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Many methods have become available recently for the

" determination of the steady state response of nonlinear circuits.

The Newton method of Trick, Aprille and Colon is one of the more widely

available methods. However, in certain cases, the method fails to con-

* verge to a steady state solution. Three modifications to the Newton

* method to increase convergence reliability or speed are proposed.

The implementation of these modifications is discussed. Several example

circuits are given and the results compared. Some guidelines for the

use of these modified methods are also given.
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Chapter I

INTRODUCTION

A major concern in the computer-aided design of electronic circuits

is the determination of the steady state response of nonlinear oscillatory

systems. Improvements in DC, AC, and transient analysis techniques have

resulted in fast, reliable methods for these problems. Here we shall be

concerned with improved methods for the determination of the steady state

response of nonlinear oscillatory circuits.

One of the most useful of the many suggested steady state analysis

methods is the Newton technique of Trick, Aprille, and Colon. This method

appears to be becoming more widely accepted, but is not universally used.

One possible reason is that the method does not always converge to a solution.

It is difficult to gain acceptance for a solution that is not almost univer-

sally reliable. The problem was to study the application of the Newton method

to the determination of the steady state response of a variety of nonlinear

oscillatory circuits and to identify the causes of convergence failure in order

Ito design a modification of the Newton method which eliminated the convergence

problem.

In order to analyze a variety of nonlinear circuits the program "SINC"

f was chosen. SINC is a program for the DC and transient analysis of nonlinear

circuits. It was modified by Fan to perform the Newton iterations for the

I determination of the steady state. The program was studied, certain errors

were corrected, new devices and commands implemented, and eventually the

modifications of the Newton method were installed and tested. i!
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A variety of circuit examples were run using the proposed modifications

to determine the usefulness of the new techniques. Comparisons were also made

of the speed of operation for the different methods, and conclusions were

drawn concerning their usefulness.

Chapter 2 is a review of the techniques currently available for

the steady state analysis of nonlinear systems. Some discussion is also

made of the advantages and disadvantages of each method.

Chapter 3 contains a detailed discussion of the Newton method

as applied to circuits by Trick and Aprille, and of the modifications of

Trick, Colon, and Fan. Some possible causes of convergence failure are

identified and discussed. Modifications to the Newton method are proposed

and the convergence behavior of the modified method discussed. The use of

the modified methods in the case of autonomous circuits is also discussed.

Chapter 4 is an introduction to the SINC program and an explanation

of the changes made to the current version. Some errors and changes are pointed

out. New implementations are discussed, and the changes necessary to implement

the modified Newton techniques developed in Chapter 3 are reviewed.

Chapter 5 contains several example circuits and compares the results

obtained using these techniques on each example. A number of different types

of circuits are included to provide a reasonable basis from which to determine

the usefulness of these techniques.

Chapter 6 offers some general guidelines for the use of these

techniques and some suggestions for future development.

An Appendix contains a users manual for those interested in using

the SINC program to analyze other circuits.

~................ ................ .. :" " : ................ ........
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Chapter 2

STEADY STATE ANALYSIS METHODS

In recent years, several techniques for the determination of the

steady state response of a system have been proposed. In this chapter we

present a review of the more prominent schemes. They are naturally divided

into frequency domain and time domain methods.

2.1 FREQUENCY DOMAIN METHODS

2.1.1 The Harmonic Balance Method

The Harmonic Balance method of Bailey [i and Lindenlaub [23 requires

that the user choose a fundamental frequency and specify a set of harmonics

which determine the response of the system. The method attempts to find a

periodic solution based on these components.

We assume that the system equations can be written as

~ f (x,t)

(2.1)

which is periodic in t with period T, and where x and f are N-vectors. We

also assume that the system (2.1) has a solution of period T 2 which canw

be represented as
x(t)x + k xlk cos kwt + x k  sin kwt

(2.2)

If we truncate this series to M components,

A~t A. A A A A
xt) xA + cos wt + 21 sin wt + ... + XlM cos Mwt + X2M sin Mwt

(2.3)

. ....
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If we then substitute this set into (2.1), we obtain a response

_(t), periodic in t with period T, having N(2M+I) unknowns. These are determined

either by

1) Integration: We form the set of integral equations

-o _P (t)dt f. xolXk

(2.4)

T _(t) cos kwt dt flk ' Xlk'X2k)

(2.5)

2 _(t) sin kwt dt f2k (x°'Xlk'X2k)

(2.6)

We then solve the above equations for xO , ilk' H2k.

2) Vector Optimization Techniques: We assume some solution for x0 ' Xlk, X2k'

k=l,...,M, and substitute into (2.3) and (2.1). An optimization technique

is used to change the coefficient vectors until some error function is

minimized.

This technique in general suffers from several problems. For

example,

1) The choice of meaningful frequency components can be difficult and

significant harmonics can be ignored.

2) The method suffers from convergence problems. Convergence is obtained

only if the initial guess for the coefficients is "close" to a solution.

3) The number of variables can be quite large. For example, consider a system

with 5 states, and for which we wish to consider a fundamental and 3 harmonics;

then we have 5(6+1) - 35 unknowns, the magnitude and phase for each frequency

component plus the DC offset for each variable.
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2.2.2 Piecewise harmonic balance technique

Nakhla and Vlach [3,41 have proposed a technique seeking to

avoid some of the problems involved in the harmonic balance method. The

method seeks to make the fullest possible use of the system linearity,

reducing the number of variables to be optimized.

Consider the system S in Figure 2.1a, consisting of two arbitrary

subnetworks SI and S 2, with current i(t) between them and voltage v(t) across

their terminals A-B. S1 and S2 each do not contain any source dependent on the

other.

If we now separate the suhnetworks, and drive S1 with a current

iI(t)-i(t), then the voltage at terminals A-B will be v(t). If this v(t)v 2(t)

is now applied to subnetwork $2, the current i 2(t) will equal i(t). See figure

2.1b.

Now, let us suppose that i(t) is unknown. We now excite S1 with a

current i1 (t)-i(t). This yields a voltage vl(t) at A-B. If v2 (t)iv 1 (t) is

applied to S2s the current i2 (t) is obtained. Let us define the error as

E(t)i i2 (t)-il(t). Our goal is to find an i (t) such that E(t)mO for the

period.

Specifically, the algorithm is as follows:

1) Decompose the networks into a minimum number of linear subnetworks Li, i-l,

...,l and the minimum necessary nonlinear subnetworks Ni, iil,...,N. The

terminals of the linear subnetworks are excited by a periodic current of the form
m m

IL(x) x E cos kwt + xsin kwt
;-L k-0 -Ek k 1 -Ek

Xk (2.7)

where x [--]
-k
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Figure 2.1a Decomposed Network

Figure 2. lb* 
Separated Network 
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Rewriting this in complex form, we have
m

.L(x) - Re kZO (k - j x) e•jkw t

(2.8)

We may write the frequency domain equations of the linear system in the

form

(2.9)

th
where the subscript k denotes the k harmonic component; E is the phasor

node voltage vector and :-k is the current excitation phasor, and A is the node

branch incidence matrix.

Using (2.9), we can write the steady state node voltage vector in

the form

k(t) Re ( M- jx*) b] exp(jwkt)(ekt) Re{ : (k J=k )  --k
(2.10)

where

z-k -k

(2.11)
Yb -JkA-k -k

(2.12)

2) Choose a first estimate of the variables in (2.7).

3) Solve the linear networks in the frequency domain and use (2.11) and (2.12)

to determine 4 and jk, kn0, ...M, where M is the number of harmonics to be

considered.

4) Using
m

e(t) - kEO e(t)

(2.13)

and (2.8) and (2.10), evaluate IL(t) and e(t) at the necessary sampling

points. We may use either the Discrete Fourier Transform (DFT) or Fast

Fourier Transform (FFT).
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Apply to the nonlinear network terminals voltage sources identical

to those calculated above, and calculate the terminal currents I N(t).

5) Define an error function

P(x) - SfT IEt (r)E(r)dI.
(2.14)

where E(t)=I(0-lN(t). Evaluate this function using numerical methods.

If P is less than some prescribed small value, stop. Otherwise continue

on to step 6.

6) Use the DFT or FFT to evaluate

E(,r)exp(jwkT)dlr

(2.15)
and

X (Fe) E()exp(jwkr)dr

(2.16)

7) Compute the gradient vector using
a f

0Z (-:)E,~x~wrd (2.17)

and

Z a- -P + jaP

-Sk
(2.18)

If the system is autonomous, compute

~ N t +2T Re -1 k N _fP 1 1: 01 Et (tiT) I (iPT) + NRe (k1-0 (yk I -  Ekt .i~ ai(-I~1 N7"t i--_

E (ti,T)exp(jwkt)]

(2.19)
aP

8) Use the error function P and the gradient vector & as arguments in the

optimization routine (Nakhla and Vlach use the Fletcher method [5]).

9) Use the correction vector Ax returned to compute the next estimate of x.

For an autonomous system, use the incremental change T to readjust the period

for the next iteration, and go to step (3). Otherwise go to step (4).

+.2



Nakhla and Vlach report that the best strategy was to start with

only a few harmonics, obtain an optimum or near optimum solution for this

value of M, then increase M and solve again, continuing until the error is

small enough.

2.1.3 Volterra Series Method

A method that has found much application in the last few years is

the use of Volterra Series Functionals [7]. Wiener [8] first proposed its

use in 1942. The method was revived in 1967 by Narayanan [9]. It has been

used extensively for distortion analysis by Narayanan [10,11] and others.

Kuo and Witkowski developed a computer program using this technique to determine

third-order distortion products in transistor amplifier circuits [121.

In a simple memoryless time-invariant nonlinear circuit the response

can be described by the following power series,

y(t) = ClX(t) + C2(x(t))2 + C3 (x(t)) 3 +
(2.20)

However, in a system with memory (capacitors and inductors in an

electrical circuit), the linear term is replaced by a convolution integral

y1 (t) - fT C(t-1) x(r)d(a. (2.21)

where we have assumed x(t)=O for all t<O, or in the transformed domain

Y (s) - C1 (s) X(s)
(2.21a)

Similarly, the second order term becomes a double convolution integral of

the form

Y2 (t) - . trt C2 (t-lr,t-l?2 )x( 1")x(r 2 )d1 dT2

an (2.22)

Note that the output depends upon products of the past values of the input,

and C2 (t-T,t-T2) is the second-degree Volterra Kernel.

2

-, ..
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Transforming the above, we obtain

Y2 (SitS2) C2 (S1 s2) X(S1 ) X(S2)

(2.23)

In general, we may represent the n term as

nyn ~t) ... It Cn(t.Tiot_-,. ,t.Tn i= X(T )dT
(2.24)

and in the frequency domain as
nYn(S) = cn (sips 2,"-,s n) 1 :1 x(si)

(2.25)

in applying this method to the analysis of circuits, the first

term is represented as a linear element, and the nonlinear terms are modeled

as current sources, following the method of Bussging, et. al. [13).

From the preceding discussion, it is obvious that this method is

primarily useful where only a few terms of the expansion are required. This

is the case only if the circuit is mildly nonlinear, and thus the Volterra

Series approach finds use in applications such as communications systems

analysis, where the system is nearly linear. Since we are concerned with

highly nonlinear circuits, this method is of little help.

2.2 TIME DOMAIN METHODS

It is often more convenient in the case of highly nonlinear circuits

to represent the system in the time domain.

The most obvious method available is the contraction mapping approach.

First, we suppose that the system will in time reach a steady state. Then

providing our analysis algorithm is sufficiently accurate, we may follow the

system response from the initial state until the steady state is reached. I

!,3
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This "brute force" approach is not without its problems, however.

To follow the system response with the necessary accuracy, we must keep the

time step small compared to the period. If it then requires many periods

for the steady state to be reached, it becomes very costly to proceed this

way.

In order to avoid this long process, several methods have been

developed which lead more or less directly to the steady state solution. We

will review some of these now.

2.2.1 The Extrapolation Method

Skelboe [14] has proposed the use of the 6-algorithm of Wynn [15,16],

an extrapolation method, for the steady state analysis of systems.

We will consider a system of N nonlinear ordinary differential

equations with a periodic solution,

i - 1(y1t)

(2.26)

with y(to) = -

(2.26)

We can formulate the steady state problem as finding a solution z

of the operator equation

= F (z)

where
z ) - .+ f T ( -r ) , )d lr

(2.27)

For the *-algorithm, we define the initial valuesj ¢*(r) =

1 -(r) 0
S(r) Yr r - 0,1 ....

and the recursion formula

C(r) - s(r+l) + (r+l) -(r) -1
s+1 s-1 s

ji (2.28)

IM
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We may apply this algorithm component-wise to a vector.

For a linear system, this sequence will converge to the periodic

solution at m(s ). Y under some weak conditions. Furthermore, it is shown
zm °

that for a nonlinear system, this method has a quadratic rate of convergence

in the neighborhood of the solution.

By arranging the elements in the following array,

C(O)0 ,(0)
4(l) (I) 1 4(0)

-I *(l 2
0 (1) ( (O)

g(2) 1 3
-1 4(2) (1)

g(3) 0 4(2) 2

-1 C(3) 1
0

we see that at any point in the computation, we need store at most 2m+2

vectors in the computation of the c sequence.

Skelboe further points out that in the worst case m=N, where N

is the number of eigen values present in the system. However, if some of

these are associated with rapidly decaying transients, then m may be reduced

by integrating the system for q periods, until these transients die out

(equivalent to low-pass filtering). Thus, the method is implemented as follows:

1) Let Xie -l 

2) Compute x F(x )n_ n-l,...,q. q is chosen to allow the fast transients

time to become insignificant. I
3) Let yox()'qI

4) Compute Xr_(r_l) r-l,..., 2m

5) Apply the -algorithmt

to YO'Y- Y-3
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6) Let z <k)
-n -2m

7) Terminate if E(k) E (k-l)1 < 6, where 6 is estimated from an error7) ermnae i I2m 2

analysis of the E-algorithm. Otherwise return to step (1) with n-n+l.

Several advantages are claimed for the a-algorithm, including

(1) The method requires only the resultant vectors of a transient analysis

routine. Thus, it is applicable without major changes to a variety of

analysis algorithms, and is able to utilize sophisticated variable order and

stepsize numerical integration methods efficiently.

(2) The algorithm is applied component-wise, and can utilize efficiently the

separation of the time constants of different state variables. Along with

the aforementioned low-pass filtering, this may significantly reduce the

order of the problem.

(3) It is claimed that the c-algorithm converges "faster" than the Newton

algorithm, but faster in the sense of number of iterations.

The extrapolation method is not without problems, however. Among

these are

(1) It is difficult to determine values of q and m without considerable prior

knowledge of the circuit. An estimate of m can be made from the algorithm,

but this requires that the initial iteration be made with m-N.

(2) If the transients involved are mostly slowly decaying, m is close to N in

any case, and each application of the C-algorithm requires integration of the

system over 2m periods.

(3) It is difficult to compare the cost of computation for the E-algorithm

and other methods, such as the Newton method. Some examples by Skelboe seem

to show that many more forward periods are required for the I-algorithm,

while the Newton mdthod adds little to the cost of the fewer periods of

integration. But no direct comparisons are made.

L _ -~-
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The c-algorithm seems to hold some promise for application to

programs involving sophisticated numerical methods for the solution of {
small to medium size problems, particularly those that are mildly nonlinear.

It does not seem, however, to be the final answer to the more general problem.

2.2.2 The Gradient Method

Nakhla and Branin [17,18] have proposed the use of a gradient

method for the determination of the steady state solution. Here, an

optimization routine is used to reduce some error measure to a zero (small)

value.

Consider a system of nonautonomous differential equations, of

the form

(2.29)

where f is periodic with period T.

We assume the existence of a periodic solution vector x (t) such that-p

x (t) - x (t + T)P p
(2.30)

We define a discrepancy vector

A~x,)- f~x;T)-x,- P f(x,t)dt (.1
-~(2.31) .1

where f(xo ;T) implies dependence on the initial conditions x0 This discrep- *1
ancy vector is a measure of how far we are from a solution of out problem. For

the steady state, the discrepancy vector vanishes; thus, our problem is to solve

the nonlinear implicit system

-
(2.32)

A scaler error function P is defined as the square of the Euclidian

norm of the discrepancy vector, i.e.,

P(x) - [()] o(2.33
(2.33)
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where the superscript t denotes transposition. Clearly, we wish to minimize

P, with a zero value corresponding to our desired periodic point.

The optimization method to be used (Fletcher's method [19)) requires

the gradient vector

g(x) - P(x) . 2 [f((x;T) t

~ax.
(2.34)

We now require a computationally efficient method of evaluating this

vector. We first differentiate (2.29) with respect to 4, obtaining the matrix

differential equation

_xo as _x(t;Xo) 2So

(2.35)

This linear time-dependent equation has the form of the variational

equation

Y_" Ix(t ;xo)Y
(2.36)

This equation has as its adjoint,

-t""i = (_) lx(t;x°)

(2.37)

which is also linear and time-dependent.

A fundamental property of linear, time-dependent differential equations

and their adjoints assumes that the solutions obey

t t
"z(t) z(t) - taz, = constat

(2.38)

for all t.

