due to inhomogeneities.

F - (2) Intergranular sliding (frictional loss due

to motion induced by passing wave).

V - (3) viscous energy dissipated into fluid by

the motion of granules relative to the fluid.

T - (4) Thermodynamic heat loss, (Energy given up

by the wave to the medium as heat as it

goes through a pressure cycle, heat conduc-

tion)

A - (5) Intrinsic Attenuation in the Solid (rate

process).

B - (6) Intrinsic Attenuation in the Liquid (rate

process).

4



As a result of these energy losses, the propagation

of a wave will be modified from that of the lossless case.

In order then to describe the actual propagation in its

entirety, it becomes necessary to examine the effect Of

the lossy mechanisms that are taking place inside the

medium.

To begin, one must obtain the displacement field

in the medium. The approach for doing this is to employ

the vector wave equation for inhomogeneous media with

a generalized loss term, L, as the starting point. The

loss function L, is incorporated into the ecuation of mction

and a series solution is developed in the parameter (kxl

where k = k, + ik is the complex wave vector; from this,
i 2

one may examine the solution and express it as a modification

from the basic exponential solution for a lossless medium.

The equation of motion for an anisotropic inhomogeneous

medium as derived in Appendix 4 in its full form with

a generalized loss term, L, is the following:

(2.1)

(1) In general X and V are fourth order tensors
for an anisotropic medium, however, for an arbitrary
medium the wave field will interact with
the medium as if a set of "effective" Lame constants
, were present. Hence we define effective
i anisotropic, X anisotropic as X, that
will subsequently be developed from the microscopic
theory to be used in the development.



where U = (u,v,w) is the general displacement vector

and X and u are the effective Lame parameters.

This equation balances the net forces and accelerations

of a small volume element of the medium. In the vector

loss term (L/ ), is the particle velocity (a complex

number), while L is the energy lost by the wave per unit

volume per unit time due to the various attenuation processes.

Here L must always be a positive quantiLy, and L/, is

an effective vector force per unit volume, always opposing

the instantaneous motion. The quantity L is additively

composed of contributions from the undivided 1ss mechanisms.

In order to develop insight into the processes taking

place in the lossy medium, one considers a quasi-one dimen-
poblem,( 2 ) thus withK7 (x t), = (x), A =

X(x) a plane-wave solution is examined whereby the fundamental

physics lies in the solution to the one-dimensional lossy

problem. Equation (2.1) thus becomes, noting that the displace-

ment and effective elastic parameters are now functions

of one variable, x,

(2.2)

(2)A full three dimensional solution is obtainable
through the use of complex convolution of one dimensional
solutions.
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From the above, because of the functional dependences,

the second and third terms vanish identically so that

the equation reduces to:

-TV

(2.3)

which may be written in the form,

-+ 2- ( ) 6 t7v

(2.4)

This partial differential equation is then regrouped

as:

- LI

(2.5)

Because, in the approximate low loss case, the series

expansion of the damped plane wave solution is composed

of constants times terms in (kx) (as seen in Appendix

I), one surmises that the displacement, U(x,t) in general

complex, can be expanded into a general series solution

of the functional form:

S(2.6)
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Where m and q are integer counters and the m are

even and the q are odd, corresponding to the even and

odd terms in the general plane wave solution expansion.

This general form (2.6) is prompted by the "basic function"

ei(kl + ik2)xeit for weak (and linear) attenuation process,

but is modified to account for the loss of a more general

character.

Substituting the trial form into the lossy equation

one obtains two systems of equations in terms of coef-

ficients of powers of (kx), through separating real and

imaginary terms, namely setting reals equal to reals and

imaginaries equal to imaginaries.

Now, in the weak, linear attenuation case the coefficients

Am and Bq are constants (as seen in Appendix 1) corresponding

to the expansion of the classical exponential form. Now,

depending on the nature of L these coefficients themselves

become functions of k and x. The quantity k is analogous

to the wave number in the ordinary case. Every wave of

frequency w is assumed to have associated with it a parameter

k. After factoring out the oscillatory time dependent

term e iwt, to allow for isolation of the dependence due

to damping one develops a power series solution in (kx).

From the general form, cited in (2.6), one notes that

k = kI + ik2 because of the loss mechanism, so that, sub-

stituting this form into (2.6) there arises,

(2.7)
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so that, upon regrouping terms, one has,

-/

(2.8)

For convenience in notation, one writes,

'ts1 -1~1) - /,/

KM) ) (2.9)

It is possible to simplify to the following, casting the

equation into the binomial expansion format:

(2.10)

One segregates Ux into real and imaginary parts. From

this formulation for Ux as a series one substitutes the

form into the generalized equation of motion with losses

and obtains the nonlinear coefficients Am and Bq solved

as recursion coefficients. Segregating Ux into real and

imaginary parts, one has
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Avp (2. 11 )

-Am (k)~'2x~(

~A

Now the general form is convergent, since, for the

weak attenuation case the classical form is convergent,

and the surmised series is an extension of this form.

It is itself a modified exponential expanded into series

form. Since the wave decays in the weak attenuation case,

and one considers even stronger attenuation mechanisms

occuring, the wave most certainly decays and its solution

form must be a series that converges at least as fast
ik1 X iwt -k2 x

as the desired solution, (e e e ) U0.

Recalling the general form for the equation of motion

in the lossy, inhomogeneous medium, one obtains from Eq.

(2.4) in quasi-one dimensional form:

In which

- ,,, ) 0 - ,
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Eq. (2.4) then becomes(3):

(2.12)

One sees that (2.12) is the resulting quasi-one dimen-

sional partial differential equation incorporating the

effect of losses. Upon substituting Eq. (2.7) into (2.12)

and separating real and imaginary terms, one arrives at

the following set of equations:

Equating the real parts, one obtains:

(2.13)

~~vtL L_ _

(3)in most physical situations and vary in an irregular
manner and oftentimes are discontinuous at the interface
between dissimilar materials in an inhomogeneous medium.
Hence this approach is applicable to the majority of cases.
For the extreme, where 1 and _V are gentle functions of
position, an additional term in the series solution appears
that causes some secondary effects on scattering.
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While equating the imaginary parts, one obtains:

(" ~z) [m(l -I .f ,,O , :z., ()
NA '. "c

-+ ~ ~ A (k'~)Z~&

AM (kz " 41 ,

(2.14)

Next it is necessary to collect similar terms in

the resulting series in powers of x and shift indices

in the various summations to obtain recursion relationships

among the respective coefficients for like powers of x.

It is also necessary to adjust subscripts of coefficients

appropriately.

Once again, upon equating real parts there is obtained:

-t ( W ~ A " f J0 'v#

-=3 * 4"Z A i.
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Similarly, for the imaginary components, one obtains:

X) ~ N "=7:1I

1a) L (s -)

s3. K I= ZK

3 plzt-LK= 0

W& Vi (2.16)

So that equating imaginary components, one has symbol-

ically and operationally,

K ~ ~ u + C) (A'-, (x A(, N +~' (W -1k0 E'~ (xC

L x C 07- (c (2.17)

And, equating real components, one obtains in a similar

form:

(.18)

where R(k), P(k), M(k), E(k), d(k), f(k), j(k), S(k),

are the respective polynomial coefficients of the terms
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and are identified in Eq. (2.15) and (2.16) from corres-

ponding terms in (2.17) and (2.18). The loss term L is

written this way to show that like powers of x are equated

on both sides.

Now, q = m + I, since the basic series alternates,

so that one has now, a resulting separated set of recursion

relationships between the even and odd coefficients Am

and B q. Upon equating similar powers of x on each side,

one has the desired recursion relationships. In these

recursion relationships one obtains two conditions, one

relates L(x q- 2) to the Bq terms and the other relates

L(xm - 2 ) to the Am terms. For the general Am recursion

relationship for the equation for the imaginaries one

has:

(2.19)

and also, for the Bq recursion relationship for the imagi-

naries there arise:

L C4CL(kg') 4

-j (2.20)W._TV
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In addition, for the reals, by the same arguments as were

applied for the imaginaries, one obtains,

(2.21)

and,

+-,-

(2.22)

Now, one constructs the total recursion relationship

for real and imaginary through combinations of like powers

of x for each of the Am even and B odd coefficients.
m q

These equations become the following since the coefficient

of each separate power of x must vanish,

LA: a- '

S(223)
%~~~~~~~ c Ia , )% M,. ,- #- ;L" ( 4. -;("7 C .-)

,,,,LN a ,P-) ( -) A

(2.24)
- Ox~ L (2.24
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And starting with the lowest order coefficients, one obtains

the beginning of the recursion relationships:

A 0 o[) = 0 A0  (2.25)

I B, 0 = 3

(2.26)

Hence, Ao B1 are chosen as 1 since they are abitrary.

For the general recursion relationship one has, for m > 2

for the Am:

(2.27)

Also, noting q = m + 1 one obtains for q > 2, for the

general Bq

m (2.28)
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Solving for the recursion relations for the respective

coefficients, from equation (2.27) yields,

(\+),LG,,) 4v. , -f ,,,

Aft)i 0

L~ (2.29)

and also, from Eq. (2.28) there is obtained:

L (I

Kit.

(2.30)
Next, it is necessary to express the general Am in

terms of the base coefficient A0. This is :)btained by

determining the product of corresponding linked members

in the even term A-series.



AV,,,: -At/ - VtI .

2.31)

The same procedure is applied to the Bq for the odd term

series:

'IL

J2.32)

In the feedback product of descending coefficients

Am the higher order product terms are very small and decrease

by (-+2u) so to first order it is beneficial to simplify

slightly and include the dominant terms for each coefficient.

Hence, one has for the Am even coefficients:

//
(2.33)
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and also for the odd term coefficients, Ba,

f /

(2.34)

with q = m + 1

These are the nonlinear coefficients Am, Bq that describe

the modification to the basic exponential plane wave solution.

Finally, recasting into the original formulation,

one obtains the complete solution for the nonlinear lossy

problem. The coefficients Am and Bq are now nonlinear

functions of the wave number k

F. $ o<,L 1+ c&<,,-).x-j

) A2. 3-5) 121 6LZ t
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These nonlinear coefficients Am and Bq indicate the

effect of higher order interaction processes (higher order

attenuations), and in the general representation may be

redesignated as attenuation order interaction coefficients

DN(k,t). The attenuated terms of Nth order, which in

the absence of losses would be the terms in a sinusoidal

expansion are now modified by the appropriate coefficient

of the loss function L. They describe the general nonlinear

behavior that arises in the wave field due to the presence

of losses.

The solution converges because it is of the form
iklx -k2DNx

e e that converges. It also goes to 0 as x
-k2DNx

due to the damping term e where the DN are the general

nonlinear coefficients for attenuation order interaction

terms in the general representation (See Appendix 1).

When the DN are constants one has the classical linear

theory when they are functions of L one has the nonlinear

theory for higher order nonlinear processes occurring.

Hence, the general field is of the form:

X /
(2.36)

while at higher k, one encounters some waveform lengthening

and distortion in the near field.
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In general, the nonlinear equation (2.12) will generate

harmonics. In particular, if one utilizes first order

iteration, harmonics are generated with frequencies depending

upon the power of U in the loss function L. In second

order iteration, one obtains higher order combinations

of these multiples. Hence, the total solution then becomes,

the following accounting for harmonic generation, for

the composite nonlinear series form:

f0

(2.37)

in the discrete case

and

(2.38)

Here, each Up represents a general nonlinear series

solution for a fixed w, for the lossy problem.

One notes some physical aspects of the solution:

(1) Dispersion will take place in higher orders

as U contains complicated powers of k = k1 + ik2

so that k2 will also appear in the real part of the

effective k as indicated in the expansion.

(2) Attenuation takes place in higher orders as

seen in the infinite series of nonlinear interaction

terms incorporating multiple scattering, diffraction

effects and general loss processes. These are seen

as the powers of the complex k in the expansion,

particularly with regard to k2.
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(3) Incorporated in the loss components from L are

interactions from surface and body waves in the scat-

tering mechanism showing that the propagation and

the loss depend also on the geometrical description

of the medium. This occurs because of the integration

limits on the scattering integrals for S, the scattering

loss term in L.

(4) The effect of the inhomogeneity of the medium

is to create attenuation by scatttering of the wave.

This can combine with other losses to higher order

in the loss function L. The scattering may generally

be formulated sepa, :ely (as herein by perturbation

theory) and inserted as a term in L.

The physical interpretation of the successive terms

can be seen as:

(1) The first two terms represent the contribution

to the attenuation mechanism (composite energy loss

process), of the "weak, linear interactions" that

one normally experiences in the classical theory,

whereby energy is extracted at a fixed rate.

(2) The successive higher order attenuations (modifi-

cations to the classical linear terms) arise due

to the nonlinear mechanical variation of the properties

of the medium and the loss mechanisms occurring in

L, the energy loss function. These arise as has

been we have seen from nonlinear rates of energy
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extraction, random multiple scattering processes,

nonlinear interaction rates, strong attenuation processes

in L that distort the waveform nonlinearly, and general

random behavior of the medium.

Now, in the classical theory one assumes that the

energy is extracted at a constant rate defined by a and

then formulates the functional form

(2.39)

when in reality, as the losses become significant, nonlinear

effects take place and the fixed, constant energy extraction

rate process does not adequately describe the physical

situation.

In the weak attenuation case the attenuations can

be functions of frequency and the coefficients Am and

Bq are constants (all the same function of frequency).

In the more general case however, each coefficient Am

and Bq can be a different function of frequency leading

to a nonexponential, or modified exponential decay, and

in addition these coefficients can be explicitly amplitude

dependent.

Depending on the general nature of L, the energy

loss function that describes how the energy is lost from

the wave into the medium, one obtains more or less complicated
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expressions for the DN , the attenuation order interaction

coefficients. Thus, for a medium that is strongly lossy,

the DN are complex in functional form; for a medium with

small weak losses, the classical linear theory with D

as constants is sufficient. The nonlinear effects introduce

distortion of the wave profile, (equivalent to the production

of higher harmonics) and because of nonlinear effects

the waveform profile steepens until dissipative effects

become important. These dissipative effects lead to broad-

ening of the wave profile since the higher harmonics are

attenuated more rapidly. These effects finally balance

its nonlinear steepening, whereby the rate of energy conver-

sion from the lower to the higher harmonics is counterbalanced

by the increased dissipation of the higher frequency components;

in this situation the wave form remains constant.

(a) Body Wave Formalism and Displacement Field

with Near and Far Field Behavior

It is now of interest to examine the near and far

field behavior of the wave field, in the light of the

following spatial segregation: X small(X<R); X large(X>R);

Xintermediate(X R); x large(x>10X); x small(x<10); R

granule size.

(1) (Case I) - (X large, x small), (Near Field)

For k small, x small, the terms in (kx) are rapidly

converging, and the loss function is weak for small k.
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Hence, the first few terms of the series are sufficient

to describe the wavefield:

(2.40)

(2) (Case II) - (X, x Intermediate), -general solution

given as equation (2.36) is applicable.

(3) (Case III) - (X small x small) - (Near Field) -Here

for k large and x small, the effects of small x are over-

ridden by large k. In this case the terms converge quite

rapidly. A few terms are sufficient to describe the field

behavior adequately.

(2.41)

(4) (Case IV),- (X small, x large), (Far Field) - The

complete form is needed as the terms in (kx) are significant.

The losses are strong. One has in the adopted representation:

(2.42)

One notes here in the far field, that the wavelength

becomes lengthened due to the presence of the nonlinear
iklXDNterms DN in the e oscillation factor.
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(5) (Case V) - (X large, x large), (Far Field) - This

is the low frequency condition. In the far field averaging

effects of the waveform have taken place, and the waveform

has reached a stable configuration. The solution approaches

the classical solution as nonlinear effects have been

overridden.

(2.43)

As a result of the foregoing considerations one constructs

the following table:

FIELD BEHAVIOR OF SOLUTIONS

TABLE I

(Body Waves with Losses)

(1) ~ large, x small

(Near Field)
Vx-kx--PL A r)a(2.44)

(2) Intermediate X, x - General Field Solution

As indicated in equation (2.35)

(3) X small, x small

(Near Field)

U0  (2.45)

(4) ).small, -x large

(Far Field)

(2.46)
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(5) X large, x large

(Far Field)

" " (2.7

(b) Surface Wave Formalism and Displacement Field

With Near and Far Field Behavior

The foregoing method may be utilized in other cases.

The following has been considered

'A-- )c) -X) J = -vo<-

At this point one may examine surface waves, whereby for-

the surface wave case, one has, the following

(2. 48)

For this situation the equation of motion becomes

SL

(2.49)

because

Z.7 [,a LA_



28

considering this equation (2.49) becomes:

t~ K

"A .~ " .>" - -(2.50)

Physically, the waves decay in depth, so

Hence, equation (2.50) becomes,

"~ I.,' '  \ ,'

-I:~~ L .:/,

- (2.51)

regrouping, yields,

pt-

A')

FL

(2.52)

Again, noting that . ) ave + A X(x) and i = j ave

+ AP(x) and that in the average A X(x) - 0, (AU(x))

0 for an arbitrary medium, so that (K' ave + 2 1-1' ave)

0, one gets the surface wave equation

of motion with losses for the quasi-one dimensional case. (4)

(4)Again, as in the body wave case, a complete three
dimensional solution is obtainable through complex convolution
of one dimensional solutions.

-L
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(2.53)

In order to determine the modified behavior with

depth one has to first order, the displacement field in

the form

(2.54)

for orthogonal axes x and y and separability.

Placing this in the reduced wave equation (omitting

the secondary nonlinear lossy terms), one gets >

- A' -7 (xv t)

(2.55)

or,

(2.56)
2(i) (kXDN- t)

which arises upon dividing through 
by the term (c2e e)

Now, if (k2D 2 -2 < 0 this equation yields an oscillatory
N c2

solution that is not damped. This is not possible, as

the nonlinear effects alone will cause the wave to decay.

Therefore, it is necessary to demand that (k2D 2 - )
N 2

> 0.
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The solution for f is, from the auxiliary equation

for Eq. (2.56),

(2.57)

Now, the solution with negative square root would cause

the function to increase. This is unacceptable on physical

grounds, since y is measured in a negative direction.

The square root determine the rapidity of the damping

and shows how the nonlinear processes in the losses contribute

to the damping.

By a direct transformation, following the development

of the previous section, and taking dominant Am and Bq

and regrouping, one has for the field with p =(y),

X= X(y), the form:

TJIX

- Uo )  Vt, Lcu.k<.)x) (A,4)

4_ 0
(2.58)

Where it is seen now that the additional y dependence

modification of the nonlinear waveform appears. Again,
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U(x) can be described as composed of linearly attenuated

terms plus higher order terms attenuated to Nth order,

while in addition, this horizontal dependence is modified

by the nonlinear depth dependence of equation (2.57).

The following table is then constructed for surface

waves in the same manner as Table I was formed for body

waves with the scale parameters defined in the same way

as they were prior.