Thus, in our case, we may write
[ X(T;jo) _ t aK(O;xO) t _X(O;Xo)

I z(T) 1 [ 7 t(0) 1 z(0) " constant, where -ax

(2.39)

_; _'".". .

/-Il i~1lt-.H n?~-
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Therefore, if we set z(T) - 6(x0 ) in (2.37), i.e., we use the dis-

crepancy vector 6(2E) as the "initial conditions" in (2.39) and then integrate

backwards from t=T to t-0, the vector z(O) obtained is what is required in (2.34).

Thus, (2.34) is reduced to

(o)=2(z(O;6(x 0 ))-6(xo)]

(2.40)

Thus, we summarize the method as follows:

1) Choose a first estimate of x0 - perhaps by the continuous integration of

the system over several periods.

2) Using this value of 20, integrate forward from t=0 to t=T, saving the tra-

jectory x(t;x 0 ) at each step.

3) Compute the discrepancy vector 8(x0 ) and its scaler magnitude function P(Xo).

If P(E0 ) is smaller than some error criterion, stop.

4) Otherwise, use this 6(x0 ) as initial conditions for (2.37), at t-T, and

integrate backwards to time t-0, using the trajectory saved in step (2) to

compute the matrix ( f)t during this integration process.

5) Calculate the adjoint discrepancy vector, and double it to obtain the gradient

vector g(x0). Calculate P(X) and use these as inputs to the optimization routine
-00

to minimize P(3o ) .

6) Use the Ax correction vector return by the optimization routine to calculate

the next x0' and go to step (2).

Nakhla and Branin also present variations of this basic scheme to

allow for the inclusion of variable phase and the autonomous system. Again, this

method exhibits some advantages and drawbacks.

On the positive side, the gradient method

(I) sometimes converges over a wider range than other methods, particularly

the Newton method.
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(2) Allows for the inclusion of arbitrary phase effects; since the solution

may converge to any point on the trajectory, the method has a larger "target"

to hit, and converges faster than most gradient methods.

(3) There is a possibility that the gradient method may be faster for large

problems than the Newton method; however, this is somewhat fragile. As far

as is known, no direct speed comparisons have been made.

Some of the problems encountered with the gradient method are

(1) More iterations are required than with most other methods; for small to

medium problems, each iteration is longer than some other methods.

(2) The not-inconsequential problem of storing and recovering the trajectory

of the system for the backward integration. For large problems large amounts

of storage are required. Further, the trajectory must be accessed in reverse

order during the backward integration. Also, with methods of variable step

size, interpolation of the trajectory will be necessary.

(3) Scaling seems useful to speed convergence. However, no clear method is

given in order to produce a useful scaling scheme.

(4) A large amount of computational overhead is involved with the method,

optimization routine, etc.

Since the gradient method's success is tied closely to the efficiency

of the method used for minimizing P(x0 ), the method is attractive to those

possessing optimization routines. But again, it is not the solution for all

problems.

2.2.3 Equivalent Linear Analysis

Several authors (20-261 have treated the highly nonlinear DC-DC

power converter problem using various "equivalent" linear methods, with varying

degrees of success.

1.l
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These methods depend on the conversion of the nonlinear problem to

an "equivalent" linear one, and applying well-known methods to the solution

of this linear problem.

As an example, we will consider the "averaging" method of Middle-

brook and Cuk [22,251. Each nonlinear circuit over the period T is represented

by a succession of linearized circuits. For example, in a continuous-current

regulator the number of linear circuits necessary is 2. Over the period, each

of these is active for an interval dnT; thus, linear model I is active over

an interval dlT; linear model 2 for d2T. Obviously, Ed =1. Using a state-n

space representation, we have

(1) over the interval d T1

* Ax + blU

t 
(2.41)_I =Cl X

(2) Over the interval d2 T

" Ax + b u
- -2- -2-

t 
(2.42)

2=C 2 x

Next, a simple averaged system is proposed, for which

= dl(A1x + b1 ) + d2 (A2 x + b2 )
S (dl- + d(2.43)

The justification for this is basically the assumption that the

fundamental matrix

At
e- I l+At +....

may be represented by the linear term, and that the matrices A and A commute.
T1 -2

These assumptions are not at all valid, yet the authors claim very good results.

w Am
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The final result is a normal form system where

A Ax+b u

Cu

with
A dA I + d2A2

b dlb + db£
d Ct 

(2.44)dt dl;l + d2C

having a global state transition matrix

0 [T, t I , Al' A2 ; e 1- + d 2A2 ] (2.45)

Middlebrook and Cuk also go on to show that for these "averaged"

equations, it is always possible to represent the averaged system by a set

of appropriately averaged elements; thus, a complete analytical expression

can be obtained.

In spite of the simplicity and apparent power of the method, it

suffers drawbacks.

(1) Consider a system with many nonlinear elements such as diodes. The

determination of switching times and the large number of equivalent linear

circuits necessary requires large amounts of computer time.

(2) As a more exact analysis is desired, the two segment nonlinear device

models are replaced with m segment models, further complicating the linear

analysis task.

(3) In any case, the accuracy of the methods is limited by the accuracy of the

linearization of the nonlinear devices. In some cases, such as power converters,

where these devices may be characterized either as "on" or "off", this does not

represent a problem. However, in many other cases the usefulness of the

method is limited.
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Thus, the equivalent linear methods find application in some

special cases, but we still have not solved the general problem.

2.2.4 The Newton Method

Trick and Aprille [27-291 have proposed the use of a Newton

method for the steady state analysis. This algorithm is an application of

the well-known Newton method, widely used in transient analysis, to the

steady state problem. Consider a system of the form

(2.46)

where x and f are n-vectors; f is periodic with period T; and there exists

a periodic solution w(t) of period T.

The problem is then expressed as a two-point boundary value problem,

since in the steady state

x(0) - x(T) (2.47)

We have

x(T) = ST f(xo, )dT + x(O) (2.48)

and thus can express this as a mapping

x(T) a F(Xo)

(2.49a)

where

x(0) F(x.) - fTf(2XT)dr + Xo
(2 .49b)

The Newton method applied to this yields

k+l k _1 k -1 k k

(2.50)

Given the initial state 30 assume a unique trajectory x (t),

i i0 < t < T exists for the system (2.46). Since x (T) F(1O),
I F~i) tT'oi[

- (-o (T--
0Ix o

at0 0 (2.51)

g.
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Trick and Aprille have shown [27] that this is equivalent to

fi ding the state transition matrix of the system of first variation about
i

the trajectory x (t).

Thus,

0 -2E (T, 0;30 )i

(2.52)

Trick, Colon, and Fan [30] have presented a computational technique

for computing this sensitivity matrix directly, without the formulation of

the state equations. Thus, the approach is easily incorporated into existing

programs for the transient ana-ly-is of circuits.

Aprille and Trick have also given a method whereby the Newton

algorithm may be extended to autonomous systems [28].

Colon and Trick [31,32] have also proposed a modified Newton method

which improves convergence. In suary, this method includes an initial

iteration over three periods without applying the Newton method in order to

allow short-term transients to decay, noting that the sensitivity matrix does

not necessarily change significantly for a new set of initial conditions,

establishing a set of criteria for the computation of a new sensitivity matrix,

and the establishment of a damping factor to be applied to the sensitivity

matrix which reduces the size of the Newton step when the system is far from

the steady state.

The Newton method has been shown to be very effective in reducing

the computation necessary for the determination of a steady state solution.

The method has been reported to have been used in several circuit analysis

programs [31, 33-35] and has served as the foundation of further work in the

area [35,36].

The principal drawbacks to the Newton method are

(1) The addition of the mechanisms for the computations of the sensitivity,
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networks and the formation of 4 require extensive revision of transient

analysis algorithms.

(2) It is difficult to use variable order techniques with the necessity of

calculating sensitivity networks.

(3) Convergence is only guaranteed in the neighborhood of the solution.

In spite of these criticisms, the Newton method is still an efficient

means of calculating the steady state response of a circuit. The goal of

this work is to add some further improvements to the method in order to provide

reliable and efficient analysis of nonlinear circuits.

-e1
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CHAPTER 3

SOME PROBLEMS ENCOUNTERED IN THE CLASSIC
NEWTON METHOD AND POSSIBLE SOLUTIONS

3. 1. THE CLASSIC NEWTON METHOD

The many advantages of the Newton method clearly indicate that

this technique is worth exploring in detail. Trick, et al,. [27-311 have

presented a method which yields excellent results on many, but not all,

problems.

Unfortunately, the application of a Newton method to a nonlinear

problem does not guarantee convergence to a solution. Convergence proofs

are local in nature, and we are never assured of global convergence.

Further, we are not usually able to determine the region of local conver-

gence so that we are never sure of finding a solution.

Within the region of local convergence the Newton method is

quadratically convergent. If the method converges at all from outside the

region as is often the case, we have no estimate on the rate of convergence.

In this chapter we shall be concerned with improvements in the

reliability of the Newton method (increased region of convergence) and in

the speed.

3.2. HIGH-SENSITIVITY PROBLEMS

There exist classes of problems which exhibit a high sensitivity

to perturbations which leads to erratic behavior on the part of the Newton

method. Recall that the Newton method can be expressed as

-
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k+l k i1k k (
x 0 x + I- X (3.1)-O -O -- -o

This may be rewritten as

1k+ k k k

0 -o -
[- o~ "-xo] = XT"'Xo = .x (3.2)

where I - -J, the Jacobian matrix, and

a x I x 2  ax 3  axn .
.Q

2 2 f2 f2
ax 1 1 x2  - - (3.3)

afn 2fn fn - n"ax-- 2M2  ax 3  a- IL

We note that if the off-diagonal elements of any column of J are

significantly smaller than other columns, the change in the value of the

state associated with that column can be large, although the values of _x

could be small. The ith state exhibits a high sensitivity to error, thus

the choice of name.

Similarly, if the off-diagonal elements of any row of J are

smaller than those of other rows, large changes in all variables may be

present from iteration to iteration for a given Ax.

As a concrete example, let us consider the half-wave power supply

circuit shown in Figure 3.1. Clearly, the initial state of C, will have

little effect on the final states of either L1 or C2. Similarly, neither

the initial state of C1 or L will greatly affect the value of the final

state of C2.
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This is confirmed by an analysis of the sensitivities of these

quantities using the Newton method. For the fourth Newton iteration, we

have

+1.00003 5.11158x107  -2.57946

j 6.38593xl10 8  +1.00000 6.38580x1&-3

L-:.42 l- 6 l.81169x1.0 7  8.57791x1-21

Calculating the inverse of the Jacobian, we have

1.00025 -5.96054x10-6  30.078

J1. -6.16894x10-7  1.00000 -.074463

1.0607xO-4 -2.11268xl10 6  11.661

Remembering that the Newton equation for this case is

k+l k k k
x0(C 1 ) x 0(C 1 ) x T (C 1) - 0 (Cl1)

k+l k -1 k k
x 0(L 1 ) x 0x(L 1  +J x T (L 1) - 0 (L1) (3.4)

k+l k k k
,c (C2  x (C) X (C) - ,(C)

we see that a small difference in the initial and final states of C 2 will

cause significant changes in the new choice of initial conditions for C 1

and L1.

However, the difference values for C 1 and LIwill have little

effect on the new initial value of C 2.
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3.3. COLON'S DAMPED NEWTON METHOD

Even though a system has only one stable periodic solution, the

Newton algorithm may not be well-behaved. However, the contraction mapping

iterates will always converge to the solution. Thus, Colon [32] proposed

a modified Newton method of the form

xk+l k + - k . k (3.5)
-o -o - [T 0

where the scalar

o 1 -EC

and E is the change in the 12 norm of the vector of capacitor charges and

inductor fluxes. Colon states that this criterion worked well and gave

good results for a large number of different circuit types. Note that if

-1, this is the full Newton method; if Y =0, contraction mapping results.

3.4. VECTOR DAMPED NEWTON METHOD

In this section a vector damped Newton method is proposed which

selectively damps the sensitivity matrix so that variables which could

benefit most from contraction mapping techniques are separated from those

best served by the Newton method.

Experimental results using variations of this idea led to the

development of the following modified Newton method.

k+l X k + 1 i] k - k (3.6)0_ -0 -T -o(.6
h-o e

where
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0 ...... 0
0 /..... (3.7)

....................................
0 0 a

E -Eoi
a. 1- T i (3.8)

. E(oi

O.l.-ai 1 for all i.

E is the energy present in the ith state variable at time T.

Ti

Eoi is the energy present in the ith state variable at time 0.

We also form a global error

a= 1 -E (3.9)

where

ETi Eoi
E= (3.10)

E.
01.

and form

0 0L l],0A a (3.11)

This technique is motivated by a consideration of the behavior of

heavily damped states. If we are far from the steady state solution a

heavily damped state will undergo considerable change over one period.

This yields large changes in the energy and small values of ai for this ith1

A'
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state. The form of the A matrix tends to decouple these states in the Newton

method and allows them to be treated by contraction mapping without unduly

affecting the states acted upon by the Newton iteration.

This method also yielded good results on the circuits cited by

Colon, and provided good results on additional circuits for which the single-

value damped Newton method proved inadequate.

In rare cases it was necessary to provide a lower bound for ai,

as circuits which started far from the solution could spend an excessive

amount of time in the contraction mapping mode due to large changes in E

compared with the initial values. This was particularly true in the case

of autonomous systems in which the period was an unknown. Here, an error in

T could lead to phase differences in the evaluation of x and xT  yielding

a large value for E. A good value for this lower bound was determined

experimentally to be 0.1. This bound was usually invoked only once before

the computed value of ai was larger than this lower bound. For most circuits

a never fell below this lower bound.

3.5. PROOF OF LOCAL CONVERGENCE

Aprille [29] has shown that the classic Newton method converges for

an initial state x sufficiently close to the correct solution w for a-o -

specified set of conditions. This proof is based on one offered by Ortega

[37].
We will use a different approach to show convergence of the modified

Newton iterates, based on the theorem of Kantoravich [531 as given by Henrici

[541, An additional discussion of the theorem and its application to the !
1 I
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Newton method may be found in Roberts [551.

We first make the following definitions of norms which will be used

throughout.

If v is a vector, then

jvl = max lvii (3.12)

If B is a matrix, then

n

I1-11 - max . lb I (3.13)
1i n j1 bij

We next cite the following lemma due to Banach (Henrici [54],

pp. 365).

Lemma: Let B be a matrix such that I[11 k<l, and let I denote the

identity matrix. Then the matrix (I-B) exists, and

1-- (3.14)

From the above lemma, it is obvious that if 0 satisfies this re-

quirement, then the matrix B-A pA does also, and the norm for the modified

Newton method is less than or equal to that of the unmodified method. This

corresponds to Aprille's requirement that 0 have no unity eigenvalues.

We wish to satisfy the system

[(x) - x -_x -0 (3.15)

For this system, we have the Jacobian

(
JL - - (3.16)

iI
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where

ax Ti
0X~ (3.17)j

ij 6Xoj

The classic Newton method for this system is

k+l k k1(xk 7F(xo)
x W x -[.1-¢ 1-Ii (3.18)

0 - - -0

and the modified method is

k+l k kx-k)A]"lfo)x x - (I-A (xA ( )(3.19)
0 -o - -

For any system of the form

k+l k k -l kx =x - [B k()]IF( k) (3.20)

we have the following theorem (Kantorovich):

Theorem: Assume that the following conditions are satisfied:

i) for x_ , the initial approximation, the matrix B(x°) has an inverse

" - (B(x°))l, and an estimate for its norm is known:-'0 -- -

1 J :z B (3.21)

ii) The vector x° satisfies the system of equations (3.15) approximately,

in the sense that

-2T6!
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iii) In the region defined by equation (3.25) below, the components of

F(x) are twice continuously differentiable with respect to the

components of x and satisfy

EaxR [ K i=1,2,...,n (3.23)fil I x i a x

iv) The constants B 0. 0 K introduced in (i)-(iii) above satisfy the

inequality

h 0 B 0 K - 2 (3.24)

Then the system of equations (3.15) has a solution x* which is located in

the hypercube

I - I - 2h
0 ° N N(h o)Jo  h 0 % (3.25)

Moreover, the successive approximations x defined by (3.20) exist

and converge to x*, and the speed of convergence may be estimated by the

inequality

k
I.E _ * 14 I (2ho)2-1 3.6

2k1 2- 0I~k'*l 2k--"- o(3.26)

We do not repeat the details of this proof here; it may be found

in Henrici 54], pp. 366.

Let us determine how this theorem applies to the modified Newton

method as compared to the unmodified method. In the following discussion a

prime will he used to denote the modified system. Clearly condition (iii)

is satisfied for both cases within the bounds of the smaller cube if it is
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satisfied for either. Condition (i) is satisfied for the modified method

if it is satisfied for the unmodified method, and further by the previous

lemma B' < B . Therefore, if condition (ii) is met by the modified system,
0 - 0

and the value for fsatisfies condition (iv), then the sequence of iterates
0

defined by (3.6) converges. We may also determine that if h' < h , the0 - 0

hypercube defined in (3.25) is larger, and therefore we may approach the

solution x* from an initial point further away from the correct solution.