Field Behavior of Solutions

Table II

(Surface Waves with Losses)

(1) A small, x small

CJ~ t(~f)~Pi)~ *(k~cf) (2.59)

(2) Intermediate General Solution as Indicated

(3) A large, x large

(Far Field)

U~ (A, -7- ) (2.60)

(4) X large, x small

(Near Field)

(2.61)

(5) X small, x large

(Far Field)

(2.62)
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One notes that the depth dependence of X(y) and p(y)

appears in the form of the nonlinear coefficients DN that

govern the damping character of the wavefield.

(c) Effect of Energy Loss on the Dispersion Relationship

It is interesting to determine the effect of losses

on the dispersion. One begins with the strain field equation:

(2.63)

with the general displacement field for losses as:

(2.64)

The equation of motion is written as:

(2.65)

and the constitutive stress-strain equations, in the medium

are expressed as:

(2.66)
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for T the stress and S. the strain in indicial notation.

The strain field is then, from Eqs. (2.63) and (2.64),

A'

which becomes,

(2.67)

For the general case of loss, the converted equation

of motion written in terms of stress and strain becomes

from (2.63), (2.65) and (2.66):

-IK

so that the gradient of the stress field is represented

by:

x~ W1  t t ~ K

(2.69)



and also, noting the following equivalences:

. , zwt k, Dv

Upon substituting (2.67) and (2.69) into the equation

of motion for the inhomogeneous lossy medium written in

stress and strain field form, one has, the following after

L Wt 'X P~vcancelling the factor (-..& ' _a

+.1r - 4\ L X9ksr

(2.70)

Examining the dominant terms over the frequency regime,

with magnitudes considered, and regrouping, one sees,

D~ o4v )
-IIV

+ E- IL VA.O VL

/ (2.71)
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Hence, one has approximately, with the dominant terms,

noting (k1 > k2):

-- + Q\ --' 7- z  7A

Noting,

one has,

letting,

with 60o, the normal solution, defined as,

Substituting the perturbation representation into

the cubic equation above, one has to second order in (Aw),

the following equation that arises from dropping higher

order terms:

(2.72)

Noting that in general k2 < kl, one obtains the following

equation after having divided (2.72) through by (I W"o)

(2.73)
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and the roots of (2.73) become:

W)

'1( ~ ~ ~ ))- -,.v~

so that, upon taking the negative root one has,

(4.t) M o

.00 (2 .7 4 )

with,

L~Lk)
0 j 31-

(2.75)

' AA
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Identifying the individual frequency components, one has,

641o do CV) + Q~

(2.76)

With

No = original frequency with no losses

Cl(. = loss, frequency becomes imaginary

= additional dispersion due to loss,

dispersion behavior because of loss

Now, Re (Aw) and i(A w) are frequency shift terms arising

because of the loss mechanisms operating. The other root

of (2.73) is extraneous, being brought about by the math-

ematical operations being performed.

One has an equation as:

(2.77)

in the dispersion relationship. Since L is an intrinsic

function of the amplitude Uo of the wave train, one actually

has

(2.78)
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Thus in this case of inhomogeneous lossy medium propa-

gation one has a nonlinear dispersion relationship for

the waves and the waveform will be distorted by nonlinear

effects taking place at progressive times in the medium

as the wave propagates. One sees that, mathematically,

losses due to dissipation are manifested by the dispersion

relationship yielding complex (or imaginary) values of

w for real values of k.

A!

A!

1~|



CHAPTER III

Elastic Wave Propagation in Powders with Particles

Surrounded by Fluids or Vacuum

(a) Development of the Effective Lam6 Constants of the

Powder and Environment System

It is now necessary to describe the material properties

of a powder system in terms of the microscopic development

of the effective elastic contants and p in order to

obtain the general wavefield solution in conjunction

with specific loss mechanisms for the powder and the appropriate

effective elastic constants. One examines the material

properties of a powder system surrounded by vacuum, gas,

or liquid as an environment. In order to determine the

wave velocity in such a powder (inhomogeneous granular

medium) it is necessary to begin by examining the effective

Lam6 constants [, obtained from a physical model of

the powder. A general displacement wavefield may also

be obtained for a given system by substitution of the

specific losses and effective elastic constants into the

general solution obtained earlier.

For the incompressibility modulus, K, Y the yield stress,

'k the spring constant between particles, n the number

of contact points, P the hydrostatic pressure (equilibrium

39
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pressure), and r the distance between centers of particle

and Us the shear modulus of the granules, one has the

ensuing analysis. For the static case, one considers

the hydrostatic pressure acting on a granule of area At

having contact area Ac with yield stress Y, ie.,

and in close approximation to the contact areas for flattened

(rounded) particu.lar one has,

Ac. =  tr K7" , 7 b

(3.2)

for R the particle radius and a the angle of intersection.

One uses the small angle approximation for small angles

a. The indentation distance d of the particle due to

pressure P is:

6L- ~.-t ~Ac-= zTrcQ

(3.3)

The total area becomes,

(3.4)

2for flattened particles where (R 2 ) represents contact

area. In the linear-volumetric dimension relationship

for the dilatation one has,

L
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(3.5)

for the volume V.

Taking the differential of (3.1) yields:

(3.6)

In area-linear relationship one has,

(3.7)

Taking the differential of (3.2) yields,

Dividing by At yields

At/ - KAt
(3.8)

Dividing the equation (3.6) by (PAt) yields

+ y (A
At (3.9)
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Upon substitution of (dA /A t ) from the above and (dAt/At)

from above one has

(3.10)

Finally, dividing through by (dV/V) and multiplying (3.11)

by P there results, for particles and vacuum:

KQ

At this point it is necessary to develop the effective

p and X for the powder with the various environments.

One utilizes the equation

total Eshear + Ecompressional

(3.13)

for the total energy in terms of its shear and compressional

components. For an effective spring constant of k between

particle bonds, with each particle having n contact points,

and noting that (dV/V) is the dilatation then the strain

energy transferred becomes on a per particle basis,

(3.14)
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where (6r) is measured in the radial extension and the

linear-volumetric relationship is

3> (j)

(3.15)

On a volumetric basis, one has,

(3.16)

For the shear term, one notes that the extension along

a horizontal axis becomes

Qr)=

(3.17)

with,

Etotal Eshear + Ecompressional

Combining one has,

so that,

(3.18)
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Since the displacement AV--re for e the strain on a per

bond basis one has with the shear energy

-E '

(3.19)

Considering the stored volumetric energy, arising from

compression, one hap

(3.20)

so that upon combining and noting (3.13), one has,

+ 3

(3.21)

since by (3.1), one has

(3.22)

for the contact correction term.

Finally, upon dividing, one has the following expression

for the skeleton of particles above for shear and compressional

stored components of energy
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(3.23)

Finally, upon multiplying through by K, one has,

(3.24)

also,

(3.25)

and,

(3

Hence, in this development one has obtained the effective

Lam6 constants [, for the skeleton of particles alone,

i.e. particles and vacuum. It is now necessary to pass

on to the composite system of the skeleton of particles

and the surrounding fluid.
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For the composite system, one now has by superposition

of the energies of the separate components,

E total (composite) = shea r + Ecompressional

(2 fluid)

(3.27)

Now this is,

(3.28)

which is the shear, compressional, and compressional com-

ponents of the system energy for the solid and fluid respec-

tively with Kmixture representing the incompressibility

of the composite system and K the incompressibility

of the fluid.

But from prior developments,

(3.29)

and,

(3.30)
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with k' being identified with (Y/r).

Now for the composite, one obtains for the incor:r s-

sibility

(3.31)

From which obtains, upon division,

(3.32)

"rom (3.29), one has,

(3.33)

By the same arguments as above for the composite in consider-

ing shear, since the fluid cannot support shear and does

not support shear energy, one has,

(3.34)

Therefore

,3.35)
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and,

(3.36)

Hence one has arrived at the microscopically derived effective

Lam6 parameters, 1, U for the particles surrounded by

fluid or vacuum.

(b) Velocity Calculations by the Theory

and Comparison with Data for Sand

It is now of value to implement the microscopic theory

for generation of some predicted results and comparison

of these with experimental data. The velocities obtained

will serve as a prediction, and the general description

of the wavefield may subsequently be obtained by substituting

in X, for the various environments into the general

solution to yield fields that are calculable.

One begins the calculations by taking the averaged

values of the parameters involved as-3 2. /o151-0 4,,,. 4Z 44, . ,,..- y.,.,,,.

Upon substituting these values into the equations for

the velocities for the microscopically determined parameters,

S, i,- there is obtained:
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Vacuum and Particles

and,

3y+ 'i,/ b'/ Arz~ /?1~

(3.38)

Liquid and Particles

Here, one has,

~ -~ (3. 39)

for

also,

(3.40)
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so that

ThA--,. ]

(3.41)

and

- AA e.5a3r/

(3.42)

Gas and Particles Case

Here,

(3.43)

This is a small order correction but for a gas at one

atmosphere it is only one part in one thousand.

And also,
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so that one has,

-

(3.44)

As a result of the foregoing, one may construct the following

table.

TABLE III

Calculated Velocities vs Experimental Data

Model V Compressional

Vacuum Case 280 m/sec

Liquid Case 530 m/sec

Gaseous Case 280 m/sec

Experimental V Compressional

Vacuum Case 205-300 m/sec

Liquid Case 350 m/sec

Gaseous Case 300 m/sec
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Where in the experimental data the vacuum case included

sand beds with wave velocities measured by Eden and Felsenthal,

and Antsyferov; the liquid case included 1% gas and sand

and the wave velocity was measured by Brandt, while the

gaseous case involved sand and gas in the interstices

and was measured by Gassman. The range of agreement is

good for the microscopic effective parameters.

(c) Development of the Energy Loss Mechanisms for the Powder

The generalized equation of motion in the inhomogeneous

lossy medium (here the powder) is a-nonlinear partial

differential equation. At this point, one proceeds to

develop the specific components for the loss function

L for the powder in order to obtain the nonlinear partial

differential equation as it specifically relates to the

powder. This will be a form of the generalized wave equation

for an inhomogeneous, lossy, granular medium. The equation

has been solved for the general case and its near and

farfield solutions have been examined over the frequency

range. For the actual powder, a solution may be obtained.

Symbolically, L is made up of the following components,

_+7-- V + A t.6

(3.45)

Where, recalling the definitions of Chapter II, S represents
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scattered energy out from the primary wave due to in homo-

geneities, F is the frictional loss arising from intergranular

sliding. The term V represents viscous energy dissipated

into the fluid by the motion of the granules relative

to the fluid, while the term T represents the thermodynamic.

loss (least conduction). The terms A and B represent

intrinsic attenuation in the solid and the liquid respectively.

One now proceeds to calculate the form for L.

As a preliminary to determining the losses in the

powder it is necessary to examine the motion and stresses

on the granules. The starting point is to consider a

granule in static equilibrium under a pressure, Peq.

One has, for Ag, surface area of granule, Ac, contact

area, Y the yield stress and n contact points,

k&A))> YA.(2v o)

(3.46)

Summing over all angles e of intersection, for the average

value of cos e, one obtains,

(3.47)

Where the term Y O.& arises since the stresses

act over half the contact points on either side of the

granule. This is a balanced force condition.
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Now added to this static pressure Peq one superposes

the oscillating pressure induced in the dynamic case from

the motion of the passing wave. Since the granules will

not depart significantly from their equilibrium positions,

then one employs the harmonic approximation, whereby the

first nonvanishing correction to the equilibrium potential

energy is given by quadratic terms in the expansion of

the potential energy U pot about its equilibrium value.

In this form one has:

~Tj

(3.48)

The harmonic potential energy is expanded in terms of

the oscillation displacements u(na), u((n+l)a) for granules

that oscillate about equilibrium positions x = na, x =

(n+l)a... due to the wave motion. The deviation in the

potential energy, Uharmonic goes on the square of the

displacement, hence the following form is obtained.

(3.49)

Here, K' is an effective spring constant depending on

the elastic properties of the granules since energy in
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a spring lattice goes as x2 for x the displacement. In

this case, a grid network has been superposed about the

granules for a reference system and consists of equilibrium

points a, 2a,...na.

Formulation of the equations of motion for displacements

about the equilibrium positions in terms of finite difference

equations, yields

(3.50)
This set of equations of motion is the same as that of

a set of masses connected by spring constant K'. The

solutions to these equations of motion are developed from

the auxiliary equation for (3.50)

(3.51)

Substitution of (3.51) into the equations of motion yields,
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,4 () (k, , ,, t). ,,'

(3.52)

so that one has,

It C,

(3.53)

so that

Aj ~CL)

(3.54)

The above equation represents the dispersion relationship

for no losses for the particle chain. Here Mi is the

mass of the ith granule and a is the distance between
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granules. As a result of this, the real displacement

with the particle chain takes the form (for no losses):

<ZAP(- x ,,t) 4 (3.55)

Now in this system, the force is proportional to the net

displacement so, from this net displacement VU, one has,

\\ ~c~/\ A*V h A j

17

(3.56)

In view of (3.55) and (3.56) one has,

(3.57)

Now the elastic or equilibrium pressure acts to retard

the effect of the oscillating pressure, i.e., the amplitude

of the oscillating pressure must exceed the effective

frictional pressure arising from the static pressure,

before any sliding motion can occur. In this regard,

it is possible to formulate the net driving pressure for-

granules and vacuum as:

(3.58)
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Now for the case of granules in fluids (gas, liquid),

the net pressure will now have a retarding pressure opposing

it due to the viscosity of the fluid. Viscous forces,

f' generally may be described as:

(3.59)

(3.60)

So that,

(3.61)

for b a constant inversely proportional to spacing between

particles, Ag the expnsed area of the particle, and AV

the relative motion of the fluid with respect to the particle.

At this point, now one has first the background equili-

brium pressure in the elastic case, and, superimposed

on that, the dynamic pressure brought about by the passing

of the wave through the medium. To this, one must add

the viscous damping pressure that opposes the driving

force.
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The result becomes, upon superposition,

(3.62)

L ~ 4.'kAA~~r-4)J (3.63)

but as will be seen, one can express AV as

\or h

(3.64)

in the real parts, where AV represents the motion of fluid

with respect to particles and AU is the relative displacement

of particles and fluid. In view of (3.64) and (3.63),

one has,

(3.65)
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When/ is the viscosity of the fluid and the other parameters

have been defined earlier. There considerations will

be useful ,in the formulation of the loss mechanisms for

the powder and the handling of the propagation of elastic

waves in the powder.

(1) Frictional Loss

One is now in a position to calculate the specific

form for L. One obtains the following for F, the dissipated

energy due to frictional rubbing of the granules against

each other one obtains,

(3.66)

(3.67)

with the condition,

M-

(3.68)
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with to given by the point, where in the wave cycle,

(3.69)

Here P net is the net effective pressure (after overcoming

the hydrostatic pressure Y ( icvpe ) that prevents

sliding). The integral goes over the time from to to

t in the cycle that motion occurs while Ai is the cross

sectional area of the ith granule, p' the coefficient

of friction between granules and (o-T. ) the relative

velocity of the ith granule over the jth granule, while

(w/V) accounts for the loss on a per unit volume per unit

time basis, for w the angular frequency and V the volume.

One now passes on to the specific forms for the fric-

tional loss for granule and vacuum, granules and liquid

and granules and gas. The functional loss for the liquid

case takes the form:

(3.70)

with the to time point given by

(3.71)
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Where the additional term in f'net acts as a type of Stokes

loss. Similarly, for gas and particles, one has,

(3.72)

with the to time point given by

(3.73)

where/g is the viscosity of the gas.

Lastly, for the frictional loss Fvac for vacuum and

particles, there arises,

w ( Q~ ) h~x (,(a -Y X vt

(3.74)

with the to time point given by

(3.75)

Here, = o and the viscous Stokes loss does not appear.

From the above equations one sees that the integration

point to depend upon the medium.
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(2) Viscous Loss

At this point, one passes on to the development of

the viscous loss. One develops V, the viscous energy

dissipated into the fluid by the motion of the skeleton

of granule relative to the fluid.

To obtain V, one considers that superimposed on the

average velocity field of the fluid one has the fluctuations

6U so that the total velocity Utot is composed of an average

velocity U and fluctuations SU.

(3.76)

and, the velocity gradient becomes,

(3.77)

where r is the granule radius since the channel widths

are of the same order as the granule dimensions. The

first term can be neglected. The velocity gradient is

related to pressure fluctuations AP that lead to viscous

loss by relative motion; consequently, one has for the

rate of change of viscous energy with time, (rate of energy

extraction in the composite medium on a per unit volume

basis),
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(3.78)

Where it is noted that one has two velocity fields, 1

and U2 in the solid and in the fluid environment respectively.

The relative velocity AU is defined as:

(3.79)

Then, from (3.78) one has,

*, (3.80)

But,

f~( kV)

(3.81)

for the pressure, and

(3.82)

for the energy.
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The units of AP are in terms of energy per unit volume.

Consequently, one has,

(3.82)

and,

(3.83)

as an upper limit on viscous loss, since the total amount

of energy dissipated can be no greater than the total

energy. From (3.81) one has,

(3.84)

When averaged over the cycle that the decay rate occurs,

one has,

(~d9Qi7 E

4k ___3,
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With E the energy of fluid flow. But from (3.80),

with

(3.86)

and from the relaxation time approximation, one has,

(3.87)

So that, from (3.85) and the above, one has,

(3.88)

Equation (3.88) is the viscous energy dissipated per unit

volume per unit time, and is the averaged rate of energy loss

over many cycles. For the vacuum case, these terms

do not appear since there is no medium to dissipate viscous

energy.

(3) Intrinsic Losses in the Solid

and the Liquid

The term A is included in the general (dE/dt) expression

to account for intrinsic attenuation in the solid granules,

whereas the term B is included in the general loss expression

to account for intrinsic attenuation in the liquid. From
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the Akhieser theory for phonon rate processes ( 5) one has,

"or the solid granules,

A4E)

(3.39)

where,

(3.90)

where T is the temperature and v the strain, and, also,

* phonon relaxation time,

Cv = specific heat at constant volume

W = frequency of the wave

= Lam6 parameter

= average J"

In addition one has for B, the intrinsic attenuation in

the liquid, by a similar argument as advanced in Appendix

5, the following expression:

(3.91)

(5)A general derivation of phonon rate processes is
discussed in Appendix 5.
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The total intrinsic attenuation is additively composed

of (A+B) arising from the contributions of each of the

components is the composite medium. These losses are

in addition to mechanisms operating outside of the granules

also being examined.

(4) Scattering Loss

The scattering loss S for the inhomogeneous granular

medium (powder) is now examined. In order to evaluate

the scattering loss S, it is necessary to formulate the

perturbation Hamiltonian governing the scattering rate

process due to perturbations in the velocity. (6) For the

unperturbed Hamiltonian, H, one has,

(3.92)

with the terms n and n' defined as (for granule site weighting),

V
(3.93)

6 )A general discussion of the basic perturbation theory

technique of which this is a generalization, may be found
in such books as J. Ziman, Principles of the Theory of
Solids (Cambridge: Cambridge University Press, 1964.)
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and p is the density of an average medium (q,qt) are the

body wave vectors for incident and scattered waves respec-

tively, and r and r' are the locations of the scattering

source and receiving points respectively. The terms (aa*)

includes the phonon creation and destruction operators

for scattering and are proportional to energy density.