3.6. A MODIFIED NEWTON METHOD FOR AUTONOMOUS SYSTEMS

For autonomous systems a technique very similar to that outlined

above was proposed. However, we have no estimate of the individual error

for the period of the autonomous system. Any error in the estimate of

period would be evidenced by phase changes in many states. Thus, the total

error would be proportional to the error in period. Therefore this error

was used to compute the damping factor to be applied to the period.

Some small changes in the formulation of the modified Newton

equations are also necessary to provide continuity between the Newton

and contraction mapping techniques. We will not cover this in detail

as this has already been shown by Colon [29], but give the necessary changes.

We first obtain K, the index of a state variable within the orbit

of oscillation. We then form the series of Newton iterates

k+l vk _[ -1 i
v 0 - 2kA -xi i T
--o o k2kI -oXT (3.27)

where

vk . k xk xk T, xk xk (3.28)
o ol' 02 " oK-1 OK+l'''' On]T

I is the Identity matrix of rank n with the kth diagonal

element replaced by zero.

a -
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and

K is equal to the sensitivity matrix

k
p except that the ,Kth column of p is replaced by f(x )

and the Yth row of f(xT) denoted by f (x) is replaced

by fK(_ T)/a2, where C is the global damping coefficient.

No proof of local convergence for this technique is yet available.

As before, as a-O the method approaches contraction mapping; as a-l, the

full Newton step is taken.

3.7. SUMMARY OF THE DAMPED NEWION METHOD

The final choice of method was a vector damped Newton method

incorporating the reduced calculation of the sensitivity matrix suggested

by Colon (321. This method also merges some of the steps given by Colon.

He defines

x*(o) = x (o) (3.29)

for any step in which f is recalculated, and

jL2*(o)

where m is the vector of reaetance values at time 0 is calculated each time

a new initial condition vector is proposed. EP and the total error E are used

to determine whether a new calculation of the sensitivity matrix should be

performed. SWI and SW2 are internal flags used to modify the path taken.

SWI set indicates that the sensitivity matrix should be recomputed. SW2

set indicates that the sensitivity matrix has been calculated since the

last contraction mapping period.
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The algorithm is as follows:

I) Given x (o), integrate the system without calculating 0 for some

user-specified number N periods to remove initial fast transients.

2) Set i - N, E - 0, and set SWl and SW2. Set xi(o) - x(NT), x*(o)xi(o).

3) Given xi(o), calculate xi (T). If SWI is set, simultaneously calculate

0. If xi(o) -xi(T) l sufficiently small, stop.

4) Set ELAST- E, and calculate new values of EV and E. lI
5) If E > 1, do a contraction mapping period; clear SWI and SW2, set

x i(o)_ (T), increment i and go to step 3. Otherwise, go to step 6.

6) If we have not calculated § since the last contraction mapping step
i+l. xi

(SW2 cleared), do so now; set SWI and SW2, set x 0)2 (T), increment

i, set x*(o) x i(o), and go to step 3. Otherwise, go on to step 7.

i+l.
7) Calculate a. Use the modified Newton method to calculate x (o),

increment i, and calculate EP.

8) If EPa.2, recalculate P in the next iteration; set SWl and SW2,

set x*(o) xi(o), and go to step 3. Otherwise, go to step 9.

9) If E <EIAST, don't recalculate _; clear SWl, set SW2, and go to step

3. Otherwise, recalculate .; set both SWl and SW2, and go to step 3.

This-procedure is followed until the error vector, calculated in step 3, is

smaller than the error specified.

Although it is not claimed that this method is "best" for all

problems, it does yield good results on a wide class of problems. It is

not significantly slower than previous Newton methods on any test problems,

and produces good results on problems which are not otherwise tractable.

-' fl
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3.8. AN EXTERNALLY-SUPPLIED DAMPING VECTOR AND STATE ELIMINATION

It is assumed that in the design phase of circuit evolution, the

design engineer has a good grasp of the operation of the circuit and can

therefore make intelligent decisions concerning the convergence of state

variables. It was therefore proposed to allow the designer to specify the

elements of the A matrix. If these values were chosen to be either I or 0,

the circuit could be partitioned into those states which decayed rapidly

toward the steady state and those for which the Newton method would be

advantageous.

This technique of separating a system into components with

different classes of time constants is not new. Edsberg [38] reports on

several suggestions for separating the components of a system of ordinary

differential equations describing a chemical reaction into fast and slow

components.

The convergence properties of such a method are those specified

previously as long as the elements of A are bounded by 0 and I inclusively.

It is probable that in actual use the partitioning of such a

system would have to be dynamic, and perhaps interactive. Initially a

zero vector (contraction mapping technique) would be applied to the entire

system. As the solution approached full convergence the system could move

closer and closer to the full Newton step, thereby taking advantage of the

quadratic rate of convergence in the neighborhood of the solution.

* 3.9. PROVISION OF CONTRACTION MAPPING PERIODS FOR THE DECAY OF FAST

TRANSIENTS

States with a high degree of damping contribute to erratic behavior

of the Newton method in two ways. First, they often exhibit a high sensiti-

vity to error in some other state, contributing to large changes in the

. .... ...
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initial state vector. in addition, the large degree of damping produces

k_ k
large values in the discrepancy vector (xT  X) unless the initial guess is

close to the correct value.

Consider that these fast transients are associated with states so

heavily damped that they come close to the steady state in one period. Now,

let us insert a contraction mapping period after each Newton step. Thus,

given a new initial vector x i(o) calculated by the Newton method, we

integrate for one period and set

ar (o) = x (T) (3.31a)

and integrate for a second period, simultaneously calculating0, and find

1+2 i+l i+l -1 i+l i+lx2 (o) (o) + [-(xi(o))] [xi (T) - 2S (o))] (3.31b)

Note that we need to calculate the Jacobian only during the second period.

During the contraction mapping period the large transients

generated by high sensitivity elements in the Jacobian during the last

iteration decay. Therefore they do not affect the Newton step, and the

elements of the discrepancy vector are uniformly small.

Obviously, the usefulness of this technique depends on the ability

to separate the states into fast and slow groups, the fast states decaying

in a few periods. However, for systems which are so partitionable this

method is natural and easily implemented.

All of the methods outlined above have been included in a general

purpose DC and transient analysis program ("SINC"); they may be applied to

a problem separately or in combination. In the next chapter we will discuss

the details of this implementation.
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JCHAPTER 4

THE SINC PROGRAM

In this chapter we describe the program used to implement these

1ideas. The framework chosen was SINC, an existing program for the Simulation
of Integrated Nonlinear Circuits. We first provide an introduction to SINC.

J] Then, we describe several changes and corrections made to the basic program.

Finally, major additions and changes for the implementation of these modified

Newton algorithms will be described.

4.1. INTRODUCTION MO SINC (SIMULATOR FOR INTEGRATED NONLINEAR CIRCUITS)

The SINC simulation program is designed for general DC and

transient analysis of moderately complex circuits. SINC orginally descended

from TIME [39] at the University of California, Berkeley. It then was

restructured by Young and Dutton at Stanford University, where it was referred

to as MSINC (A Modular Simulator for Integrated Nonlinear Circuits) [40].

IFurther changes were made by Kao at the University of Illinois [33].

The current version of SINC includes elements of several other

programs. The dc analysis routine of SINC uses the step-limiting algorithm

of CANCER [41], rather than the method of Colon [29] or that used in BIAS-3

[42].

IThe user has a choice of Backward Euler, trapezoidal, or second

Iorder Gear's method [43,44] for the integration of the system. The default

of Gear's method provides superior results for stiff systems [44].

Further details on the program are available in Kao [33] or the

User's Manual [45].I
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4.2. CHANGES AND CORRECTIONS TO SINC

In this section we describe several changes to SINC which do not

reflect major changes or modifications. Several of these are transparent

to the user and are described to inform users of prior versions of SINC of

the presence of errors in the Program. Others reflect corrections or changes

to the program which affect the user, either by changing input formats or

output data.

4.2.1. User Transparent Changes

Changes were made to store the transformer initial conditions in

the temperature coefficient initial condition vector above the element

(R,L, or C) temperature coefficients or initial conditions. Previously,

initial conditions for the transformer currents overwrote these locations.

The FFT algorithm of Brigham [46] was rewritten to improve its

efficiency. The user was also given the option of choosing either the FFT

algorithm or conventional discrete Fourier analysis. Also, the components

were changed so that the sine term prints under the "sin" heading.

The current through voltage sources was calculated, thus allowing

the user to return currents as output values.

A problem was corrected with the timing of the steady-state

algorithm. Prior to this correction, numerical error buildup could cause

the algorithm to terminate one timestep too early, resulting in an error

in the value of the period of an oscillator or an erroneous steady-state

solution. Also, a plot of the output did not always continue over the

interval specified.

An error in the JFET modeling routine was corrected, allowing the
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user to specify more than one JFET model.

4.2.2. Fourier Analysis Routines

IThe user can now specify the FFT algorithm or conventional Fourier

analysis. The calling arguments are different. For the FFT, the format is

FFT TSTR TSTP NUX

where FFT indicates that the FFT algorithm is to be employed; TSTR is the
NUX

starting time point; TSTP is the final timepoint; and 2 is the total
NUX

number of sample points. If more than 2 sample points are available,
NUX

only the first 2 are used.

For discrete Fourier analysis using a conventional technique, the

conmand is

FOR TSTR TSTP NHARI
where FOR identifies a conventional Fourier analysis requirement; TSTR and

j TSTP are the starting and stopping times respectively, and NHAR is the number

of harmonics desired. In the case of an oscillator, setting both TSTR and

TSTP equal to 0.0 will communicate the period found by the Newton algorithm

to the Fourier algorithm.

4.2.3. Output Format Changes

The format of some outputs has been changed to provide further

information or reduce confusion. For example, in the output plots off-

Iscale and coincidence indicators are printed. Arrows indicate values off

t scale in either direction, while an "X" indicates coincidence of two or

more characters.

.
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If an unrecognized field is encountered while reading data, the

line containing this field is printed. Below that, another line contains

an up-arrow pointing to the unrecognized field or fields, and a warning

message is printed.

The information provided during the verification phase of the

program has been greatly increased. This includes additional information

about the circuit data provided, and information on some parameters for

transient and steady state analysis and special conditions which may be

present.

4.2.4. Input Format Changes

The control card NDC specifies that no DC analysis is to be per-

formed prior to the transient analysis. The time domain program begins

at the zero state, or some other state specified by including initial condi-

tions on the reactive element cards. This card is primarily useful when the

the circuit is an oscillator which has an unstable solution at the DC

operating point. Thus, if transient analysis is performed starting from this

DC state, the time domain analysis algorithm may indicate convergence has

been achieved. Use of an "NDC" card usually avoids this problem.

The type specification on the FET model card has been expanded.

Rather than the specification field "CTYP -1" or "CTYP -2" specifying an

n or p-channel device respectively, the user can simply specify "NJF" or

"PJF" for n or p-channel junction FET. The format for the tolerance control

card is now

TOLERANCE TOL NTRA NTRYl

4. _ ....
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where TOLERANCE is a key word; OL is the convergence tolerance on junction

voltages, expressed as a percentage of VT; NTRA is a code specifying the

integration method to be used for transient analysis (-1 for Backward Euler;

l 0 for Gear's second order method, and +1 for trapezoidal rule); and NTRY1

is the number of tries allowed to reach convergence (minimum is 5; default

is 10). These values apply to both transient analysis and each period of

the steady-state analysis.

The steady state analysis card format has also been changed. The

form is

STEADY KSTE FREQ PERIOD NST OL NTRY2 NTRYO

where the key word STEADY indicates that a steady state analysis is required.

KSTE is a code which indicates whether the circuit is nonautonomous (0) or

autonomous (1). FREQ is the fundamental frequency of the system, or an

estimate if the system is autonomous. The PERIOD is the period of the

system; if both the frequency and period are specified as non-zero, the

period is computed as l/FREQ. NST is the minimum number of steps allowed

over the period, and it determines the maximum timestep and also the print

interval. OL is the tolerance of convergence for the steady state algorithm,

expressed as a fraction of the maximum value of the state over the period.

INTRY2 is the number of periods allowed to achieve the steady state. NTRYO

is the number of continuous integrations to be performed before the first

* Newton step is taken. Setting this equal to zero means the first full

period analysis will be used to calculate the first Newton step. If a non-

zero frequency is specified, any or all of the last five values can be left

Z.Z;__
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out. Default values for NST, TOL, and NTRY2 and NTRYO are 50, L.OE-4, 20,

and 3 respectively.

If both TIME and STEADY time domain control cards are included,

the minimum timestep computed from the values on the STEADY card overrides

the explicit values given on the TIME card.

Two new control cards are also available to users of the steady

state analysis capability. These are PRINT STATES and PRINT TRANSIENTANALYSIS.

They were developed to reduce the amount of output from SINC during steady

state analysis. Without these cards, SINC now prints only the state values

for the final Newton iteration, and prints intermediate points as specified

using TIME and VOUT or IOUT cards only during the final iteration. Plots

are always of the final period only.

The inclusion of a PRINT STATES card in the input deck will cause

the state values at each period to be printed. For Newton steps, this will

include both initial and final states. This option is useful for checking

convergence toward a solution of the Newton method chosen.

The "PRINT TRANSIENT ANALYSIS" card will cause all transient

analysis output to be printed for each step of the steady state analysis

algorithm. This option is capable of generating considerable amounts of

output. It is included so that the user could determine the region of

operation of a circuit during the steady state analysis.
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4.3. NEW IMPLEMENTATIONS

4.3.1. Diode Model

IPrevious versions of SINC had no provision for inclusion of semi-
conductor diodes. We have added this feature in order to eliminate the

need for using transistor junctions to serve as diodes. The model chosen

is that used in SPICE2 147], with appropriate modifications for use with

SINC. This model is applicable to either junction diodes or Schottky-

IBarrier diodes. It includes a single linear resistance for modeling both

ohmic resistance and high-level injection effects. This series resistance

is denoted by Rs in Figure 4.L.

The DC diode characteristics are determined by Rs and the nonlinear

current source Id * The value of Id is given by the diode equation

I d = I s (eVd/Vt-l) (4.1)

where I is the saturation current, Vd is the diode voltage, f is the

emission coefficient, and Vt is the thermal voltage, given by

v t - - (4.2)I q

where k is the Boltzmann constant, t is the absolute temperature in degrees

Kelvin, and q.is the electronic charge. The values Is, , and Vs may be

Iestimated from dc measurements of the forward-biased diode characteristics,
as shown in Figure 4.2. In the straight-line ideal region below about

1600 mV, Equation (4.1) may be written as
lOg 1 0 (Id) w 1Og10 (1s) + 2.3 Vd/Vt (4.3)

I
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In this region, the current increases by an order of magnitude approximately

every 60 mV. From Figure (4.3), we find that Is can be determined from the

intercept Vd 
= 0 of the diode current. Experimentally, several points in the

forward active region are plotted and extrapolated to find the value of Is .

The emission coefficient is determined from the shape of the characteristic

line in the ideal region. In most cases l.

The departure of the actual curve from the ideal straight line is

due to high-level injection effects. These nonlinear effects are modeled

by a single-valued linear resistance. Several points are plotted and averaged

to determine the value of Rs; if the region of operation can be narrowed, a

more appropriate value of Rs can be chosen.

The time-dependent charge storage effects are modeled by Cd in

Figure 4.1. The charge stored is given by the equation
- ~ V~Tj~Vd Vd -m

I-le v d / t -] + Cjjo [1- VB ] dV (4.4)

Equivalently, we may differentiate (4.4) to obtain the incremental capaci-

tance

S T tIs Vd/vt +C 1- " m (4.5)
d d TVT  B

The single value Qd models both junction depletion and minority carrier

storage effects. The term involving Cjo, OB' and m models the depletion

term, and the term involving Tt models the minority carrier storage. The

values 0B' Cjo, and m are obtained experimentally by capacitance bridge

measurements in the reverse biased region of diode operation. The value

of the transit time T is usually determined by pulsed time-delay measure-
t
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I
ments of the diode. Further details may be found in [48-521

The small-signal linearized diode model is shown in Figure 4.3.

The nonlinear current source is replaced with a linear conductance

determined from the characteristic equation

c)[-d s Vd /IV T
I O-- Th1-- (4.6)

Igd d/op

where the values are determined at the operating point. At each time-

point, gd is determined iteratively to achieve convergence. The value of

Rs is externally specified, and Cd is as found in [4.5].

As with all other semiconductor junctions, the diode model used

in SINC employs step limiting to avoid exponential overflow in the determina-

tion of diode current. At each iteration, the proposed new value of Vdk + i

is determined. If the previous value Vd
k is less than 10 Vt and Vd

k+ l

is greater than 10 Vt, Vd k+ is reset to 10 V . If both Vdk and Vdk + l are

greater than 10 Vt ,and IVd k+l-V i is greater than 2.3 Vt, the change

is limited to 2.3 V . A flowchart of this process is shown in Figure 4.4

To specify a diode for inclusion in a circuit the form is

I Dxxx Zxxx NI N2

where the initial letter D indicates a diode, xxx refers to an optional name

of from 1 to 4 characters; the initial letter Z indicates that the model with

name Zxxx is to be referred to for the specifications of the diode; and Nl

and N2 refer to the node numbers of the anode and cathode, respectively.

IEach diode card refers to a specific diode; these cards can refer to the

same or different model cards.

The model card format is

T

! !4
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Zxxx Parameter name -value Parameter name -value

where the initial letter Z indicates that this is a model card for the

model with name Zxxx, and the parameters named have the specified value.

All parameters have default values; however, even if no parameters are

inserted (all values are defaulted), a model card must be included. A list

of parameters and typical and default values is given in Table 4.1. Current

limitations on SINC allow for 10 diode and 10 model specifications.

4.3.2. Pulsed Sources

A new voltage/current source model has been added to SINC. This

allows for the specification of pulsed sources. Previously, users were

limited to the use of piecewise linear sources with a maximum of ten break-

points. This precluded the specification of sources with a pulse repetition

rate greater than the basic frequency of the circuit.

Pulsed sources are specified by a statement of the form

VPLSX Ni N2 VOFF VON TD TR TF PW PER

or

IPLSX Nl N2 IOFF ION TD TR TF PW PER

where VPLS (IPLS) refers to pulsed voltage (current) sources; X is an optional

character used for differentiating seperate pulse sources; NI and N2 are the

positive and negative nodes, respectively; VOFF (IOFF) is the "off" value

of voltage (current); VON (ION) is the "on" value of voltage (current); TD

is the time delay before the "on" period; TR is the rise time during which

the pulse rises linearly from VOFF to VON (IOFF to ION); TF is the fall
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Table 4.1 Diode Parameters for the SINC Model

I Name Parameter Typical Value Default

IS Saturation current in Amps 10 1 4  10 14

RS Series Resistance in Ohms 10 0

N Emission Coefficient 1.0 1.0

TT lzansit Time in Secs 10"10 0.

SCJ Zero-bias Junction Capacitance 2pf 0

PB Junction Potential 0.6 1.0

M Grading Coefficient 0.5 0.5I
I
I

p

I
I
I

I
I
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tim during which the pulse falls from VON to VOFF (ION to IOFF); PW is

the pulse width (on time); PER is the total period.

These sources use the piecewise linear model already present in

SINC, but recompute breakpoints as required throughout the period of interest.

Thus, in the case of pulsed sources whose fundamental period is much less

than the period of analysis, six breakpoints are always present. These

breakpoints are initialized at the beginning of each period. If the time

exceeds the value of the last breakpoint computed, a new set is computed by

adding PER to all the previous values except the initial one. A listing

of timepoints and values is given in Table 4.2 for a voltage source. As

in the SINC piecewise linear sources, linear interpolation is used between

these values. A flowchart is given in Figure 4.5.

Due to the method used in SINC for timestep control (an iteration

count), it is impossible to insure that very fast rise and fall times will

be followed accurately. While no restriction is placed on the values of TF

or TR, unlike the piecewise linear model, the user should be aware of possible

problems. If possible, TR and TF should not be made smaller than the print

interval. This will insure reasonably accurate values during the transition.

4.3.3. Modified Newton Methods for Steady State Analysis

Several Modified Newton methods are available in SINC for steady

state analysis. These are

a) Colon's method

b) Vector damped method using both local and global
damping factors

c) Externally damped method

d) Vector damped method described in Chapter 2

I . r... -... ............ ..
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Table 4.2

Timepoint Value Present during Period

0.0 VOFF always

TD VOFF 1

TD+TR VON 1

TD+TR+PW VON I.

TD+TR+PW+TF VOFF 1

PER VOFF 1

PER+TD VOFF 2

PER+TD+TR, VON 2

PER+TD+TR+PW VON 2

PER4-TD-ITR+PW+TF VOFF 2

PER+PER VOFF 2

2PER+iTD VOFF 3

Breakpoints and source values for pulsed voltage source in SINC

.- U-' ~ - - Aw--
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The modified Newton method to be used is specified by including a control

card in the SINC input deck of the form

MODIFIED NEWTON METHOD N

where N is a number from 0 to 4. The value of N specifies the method to

be used (zero corresponds to an unmodified Newton method). This allows

rapid comparison of the effectiveness of the various methods. This card

may be left out of the input data, in which case the default is the unmodified

Newton method corresponding to N -0.

The vector damped method using both global and local error factors

computes an error term for each individaul state and also for the system.

The values of damping factor for each state and the system are computed, and

the values used for the damping vector are the products of the individual

damping coefficients and the global damping factor. Thus, if the entire

system were far from its steady state, some damping would be applied to all

states.

In order to compute these values of the error vector E, it was

necessary to have available the value of the capacitance or inductance of

the state. Note that in some cases, such as junction capacitance, these are

time-dependent functions. Changes were made in the subroutine GETX to

return these values at any time.

Using a MODIFIED NEWTON METHOD 3 card uses only the external

damping values specified on an EXTERNAL card. However, using an EXTERNAL

card with some other modification of the Newton method results in a damping

vector that is the product of the calculated values and the values specified

on the EXTERNAL card. This allows the use of a modified Newton method while

_____ _____ __._
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still eliminating some states by using an EXTERNAL card with zeros for the

removed states.

4.3.4. The EXTERNAL Damping Specification

The elements of a user-imposed damping vector are specified using

an EXTERNAL card. The form for this specification is

EXTERNAL VALUE VALUE VALUE

In order to use this specification effectively, the user must be

aware of the order in which the state variables are placed, as this is the

order in which the damping specifications must be given. This order is as

follows:

1) All reactive elements (inductors and capacitors) in the

order in which they appear in the input data.

2) Transformer primary and secondary currents, in the order

in which the transformers appear in the input data.

3) Bipolar transistor Ceb and Ccb voltages, in the order in

which the transistors appear in the input data; provided

however that these capacitances are non-zero.

4) Diode junction capacitance voltage, if this capacitance is

non-zero, in the order the diodes are specified in the

input data.

5) Junction Field-Effect Transistor Gate-Source and Gate-Drain

capacitance voltage, if these capacitances are non-zero, in

the order the JFET's appear in the input data.

All unspecified values default to 1.0.
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A typical use of the EXTERNAL card would be to eliminate some

state(s) from the Newton method. In this case, the values on the EXTERNAL

card would be 1.0 or 0.0, the zero values eliminating the desired state,

the full Newton step being applied to others.

IIn order to verify the values input via the EXTERNAL card, all

jexternally specified and default damping factors are printed by the verifi-
cation subroutine (CHEKIN) along with the damped parameters. This listing

also indicates the order of the damping parameters, so any error should be

easily corrected.

4.3.5. Decay Period Specification

The user may also cause SINC to insert additional periods during

which the system is allowed to contract by including a card of the form

DECAY PERIODS N

Iwhere N is a single integer from I to 9. If no value for N is

j specified, the default is 1 if the DECAY PERIODS card is included. Also,

DECAY PERIODS 0 has the same effect as not including the card (i.e. no

I contraction periods are included).

Large values of N are to be avoided, as they can greatly increase

the number of periods of analysis required by the program. Each full period

of analysis of the system increases the iteration counter by one. Thus,

the specification of a large value for N will only allow a few Newton steps;

t if convergence is not reached by the limit specified on the STEADY card, a

message and the final values are printed. As an example, consider an input

data stream containing a DECAY PERIODS 3 card. Then each Newton iteration

if
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would be preceded by three contraction mapping periods. Thus, four full

periods of analysis would be required for each Newton step. If we wished

to allow for 10 Newton steps, we would have to allow for these 40 periods

plus the initial transient decay period of three or N periods, whichever

is greater. In this case, the STEADY card would have to include allowance

for 43 full period analysis of the system.

Obviously, the ideal case for use of this technique involves a

system where "fast" states reach equilibrium in one period of time or less.

The use of decay periods will not affect the Newton method in any way.

The user still has his choice of the Newton method to be used (modified or

unmodified) and may specify externally any desired damping vector.

No provision has been made for partial period contractions for

several reasons. In general, it was felt that possible problems caused by

using partial period contraction would not be compensated by the increased

efficiency in a small number of cases.

4.4. CONTL-TIME DOMAIN ANALYSIS CONTROL ROUTINE
The subroutine "CONTL" has as its primary function the control

of analysis in the time domain. Most of the changes to "SINC" described

in the preceading pages are implemented in "CONTL". Because of the inter-

actions of these various modifications, the logic of the subroutine has be-

come rather complex. In order to increase the user's understanding of what

his commands do, and provide a basis for change, this section will attempt

to provide an explanation of the "CONTL" subroutine.

The control subroutine provides the following major functions:
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I
Ii) Determination of a transient or steady state requirement.

2) Output of required variables at times required and storage

j of plot imformation.

3) Control of timestep size and keeping track of current time.

4) Control of source values.

1 5) Control of the time-domain integration subroutine.

6) Determination of sensitivity requirement and control of

sensitivity computation subroutine.

7) Determination of time-step convergence.

8) Determination of need for contraction mapping periods and

provision of these.

9) Determination of steady state convergence.

1 10) Determination of steady state errors and damping factors,

Iand the switching logic that uses these values.

11) Newton method control and determination of an improved

Iinitial state, if necessary.
12) For oscillators, the necessary changes to determine the

I period of the oscillator.

We will discuss some of these functions in detail. Often, several of these

functions have been integrated in the logic. For example, the requirement

of additional contraction mapping periods suggested by Colon is easily and

logically merged with a requirement for additional contraction mapping

periods imposed by the user. The flowcharts included in Figures 4.6 and 4.7

are to be referenced during the following discussions.

In order to reduce the amount of output from "SINC" two flags are

LE
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introduced, controlled initially by the presence or absence of "PRINT STATES"

and "PRINT TRANSIENT ANALYSIS" cards. If these flags (KOFLG and KTTO) are

set, the appropriate outputs are printed for each steady state or transient

iteration. Otherwise, only the final values are printed.

Timestep size is controlled internally by the program, based on

j an iteration count of the transient convergence routine. Initially, the

user specifies a print interval using either a "TIME" or "STEADY" card;

this is automatically the maximum allowable step size. The initial step

size chosen by "SINC" is this value divided by 50. After each timestep that

converged, the timestep is doubled if convergence was obtained in less than

four iterations. Each time convergence is not obtained to the tolerance

specified within the allowed number of iterations (the tolerance and number

of iterations specified on the "Tolerance" card), the timestep is divided by

18, and the integration restarted from the last convergent point. Any time

one step is divided in this fashion seven or more times, a message is output

j warning of a possible loss of significance in the answers. If one timestep

is divided fourteen times, it is assumed that the solution at this point is

Iunstable, a message to that effect is printed, and this analysis is aborted.
Finally, if at any time the timestep should become smaller than some minimum

value, defined as 10 times the maximum timestep, the solution is determined

1to be proceeding too slowly and execution of this analysis is halted.
Control of independent source values is also provided by "CONTL".

1No changes are necessary for sine wave sources, as the value of these may

,. calculated for any time by inserting the time into the formula. Pulse

aid ptacewise-linear sources are put into a point-slope form. The timestep

I
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control is also used to cut the timestep if necessary to match breakpoint

boundaries. At each breakpoint, the voltage and time are stored, and the

slope to the next breakpoint is computed. With this information available

it is a simple matter to determine the voltage at any time by computing the

time elapsed since the last breakpoint, computing the voltage change over

this interval, and adding this difference to the value at the breakpoint.

Pulsed sources are handled similarly except that the breakpoints are

advanced so that the current time is always within one of the intervals

stored.

Control of the sensitivity calculations is by two flags, ISENSF

and JSENSF. The first is used to indicate the need for sensitivity calcula-

tions during the current period of analysis, and is referred to as the

"sensitivity required" flag. The second indicates that we have available a

valid matrix of sensitivity values, and is called the "sensitivity done"

flag. An analysis of Colon's algorithm, for example, will indicate that by

using this second flag a number of steps can be merged, reducing the

algorithm from 10 to 7, reducing the length of the required code. The pro-

gram therefore sets the sensitivity required flag anytime a new calculation

of the sensitivity is required; at the conclusion of this period, the

sensitivity done flag is set. During contraction mapping periods no

sensitivity is required, so the sensitivity required flag is cleared and

none is calculated. The requirement is used to set or clear the flag during

the Newton period that follows the last contraction mapping period.

Convergence for each timestep is a function only of semiconductor

junction voltages, as all other elements are linear. The tolerance is

iA
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j determined by a "Tolerance" card or the default of 10%; during sucessive

iterations each junction voltage must remain constant within this tolerance

times Vt. The actual tolerance checking is done as part of the transient

integration subroutine TIMSOL.

If the user requests contraction mapping periods preceding each

I Newton step, the number requested is stored. Then, following each Newton

step a counter is used to determine whether the next step is to be a

contraction mapping step or a Newton step. The user is also allowed to

specify a larger number of contraction mapping periods before the first

Newton step only through the "Steady" card.

Steady state convergence is determined by comparing the difference

in initial and final values to the maximum value encountered during the

i period. This criterion was chosen to avoid apparent convergence failure

in switching circuits. For example, the value of current through an inductance

at the initial and final times might be nearly zero; let us choose ljA.

Then our default steady state convergence tolerance will require that these

values agree within 10 10A. Yet during other portions of the period the

I inductor current could exceed 100A. Therefore, the error involved is buried

I in the roundoff noise of the computer. To avoid this problem the convergence

tolerance chosen is based upon maximum state values.

The error values discussed in Chapter 3 are also computed, where

appropriate. If a modified Newton method is chosen, the necessary damping

factors are also computed. These values are used to compute the damped
sensitivity matrix; the identity matrix is added to obtain the modified

Jacobian matrix. For oscillators, only a global damping factor, similar to

that obtained by Colon, is available.1I



78

An understanding of the control subroutine is essential to anyone

desiring to change the time domain analysis available in "SINC". All parts

of the time domain problem appear in "C0NTL" and are affected by it.

'MW

-i- .
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CHAPTER 5

EXAMPLES

In order to test the practicality of these methods, a series of

examples was constructed and run using the modified SINC program. We will

give these results and show how the new techniques act on some typical

circuits.

5.1 INTRODUCTION

All problems were run on the Coordinated Science Lab Digital

Equipment Corporation DECsystem-1070 in a time-sharing environment.

Because part of the system overhead is charged to each user, the runtimes

given cannot by themselves be used to determine relative efficiency. In

particular, if heavy swapping is taking place, overhead can exceed 107. of

total runtime.

I We also give the number of Newton steps taken and the total number

of full periods over which the system is integrated. Typically, the additional

calculations involved for a Newton step requires 307. more time than that for a

contraction mapping step. The amount of CPU time required for one full period

integration also varies with the region of operation, as this affects the

choice of stepsize taken.

Due to programming constraints already in SINC, certain possible

changes to increase the efficiency of the modified methods were not included.

For example, if an external damping value of zero was supplied for a state, the

calculation of sensitivities for the column of 0 associated with that state

could be bypassed with an attendant savings in time. This was not done

because it was felt that the resulting efficiency would not be worth the

cost of restructuring SINC.

......



80

Occasionally problems arose due to the step-limiting algorithm

used to limit junction voltage changes. In particular, in the transient

analysis of switching circuits occasionally the iterates failed to converge

at the source transition points.

In the next several sections we have tried to provide a cross-

section of example circuits, in order to demonstrate the utility of these

modified methods.

5.2 LINEAR CIRCUIT WITH PARASITICS

As an example of the effect of small parasitics on a linear cir-

cuit we have chosen the circuit of Figure 5.1.

In theory, any linear circuit will converge in one Newton iterate.

In practice, two iterations are usually required due to numerical errors;

however, the presence of the small parasitic values greatly increases the

time required.

Referring to Table 5.1, we note that the contraction mapping solution

requires a very large number of full period integrations. Use of the Newton

method reduces the required number of iterations by an order of magnitude.

However, the presence of the small parasitics introduces errors in the Newton

method that still require several iterations to decay.

Next, an interval during which contraction mapping was used prior

to the Newton step was inserted. One period of decay did not improve the

Newton method;however, two periods provided a marked reduction in the amount

of time and number of iterations required.

As a reference point for the damped methods Colon's technique was

used. No change was evidenced using this technique. One Newton iteration

yields the neighborhood of the solution. At this point, the error due to

the parasitics and error in the initial point is so small as to provide a

damping term insignificantly smaller than 1.

J|
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Table 5.1 Linear Circuit Example Results

CPU NEWTON TOTh6L
METHOD __________________ SECS PERIODS PERIODS

Cotraction Mapping 47.3 185

Unmodified Newton 8.3 7 1 11

1 Decay Period Prior to Newton Step 9.0 6 16

2 Decay Periods Prior to Newton Step 5.8 2 10

Colon's Method 6.8 7 11

Local Vector Damped 17.3 26 30

Product Vector Damped 7.4 7 11

Eliminated Parasitic States 5.0 4 8

Via EXTERNAL Statement______________

. . . ........
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j For vector damped methods, both the method consisting solely of the

local damping term and the product of the local and global terms was used.

Use of a local damping vector alone produced a problem requiring a significantly

longer analysis. Failure in the early Newton step to take into account the

global error led to a significant error in the value of the parasitic states,

particularly In the current through the parasitic inductor Lp. Once the other

states have converged, this current was essentially isolated by the form of

the sensitivity matrix, and proceded to converge via contraction mapping which

required 16 periods of integration.