INow,

,~ H tOH,

(3.95)

Where H is the unperturbed Hamiltonian, H' the perturbed

4r Hamiltonian, and H the total Hamiltonian representing

the energy. Formulating H explicitly yields,

(3.96)

Expanding H one has,

r r'

(3.97)

i.e.,

(3.98)
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Upon extracting the perturbation Hamiltonian H' and truncating

the higher order terms, one has,

r r'

(3.99)

Now in general in elastic limits, for J and C constants

(3.100)

so that

(3.101)

So that one may arive at the following for the perturbation

Hamiltonian H' for scattering due to a perturbation in

velocity induced by a perturbation in the medium:

r r

(3.102)

Now the displacement of a point r due to the superposition

of elastic waves of given wave vector, polarization j,

having attenuation can be represented in the following

manner.
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(3.103)

i.e.,

(3.104)

It is understood that in the total unperturbed Hamiltonian

the general summation goes over all modes for incident

body waves q and scattered body waves q' as well as incident

surface waves k and scattered surface waves k'. Thus

the total unperturbed Hamiltonian apppears as:

(3.105)

The perturbation Hamiltonian then becomes,

H' ~ ~(h ('-) ?1 "0 cw'CE)~ (3.106)

* ~~d (Q I i p)'-,) (s- }i)

Eq. (3.106) represents the perturbation Hamiltonian for

excess attenuation and scattering of elastic waves of

mode (q,j) being scattered into mode (q',j') in the inhomo-

geneous granular medium. It can be represented functionally

as:
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(3.107)

while in the double sum, one has body waves and surface

waves of the form

and

where the coefficients C are defined in the form:

(3.108)

which becomes,

* ~ ' ( ~ ~ i E t ) (C1) l ) L (j -f ) )

(3.109)
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also,

(3.110)

so, finding the absolute modulus of the coefficients yields:

(3.111

and also,

c"\ (i ) ( '-
.- "- )- I

(3.112)

The double sum over pairs of granules in the perturbation

Hamiltonian lead to various interference terms in the

scattering by the arrays of granules. To consider the

scattering of energy from a body wave q, one must consider

other interacting surface wave states k' and all body

waves q'. This wave vector q can be longitudinal
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or transverse (P or S). The total relaxation time for

the scattering processes is additively composed of those

for the separate processes:

(3.113)

One deduces the rate of change of E(q,j) the energy content

of mode 'q,j) as a result of scattering through the relaxa-

tion time formulation:

*,V

(3.114)

Where the factor( tis a resonance factor that

selectively picks out the appropriate scattered and incident

modes in the summation. The frequencies w and w' between

incident and scattered modes obey conservation of frequency.

Now E' vanishes for all modes of q' except the scattered

mode. From Eq. (3.114) one has,

(3.115)

Now the summation over q' scattered body waves is associated

with the form

Q(3.116)
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for incident surface and bulk waves.

With

L ,

(3.117)

and G is the number of granules per unit volume, a3 the

volume of the particles, and dS' represents a surface

element of constant w = w' in q' space and where the major

contribution comes from Aw = 0 (w = w').

From (3.116) one has,

(3.118)

for m the mass of the granules.

By a similar train of thought for scattering into

surface waves, one has the association,

(3.119)

with dL' a line element of constant w = wl' in k' space.

As a result of (3.118) one has,

(3.120)
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while from (3.119) one has

(3.121)

where dL' is an element of line of constant w = wl' in

k' space and dS' is an element of surface of constant

W = W' in q' space. These elements take the form:

%" ¢ L'= k'J~'

(3.122)

and

(3.123)

Thus the partial scattering rates between surface and

bulk (shear and compressional) waves with excess attenuation

is seen in the following equations:

. ( ,- k ,J. ."')

U'L, 424 C"L U24
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and similarly for bulk waves,

< - ( ~- e.J - ,,

(3.125)

The integrals from which (3.124) and (3.125) have arisen

have been over lines and surfaces of constant w = i' which

is a statement of those processes that conserve energy

which is the condition under which the two components

of interaction in the scattering can exchange energy between

themselves. Finally, from the general description of

the relaxation time T, one has,

A r--

(3.126)

for the total time rate of change of energy for mode (q,j).

This energy disappears as a result of scattering with

absorption. Hence, for the scattering loss term one has,

(3.127)
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Here, using (3.127), (3.125) and (3.124) one obtains,

1 5

(3.128)

(surface wave relaxation time)It

II

C- 
(h e

(3.129)

(bulk wave relaxation time)

This is the time rate of change of energy being taken

out of the primary wave (and being transformed into secondary

waves of bulk and surface types) with excess absorption

of the wave occuring between scatterers. The extraction

mechanism for the energy is the scattering mechanism.

In this way the primary wave receives an attenuation.

The scatterers are a result of the mechanical variation

of the medium, and, consequently, the scattered waves

are results of the inhomogeneity of the medium. Each

time the wave scatters energy is removed from the primary
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beam (except of course for subsequently scattered energy

being replaced back into the primary beam, i.e., back

scattering). In the scattering process, dispersion takes

place as the scattering acts as a loss mechanism and losses

induce frequency shifts in the wave field. Dispersion

effects are seen as a result of the mechanical inhomogeneity

of the medium. Since low frequency waves are large in

relationship to the size of the scatterers, dispersion

effects due to the variations of the medium are small

since there is not a significant variation over one wavelength,

and the losses are low and the frequency shifts small.

As one advances higher in frequency and the wavelength

shortens, the scatterers play a more dominant role in

the dispersion of the wave.

One has viewed the perturbation as one of velocity

in the medium as a result of a perturbation in the mechanical

properties of the medium. The mechanical variation of

the medium is what lies at the base of the scattering

loss mechanism.

(5) Thermodynamic Loss

At this point, one considers the energy loss due

to heat conduction for the wave propagation process, and

develops the thermodynamic loss. When a strain wave propa-

gates through the material, each region is alternatingly

expanded or compressed. These strains result in a temperature
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variation, but since the inhomogeneous medium consists

of two components, an overall temperature difference AT

will be set up between these two components. This temperature

difference results in heat flow Q and a heat flow rate

Q . As heat flows from the hotter to the colder component,

there will be a net increase of entropy, that is related

to the energy extracted from the elastic wave. Hence,

for the entropy change from a crest to a through of the

wave, from a region at temperature T + AT to a region

at temperature T, for T the ambient temperature, one has

the rate of entropy change as:

ct t

(3.130)

Now for a composite system, with one ingredient having

a thermal conductivity K1 and a scale size a,, and another

component having thermal conductivity K2 and scale size

a2, then the heat flow will be governed by the more resistive

component, i.e.,

K-LK
(3.131)
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then region 2 will govern the flow rate and vice versa.

Hence in the heat conduction process one has, for Q given

on a per unit volume basis,

(3.132)

(3.133)

where ((K eff) k =) is used to compare the inhomogeneous
a

medium with the theory for the homogeneous case, since

in the present instance, the temperature gradient occurs

over a particle size rather than a wavelength as it does

in the homogeneous case. Thus this term acts as a scale

factor for the inhomogeneous case as opposed to the homo-

geneous case.

Now ATe and in particular,

33

(3.134)
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for an adiabatic change, with X' the bulk modulus, Cv

the specific heat at constant volume, and y a constant
(7 )

e, the strain.

Hence, for

(3.135)

It is necessary to consider some cases that determine

the conduction process.

(Case I) - This is the instance when there is sufficient

time for all the heat to flow out of the particle in a

half cycle and for the temperature to equilibriate.

Then,

(3.136)

from (3.130),

(3.137)

(71) y (g), see Appendix 2 for derivation.
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and from above,

,V
/v (3.138)

In this case, one is considering the entire process

of conduction as taking place over a fraction of a half

cycle, and effectively is dealing with small granules.( V.ei)

One has,

VI-Z~e a V, *V. )

(3.139)

and,

(3.140)

and, the temperature difference is, from (3.134),

(3.141)

while,

r, r,

i ... ..... .... .illflr, -- ,, ii
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so that,

(3.142)

So, per unit volume, per half cycle, one has,

(3.143)

and for the half cycle Tj)

(3.144)

which is the case with V1 << V2 .

(Case II) - Here one must consider the case when

the particles are large and K is small, and there is not

enough time for the temperature to equilibriate over a

half cycle. Hence, by the diffusion considerations from

the heat conduction equation, one has, the time required

as:

Q.,)

(3.145)

for r the radius (size) of the particle and a' the diffusion

constant.
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It is necessary to examine the instances:

If T > (1), the time for half a cycle, then the amount

of heat that can flow out, AQ is reduced by the factor

since,

(3.146)

here, since, AE = TT/T AQ then the (1 -E) term is reduced
*E d

by this same factor. Hence, in this instance,

-i

(3.147)

Now, if V CAT < AQ( , i.e., the heat capacity

limits the heat conduction, then again the governing term

is the lesser factor. Then, the expression above is furtherC2V2
reduced by the factor ( -2), but the frequency dependence

remains the same, and in this instance for large particles

one has
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/ - -

(3.148)

whereas for the case where there is sufficient time (for

small particles) for all the heat to conduct out, but

the conduction is limited by the heat capacity of the

cooler material, one has,

(3.149)

Hence, there are in essence four cases for the conditions

in the loss process. In all cases, the thermodynamic

attenuation mechanism is first linear in w and then becomes

independent of w. For typical powders, t- 1 second and

lies just in the midrange of the crossover of frequency

dependences.