Use of a damping vector containing both global and local terms

removed this difficulty. In the early iterations when all terms were far

from the steady state, a global error term provided additional damping and

prevented a large initial error which required a long time to decay.

As the final modification for this circuit example, the parasitic

elements were eliminated from the Newton method by using an EXTERNAL card

containing a damping value of 0 for these states. This showed the largest

T saving in time, even though maximum efficiency was not used.Al
Therefore, even a linear circuit for which the Newton method should

be most efficient can sometimes benefit from these techniques.

5.3 POWER SUPPLY

The power supply circuit shown in Figure 5.2 is an example used by

Aprille [291. Here the unmodified Newton method is already very successful in

reducing the number of periods required to reach the steady state. Again the

Newton method provides savings of an order of magnitude over contraction mapping.

Given this performance by the unmodified Newton method, it was difficult

to make a significant improvement. Addition of a decay period did not reduce

the number of Newton steps required, and therefore, increased the work

required by the addition of four CM periods. See Table 5.2.

Ark A.
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Table 5.2 Power Supply Example

CPU NEWTON TOTAL
METHOD SECS PERIODS PERIODS

*nntrantion Methnd 72.9 113

I nmndified Newton 10.8 4

Additinn nf 1 Decay Period 13.0 4 12

-rolon's Method 11.2 7 IH Lral Vearor namped 12.7 A 12

PrndwA- Vector Vamped 12.8 8

Elimination of C1 from Newton Step 9.8 5 9

I

,1
!I
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In this instance all of the damped methods increase the computation

required to reach a solution. In cases like this such behavior is not unexpected;

if we are proceding along a trajectory toward a solution a damping method will

slow the progress. Ideally, this loss will be minimal in such cases, and will

result in increased reliability for other circuits.

Elimination of the capacitor C1 across the diode did result in a small

time savings, even though it required another period. This was due to recomputing

the sensitivity matrix less often.

Therefore, some circuits are efficiently handled using an unmodified

Newton technique; modified methods, although they do little or no harm, do not

significantly benefit these cases.

5.4 COLON WIEN BRIDGE

The Wien Bridge oscillator shown in Figure 5.3 was part of an example

used by Colon [321; an error in the value of Re was subsequently corrected [301.

This example is used to illustrate the use of these modified techniques

on autonomous systems. Unfortunately, the transient analysis scheme used in

SINC occasionally exhibits convergence problems when semiconductors are

connected in feedback configurations; in this case, this problem prevented

analysis of the feedback-stabilized bridge circuit.

Without the diode-capacitor feedback branch, the circuit Q was rather

low, and the contraction mapping technique required only a few periods to

achieve convergence. Even so, the Newton method again reduced the time required

for this analysis. See Table 5.3.

The time before the first Newton step was reduced from 3 to 2 to 1

periods. Reducing the number of initial periods to 2 saved one full Newton
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Table 5.3 Wien Bridge Example

.CPU NEWTON TOTAL
METHOD SECS PERIODS PERIODS

Contraction Mapping 16.6 10

Unmodified Newton - 3 Initial Periods 12.6 2 6

Unmodified Newton - I Initial Period 11.6 3 5

Unmodified Newton - 2 Initial Periods 11.0 2 5

I Decay Period Prior to Newton 15.5 2 8

Colon's Method 12.0 2 6

Local Vector Damped 12.3 2 6

Product Vector Damped 12.3 2 6

Mii
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iteration; but a further reduction to a single initial period prior to the

first Newton step lost some of the time previously saved by converting a

contraction mapping period into a full Newton step.

Addition of a decay period after each Newton period only increased

the total number of periods required and the cost of the analysis.

The damped methods required the same number of periods as the full

Newton method, but saved some time by requiring fewer evaluations of the

sensitivity matrix.

There are no parasitic elements to be eliminated by the use of

an external damping vector.

The modified methods are moderately useful with this relatively

low-Q oscillator. We might logically wonder about a higher-Q system.

5.5 COLPITTS OSCILLATOR

The Colpitts oscillator circuit given in Figure 5.4 is originally

taken from Clarke and Hess (561, pp. 226. This is a moderately high-Q

oscillator, with Q u 100. This circuit has an unstable solution at the DC

operating point; if a DC solution is computed first, and then a steady state

1analysis is requested, oscillations do not build up rapidly enough to prevent
the algorithm from indicating convergence on the DC solution. Therefore, the

approach used in this case was to do only a DC analysis initially. These

values were perturbed approximately 1%. and then used as the initial conditions

for the steady state analysis. The perturbation was enough to insure that

oscillations started rapidly, hut not enough to require excessive time to

reach a solution.

The high-Q of the circuit is reflected in the time required to

reach a steady state solution using contraction mapping techniques. See

Table 5.4.

t The unmodified Newton method failed to converge in 30 iterations.

The addition of 1 or 2 periods of decay after each Newton step failed to help,
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Table 5.4 Colpitts oscillator Example

CPU NEWTON TOTAL
METHOD __________________ SECS PERIODS PERIODS

Cotato1apn 43.2 _____ 72

Unmodified __________Newton____ Failed to Converge ___

1 ~ ~ ngneaay Perioad Following Fa'ch Newton Failed to rCa.nvercg

2 Decay Periods Following Each Newton Failed to Converge

Colon's Method 11.2 8 12

Local Vector Damped 11.9 9 13

Product Vector Damped 14.7 12 16

I 
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undoubtedly because of the high Q of the circuit. Here, the period of the

oscillator shoved a high degree of sensitivity to the state variables.

The iteration limit on steady state convergence was 30 periods; however, the

results showed no signs of becoming less erratic or tending to converge with-

in a reasonable period.

Use of a damped Newton method alleviated this problem, reducing

the excursions in the choice of period. All three damping techniques con-

verged within 12 Newton iterations.

Again, there were no parasitic elements involved for which the

use of an EXTERNAL card would be advantageous.

5.6 CLASS-C RF AMPLIFIER

Figure 5.5 shows the circuit of a moderate power Class-C RF Amplifier

example used by Vidjkaer 1571. This circuit produces approximately 13 watts

of output power from 1.7 watts input at 160 MHz.

Table 5.5 compares the results of several types of analyses. As

usual, continuous integration is the slowest and takes the most time. The TT

unmodified Newton method presents some savings as compared to the contraction

mapping approach.

Addition of a period contraction mapping after a full Newton step

reduced further the time required for the determination of the steady state.

Colon's scaler damping produced the best time of the damped methods,

but all three took approximately the same amount of time, and represented

about 25% faster time than the unmodified method.

5.7 CLASS-C lGHz RF AMPLIFIER

HaJJ and Skelboe [581 use the circuit shown in Figure 5.6 as an

example for a method involving the application of backward differentiation

formulas to piecewise-linear systems.
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Table 5.5 Class-C RF Amplifier

CPU NEWTON TOTAL
IETHOD SECS PERIODS PERIODS

Contractiona Mapping~ 45.4 22

Unmodified Newton 40.8 3 7

1 Period of Decay After Each Newton Step 35.7 2 8

Colon's Method 29.0 3 7

Lcal Vector Damped 31.6 4 8

Product Vector Damped 30548

7I
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The Newton method again shows a great improvement over the continuous

integration approach. However, the unmodified Newton method converges well

and the modifications usually require some additional computation or reduce

the steps taken by the Newton method, and thus require additional time. The

exception to this is the case in which the small parasitic junction capaci-

tances were eliminated using an EXTERNAL card. This analysis required the

least computation time of all methods, even though the program was not arranged

for maximum efficiency in this case. Results are shown in Table 5.6.

5.8 TRANSISTOR SWITCHING POWER SUPPLY

The DC-DC power converter shown in Figure 5.7 is due to Branin

[26,591. This circuit represents a difficult problem due to its high degree

of nonlinearity and large excursions in value.

Figure 5.7 is typical of bulk DC-DC power converters. A DC voltage,

often obtained by direct rectification of the power line, is chopped by a

transistor switch operating at some high frequency. This high frequency allows

smaller, more efficient transformers to be used for voltage conversion and

isolation. This chopped DC is input to the transformer primary; the output

of the secondary winding is rectified and filtered to provide the desired

power source. The filter network D4, RI, C1 is used to limit high voltage

switching transients in the period between the turnoff of the driver transistor

and the conduction of D2 ; these voltage spikes could otherwise easily exceed the

breakdown rating of the switching transistor.

The bypass circuit D3, R3, C3 provides a path for the transformer

primary current as the switching transistor turns off, thus minimizing the

power dissipated by the switching transistor.

The resistance labeled ESR represents the equivalent series resistance

of the filter capacitor C2 . RPRI is the DC resistance of the transformer primary

winding.

- ~-~--i
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Table 5.6 1GHz RF Amplifier

CPU NEWTON TOTAL
METHOD SECS PERIODS PERIODS

Contraction Mapping 61.0 52

Unmodified Newton 30.8 8 12

I Decay Period After Each Newton Step 32.0 6 16

Colon's Method 35.3 14 18

Local Vector Damped 32.5 13 17

Product Vector Damped 37.3 16 20

External Applied Vector Eliminated
Transistor Junction Capacitances 25.0 8 12
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This supply has a nominal rating of 5 volts at 20 amperes. Due to

the extreme nonlinearity of this circuit in operation, we have chosen a

convergence tolerance of 1%, instead of the default value of .01%.

The circuit requires in excess of 100 periods of continuous

integration to come within this tolerance of its steady state solution,

requiring over 8 minutes of CPU time, as shown in Table 5.7.

The unmodified Newton method failed to converge to a solution and

showed no tendency to do so in 300 iterations. This circuit exhibited the

high sensitivity states noted before. In this case C1 and C3 , and to a

lesser extent the secondary current Is, exhibited erratic behavior even

close to the solution of the circuit. The values of these states would

approach the steady state solution and then veer off wildly, even changing sign.

Use of a single global damping scalar (Colon's method) or a local

damping vector did not solve this problem, although they did reduce its

severity by reducing the size of the fluctuations.

A damping vector formed by a combination of global and local

damping terms did successfully damp this erratic behavior. The ability

to use the Newton method at all yielded a great savings in the computer

time necessary to reach the steady state.

The addition of a period of contraction mapping following each

Newton step yielded the largest savings. Because of the small size of

C1 and C3 these reach the steady state quickly. The use of a decay period

for this purpose produces extremely rapid convergence of the Newton iterates.

An externally supplied damping vector was also used successfully

to promote convergence. Elimination of the states associated with C1 and C3

provided convergence; but eliminating I along with C1 and C3 was more

successful. A damping vector was also used in which C1, C3, and Is were

reduced by a factor of 10 in the Newton steps by assigning them damping
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Table 5.7 TSR Power Supply

CPU NEWTON TOTAL

METHOD SECS PERIODS PERIODS

Contraction Mapping 483.2 112

Unmodified Newton Method Failed to Converge

Colon's Method Failed to Converge

1 Decay Period Following Each Newton Step 52.7 3 10

Local Damping Vector Failed to Converge

Product Damping Vector 75.9 9 13

Eliminate States Associated With
C1, C3, and 1s  58.8 7 11

Eliminate States Associated With
C1, C3  68.5 10 14

Reduced C1 , C3, Is With External Vector 53.2 6 10

- '
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factors of 0.1 via an EXTERNAL card. This was more successful than state

elimination; on the other hand, it requi es more work on the part of the

user.

In this case, the modifications allowed successful Newton

convergence when it would not otherwise have been possible.

5.9 ANALYSIS OF RESULTS

These methods satisfy the primary law of the physician, "First,

do no harm." On the other hand, they are no panacea. They increase reliabil-

ity, but at the price of increased computational cost in some cases.

In general, they are probably best reserved for those cases in which

the unmodified method does not yield the solution in a few iterations. Even

if it is determined that some improvement is desirable, some experimentation

may be necessary to find the optimum method or combination of methods.

The user has to do the least work in using the damped methods - he

simply chooses one of three methods and adds the statement requiring this to

the input data.

Use of damping periods requires some work to find the optimum

number of periods. If the user has calculated the time constants involved,

then a decision could be made as to the number of periods necessary. Also,

several experimental runs could be used to determine the optimum number of

contraction mapping periods. This experimental approach produces savings

only when a large number of runs is contemplated.

Use of the EXTERNAL card requires the most knowledge of the circuit

behavior in order to make an intelligent decision as to which states should

be reduced or eliminated. A poor choice of external damping vector can inhibit

convergence rather than enhance it.

.1
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Although not necessary or even helpful in all cases, for many

circuits these techniques increase speed and for some circuits they are

necessary in order to avoid the high cost of contraction mapping.

11

• - . .. -- -, L .
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CHAPTER 6

CONCLUSION

The usefulness of the modified Newton methods is primarily in

their ability to increase the reliability of convergence and to a lesser

extent to increase the computational speed. If a method is available which

nearly always converges to a steady state solution then the average design

engineer would be more willing to accept this tool for his work.

In order to facilitate the use of these techniques for circuit

design, some observations will be made on the choice of methods to be em-

ployed. Finally, some suggestions for future development will be given.

6.1 GUIDELINES FOR THE SELECTION OF MODIFIED NEWTON METHODS

In this section some observations on the usefulness of the

different techniques in dealing with the various circuit examples will

be made and some general guidelines offered as to the choice of method for

a circuit.

In the case of those circuits for which the unmodified Newton

technique produces rapid convergence, it is often counterproductive to

spend several computer runs in order to determine the modified Newton

technique which yields the best results, as the computer time required

for this testing can exceed that required for the analysis required by

the designer. An exception to this would be the case for which many analyses

are required, as the total improvement in runtime might be significant. A

better approach for the case in which many runs of a slightly perturbed

circuit is required (e.g., Monte Carlo analysis of component tolerance)

might be to start each analysis from the steady state solution of the

nominal circuit.
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Although it requires the most understanding and work on the part

of the user, the use of an EXTERNAL card, when appropriate, often provided

the best results. Unfortunately, this method is not universally applicable.

It requires a clear determination of states which are parasitic to the cir-

cuit operation and which reach the steady state quickly. Some circuits have

no such states.

Since the EXTERNAL card can be used in conjunction with other

methods, it is often advantageous to include it in any case for which an

appropriate set of damping coefficients can be determined. Its use will

not interfere with selection of a damped Newton method or the use of

periods of contraction mapping.

The addition of periods for the decay of fast transients is

useful when these are present. High-Q circuits and others in which no

fast transients are present would derive no benefit from the increased

cost incurred by requiring more than one full period of integration for

each Newton step. If more than a few periods are required for transients

to die away, then the method becomes very inefficient. It does not require

much effort on the part of the user, however. The effect of this card

should be investigated whenever the user has reason to suspect that fast

transients are present in the circuit. In non-autonomous systems this is

often indicated by a rapid change of state over the period. An unsuccessful

attempt was made to use this effect to automate the addition of decay periods.

The use of a damped Newton method is somewhat less certain. In

the case of circuits which are well-behaved with regard to steady state

convergence, the shorter steps taken by the damped methods delays convergence.

On the other hand, the method was successful in cases in which no other methods

worked.

...... . _.......................................... . .......
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The choice of which damped methods is best is also dependent on

the circuit. The vector damped method in which each damping term was solely

dependent on the error of its associated state proved the least reliable.

The problem appears to be due to cross-coupling between states; a state that

changed little over the period takes a full Newton step, while a coupled

state that underwent a large change undergoes a nearly contraction mapping

step; i.e., it takes a large change. This large difference naturally

affects the coupled state to which the full Newton step is applied.

Since most circuits exhibit the coupled characteristics described

above, some form of global damping is usually desirable. Colon's method

uses a single scalar damping coefficient, while the vector damping method

employs a function of both the individual state error and the global error.

The vector damped method is more appropriate in cases involving widely

separated time constants and state values.

The formulation of the error terms and the damping coefficients

was chosen experimentally to provide the best match between reliability and

speed for a variety of circuit examples. However, the optimum amount of

damping is a function of the circuits; for some cases the function chosen

may provide more damping than desirable, slowing convergence; in other

cases, the iterates might not be damped heavily enough, allowing oscillations

and preventing convergence. Because of the form used, the vector damped

method is more heavily damped than Colon's method; in the case of well-

behaved circuits this is evidenced as an increase in the time required for

convergence. In other cases this damping prevents convergence failure.

The final choice of a modified method rests with the user; his

judgment will determine whether or not the methods are successful.

tE.
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6.2 FUTURE WORK

If further use of the SINC program is desired or widespread

distribution is to be undertaken, two changes are highly desirable.

The first is that the timestep error control be rewritten.

Instead of a convergence iteration count, truncation error control

should be undertaken. This will require rewriting large portions of

the transient analysis subroutines but should also provide a large

increase in reliability and speed. The variable error control of Lourenco-

Fernandes and Nichols [341 could be included at this time.

A better method of semiconductor junction voltage iteration should

also be incorporated. At the present time this is possibly the weakest

point in SINC. In the case of tightly coupled semiconductor junctions this

often causes transient convergence to fail. Some method other than brute

force application of an absolute limit on junction voltage changes should

be implemented.