Finally by combining all the losses, noting again,

from the general definition,

L 3V )-

' (3 50)
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and that in the general formulation this is,

ta

(3.151)

for the total loss occurring in the granular medium, then,

the general equation of motion now becomes the following,

being cast in the form for the granular (powder) medium

with losses. This nonlinear partial differential equation

may be combined with the general solution with the specific

losses for the powder to yield the complete powder wavefield.
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t.

C1V) v, -- 3

A~A c

AA
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(d) Applications of the General Method to Field Behavior

for Loss Mechanisms in the Powder

It is now important to treat the powder by the foregoing

principles to deduce the wavefield description and conse-

quently derive the nonlinear processes occurring in the

propagation. For the functional form for the losses in

the powder one has, from (3.152) the generalized loss

-function in the form:

(3.153)

with A in E/Lt units, B in E/vt units and C in E/At units

the velocity. Then, m = 2,3 in the formulation and

one has,

(3.154)

which becomes,
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31 L. 1 o (X ax) A

(3.155)

and, in the present formulation,

CT CTr _z/ _ V CI)'Av -kxD

(3.156)

for the DN given as the general nonlinear term in the

expansion, (3.107).

This is the nonlinear behavior as a result of the

interactfon processes occurring in the inhomogeneous granular

medium (powders surrounded by liquid, gas or vacuum) that

incorporates the effective Lam6 constants as developed

prior (Eq. 3.16, 3.18, 3.20, 3.21) for the powder included

in the formulation. This example illustrates the departure

from the simplified exponential behavior of the weak,

linear attenuation case of the classical theory when nonlinear

losses are taken into account. In the particular case

here the powder has been dealt with by the series solution

to the general problem.
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There remains one further loss to handle that is

present in the powder. This is the amplitude dependent

loss, V, (viscous loss) that is handled individually because

of its special nonlinear character and amplitude dependence.

Using the general form, Eq. (2.36) one has (with m=2),

since the power of x in the loss term, V is 0, so m-2

0Oand m=2:
i.r,~ ~ -T,.} o i+ . -- " <

(3.157)

So that, bringing the third term in the series over to

the other side, the following appears:

(3.158)

One then has, making (3.158) a polynomial in U:

(3 .19

(3.159)
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The solution for the amplitude from the quadratic is

Vo Im2 , .t~

now,

" fo I to z (.-A -

So the approximation goes with the first term in the bracket

and expanding the quadratic one has,

U- ( -t-f ( "
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which becomes,

(3.160)

Now,

,416 L 1.L) A-~77

so, finally, substituting the above into (3.160):

(3.161)

Hence, the total field may be obtained by superposition

of these nonlinear solutions, (3.161) and (3.155).

The method can be applied to subsequent cases, some

of which include the following:

(1) Lossy Fluids: Here the general wavefield description

involves the substitution of fluid/particles, and

fluid/particles into the general series solution for the

near and far fields, that incorporates losses. The resulting

description describes the nonlinear propagation in the

lossy fluids.

(2) Geophysical Scale Solutions: In this instance, for

obstacles large in comparison with a wavelength, one employs

the constitutive relationships with i, for granules
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and (liquid or gas) incorporated into the total solution

to obtain higher order scattering and diffraction effects

in the composite near field solution. Also additional

terms in the far field solution are used as further corrections

in order to account for the larger obstacles size.

(e) Lossy Mechanisms with a Distributed Forcing Function

with Application to Piezoelectric Materials

The general series method is not limited to acoustic

fields with no sources explicitly considered. The method

-is employed now for cases with distributed sources, and

as a specific example one considers the case where a lossy

medium with a distributed forcing function is present.

Here, F - f(x)e il t , and, upon substituting this form

into the equation of motion, one has, for the lossy medium,

with distributed sources of the above form,

(3.162)

This is so because the distributed forcing function contributes

to the motion of a point in the displacement field by

acting as a source of wave generation.

By the same arguments as before, there arises, (I)

Re = Re
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(3.163)

(II) Im - Im

Kk ) A&' Q,"-) - ') Al k) V-)

(3.164)
Now, f(x) - l AjXm for any f(x), since any arbitrary

ailm m

function can be represented as a power series. Since

.q = m + 1, one has a separated set of subseries. Then

one arrives at the recursion relationship between the

even-counted coefficients; this is done by the same arguments

as before for the imaginaries:
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(3.165)

And also, as before, for the odd-counted coefficients:

(3.166)

and also, from the real set:

A rr

xf 
+

(3.167)
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(3.168)

Combining the reals and imaginaries, (3.168 and 3.166,

and 3.167 and 3.165) one has the recursion relations between

the even and odd coefficients:

Al

(3.169)

and,

(3.170)

Again as before in the general case one is solving for

the nonlinear dominant coefficients for the distributed

forcing function. One has, the following for the A" from

the product terms in terms of the base coefficients, Ao,

and Bq* in terms of B1 that are arbitrary: (letting them

be 1)



L 98A,,"; ~ ~ ~ -k Z- c .- <,

i, '- o J(3.171)

And also for the Bq" coefficients:

J VkX Lt06-)±

If .1

(3.172)

Finally, regrouping, one has the following expression

for the general wavefield solution incorporating the effects

of a distributed forcing function:

: K~ t . (t,"+
,.YJ,

-T CJO (A,,,J o

ll _ . .. ... ............. .... ,, l
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+UO

3.173)

Where the nonlinear terms represent higher order interaction

and attenuation processes. The wavefield U described

above represents the solution inside the lossy material

with distributed forcing function.

Now one knows that,
(__i_)._ eQ,~) 8 C)E>-. : '

(3.174)

for P(x) the piezoelectric coefficient and E the electric

field, and -U the strain.

Now,

(3.175)

so that one associates F with dP(x) anddx'

F(x) is the forcing function produced by the electric

field E.

Using the above considerations, one may display an

example of the general techniques with regards to a piezo-

electric material with P(x) defined as
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(3.176)

(3.177)

(3.178)

Then, for F(x) the distributed forcing function one has,

$ 0

(3.179)

The general nonlinear solution in the piezoelectric material

becomes, applying Eqs. (3.173) and (3.179),

- -~5~ ) L~o)-~ 'c'j "

3 F

(3.180)

for A and B units factors.



101

Now it is known, that a solution of the form

exists outside in the near field of the piezoelectric

material.

Hence, for the transmitted wave, one has, applying

the boundary conditions at the interface, (x=0)

7-~ Cr~-- JJ

(3.181)

and,

~A a

(3.182)

so that, substituting (3.181) into (3.183), one has,

(3. 183)
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for the reflection and transmission coefficients,

R and T; so,

* )~(&~.A.A) (~>~ AAk

(3.184)

Since one cannot have simultaneous conservation of wave-

vector and frequency,(8) one leaves (kin/ko) as a terminout

in

The output can be described as:

(3.185)

where T is measuied at the output of the piezoelectric

material with a known input Uo. This is the nonlinear

output from the peizoelectric material into the surrounding

medium in the near field, with the general nonlinear term

AN in the series expansion described as:

(8)J. de Klerk, P. Klemens, E. Kelly, "Multilayer Enhance

ment of Microwave Piezoelectric Conversion in CdS - SiO
Layers" Applied Physics Letters, 9,10 (Nov. 15, 1965.)

-AI
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(3.186)

Hence, the method may be used in cases where distributed

sources (and sinks, as in the loss function itself) are

present.

(f) Energy Loss Mechanism Size Ordering

for the Powder

It is extremely valuable to know how the losses order

themselves over the frequency regime. This is so since,

if one were to desire to obtain a first order description

to the physical powder situation, ordering of the losses

would permit the formulation of an approximate, simplified

equation of motion and constitutive relations and allow

one to deduce the first order description to the wave

field.

Hence, one orders the losses over the frequency range

to see their dominance to the contribution to L. This

will enable one to obtain such orders of approximation

to any desired degree.

(Case I): In the short wave length limit, (N < R, k large)

one has, to order N,
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4/*/

V o. h1V /

(3.187)

To lowest order, one puts N = 0 into the expression and

gets the magnitude dominance:

53" r-.> g> A> V>Y

(3.188)

(Case II): In the long wavelength limit, (X > R, k small)

one has,

V 0 k1, ',A k"

(3.189)

For weak scattering, little scattering loss occurs

for low k. For N = 0 in lowest order S a k 4 and the familiar

Rayleigh scattering dependence is regained.

So here one has the dominance as:

V'T7 F(3 A190

(3.190)
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So that according to the frequency regime that is

investigated, the losses reorder themselves in dominance

for the two regimes, X < R and X > R for R the size of

the obstacle. Hence in the two cases, by ordering of

the largest to smallest, one discovers in the two regimes,

the partitioning:

(3.191)

and

L- 4 S Y- "FPS A V + T)

(3.192)

As a result of this ordering, one sees that in the

frequency regimes of X > R and X < R one may approximate

L by the first few terms,

(3.193)

and,

(3.194)

So, effectively, this means that in the two frequency

regimes, the following apply,

j (3.195)
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and,

(3.196)

So that the low frequency regime has L- -(k/u) and

4the high frequency regime has L- k4 . This shows that

the largest attenuation is at the higher frequencies and

the energy losses go up in powers of k4. In the intermediate

frequency regime, X-'- R, all losses are important, and

a direct ordering for truncation would not be advisable.

In this case, all losses should be used in the general

equations of motion to develop the wavefield.