It would also be desirable to develop a method of relieving the

user of some of the decisions about the modifications to be employed. An

obvious candidate would be to automate the insertion of decay periods

whenever appropriate. Perhaps a better function for the choice of the

damping vector could be found which would provide reliable, fast operation

on most or all problems; then this could be incorporated as a default and

a more specific method chosen only on rare occasions.

An alternative to the major revisions to SINC outlined above would

be to incorporate these modifications into a widely used program such as

SPICE2. Only when it has been used by design engineers in their daily work

with a wide variety of circuits would it become possible to evaluate these

methods and determine the best course for future development.
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APPENDIX
SINC USER'S MANUAL

T.N. TRICK UNIVERSITY OF ILLINOIS APRIL 1979
F.B. GROSZ, JR. COORDINATED SCIENCE LABORATORY
W.H. KAO, JR.

THE FOLLOWING DOCUMENTATION DESCRIBES THE CURRENT VERSION AS OF THIS
DATE (VERSION 5.6) OF THE PROGRAM 'SINC', AS MODIFIED.

T.K. YOUNG STANFORD UNIVERSITY MARCH 1972
R.W. DUTTON COLLEGE OF ENGINEERING

DEPARTMENT OF ELECTRICAL ENGINEERING

THE FOLLOWING PROGRAM WAS DEVELOPED AT THE UNIVERSITY OF CALIFORNIA,
BEKELEY. A GENERAL PROGRAM DESCRIPTION OF A SIMILAR PROGRAM 'TIME' CAN BE
FOUND IN THE IEEE JOURNAL OF SOLID STATE CIRCUITS AUGUST 1971 SPECIAL ISSUE
ON COMPUTER-AIDED CIRCUIT ANALYSIS AND DEVICE MODELING.

UNIVERSITY OF CALIFORNIA
COLLEGE OF ENGINEERING

DEPARTMENT OF ELECTRICAL ENGINEERING
AND COMPUTER SCIENCES

S. P. FAN FALL 1971
D. 0. PEDERSON

USER GUIDE IQ PROGRAM:.=. N C-

GENERAL PROGRAM DESCRIPTION

-SINC- IS A SIMULATOR OF NON-LINEAR ELECTRONIC CIRCUITS. THE PROGRAM
CALCULATES THE NODE VOLTAGES AND BRANCH CURRENTS AS A FUNCTION OF TIME. INITIAL
CONDITIONS ARE DETERMINED AS THE DC OPERATING POINTS AT TIME ZERO. ALLOWED
CIRCUIT ELEMENTS ARE BIPOLAR TRANSISTORS, RESISTORS, CAPACITORS, INDUCTORS,
CURRENT SOURCES, GROUNDED VOLTAGE SOURCES, JUNCTION FIELD-EFFECT TRANSISTORS
(JFETS), JUNCTION DIODES, AND TRANSFORMERS.

PROGRAM L AND SPECIAL FEATURES

CIRCUIT SIZE -
100 USER EXPLICITLY DEFINED NODES INCLUDING DATUM NODE TO BE NUMBERED 0 (ZERO).
200 NODES WITH INCLUSION OF TRANSISTOR MODEL CONTAINING RB AND/OR RC, JFET
AND DIODE INTERNAL NODES. NO CONTROLLED SOURCES ARE ALLOWED.
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LIMITS -

100 BIPOLAR TRANSISTORS
30 SETS OF BIPOLAR MODEL SPECIFICATIONS
100 R, L, AND C ELEMENTS
10 INDEPENDENT CURRENT SOURCES
10 GROUNDED INDEPENDENT VOLTAGE SOURCES
5 TRANSFORMERS
10 JUNCTION DIODES
10 DIODE MODELS
10 JFETS
5 JFET MODELS

TRANSIENT ANALYSIS OUTPUT -

9 OUTPUT SPECIFICATIONS TO BE PRINTED
6 OUTPUT PLOTS WITH UP TO 2 WAVEFORMS PER PLOT

DC ANALYSIS -
THE PROGRAM GIVES ALL DC NODE VOLTAGES AT TIME ZERO. SEMICONDUCTOR

OPERATING CONDITIONS ARE ALSO GIVEN, IF NO 'NDC' CARD IS INCLUDED (SEE 'NDC'
CARD, BELOW). DURING DC ANALYSIS, ALL CAPACITORS ARE OPEN-CIRCUITED, AND ALL
INDUCTANCES ARE REPLACED BY 1 OHM RESISTANCES. NO COUPLING EXISTS BETWEEN
TRANSFORMER WINDINGS.

ANALYSES AT DIFFERENT TEMPERATURES -

A CIRCUIT CAN BE ANALYZED AT UP TO FIVE TEMPERATURES (USE THE TEMP CARD,
SEE BELOW). TEMPERATURE COEFFICIENTS CAN BE SPECIFIED FOR ELEMENTS AND TRANSIS-
TOR MODEL PARAMETERS.

TIME STEP CONTROL -
PROGRAM CONTROL OF THE TIME STEP IS BY AN ITERATION COUNT. THE USER

SPECIFIES THE PRINT INTERVAL/MINIMUM TIMESTEP BY A 'TIME' OR 'STEADY' CARD.
HOWEVER, THE ACTUAL NUMBER OF STEPS USED BETWEEN PRINT INTERVALS IS UNDER
PROGRAM CONTROL AND IS A FUNCTION OF THE TOLERANCE ON CONVERGENCE OF THE
TRANSIENT ROUTINE AND THE SYSTEM BEING EVALUATED. A WARNING OR ERROR MESSAGE IS
PRINTED SHOULD THE TIMESTEP BECOME TOO SMALL; IN SOME CASES THE PROGRAM WILL
TERMINATE EXECUTION TO AVOID EXCESSIVE USE OF COMPUTER TIME.

INPUT DMA Q FOMAT

THE INPUT IS IN A SEMI-FREE FORMAT. ANY KEY CHARACTER OR WORD MUST BEGIN
IN COL. 1. ALL DATA FIELDS ARE SEPARATED BY ONE OR MORE DELIMITERS (EXCEPT
THE MODEL CARD) (DELIMITERS ARE BLANKS,COMMA,LEFT AND RIGHT PARENTHESES).
ALL FIELDS ENCLOSED IN E ] ARE OPTIONAL; HOWEVER, TO PRESERVE ORDER NO
FIELDS PRECEEDING THE LAST SPECIFIED CAN BE SKIPPED. THUS, IF A CARD CONTAINED
THREE OPTIONAL FIELDS AND WE WISHED TO SPECIFY THE VALUE OF THE LAST FIELD,
EXPLICIT VALUES FOR THE FIRST TWO FIELDS MUST BE GIVEN AS WELL.

. .. .. .. .. . . . . . * -" .. i .- _ ..
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$ TITLE CARD -- THE FIRST CARD OF THE INPUT CARD DECK. COLS. 1-4 MUST
CONTAIN THE LETTERS SINC, COLS. 5-72 COMMENTS. FOR STUDENT JOBS, THE
STUDENT CLASS AND NAME SHOULD APPEAR.

$ COMMENT CARD -- THE GENERAL FORM IS

* COMMENTS

COL. 1 MUST CONTAIN THE CHARACTER * (ASTERISK).

$ TIME SPECIFICATION -- THE GENERAL FORM IS

TIME DELT TSTP CTSTR]
OR

TRAN DELT TSTP CTSTR]

WHERE DELT IS THE TIME INTERVAL AT WHICH THE OUTPUTS ARE PRINTED, AND
TSTP IS THE TOTAL ANALYSIS TIME.
TSTR IS THE START TIME, IF NOT ZERO.

NOTE: IF TSTR IS NOT ZERO, THE CIRCUIT IS ANALYZED FROM ZERO TO TSTR, BUT
NO OUTPUT IS GENERATED; OUTPUT IS GENERATED FROM TSTR TO TSTP.
NOTE: IF A STEADY STATE ANALYSIS IS REQUESTED (SEE STEADY CARD, BELOW),
THOSE VALUES OVERRIDE THE VALUES SPECIFIED ON THE TIME CARD. THE START TIME
WILL BE 0.0, THE STOP TIME THE PERIOD, AND THE PRINT INTERVAL WILL BE COMPUTED
AS DPRT=PERIOD/NST. IN GENERAL, A TIME CARD SHOULD NOT BE PRESENT IN A DECK
CONTAINING A STEADY CARD.

EXAMPLE

TIME .5US 10OUS

1
!
I
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$ PIECEWISE LINEAR SOURCE SPECIFICATION -- THE GENERAL FORM IS

VXXX Ni N2 Vl [Ti V2 [T2 V3 C ... VI 3]]
IXXX NI N2 II [TI 12 [T2 13 [ ... II 3]]

XXX REPRESENTS AN OPTIONAL NAME OF ONE TO FOUR CHARACTERS.
(VSINX AND ISINX ARE RESERVED FOR SINUSOIDAL SOURCES; VPLSX AND IPLSX FOR

PULSED SOURCES.)

WHERE Ni AND N2 ARE THE POSITIVE AND NEGATIVE NODES RESPECTIVELY, AND
VI AND TI ARE THE VOLTAGE AND TIME AT THE ITH BREAKPOINT.
II AND TI ARE THE CURRENT AND TIME AT THE ITH BREAKPOINT, RESPECTIVELY.

FOR VOLTAGE SOURCES N2 MUST BE 0 (ZERO).
A MAXIMUM OF 9 BREAKPOINTS ARE ALLOWED FOR EACH SOURCE. LINEAR

INTERPOLATION IS USED BETWEEN SPECIFIED POINTS. Ti MUST BE ZERO. FOR A
CONSTANT SOURCE, SPECIFY VI OR II AND LEAVE THE REST BLANK.

EXAMPLE

VIN 2 0 -5.0 0.0 -5.0 1.25MS +5.0 1.50MS +5.0
VCc 9 0 lOV

THE FIRST SPECIFICATION HAS A VALUE OF -5.0 V FROM TIME 0 UNTIL 1.25
MILLISECONDS, THEN RISES LINEARLY TO +5.0 V AT 1.5 MILLISECONDS, WHERE IT
REMAINS UNTIL THE FINAL TIME SPECIFIED; THE SECOND SOURCE HAS A DC VALUE OF 10
VOLTS.
NOTE: THE MINIMUM TRANSITION TIME BETWEEN ANY ADJOINING PAIR OF BREAKPOINTS
IS DPRT, THE PRINT INTERVAL. DPRT IS 'DELT' SPECIFIED ON THE TIME CARD, OR IS
COMPUTED AS DPRT=PERIOD/NST IF A STEADY STATE ANALYSIS IS REQUESTED.

$ SINUSOIDAL SOURCE SPECIFICATION -- THE GENERAL FORM IS

VSINX Ni N2 VM F [PHI] [DC)
ISINX Ni N2 IM F [PHI]

WHERE X IS AN ARBITRARY ALPHANUMERIC CHARACTER,
VM OR IM IS THE AMPLITUDE OF THE SOURCE,
F IS THE FREQUENCY OF THE SOURCE IN HZ,
PHI IS THE PHASE ANGLE IN DEG.,
DC IS THE DC LEVEL (VOLTAGE SOURCES ONLY).

THE SOURCE VALUE AT TIME T IS CACULATED ACCORDING TO
V(T) = VM*SIN(2*PIO(F*T+PHI/360)) + DC

OR
I(T) = IMOSIN(2*PI*(F*T+PHI/360))
EXAMPLE

VSIN 2 0 1OM 100KHZ 0
VSIN 2 0 0.5V 1OMEHZ 0.0 1.5V
ISIN 3 5 IM 2MEGHZ 0

NOTE: THE DC VALUE FOR VSIN SOURCES IS USED FOR THE DC ANALYSIS; FOR ISIN
SOURCES THE VALUE IS ZERO, NOT IMOSIN(2*PI*(F'T+PHI/360)).
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$ PULSED SOURCE SPECIFICATION -- THE GENERAL FORM IS
VPLSX NI N2 VOFF VON TD TR TF PW PER
IPLSX NI N2 IOFF ION TD TR TF PW PER
WHERE X IS AN OPTIONAL CHARACTER IN THE NAME

N1 AND N2 ARE THE POSITIVE AND NEGATIVE NODES,RESPECTIVELY
VOFF (IOFF) AND VON (ION) ARE THE OFF AND ON VALUES
TD IS THE DELAY TIME
TR IS THE RISE TIME
TF IS THE FALL TIME
PW IS THE PULSE WIDTH
PER IS THE PERIOD

THE VOLTAGE (CURRENT) IS CALCULATED FROM A SERIES OF LINEAR SEGMENTS; THE
SOURCE HAS A VALUE VOFF FROM 0.0 TO TD, VON FROM TD+TR UNTIL TD+TR+PW, A
VALUE VOFF FROM TD+TR+PW+TF UNTIL PER, AND REPEAT EVERY PER SECONDS. DURING
THE RISE AND FALL TIMES A LINEAR FIT IS USED. FOR DC CALCULATIONS THE OFF
VALUE IS USED.
EXAMPLE
VPLS1 1 0 0.0 1.0 1.OUS 0.1US 0.3US 5.OUS 20.OUS
IPLSA 3 5 -1.0 3.5 5.OMS 0.0 0.0 5.OMS 10.OMS
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$ TEMPERATURE SPECIFICATION -- THE GENERAL FORM IS

TEMP TI [T2] [T3] ....

WHERE Ti, T2, ... ARE THE TEMPERATURES AT WHICH THE ANALYS-S ARE TO BE
PERFORMED, IN UNITS OF DEG K.

UP TO A TOTAL OF 5 (FIVE) TEMPERATURES CAN BE SPECIFIED. TI IS TAKEN AS
THE NOMINAL TEMPERATURE. IF THIS CARD IS ABSENT THE TEMPERATURE IS ASSUMED TO
BE 300 DEG K.

EXAMPLE

TEMP 300 295 315

$ R, L, AND C ELEMENT SPECIFICATION -- THE GENERAL FORM IS

RXXX NI N2 VALUE [TC1 [TC2]]
LXXX Ni N2 VALUE ETCI [ICN]]
CXXX NI N2 VALUE [TC1 EICNJ]

WHERE VALUE IS THE ELEMENT VALUE,
TCi IS THE 1ST ORDER TEMPERATURE COEFFICIENT OF THE ELEMENT VALUE, IN

PARTS PER DEGREE KELVIN; FOR RESISTORS, TC2 IS THE 2ND ORDER TEMPERATURE
COEFFICIENT, AND FOR CAPACITORS AND INDUCTORS ICN IS THE INITIAL VOLTAGE AND
CURRENT, RESPECTIVELY.

EXAMPLE

RI 1 2 lOOK
CS 5 0 2.3P
RB 2 3 1520HMS
RC 2 6 5K .002 5.E-5

$ MUTUAL INDUCTANCE SPECIFICATIONS -- THE GENERAL FORM IS
UXXX NI N2 N3 N4 Lii L22 K lIP] (IS]
WHERE UXXX IS THE TRANSFORMER NAME,

Ni AND N2 ARE THE POSITIVE AND NEGATIVE NODES OF THE PRIMARY,
N3 AND N4 ARE THE POSITIVE AND NEGATIVE NODES OF THE SECONDARY,
Lii IS THE SELF-INDUCTANCE OF THE PRIMARY,
L22 IS THE SELF-INDUCTANCE OF THE SECONDARY,
K IS THE COEFFICIENT OF COUPLING,
IP IS THE INITIAL CONDITION (CURRENT) FOR THE PRIMARY, AND
IS IS THE INITIAL CONDITION (CURRENT) FOR THE SECONDARY.

I!
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$ BIPOLAR TRANSISTOR SPECIFICATION -- THE GENERAL FORM IS

QXXX BXXX NC NB NE

WHERE BXXX IS THE MODEL NAME,
NC NB NE ARE THE COLLECTOR, BASE AND EMITTER NODES RESPECTIVELY.

THE MODEL BXXX IS TO BE DEFINED SEPARATELY AND CAN BE REFERENCED BY OTHER
TRANSISTORS.

EXAMPLE

QA Bi 2 3 4
Q12 BPNP 1 3 6

$ BIPOLAR MODEL SPECIFICATION -- THE MODEL CAN BE SPECIFIED IN FULL AS
FOLLOWS -

BXXX TYPE BF=BFMAX,ICMAX,BF,IC,VCE,TCI,TC2 BR=VALUE ISS:VALUE
+ RB=VALUE,TC1,TC2 RC=VALUE,TC1,TC2 RO=VALUE,IC FT=VALUE,IC,VCE
+ TSAT=VALUE CJE=VALUE,VBE,PHIE,NE CJC=VALUE,VBC,PHIC,NC,RATIO
+ CSUB"VALUE TEMP=VALUE

THE PARAMETERS CAN APPEAR AS A GROUP IN ANY ORDER. ANY PARAMETER CAN BE
OMITTED. THE VALUE SPECIFICATION TO THE RIGHT OF THE PARAMETER KEY WORD SHOULD
BE PUT IN THE ORDER INDICATED (SEE EXPLANATION BELOW). OMITTING LEADING VALUE
SHOULD BE INDICATED BY A SLASH (M). A CONTINUATION CARD SHOULD HAVE A PLUS (+)
IN COLUMN 1.

THE MODEL PARAMETERS HAVE THE MEANING AND DEFAULT VALUES AS FOLLOWS -

TYPE NPN OR PNP NPN
BF=BFMAX MAXIMUM FORWARD BETA 100.

ICMAX IC AT WHICH BFMAX OCCURS IGNORED
BF SOME VALUE OF BETA AT IC<ICMAX IGNORED
IC IC FOR ABOVE VALUE OF BETA IGNORED
VCE VCE FOR ABOVE VALUE OF BETA IGNORED
TC1 1ST ORDER TEMP. 0.
TC2 2ND ORDER TEMP. COEFF. 0.

BR=VALUE REVERSE BETA 1.
ISS =VALU E SATURATION CURRENT 1.E-14
RB=VALUE BASE RESISTANCE 0.

TC1 1ST ORDER TC 0.
RC=VALUE COLLECTOR RESISTANCE 0.
ROzVALUE COMMON-EMITTER OUTPUT RESISTANCE INFINITE

IC IC FOR ABOVE VALUE 1.E-3
FTzVALUE SMALL SIGNAL UNITY GAIN FREQ. LARGE

IC IC FOR ABOVE VALUE IGNORED
VCE VCE FOR ABOVE VALUE IGNORED

TSAT=VALUE SATURATION TIME CONSTANT 0.

a.
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OJE: VALUE BE JUNCTION CAPACITANCE 0.
E VBE FOR ABOVE VALUE 0.

PHIE BE JUNCTION POTENTIAL .7
NE GRADIENT FACTOR .33333

CJC=VALUE BC JUNCTION CAPACITANCE 0.
VBC VBC FOR ABOVE VALUE 0.

PHIC BC JUNCTION POTENTIAL .5
NC GRADIENT FACTOR .33333
RATIO SPLIT RATIO 0.

CSUB=VALUE SUBSTRATE CAPACITANCE 0.
TFE4P=VALUE PARAMETER DEFINITION TEMPERATURE 300.

THE MODEL USED IS THE FAMILIAR EBERS-MOLL MODEL, WITH THE INCLUSION OF
BASE AND COLLECTOR OHMIC RESISTANCES, JUNCTION CAPACITANCES, AND AN OUTPUT
CONDUCTANCE MODELING THE EARLY EFFECT (SEE J. J. EBERS AND J. C. MOLL,
"LARGE SIGNAL BEHAVIOR OF JUNCTION TRANSISTORS", PROC. IRE,V 42, DEC. 195J4).

EXAMPLE
Bi BF=120,lM,2,lE-6,5 FT=35OMEGHZ CJE=2.5P/.B TSAT=5NS

t BA BF=120 BR=0.5 FT=6OOMEG TSAT=5NS CJE=1.5P CJC=2P
+ RB=250 RC=15
BPNP PNP BF=5 BR~ 1 FT=25MEGHZ CJE=3P CJC=4P
BDC BF=120 BR=2 RB=250 RC=15
BSML ISS=1.E-15 RB:1K RC:100 TEMP:295



p

115

$ JFET TRANSISTOR SPECIFICATION -- THE GENERAL FORM IS

JXXX XXXX ND NG NS
OR

JXXX ND NG NS XXXX

WHERE JXXX IS THE TRANSISTOR NAME
XXXX IS THE MODEL NAME (FIRST LETTER MUST BE 'X')
ND NG NS ARE THE DRAIN,GATE, AND SOURCE NODES RESPECTIVELY.

THE MODEL XXXX IS DEFINED SEPARATELY, AND MAY BE REFERENCED BY OTHER
TRANSISTORS.

$ JFET MODEL SPECIFICATIONS -- THE MODEL CAN BE FULLY SPECIFIED AS FOLLOWS -

XXXX CTYP=TYPE CODE VTO=VALUE BTA=VALUE LMDA=VALUE RD-VALUE RS=VALUE
+ CGS=VALUE CGD=VALUE PB=VALUE IS=VALUE

THE MODEL PARAMETERS HAVE MEANING AND DEFAULT VALUES AS FOLLOWS -

CTYP TYPE CODE (1 FOR N-CHANNEL, 2 FOR P-CHANNEL) N-CHANNEL
VTO PINCHOFF VOLTAGE 0.0
BTA TRANSCONDUCTANCE 1 .OE-4
LMDA CHANNEL-LENGTH MODULATION PARAMETER 0.0
RD DRAIN OHMIC RESISTANCE 0.0
RS SOURCE OHMIC RESISTANCE 0.0
CGS ZERO-BIAS GATE-SOURCE CAPACITANCE 0.0
CGD ZERO-BIAS GATE-DRAIN CAPACITANCE 0.0
PB GATE JUNCTION POTENTIAL 1.0
IS GATE JUNCTION SATURATION CURRENT 1.OE-14

NOTE: RATHER THAN SPECIFY CTYP=I OR CTYP-2, WE CAN USE NJF OR PJF (NOT
CTYP=NJF). THESE ARE EQUIVALENT, BUT ARE MORE EASILY RECOGNIZED.

THE JFET MODEL USED IS BASED ON THAT OF SHICHMAN AND HODGES (SEE
H. SHICHMAN AND D. A. HODGES, "MODELING AND SIMULATION OF INSULATED-GATE
FIELD-EFFECT TRANSISTOR CIRCUITS", IEEE JSSC, V SC-3, P285-289).

EXAMPLE
XJFET NJF VTO=1.0 RD=1O RS=1O

- i - -
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$ DIODE SPECIFICATION -- THE GENERAL FORM IS

DXXX ZXXX NA NC
OR

DXXX NA NC ZXXX

WHERE DXXX IS THE DIODE NAME
ZXXX IS THE MODEL NAME
NA AND NC ARE THE ANODE AND CATHODE NODES, RESPECTIVELY.

THE MODEL ZXXX IS DEFINED SEPARATELY AND CAN BE REFERENCED BY OTHER
DIODES.

$ DIODE MODEL SPECIFICATIONS -- THE MODEL CAN BE FULLY SPECIFIED AS -

ZXXX IS=ISAT RS=RS N=VALUE TT=VALUE CJO=VALUE PHIB=VALUE M=VALUE

THE PARAMETERS APPEAR IN ANY ORDER. ANY OR ALL CAN BE OMITTED.
CONTINUATION CARDS MUST HAVE A '+' IN COL. 1.

MODEL PARAMETER MEANINGS AND DEFAULT VALUES ARE AS FOLLOWS-
IS SATURATION CURRENT 1.OE-14
RS OHMIC RESISTANCE 0.0
N EMISSION COEFFICIENT 1.0
TT TRANSIT TIME 0.0
CJO ZERO-BIAS JUNCTION CAPACITANCE 0.0
PB JUNCTION POTENTIAL 1.0
M GRADING COEFFICIENT 0.5

THE DIODE MODEL USED IS BASED ON THAT OF SPICE, AND MAY BE USED FOR
BOTH JUNCTION AND SCHOTTKY-BARRIER DIODES. (SEE MEMORANDUM ERL-M520,
9 MAY 1975, UNIVERSITY OF CALIFORNIA, BERKELEY).

EXAMPLES
ZPWR IS=1.OE-10 RS=0.05
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$ PLOT SPECIFICATION -- ThE GENERAL FORM IS -

PLOT MIN MAX YXXX Ni N2 YrXX Ni N2
Y IS EITHER V OR I.

WHERE MIN AND MAX ARE THE COORDINATE SPECIFICATIONS OF THE PLOT, IN VOLTS FOR
VOLTAGES AND MILLIAMPERES FOR CURRENTS.

NOTE THAT CURRENT OUTPUTS REQUIRE THAT A UNIQUE BRANCH (R,L,C,TRANSFORMER
PRIMARY OR SECONDARY,CURRENT OR VOLTAGE SOURCE) EXIST BETWEEN THE NODES
SPECIFIED. IF TWO OR MORE BRANCHES ARE CONNECTED BETWEEN THE SPECIFIED NODES,
ONLY THE CURRENT FOR THE FIRST BRANCH ELEMENT ENCOUNTERED IN A SEARCH WILL BE
GIVEN, POSSIBLY LEADING TO ERRORS.

THE MAXIMUM NUMBER OF POINTS TO BE PLOTED IS LIMITED TO THE FIRST 150 TIME
INTERVALS AS SPECIFIED ON THE TIME CARD. UP TO TWO OUTPUTS CAN BE PRINTED
PER PLOT.

EXAMPLE

PLOT -5. 5. VOUT 10 0 VC2 3 0
PLOT 0 5 VOUT 3 5
PLOT 0 1. IRS 1 2

$ PRINT SPECIFICATION -- THE GENERAL FORM IS

PRINT YXXX Ni N2 YXXX N3 N4 ....
Y IS EITHER V OR I

WHERE YXXX IS THE NAME OF THE VALUE SOUGHT
NA AND NB ARE THE POSITIVE AND NEGATIVE NODES, RESPECTIVELY.
VOLTAGES ARE IN VOLTS, CURRENTS IN MILLIAMPERES. UP TO NINE PARA-

METERS CAN BE SPECIFIED.
EQUIVALENT RESULTS CAN BE OBTAINED BY LISTING OUTPUT REQUIREMENTS ON

SEPERATE LINES IN THE FORM -

VOUXX NI N2
OR
IOUXX Ni N2

WHERE XX ARE TWO OPTIONAL CHARACTERS
NI AND N2 ARE THE POSITIVE AND NEGATIVE NODES, RESPICTIVELY.

VOUT 1 3 IS EXACTLY EQUIVALENT TO PRINT VOUT 1 3

EXAMPLES
PRINT VIN 1 0 VOUT 8 0
PRINT V2 2 0 IDRAIN 4 5
VOUT8 8 0

I
1
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$ FOURIER ANALYSIS SPECIFICATION --
THE CURRENT VERSION OF SINC ALLOWS THE USER A CHOICE OF TWO METHODS

OF OBTAINING THE SPECTRUM OF A WAVEFORM; USING EITHER THE FFT OR
STANDARD FOURIER ANALYSIS.

FOR FOURIER ANALYSIS AT AN ARBITRARY NUMBER OF POINTS, THE FORM IS-

FOR TSTR TSTP NHAR

WHERE TSTR AND TSTP ARE THE START AND STOP TIMES FOR THE PERIOD TO BE
ANALYZED (THE PERIOD), AND NHAR IS THE NUMBER OF HARMONICS DESIRED.

NHAR MUST BE LESS THAN OR EQUAL TO 49. FOURIER ANALYSIS IS PERFORMED
FOR ALL PLOT OUTPUTS.

FOR FOURIER ANALYSIS USING THE FFT, THE FORM IS -

FFT TSTR TSTP NUX

WHERE TSTR AND TSTP ARE THE START AND STOP TIMES FOR THE INTERVAL TO BE
ANALYZED (ASSUMED TO BE THE PERIOD), AND 2**NUX IS THE NUMBER OF SAMPLE
POINTS AVAILABLE.
NOTE: IF THE PERIOD SPECIFIED CONTAINS MORE THAN 2**NUX POINTS, ONLY THE
FIRST 20 NUX ARE USED.
NOTE: WHEN USING EITHER FOR OR FFT, SPECIFYING 0.0 FOR BOTH TSTR AND TSTP
WILL FORCE THE PROGRAM TO USE THE PERIOD DETERMINED BY THE STEADY-STATE
ANALYSIS ALGORITHM (USED FOR OSCILLATORS).

$ NO DC ANALYSIS SPECIFICATION -- THE FORM IS -

NDC

THIS SPECIFIES THAT NO DC ANALYSIS IS TO BE PERFORMED PRIOR TO
STARTING TRANSIENT ANALYSIS. THE STATE OF THE CIRCUIT IS THE ZERO STATE
UNLESS INITIAL CONDITIONS ARE SPECIFIED. THIS IS PRIMARILY USEFUL FOR
OSCILLATORS WHICH ARE NEARLY STABLE AT THEIR DC POINT, SUCH AS A WIEN BRIDGE.

IN SOME CASES USING THE 'NDC' CARD WITH ZERO INITIAL CONDITIONS CAN
LEAD TO EXCESSIVE COMPUTATION TIME, TRANSIENT CONVERGENCE FAILURE, OR OTHER
PROBLEMS. IN SUCH CASES, THE BEST PROCEEDURE IS USUALLY TO RUN SINC TWICE.
THE FIRST RUN IS ONLY TO ESTABLISH THE DC OPERATING POINT OF THE CIRCUIT (NO
'STEADY' OR 'TIME' CARD IS INCLUDED IN THE DECK). THE VALUES OF THE STATES
ARE THEN DETERMINED FROM THE NODE VOLTAGES AND PERTURBED SLIGHTLY. THESE
PERTURBED VALUES ARE THEN USED AS THE INITIAL CONDITIONS FOR THE SYSTEM,
ALONG WITH AN 'NDC' CARD. THE PERTURBATION IS USUALLY SUFFICIENT TO ENSURE
OSCILLATION; HOWEVER, THE SYSTEM IS NEAR ENOUGH TO THE STEADY STATE TO
CONVERGE QUITE RAPIDLY. FOR AN EXAMPLE OF SUCH A CASE, SEE THE COLPITTS
OSCILLATOR IN THE EXAMPLES SECTION.
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$ GAIN CARD -- THE GAIN CARD IS USED TO REQUIRE THE DETERMINATION OF THE

DC TRANSFER FUNCTION OF THE CIRCUIT. THE GENERAL FORM IS -

GAIN NI N2 N3 N4

WHERE Ni AND N2 ARE THE INPUT NODES
N3 AND N4 ARE THE OUTPUT NODES

THIS SPECIFICATION CAUSES THE DC SMALL-SIGNAL CHARACTERISTICS TO BE COMPUTED
AND LISTED WITH THE DC OPERATING POINT IN THE FORM

SMALL-SIGNAL GAIN* NI N2 N3 N4 K1O
RIN=VALUE RM=VALUE AV=VALUE

WHERE K1O = 0 IF NO VOLTAGE SOURCE IS CONNECTED TO NI AND N2
1 IF A VOLTAGE SOURCE IS CONNECTED TO Ni AND N2

RIN IS THE INPUT RESISTANCE
RM IS THE RESISTANCE MUTUAL TO THE INPUT AND OUTPUT PORTS, AND
AV IS THE VOLTAGE GAIN.

THE EQUIVALENT CIRCUIT REPRESENTATION USED FOR THE GAIN CALCULATION IS
THE 'T' MODEL; THE VALUE GIVEN FOR RIN IS THE SUM OF THE SERIES INPUT ANS
MUTUAL (PARALLEL) RESISTANCES.
NOTE: SINCE THIS IS DC ANALYSIS, ALL INDUCTORS ARE REPLACED WITH 1 OHM
RESISTORS, AND ALL CAPACITORS ARE TREATED AS OPEN CIRCUITS.

$ STEADY-STATE ANALYSIS SPECIFICATION -- THE GENERAL FORM IS -
STEADY KSTE FREQ [PERIOD] (NST] [TOL] CNTRY2] [NTRYO]
WHERE KSTE = 0 FOR NON-AUTONOMOUS (DRIVEN) CIRCUITS

1 FOR AUTONOMOUS (OSCILLATOR) CIRCUITS
FREQ IS THE FREQUENCY OF THE FUNDAMENTAL COMPONENT PRESENT
PERIOD IS THE PERIOD OF THE FUMDAMENTAL COMPONENT PRESENT
NST IS THE MINIMUM NUMBER OF STEPS PER PERIOD
TOL IS THE STEADY-STATE CONVERGENCE TOLERANCE, EXPRESSED AS A FACTOR

TIMES THE MAXIMUM STATE VALUE OVER THE PERIOD
NTRY2 IS THE NUMBER OF FULL PERIOD INTEGRATIONS OF THE SYSTEM ALLOWED

IN ATTEMPTING TO ACHIEVE STEADY STATE CONVERGENCE.
NTRYO IS THE NUMBER OF PERIODS OF CONTRACTION MAPPING COMPUTED BEFORE

TAKING THE FIRST NEWTON STEP, AND EXCLUDES THE PERIOD REQUIRED FOR THE NEWTON
STEP. THEREFORE, THE MINIMUM VALUE FOR NTRYO IS 0. HOWEVER, IF THE SPECIFIED
VALUE IS SMALLER THAN THE NUMBER OF DECAY PERIODS SPECIFIED (SEE 'DECAY PERIODS'
CARD, BELOW), THE LARGER VALUE IS USED.

THE VARIABLES MUST BE LISTED IN ORDER; HOWEVER, NOT ALL ARE NEEDED.
DEFAULT VALUES ARE NST=50

TOL=1.OE-4
NTRY2=20

NTRYO=3
NOTE THAT IF BOTH FREQUENCY AND PERIOD ARE SPECIFIED, AND THE FREQUENCY IS
NOT 0.0, THE PERIOD WILL BE FORCED TO BE I./FREQ.

1 |
j6 2
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$ TOLERANCE SPECIFICATION -- THE GENERAL FORM IS -

TOLERANCE TOL NTRA NTRY1

WHERE TOL IS THE TOLERANCE ON JUNCTION VOLTAGES, EXPRESSED AS A PERCENTAGE OF
VT (VT=KT/Q; FOR ROOM TEMPERATURE THIS IS 26 MV. THUS, 10 % TOL
WOULD BE 2.6 MV.)