CHAPTER IV

Power Series Solution Capabilities

as Opposed to Perturbation Analysis

and Crossover Criteria

(a) Limitations on Perturbation Theory

The concept of a series solution is amenable to many

intractable problems since admissable physical functions

are in essence, convergent series of polynomials. Hence

it is not surprising, that, when the complexity of a problem

surpasses the small storehouse of analytical closed form

solutions, a series solution is developed to the equation

at hand. One can now examine the capabilities of the

series as a satisfactory means for the development of

a solution.

One investigates the limits of perturbation theory.

For weak scattering, perturbation theory is acceptable,

but for strong scattering, it fails. For X < R perturbation

theory fails since the wave is refracted by the obstacle.

Perturbation theory also fails for strong scattering when

the mean free path as calculated by the theory is comparable

to or less than a wavelength. For X > R, in general,

perturbation theory is permissible for the weak scattering

107
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process. In the present treatment, the loss mechanism

L has been formulated as:

L = S + other nonlinear energy loss mechanisms

not handled adequately be perturbation]

theory

(4.1)

S is the scattering loss mechanism and for X > R

the perturbation theory determination of S is acceptable,

but for other cases, the theory is not adequate, and another

approach must be developed.

Now since perturbation theory fails in strong scattering

then one must use an approach whereby the displacement

field may be expanded into a series form to obtain the

effects for strong scattering and high losses. Hence,

where the perturbation theory was used to calculate weak

scattering and the nonlinear losses were handled by series,

strong scattering and general nonlinear losses would incorporate

a series throughout. In this light, one constructs Table

IV, as a result of these considerations:
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TABLE IV

Regions of Applicability of Solutions

Scattering Mechanisms Method

Weak Perturbation Theory (P)

Strong Series Solution (S)

Other Generalized Losses
(9 )

Series Solution (S)

Lw = P + S = Perturbation Theory and Series

Ls = S = Series Solution

Now for an inhomogeneous lossy medium, at the high

end of the frequency scale, scattering effects appear

to be a dominant mode of removing energy from the wave.

These scattering effects become more aiid more significant

as one increases in frequency. At the lower end where

scattering effects are not as important (wavelength greater

than obstacle size) attenuation takes place moreso due

to the "mechanical" processes (viscous and frictional

and thermodynamic losses). Hence the dominant attenuations

at the low to intermediate frequency regime are those

"mechanical" loss processes with scattering playing a

secondary role.

(9)These include the terms T, V, "A, B, F defined earlier
in the case of the powder. In the general case these
include any losses of nonlinear character whereby the
perturbation theory is not adequate.

LL-L
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Hence as the wavelength begins very large, loss processes

in the inhomogenous medium are small; as the wavelength

decreases, the loss processes begin to play an increasingly

more dominant role where "mechanical" losses dominate

at the intermediate end (X R) and then as one approaches

A < R, scattering effects predominate. As a result one

may construct the table below:

TABLE V

Dominant Loss Processes Occurring

Over Frequency Regime

(Major)

A >> R (losses very small except for small atten-

uation)

A > R (losses are mechanical in nature)

V - (1) Viscous Loss

T - (2) Thermodynamic Loss

F - (3) Frictional Loss

S - (4) Weak Scattering Loss
(Perturbation Theory Applicable)

X < R Strong Scattering Losses

Multiple Scattering - intrinsic attenuation
in the solid/liquid
(A,B)



Energy loss is very strong at wavelength X < R in

the spectrum. Thus there must be a sort of "characteristic"

frequency wc' below which the wave passes, above which

it is strongly attenuated. This w c is directly related

to the properties of the medium in terms of its mechanical

variations and elastic constants. For a perfectly homogeneous

medium on the other hand, the wave is only weakly attenuated

by anharmonicities at all frequencies and no dispersion

takes place, whereas for the inhomogeneous, lossy, medium,

dispersion occurs and losses take place. The critical

frequency wc depends upon the properties of the medium,

ie, wc = W (L), and the characteristic frequency is implicitly
c

loss dependent.
A class of problems of interest to the scientific

community in physics, geophysics, and engineering has

been examined whereby energy loss mechanisms are considered

in the degradation of an elastic wave propagating in an

inhomogeneous medium. For the most part idealized solutions

give insight into general behavior, but sidestep many

of the important physical processes taking place in actual

propagation. The general theory is consistent with the

special case of low-loss homogeneous media, with an oscillatory

solution in the limit, but at the same time, gives an

extension of the theory as it exists today to allow one

to deal with energy loss mechanisms occurring in a granular,

lossy medium. This same approach may be used to obtain

solutions to any inhomogenous medium by formulating the
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appropriate "loss function" L and developing a series

solution consistent with the resulting inhomogenous partial

differential equation; hence the method has broad application

in its scope to similarly related problems. This method

should provide results in the fields of acoustics, elasticity,

electromagnetics, geophysics and physics if the method

is correctly formulated and the problem admits a solution.

(b) Physical Situations Requiring

the General Series Formulation

At this point it is of value to indicate a few physical

situations that would require a generalized series solution

as opposed to a perturbation technique. Such cases include:

(1) Lossy fluids - In this case with viscous and amplitude

dependent losses, nonlinearities of a general nature occur

and the series is needed. The behavior is described by

the general series.

(2) Elastic wave propagation in mud/muddy rivers - In

this geophysical situation, multiple scattering and viscous

and frictional loss mechanisms require the general series.

No actual truncation would be used as a result of turbulence

effects.

(3) Strong scattering of ultraviolet light - The general

series is needed in this physical situation as perturbation

theory fails for strong scattering and X < R. Weak scattering
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would be handled by perturbation theory.

(4) Wave propagation in icy oceans - Here, X < R for

large pieces of floating ice on the ocean and the thermo-

dynamics loss is large. The general series would be used.

(5) Wave propagation on sandy bottoms of lakes/oceans -

In this case surface effects of frictional loss are present

and general series is needed. No truncation would be

used.

(6) Dampening of vibrating beams in concrete beds -Here

energy is highly damped and strong attenuation occurs.

The theory can be used to determine attenuation distance

in the bed for determination of bed dimensions.

(7) Acoustical tile thickness - optimum design for minimum

cost - Theoretically, one may obtain a good estimate of

best thickness of acoustical tiles for manufacturning

to design for cost effectiveness. An optimum thickness

for dampening and minimum cost could be obtained.

Hence as is seen here, the general series formulation

accounts for a wide class of problems that perturbution

theory cannot. In this way, the general series provide

an extension of the perturbation theory be augmenting

the class of problems that can be handled.



CHAPTER V

Conclusion

In this investigation a development of a generalized

method to solve nonlinear wave equations with energy loss

mechanisms in an inhomogenous, medium has been made.

Specific application of the method has been made for a

granular lossy medium (powder) with vacuum, air or liquid

as an environment.

The power series solution to the problem yields insight

into the total energy absorption processes occurring through

the concept of higher-order attenuation processes as a

result of multiple interactions. The idea of the attenuation

coefficient in wave propagation has been broadened through

the introduction of the attenuation order interaction

coefficients. The amplitude and frequency of the propagating

wave is described in the near and far fields in consonance

with functional behavior observed such as damped electric

and acoustic signals on oscilloscopes, in lossy media.

In addition, the effect of loss on dispersion indicates

frequency shifting due to the loss mechanisms in the medium.

In summary, one concludes that the first order approxi-

mation of an attenuated wave

(5.1)
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is not sufficient for a general description, and that

the concept of attenuation order interaction coefficients

must apply, ie., in general representation,

TJ 0 W'CX,

(5.2)

in the near field and, in general,

(5.3)

in the far field, where proper account of the energy loss

mechanisms has been taken in the construction of the nonlinear

attenuation order interaction coefficients, DN.



APPENDIX 1

Attenuation Order Interaction
Coefficients in Lossy Media

If one considers the wavelike function, omitting
the time dependencer

+ + ,.

- (b )CacL<<x-

(Al-i)
ik1x -k2x

So for this "linearly attenuated" case, (e e )
the coefficients Am' and Bp' do not depend upon frequency
or time or loss mechanism L. In this case the coefficients
A m', Bp' are constants, and the attenuation coefficient

a = k2 only.

Consider now, the case,

(Al-2)

116



117

where one encounters nonlinear interactions occurring
in the loss mechanisms over the entire frequency range
W. Now, if

zm Aim Lt "c)  . = ( L) lt.)

(Al-3)
no longer constants, one sees that,

(Al-4)

"/"r db..,,hI Div H 0 ~ ,v

7F, Lkxf
/V/

T', ,,, -9-L W

c#2 ( I =j ?-

in the general series expansion of U.
So one sees that the true attenuation coefficient a is
made up of a = k2 DN with DN identified as the Nth coefficient

in the series expression solution to the nonlinear inhomo-
genous loss problem. In the former case, a = k2 D0 =
k2 as before, when higher order losses were not considered

and higher order attenuations neglected that cannot be
neglected in the nonlinear loss problem with interactions
of various higher orders. One calls the DN the (nonlinear)
attenuation order interaction coefficients.

LI



APPENDIX 2

Relationship Between Thermal Strain,
Temperature Change and Thermodynamics Parameters

One has,

(A2-1)
for X' the bulk modulus, K the compressibility, 8 the
expansivity, T the temperature and V the volume, with
Cp, and Cv the specific heats at constant pressure and
volume.