NTRA = -1 IF THE BACKWARD-EULER METHOD IS TO BE USED
0 IF GEAR'S 2ND ORDER METHOD IS TO BE USED
1 IF THE TRAPEZOIDAL RULE IS TO BE USED FOR THE TRANSIENT

ANALYSIS
NTRY1 IS THE NUMBER OF ATTEMPTS ALLOWED FOR CONVERGENCE TO THE SPECIFIED

TOLERANCE.
IF THE CARD OR ANY VALUES ARE OMITTED, THE DEFAULTS ARE 105, GEAR'S METHOD,
AND 10 ATTEMPTS.

THE VALUES SPECIFIED ON THIS CARD APPLY TO EACH TIMESTEP. THIS IS
IRRESPECTIVE OF WHETHER THE TIMESTEP IS PART OF A TRANSIENT ANALYSIS OR PART
OF ONE PERIOD IN THE STEADY STATE ANALYSIS.

$ SPECIAL CONDITIONS SPECIFICATIONS -- THE FOLLOWING SPECIAL CONDITIONS
CONTROL CARDS ARE ALSO AVAILABLE -

PRINT STATES
PRINT TRANSIENT ANALYSIS
MODIFIED NEWTON METHOD N

THESE HAVE THE FOLLOWING EFFECTS-

PRINT STATES - CAUSES THE PRINTING OF THE INITIAL AND FINAL STATES AT EACH
ITERATION DURING STEADY-STATE ANALYSIS. USED FOR OBSERVING CONVERGENCE.
DEFAULT: THE INITIAL AND FINAL STATES FOR THE LAST ITERATION ONLY ARE PRINTED.

PRINT TRANSIENT ANALYSIS - CAUSES THE PRINTING OF THE VALUES REQUESTED BY A
'PRINT' CARD AT EACH TIMEPOINT FOR EACH ITERATION IN THE STEADY-STATE ANALYSIS.
(WARNING: THE USE OF THIS OPTION MAY GENERATE CONSIDERABLE OUTPUT.) DEFAULT:
THE OUTPUTS ARE PRINTED ONLY FOR THE FINAL ANALYSIS.

MODIFIED NEWTON METHOD N - WHERE N IS AN INTEGER FROM 1 TO 4; CAUSES A
MODIFIED NEWTON METHOD TO BE USED FOR THE STEADY STATE ANALYSIS. N=O CORRES-
PONDS TO AN UNMODIFIED METHOD. N=1 INVOKES COLON'S METHOD, USING A GLOBAL
SCALER DAMPING TERM. N=2 AND N=4 ARE VECTOR DAMPED METHODS; N=4 USES A VECTOR
PRODUCED FROM LOCAL ERRORS ONLY, I.E., EACH STATE'S ERROR IS COMPUTED INDIV-
IDUALLY AND THE DAMPING TERM FOR THAT STATE IS A FUNCTION ONLY OF THAT ERROR.
FOR N=2 BOTH LOCAL AND GLOBAL ERRORS ARE CALCULATED, AND THE DAMPING VECTOR
IS A FUNCTION OF THEM BOTH. N=3 TAKES A FULL NEWTON STEP WHILE ALLOWING OTHER
MODIFICATIONS, SUCH AS AN EXTERNAL CARD. ALL N>O INCORPORATE REDUCED
CALCULATION OF THE SENSITIVITY MATRIX. IF NO MODIFIED NEWTON METHOD CARD IS
INCLUDED, THE DEFAULT IS THE UNMODIFIED NEWTON METHOD.
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$ EXTERNAL DAMPING SPECIFICATION -- THE GENERAL FORM IS -

EXTERNAL Xl X2 X3 ......

WHERE XI,X2,... ARE USER-SPECIFIED DAMPING FACTORS WHEN USING THE MODIFIED
(DAMPED) NEWTON METHOD. EACH ELEMENT I,J OF THE SENSITIVITY MATRIX IS
MULTIPLIED BY SQRT(XI*XJ). THEREFORE, ALL X MUST BE NON-NEGATIVE.
EXTREME CARE MUST BE USED IN SETTING ANY X>I. SETTING ANY X=O ELIMINATES THAT
ELEMENT FROM THE NEWTON METHOD.

NOTE THAT THE EFFECTIVE USE OF THIS OPTION REQUIRES THAT THE USER BE
AWARE OF THE ORDER IN WHICH SINC SPECIFIES STATE VARIABLES, AS THIS IS THE
ORDER IN WHICH THE DAMPING FACTORS MUST BE SPECIFIED ON THE EXTERNAL CARD. THIS
ORDER IS -
ELEMENTS - INDUCTOR CURRENTS AND CAPACITOR VOLTAGES IN THE ORDER THEY APPEAR

IN THE INPUT DATA
TRANSFORMERS - PRIMARY AND SECONDARY CURRENTS, IN THE ORDER THE TRANSFORMERS

APPEAR IN THE INPUT DATA
BIPOLAR TRANSISTORS - CEB AND CBC VOLTAGES, IF THESE CAPACITANCES ARE NON-ZERO;

TRANSISTORS IN THE ORDER THEY APPEAR IN THE INPUT DATA
DIODES - JUNCTION CAPACITANCE VOLTAGE, IF THE CAPACITANCE IS NON-ZERO
JFET TRANSISTORS - CGS AND CGD VOLTAGES, IF THESE CAPACITANCES ARE NON-ZERO.

ANY VALUES NOT SPECIFIED DEFAULT TO 1.0. IN ORDER THAT THE USER CAN
VERIFY THESE SPECIFICATIONS, A SET OF THE STATES AND THEIR DAMPING FACTORS
ARE PRINTED IF AN 'EXTERNAL' CARD IS USED.

i .
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$ DECAY PERIOD SPECIFICATION -- THE GENERAL FORM IS

DECAY PERIOD N

WHERE N IS AN INTEGER FROM 1 TO 9.
IF THIS CARD IS PRESENT, DURING STEADY STATE ANALYSIS THE SYSTEM IS

FORCED TO CONTRACT FOR N PERIODS PRIOR TO EACH APPLICATION OF THE NEWTON
METHOD. THUS, IF BOTH VERY FAST AND VERY SLOW TRANSIENT COMPONENTS ARE PRESENT,
USE OF AN APPROPRIATE VALUE FOR N WILL ALLOW THE FAST TRANSIENTS TO DECAY AND
THEREBY REDUCE THEIR EFFECT ON THE NEWTON ALGORITHM. THIS TECHNIQUE IS
PRIMARILY USEFUL WHERE A SYSTEM HAS TWO DISTINCT GROUPS OF EIGENVALUES, ONE OF
WHICH IS ASSOCIATED WITH VERY SHORT TIME CONSTANTS.

NOTE: USE OF THIS TECHNIQUE MAY PRODUCE A LARGE INCREASE IN RUNTIME
IF INAPPROPRIATELY APPLIED.

EXAMPLE

DECAY PERIOD 2

$ ALTER CARD -- AN ALTER CARD IS USED TO SEPARATE MODIFICATIONS OF A
CIRCUIT. IT INDICATES THE END OF DATA FOR A PARTICULAR ANALYSIS AND THAT
ANOTHER ANALYSIS IS DESIRED WITH SOME CHANGES TO THE DATA. FOR EXAMPLE, WE
COULD HAVE A RESISTOR NAMED R13 WITH A VALUE OF 10K OHMS. AFTER FIRST ANALYZING
THE DATA WITH THIS VALUE OF R13, IT IS DESIRED TO DETERMINE THE EFFECT OF
REDUCING THE VALUE TO 5K. THEN AN 'ALTER' CARD WOULD MARK THE END OF THE
ORIGINAL DATA SET; FOLLOWING THE 'ALTER' CARD WOULD BE A NEW R13 CARD. THIS
IS USEFUL IN DETERMINING THE EFFECT OF MINOR CHANGES IN A PROGRAM. NO PROVISION
IS MADE FOR ELIMINATING RESISTORS COMPLETELY OR SHORTING THEM OUT. HOWEVER, MOST
CHANGES THAT DID NOT CHANGE THE NODE STRUCTURE ARE ALLOWED, SUCH AS TOLERANCE
CHANGES, CHANGES IN SEMICONDUCTOR MODELS, ETC. IF A COMPLETE RESTRUCTURING OF
THE CIRCUIT IS DESIRED, THEN A NEW PROBLEM SHOULD BE SUBMITTED. NOTE THAT
PROBLEMS CAN BE BATCHED BY PLACING A NEW TITLE CARD FOLLOWING THE PREVIOUS
END CARD.

$ END CARD -- THE END CARD MUST BE THE LAST CARD OF THE INPUT DECK. COLS.
1-3 MUST CONTAIN THE LETTERS END. COLS. MAY CONTAIN ANY COMMENTS.

-------------------------- - ' -'.
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REMARKS

THE FOLLOWING ARE GENERAL COMMENTS CONCERNING CHARACTERISTICS AND LIMITATIONS OF
THE PROGRAM.

1) JOBS MAY BE BATCHED BY PLACING THEM SEQUENTIALLY -- A TITLE CARD FOR EACH
NEW JOB FOLLOWING THE END CARD OF THE PRECEDING JOB.

2) SCALE FACTOR CAN BE USED FOR NON-INTEGER VALUES. THE CONVENTION IS
* G FORlE9

ME 1E6
K 1E3
M 1E-3

U 1E-6
N 1E-9
P 1E-12

ANY NON-SCALE FACTOR CHARACTER FOLLOWING A REAL NUMBER IS IGNORED (EXCEPT
A SLASH). ANY CHARACTERS FOLLOWING A SCALE FACTOR ARE ALSO IGNORED.

3) DECIMAL POINT IS NOT NECESSARY FOR NON-INTEGER VALUES. ALL INTEGERS MUST
BE NON-NEGATIVE, AND SHOULD NOT HAVE DECIMAL POINT, E PART OR SCALE FACTOR.

4) DO NOT USE THE LETTER K TO INDICATE THE TEMPERATURE UNIT. THE LETTER K,
UNLIKE 0, F, H, A, AND V, CANNOT BE USED AS COMMENT, IT IS A SCALE FACTOR.

RUNNING SINC ON THE CSL DECSYSTEM-1

USUALLY DATA INPUT/OUTPUT WILL BE VIA DISK FILES. THE FORTRAN UNIT
NUMBERS 2 AND 3 (USUALLY THE CARD READER AND LINE PRINTER) HAVE BEEN ASSIGNED
TO THE DISK USING OPEN AND CLOSE STATEMENTS IN THE SINC MAIN PROGRAM. WHEN
RUNNING SINC FROM A TIME-SHARING TERMINAL THE USER WILL BE ASKED FOR THE INPUT
AND OUTPUT FILE NAMES. THESE USUALLY CONSIST OF A 1 TO 6 CHARACTER NAME, A
PERIOD, AND A THREE LETTER EXTENSION; BY CONVENTION, THE EXTENSION 'DAT' IS
USED TO INDICATE DATA FILES. IF THE PERIOD AND EXTENSION ARE NOT TYPED, THE
EXTENSION 'DAT' IS ASSUMED; IF THE PERIOD IS TYPED BUT NO EXTENSION IS SPECI-
FIED, A NULL EXTENSION IS USED.

THE USER CAN CREATE A DISK FILE CONTAINING THE INPUT DATA BY USING ONE
OF THE EDITORS, SUCH AS SOS OR TECO. FOR INFORMATION ON THE EDITORS, CONSULT
THE APPROPRIATE MANUAL. ONCE AN OUTPUT FILE HAS BEEN CREATED BY SINC, IT CAN
BE SPOOLED TO THE LINE PRINTER BY USING THE 'PRINT' COMMAND. FOR FURTHER
INFORMATION ON THE DECSYSTEM-10, CONSULT THE APPROPRIATE DEC MANUALS.
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THE FOLLOWING ARE EXAMPLES OF SOME TEST PROGRAMS FOR SINC:

SINC RESISTOR VOLTAGE DEVIDER
VS 1 0 10.
Ri 1 2 1K
R2 2 0 3K
VOUT 2 0
END

SINC POWER-SUPPLY EXAMPLE
VSIN 1 0 10. 60. 0. 0.
Dl Z1 1 2
Zi IS=1.OE-12
Cl 1 2 1.OUF
Li 2 3 0.1
C2 3 0 1000.UF
RLOAD 3 0 100.
PRINT STATES
STEADY 0 60. 0 100
PLOT 0 20 VOUT 3 0 VIN 1 0
PLOT 0. 200. ICHG 2 3
END

SINC ASTABLE MULTIVIBRATOR/S P FAN FBG 4-27-79
VCC 5 0 5.0
RC1 1 5 1500
RC2 4 5 1.5K
RB1 2 5 lOOK
RB2 3 5 1.0E5
Cl 1 2 145.PF
C2 3 4 1I5,PF
B1 NPN FT=250MEG TSAT-5NS CJE1IPF CJC=IP
Ql B1 1 3 0
Q2 Bl 4 2 0

PLOT -5. 5. VOUT 1 0 VB2 2 0
STEADY 1 50.KHZ 0 100 1.0E-2 12
END

i
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SINC RCA 3040 WIDEBAND AMPLIFIER TEST FBG 4-27-79
VSIN 1 0 0.1 50.MEG
VCC 2 0 15.
VEE 3 0 -15.
RS1 30 1 1K
ES1 31 0 1K
Ri 6 3 4.8K
R2 5 3 4.8K
R3 9 3 811.
R4l 8 3 2.17K
R5 8 0 820.
R6 2 14~ 1-32K1R7 2 12 4I.5K
R8 2 15 1.32K
R9 16 0 5.25K
R10 17 0 5.25K
Qi BNL 2 31 6
Q2 BNL 2 30 5
Q3 BNL 10 5 7
Q4l BNL 11 6 7
Q5 BNL 14 12 10
Q6 BNL 15 12 11
Q7 BNL 12 12 13
Q8 BNL 13 13 0
Q9 BilL 7 8 9
Q10 BilL 2 15 16
Qil BilL 2 14 17
PLOT 2 10 V17 17 0
BNL NPN BF=80. RB=100 RO=50K,1MA FT=325MEG,0.684MA,5.8i2 TSATs6.47NS
+ CJE=3PF,0,1,0.5 CJC=2PF,0,1,0.5 CSUB=2PF
TIME 0.5145 50.NS
END
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SINC COLPITTS OSCILLATOR/S P FAN
BA NPN
QI BA 2 3 4
RB 3 0 65.
RC 1 2 20
RE 4 6 4.7K "'
RL 5 1 750
Li 5 1 50.NH 0. -.002
Cl 1 4 5.PF 0 10.6
C2 4 5 45.PF 0. -10.6
VCC 5 0 10.
VEE 6 0 -10.
PLOT 5 15 VOUT 1 0
PLOT -0.8 -0.2 VE 4 0
PLOT 0. 15. IOUT 1 2
STEADY 1 300.MEGHZ 0 100 1.OE-2 8
PRINT STATES
NDC
END

SINC TTL INVERTER (7400 SERIES)
VIN 1 0 0. 0. 0. 1NS 3.5 2NS 3.5 42NS 0. 43NS 0.
VCC 13 0 5.
RS 1 2 50
Ql END 4 3 2
RB1 13 3 4K
Q2 BND 5 4 6
RC2 13 5 1.4K
RE2 6 0 1K
Q3 BND 7 5 8
RC3 13 7 100
QD1 EDI 8 8 9
Q4 BND 9 6 0
Q5 BND 11 10 9
RB2 13 10 4K
QD2 BDi 11 11 12
QD3 BD1 12 12 0
PLOT -2. 6. V9 9 0 V5 5 0
TIME 1NS lOONS
END NPN BF=50. RB=70 RC=40 RO=50K,1MA FT=1.17GHZ,1MA,3.655 TSAT=9.8NS
+ CJE=0.9PF,0,1,0.5 CJC=1.5PF,0,0.85,0.5 CSUB=2PF
BDI NPN BF=50 RC=40 FT=1.37GHZ,1MA,3.655 CJE=0.9PF,0,1,0.5
END
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SINC TSR DC-DC POWER CONVERTER
* 200 VDC IN, 5V AT 20 A NOMINAL OUT

VS 1 0 200.V
Ri 1 4 3.0K
Cl 1 4 0.1UF
C3 1 2 .00136UF
R3 2 3 1.5K
DI ZPW1 3 4
DI ZPW1 3 2
D3 ZPW2 5 7
ZPW1 IS=1.OE-14 RS=O.05
ZPW2 IS=1.0E-12 RS=0.01

C2 6 0 16000.UF
RSER 6 7 3.75MILLIOHM
ELOAD 7 0 0.25
RPRI 1 10 10.
UFLY 3 10 5 0 2034.UH 3.585UH .997
RPTX 3 11 0.1
QDRIV BSW 11 8 0
BSW NPN BF= 100.
RBSW 8 9 1.0
VPLSW 9 0 0.0 1.0 24.9US 0.1US 0.1US 24.9US 5O.T.S
TOLERANCE 10. 0 100
STEADY 0 20.0KHZ 0. 150 1.OE-2 20
PLOT 5 10 VOUT 7 0 VCAP 6 0
PLOT 0 500 VC1 4 0 VC3 2 0
PRINT STATES
DECAY PERIODS 1
END
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