C '-

(A2-2)

Now from the (TdS) equation, one can write, adiabatically,

-)-(V o'

(A2-3)

Where, here,

(A2-4)

is a characteristic volume.
Here, a strain e develops a temperature difference

(dT) and the strain gradient causes a temperature gradient
that leads to conduction loss, but in the inhomogeneous
medium, the strain difference causes a temperature difference
between the different components and this leads to conduction
loss.
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APPENDIX 3

Relative Magnitudes of Losses in Numerical Approximation

One has for the thermodynamic loss in powders,

* ~(I)-~-
i ) Z.,

))=X77 -1

(A3-1)

so that,(T k)

(II) For the viscous loss, one has,

(A3-2)

so that,

and,

(4 (A3-3)
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for water, ) ~ ,~ r~.

CL- T/-(

(A3-4)

so for U > 1A0 the viscous loss V dominates over T. So
that viscous loss is proportional to amplitude and goes
as f.

(III) For A, the intrinsic attenuation in the solid,
one has for rate processes,

C / T (A3-5)

P /

/2 ~( -  0/¢ -I ",. ..

A~ (A3-6)
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so that (A m k2) for the intrinsic attenuation in the
solid.

(IV) Now, for B, the intrinsic attenuation in the liquid,
one has, for water,

with /0 /ij 7 " "1

(A3-8)

Hence, at the low frequencies, one has little Akiesar

CV) Now, for S, the scattering loss, in terms of the
magnit ude,

(A3-9)

from Eq. (3.128) and (3.129), where1V is the volume.

The attenuation length-./ goes as - -- (NS) so that

-, -/

( -
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(VI) Lastly, for F, the frictional loss due to relative
sliding between particles, one has,

(A3-11)

for A the particle area, r the particle radius, P the

dynamic pressure, and F viscous the viscous force.

For sliding 'ki > 4A A

for the surface, O * 0

(A3-12)

For 1 mm depth of sand, on a per unit area (cm ) basis,
one has, . 3-./cc ; V- .1 c ; Awi7" -

I eA)C A 3 3,i> ( j ,

F

4. -h -W- \T /

So that only down to .4 mm does the frictional force f'

occur in measurable amounts even discounting viscous retards.

So that F is predominantly a surface effect for waves
of low frequency. (for 1 cycle waves, F loss occurs only
down to h m or so, at higher k's, F of course goes deeper,
linearly in k.) Now from Eq. (3.45):

'A' (.),) Y % /Ac ~h C s v (- (A3 131
A':



N--j t-

-z.Wt IVj

v 3 (Ac) / Y2c~(r4 C4'

Now, in general, the point to is such that 0 
= 'o ( /2 k)

Averaging over a quarter cycle where the variation
occurs to yield a contribution,

or, finally, \- "

now, in all cases, for sliding to occur,

\7v)' ) (A3-16)

t/- T (A3-15)

for low L- iA /

V ..+.,,<.,,-- ./ ,c -- .) ------- - ,,
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at low k, threshold small= .(

A(3-18)A

At high k, threshold large==!p 4z.e-

C-,P- W td~

and sin6 dominates, in the expansion of sin (6v-) so
that

<'"AC3-18)B

in any event, one has from A(3-18)A and A(3-18)B, upon
substitution into (A3-15),

, -A (A3-19 )

Since Ac, P are so small the amplitude dependence in
F is very w~ak for the present considerations. (f = 1
cycle/sec) Down to 1 mm of sand sliding occurs with the
parameters as defined:

'C = ×<sc,. <

x, /af .'l.'

so that, on average

i ~ i . .... ..... . . . . . '0
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- (z, o I ) .) 6v ozs2,-.

which yields,

~7

(~ ~~~4J(A3-20)

and this gives the order of the frictional loss and its
frequency dependence.



APPENDIX 4

Derivation of the Generalized Inhomogeneous Media
Equation of Motion with Energy Loss Mechanisms

Considering an element of volume (dxdydz) in the
inhomogeneous medium, one has, for the displacement U(xyz,t)
of the element (dxdydz) at the point x,y,z and the time
t, that the inertial reaction of an element to an
acceleration c c -4-t for p the density of the medium
(p = p(xyz)), the net ;orce on the element (dxdydz) to
forces acting on all faces is the sum over all faces of all
force gradients. One has, indeed, summing,

4 7 (t)

Then, one has the vectorial equation, noting V • F is
a vector for dyadic F, where F is the stress dyadic, and
F = Fx i + F y + Fz is a tensor of rank two.

(A4-J

Now, U, I)

(A4-2)

+ L o(i(~v ( "r1)(43
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(v. yz - < "-7-
.r.~~~r .T,: rr . .x .,,., <, ,.:. (,,(,.

(A4-4)

Now '7; (. x j- (V T) --v.C ,

(A4-)

but now one needs to account for losses. This is the
vector wave equation of elasticity for inhomogeneous media (I0 )

and agrees with that of Hook. One adds a dissipative force
field to act as retarding loss to the force balance equation
above, and account for "effective" Lam4 parameters by
the terms and j .

The effect of the dissipative force field is to account
for lossesi as the wave propagates 'through the inhomogeneous
medium. One decribes the loss mechanism by the generalized

(lO)* Hok,"Separation of the Vector Wave Equation of
Elasticity of Certain Types of Inhomogeneous Isotopic
Media," Journal of the Acoustic Society of America, Vol.
33, No. 3, (March 1961).

- -_~~~ .Z = . .
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"loss function" L. L is in units of energy/unit volume/unit
time, so, to convert to a dissipative force field one

has L/V"= L(a) for Vthe particle velocity. Hence, the
final form. as the starting point for the study of wave
propagation in an inhomogeneous medium with energy loss
mechanisms is

(A4-8)

which is a complete vector equation.

.



APPENDIX 5

Discussion of Rate Process and
Intrinsic Attenuation Processes

In order to develop the intrinsic attenuation in
the solid or fl " .one may employ the following argument
due to Klemens.

In the low frequency range the wave causes a strain
which alters the frequency of a mode q. The functional

change is given by y(q)C for y(q) the Gruneisen parameter
(related to the frequency decrease in a solid arising
from dilation), and which is essentially an anharmonicity
coefficient. Since the frequency is changed because of
the dilatation, the equilibrium occupation of a mode q
is also changed, and so if the actual occupation number
remains fixed, it will depart from the equilibrium state.

By balancing the rate of change of the occupation
number of thermal mode due to strain and an accompanying
temperature change against the rate of change due to dissi-
pative processes (three phonon process) one has, as N
is a function of w, T, the frequency and temperature respec-
tively,

• (A5-l)

which is true in the relaxation time approximation and
where n a small deviation from the equilibrium occupation
number N-. Now for X , , one gets, from the above
relation, (A5-1),

(~~AfAIX) 77ty % )
(ll)P. G. Klemens, "Effect of Thermal and Phonon Processes on

Ultrasonic Attenuation", Physical Acoustics Principles and
Methods vol. III-B Lattice Dynamics, edited by W. Mason,
New York, NY: Academic Press, 1965).
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and, -n /, c

and, -e d e- d 7

d )(A5-3)

()

Now one has, for a change of ten erature with strain,
that as a result of a changed strain E, a departure
of the phonon gas energy changes, and this change is equal
to the energy change due to the change in temperature
6f that results from 6eC, so that from (A5-2)

v dr'

or,

ocl 1 fo tI as:
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- j ~x d~-(A5-4)
so thatIL

So, returning to equation (A5-1) with (A5-4) and (A5-2)
substituted in, one has,

7- 7--e--(A -5)

h (A5-6)

with W the frequency of the sound wave.
Now thg energy absorption is given by following, occupation
number N change leading to energy change,

(A5-7)

The bracket vanishes when all N's as given by equilibrium

value, ie,

IVo N e" - /Vo A/le a/e"}

(A5-8)

For deviations from equilibrium, one has terms linear
and bilinear in n, the deviation, where N a No + n. The
linear terms do not lead to absorption because n, and
E vary periodically with time and vanish when averaged
over one cycle of the wave. The bilinear terms become,
in the deviation,
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+ k - i + '

-=- tel l' I nI  - k i n -~ ' -- nli -- + 'l .

(A5-10)

The last n is considered being averaged over a cycle
of the wave.

Hence, the energy absorption rate becomes from (A5-7)
and (A5-10),

and in bilinear form in the deviations, one has,

(A5-11)

Now noting from (A5-6) one has,

.7 d A-

(A5-12)

so that the bilinear terms that lead to absorption result
in:

(A5-13)

Now,A

because ( L~
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so that

- - < Y w- r LCvT)

since 6 -

(A5-14)

This is the formula (A5-14) one uses for the intrinsic
attenuation loss component in the composite. This may
be applied separately to the liquid or the solid.



APPENDIX 6

Fog Attenuation Calcuation

An example of the thermodynamic loss As/Applied to
fog (V << V ) illustrates some of the principles discussed
in thiA work?

Hence, for fog, from typcial values,

% (A6-1)

and,

so that,

) /,%o (A6-2)

(A6-3)

as a result, one has, for T the thermodynamic loss,

(A6-4)

for sound in fog, let w - 600 radians (f - 100 Hz), which
is a typical low frequency source. Then,

(0) (A6-5)

hence, the mean free path in fog becomes 4: .
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for the sound at 100 Hz, leading to a reduction of (l/e)
in level. And, for fog particles in air, of the order
of 10 microns, one has,

(A6-6)

hence the crossover point for the thermodynamic attenuation
mechanisms is f = 1000 cycles for fog and sound. This
is for the frequency dependence of the thermodynamic loss,
T.

One also notes from the buoyant force considerations
in the fog,

(A6-7)

Which describes the viscous Stokes force that is buoying
up the fog particles.

Hence, for v = .1 cm/sec, the terminal velocity of fog
particles one has,

Therefore the fog particles have a general lower
limit in size of the order of 3 microns.
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